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Alzheimer's disease (AD) is a fatal incurable disease leading to progressive neuron destruction. AD is caused in part by the accumulation in the brain of Aβ monomers aggregating into oligomers and fibrils. Oligomers are amongst the most toxic structures as they can interact with neurons via membrane receptors, including PrP c proteins. This interaction leads to the misconformation of PrP c into pathogenic oligomeric prions, PrP ol . In this work, we develop a model describing in vitro Aβ polymerization process. We include interactions between oligomers and PrP c , causing the misconformation of PrP c into PrP ol . The model consists of nine equations, including size structured transport equations, ordinary differential equations and delayed differential equations. We analyse the well-posedness of the model and prove the existence and uniqueness of solutions of our model using Schauder fixed point theorem and Cauchy-Lipschitz theorem. Numerical simulations are also provided to give an illustration of the profiles that can be obtained with this model.

Introduction.

1.1. Alzheimer's disease and interaction with prions. According to the World Alzheimer Report, in 2015 more than 46 million people were living with dementia worldwide [?]. With 60% to 80% dementia cases, Alzheimer's disease (AD) is considered as the most common dementia subtype [?]. AD is a fatal incurable disease leading to progressive neuron destruction, with memory impairment, issues to perform daily tasks and behavior changes as main consequences.

2.1. Notations. To study the evolution of different concentrations, defined at time t 0, let us denote by: -m i (t): concentration of Aβ monomers, -u i (t, x): size density of Aβ proto-oligomers, with 0 x < x 0 , -f i (t, x): size density of Aβ fibrils, with x 0, -f a,i (t, x): size density of Aβ fibrils inside Aβ plaque, with x 0, -u 0 i (t): concentration of Aβ oligomers, -u a,i (t): concentration of Aβ oligomers inside Aβ plaque, -p c (t): concentration of PrP c , -p sc (t): concentration of PrP sc , -C i (t): concentration of complex Aβ/PrP c , where i = 1 (respectively i = 2) stands for continuous size x. 

                       ∂ t u i (t, x) + ∂ x (v i (t, x)u i (t, x)) = µ(x)m i (t), (1) 
∂ t f i (t, x) + ∂ x (v f,i (t, x)f i (t, x)) = µ(x)m i (t) -γ f,i f i (t, x), (2) 
∂ t f a,i (t, x) -b a,i (t)∂ x f a,i (t, x) = γ f,i f i (t, x), (3) 
with t ∈ [0, +∞) and x ∈ [0, x 0 ) in equation ( 1) and x ∈ [0, +∞) in equations ( 2)-(3).

Equations ( 1)-( 2) describe Aβ polymerization in proto-oligomers or fibrils, through standard size structured advection-reaction equations. As proposed in [?], the polymerization rates are given by:

v i (t, x) = g i (x)m i (t) -b i , (t, x) ∈ [0, +∞) × [0, +∞), v f,i (t, x) = g f,i (x)m i (t) -b f,i , (t, x) ∈ [0, +∞) × [0, +∞),
for i = 1, 2. We further assume that g i and g f,i are increasing functions of x. Thus, these rates express a constant depolymerization of all polymers, while the polymerization process is accelerated by a high concentration of monomers and facilitated for longer polymers. Further assumptions on polymerization rates are given in Hypothesis 1.

Hypothesis 1. Polymerization rates Rates v i and v f,i , for i = 1, 2, are required to satisfy the following conditions:

• b i > 0, b f,i > 0,
• g i (0) = 0, g f,i (0) = 0, lim x→+∞ g i (x) = +∞, lim x→+∞ g f,i (x) = +∞,

• g i ∈ C 0 ([0, +∞)) ∩ C 1 ((0, +∞)), g f,i ∈ C 0 ([0, +∞)) ∩ C 1 ((0, +∞)),

• for all ε 0 > 0, there is a constant G i > 0, such as for all x ε 0 , 0 g i (x) G i ,

• for all ε 0 > 0, there is a constant G f,i > 0, such as for all x ε 0 , 0 g f,i (x) G f,i .

It is important to note that for each time t, there exists a critical size x(t) > 0, for which polymerization rate is null, this critical size depending of the monomer concentration at time t. Therefore, polymers of size smaller than x(t) depolymerize whereas polymers of size greater than x(t) tend to attach more monomers. This phenomenon is referred to as Ostwald ripening [?].

Let us remark that x(t) can be greater than x 0 , and all proto-oligomers depolymerize in this case.

Finally, the term µ(x) in equations ( 1)-( 2) represents the ability of monomers to spontaneously aggregate in polymers smaller than x 0 , to start the polymerization process. In our model, this function allows the creation of small proto-oligomers that could otherwise not exist due to the depolymerization of small polymers.

Hypothesis 2. Function µ

We assume that µ is a positive function with compact support, defined for all x in [0, +∞). Moreover, the function

µ is in L 1 ([0, +∞), (1 + x)dx) ∩ L ∞ ([0, +∞)).
Finally, equation ( 4), describing the evolution of Aβ monomers, is given by the gain and loss in monomer from every fibrils and proto-oligomers.

To complete the system, initial conditions are given by:

       u i (t = 0, x) = u in i (x) 0, x ∈ [0, x 0 ), f i (t = 0, x) = f in i (x) 0, x ∈ [0, +∞), f a,i (t = 0, x) = f in a,i (x) 0, x ∈ [0, +∞), m i (0) = m 0 i > 0.
(5)

We further assume that:

Hypothesis 3. Initial conditions Initial condition u in i is in L 1 ([0, x 0 ), (1 + x)dx) ∩ L ∞ ([0, x 0 )). Initial conditions f in i and f in a,i are in L 1 (R+, (1 + x)dx) ∩ L ∞ (R+).
We also need boundary conditions in x = x 0 , for proto-oligomers:

lim x→x0 u i (t, x) = 0, if v i (t, x 0 ) 0, i = 1, 2. ( 6 
)
This condition represents the fact that no oligomers of size x 0 depolymerize, even if the rate of polymerization is negative. From Hypothesis 1 let mention that no boundary condition is required at x = 0, for the simple reason that the polymerization/depolymerization rates for proto-oligomers and fibrils are negative when x tends to 0.

2.3.

Model for Aβ-Prion interaction. We now introduce the second submodel, describing the interactions between Aβ oligomers and PrP c . Misconformation process of PrP c into PrP ol takes an incompressible duration, denoted τ , during which Aβ oligomer and PrP c form a complex. The oligomer is then released and can bind to another PrP c . This reaction leads to a system of delayed differential equations (system (II)):

               u0 i (t) = S i (t) -γ i u 0 i (t) -δ i p c (t)u 0 i (t) + δ i p c (t -τ )u 0 i (t -τ ), (7) 
ua,i (t) = γ i u 0 i (t), ( 8)

ṗc (t) = -δ 1 p c (t)u 0 1 (t) -δ 2 p c (t)u 0 2 (t), (9) 
ṗsc (t) = δ 1 p c (t -τ )u 0 1 (t -τ ) + δ 2 p c (t -τ )u 0 2 (t -τ ), (10) Ċi (t) = δ i p c (t)u 0 i (t) -δ i p c (t -τ )u 0 i (t -τ ), (11) 
for t ∈ [τ, +∞), and i = 1, 2, i = 1 corresponding to equations for Aβ-40 .

Equation ( 7) describes the evolution of Aβ-40 and Aβ-42 oligomers, with time. The first term S i (t) stands for the source term of oligomers. It represents the creation rate of Aβ oligomers from proto-oligomers that reached the maximal size x 0 , and is the coupling with the previous system. The last terms describe the interaction between Aβ oligomers and PrP c , leading to the formation of PrP ol after a duration of τ units of time. Equation ( 8) describe the displacement of Aβ oligomers into amyloid plaques. Finally, equations ( 9)-( 11) describe the evolution of prions and complexes.

We assume that PrP c are the only prion proteins initially in the experiment, ie all initial conditions at t = 0 are null, except for p c (0), which is equal to p 0 c and is positive. Then, on [0, τ ), the model is described using equations ( 7)-( 11), without any delayed part, as no PrP ol and oligomer are released from a complex during the first τ units of time.

We now want to determine the expressions of S 1 (t) and S 2 (t), representing the source terms of Aβ-40 and Aβ-42 oligomers, that is the coupling between the first submodel and this second one. To do so, we use the property of mass conservation of the system. Indeed, as we are in an in vitro context, the total mass Q(t) remains the same during the study (no source term and no loss). We first compute the value of Q, denoting m p the size of a prion PrP c or PrP ol :

Q(t) = 2 i=1 m i (t) + +∞ 0 xf i (t, x)dx + +∞ 0 xf a,i (t, x)dx + x0 0 xu i (t, x)dx + x 0 (u 0 i (t) (12) + u a,i (t)) + m p (p c (t) + p sc (t)) + (x 0 + m p )(C 1 (t) + C 2 (t)).
We then compute Q(t), using equations (1)-( 4) and ( 7)-( 11). We finally obtain:

Q(t) =x 0 S 1 (t) -v 1 (t, x 0 ) lim x→x0 u 1 (t, x) + S 2 (t) -v 2 (t, x 0 ) lim x→x0 u 2 (t, x) ,
which must be equal to zero. This equation gives sufficient conditions on S i :

S i (t) = v i (t, x 0 ) lim x→x0 u i (t, x), i = 1, 2. ( 13 
)
This condition gives an expression for the source term of oligomers, which is exactly the flow of proto-oligomers reaching the size x 0 . We can note that these source terms are non-negative, thanks to condition (6), and continuous.

3. Main results.

3.1. Existence of solutions for the system (I). To show the existence of solutions for the system (I), we based our analysis on the notion of "mild" solutions by introducing the characteristic curves associated to the kinetic rates at which monomers are added to or removal from fibrils or proto-oligomers. In the following definition we specify how "mild" solutions to equations ( 1)-(3) should be understood:

Definition 1. Mild solutions Let L ∈ (0, ∞]), T > 0; a, b : [0, T ] × [0, L) → R and u 0 : [0, L) → R.
We assume that a is a continuous function and satifies

• a is a C 1 function in variable x on (0, L) • a is a globally Lipschitz function in x uniformally in time t on [ε 0 , L) ∀ ε 0 ∈ (0, L) • a(t, 0) < 0 ∀ t ∈ [0, T ].
We also assume that b is a continuous function with respect to t and x. Let consider the linear transport problem that consists to find a solution

U : [0, T ] × [0, L) → R such that ∂ t U + ∂ x (aU ) = b, (t, x) ∈ [0, T ] × [0, L), U (t = 0, x) = U 0 (x), x ∈ [0, L) (14) 
where in the case L < ∞ we add the following boundary condition:

U (t, L) = 0 if a(t, L) ≤ 0. ( 15 
)
Let s → X(s, t, x) the characteristic curve defined for t ∈ [0, T ] and x ∈ (0, L) by

d ds X(s, t, x) = a(s, X(s, t, x)), X(t, t, x) = x. (16) 
Considering a 1 (t, x) = ∂a ∂x (t, x) the function defined in [0, T ] × (0, L), we denote by V t,x the largest interval of all s ∈ [0, T ] such that X(s, t, x) ∈ (0, L) ∀ t ∈ [0, T ]. We denote also s = s(t, x) = inf V t,x . So, we call U to be a "mild" solution of ( 14)-( 15) if for all (t, x) ∈ [0, T ] × (0, L) we have that the function s ∈ V t,x → U (s, X(s, t, x)) satisfies the following system

         d ds U = -a(s, X(s, t, x))U + b(s, X(s, t, x)), ∀ s ∈ V t,x , U (0, X(0, t, x)) = U 0 (X(0, t, x)), if s = 0, U (s, X(s, t, x)) = 0, if s > 0. ( 17 
)
With the previous definition, one can remark that X(s, t, x) is defined as the continuous extension of X(s, t, x) at s ∈ V t,x . Such extension always exists.

Theorem 1. Existence of solutions for system (I) Let Hypotheses 1, 2 and 3 hold. Then, for non-negative initial conditions, there exists T in (0, +∞) such that the system (I) has a unique non-negative "mild" solution

(u i , f i , f a,i , m i ) defined for any t in [0, T ]. Moreover : u i is in L ∞ ([0, T ] × [0, x 0 )) ∩ L ∞ ([0, T ]; L 1 ([0, x 0 ), (1 + x)dx) ∩ C 0 ([0, T ]; L 1 ([0, x 0 ))), f i and f a,i are in L ∞ ([0, T ] × R + ) ∩ L ∞ ([0, T ]; L 1 (R + , (1 + x)dx)) ∩ C 0 ([0, T ]; L 1 (R + )) and m i is in L ∞ ([0, T ]) ∩ C 0 ([0, T ]).
Proof of existence of solutions follows an iterative process which is based on the fact that for a given function mi , we can compute the mild solutions ũi , fi and fa,i , i = 1, 2. Using these mild solutions, we can now compute m i as the solution of equation (4). We build an application h that links each function mi to the function m i , and show that it admits a fixed point, using Schauder fixed point theorem. This implies the existence of at least one solution of our model, corresponding to this fixed point. The whole proof is presented in section 4.

3.2. Existence of solutions for the system (II). We now focus on the system of delayed differential equations. We state our main results for this submodel.

Theorem 2. System (II) admits a unique solution on [0, +∞). Besides, these solutions are non-negative for non-negative initial conditions.

We first prove existence and uniqueness of solutions on [0, τ ) with Cauchy-Lipschitz theorem, and extend this result to well-chosen time intervals, likewise for the non-negativity. The whole proof is given in section 5.

4. System (I)-Proof of the main results.

4.1. Mild solutions.

Lemma 1. Let m i , i = 1, 2 be a continuous function defined for all t in [0, T ], with T > 0. We assume that Hypotheses 1, 2 and 3 are satisfied. Then, there exist unique mild solutions u i , f i and f a,i , i = 1, 2 of equations ( 1)-(3) and they verify, for all t in [0, T ]:

                                     x0 0 u i (t, x)dx ||u in i || L 1 + ||µ|| L 1 t 0 m i (s)ds, x0 0 g i (x)u i (t, x)dx ||g i u in i || L 1 + ||g i µ|| L 1 t 0 m i (s)ds, +∞ 0 f i (t, x)dx ||f in i || L 1 + ||µ|| L 1 t 0 m i (s)ds, +∞ 0 g f,i (x)f i (t, x)dx ||g f,i f in i || L 1 + ||g f,i µ|| L 1 t 0 m i (s)ds, +∞ 0 f a,i (t, x)dx ||f in a,i || L 1 + γ f,i (||f in i || L 1 + ||µ|| L 1 t 0 m i (s)ds). (18) 
Proof. Equation (1): For i = 1, 2, we rewrite as follow the equation (1) which models the dynamics of the two family of proto-oligomers (Aβ-40 and Aβ-42)

         ∂u i ∂t + ∂(v i u i ) ∂x = µ(x)m i (t), t ∈ [0, T ]; x ∈ (0, x 0 ), u i (0, x) = u in i (x), x ∈ (0, x 0 ), u i (t, x 0 ) = 0, if v i (t, x 0 ) ≤ 0, t ∈ [0, T ], v i (t, x) = g i (x)m i (t) -b.
Using the method of characteristics as depicted in Definition 1 of "mild" solution, we obtain

u i (t, x) = ũin i (s, X u,i (s; t, x))J u,i (s; t, x) + t s µ(X u,i (s; t, x))m i (s)J u,i (s; t, x)ds (19) 
where ũin

i (σ, y) = 0 if σ > 0, u in i (y) if σ = 0 is defined in the set {t = 0} ∪ {x = x 0 } of the boundary of the domain of (t, x), J u,i (s; t, x) = exp(- t s ∂ x v i (σ, X u,i (σ; t, x))dσ) is the Jacobian and X u,i is the characteristic curve associated v i .
For s, on can easily check, by using the argument that characteristics not cross each other, that:

i) For all fixed t ∈ (0, T ], the function x ∈ (0, x 0 ) → s(t, x) is increasing. Therefore, for all t ∈ (0, T ] the following limit exists: lim x→x0,x<x0 s(t, x) and we denote it by s0 (t).

ii) For all fixed t ∈ (0, T ], ∀x 1 , x 2 ∈ (0, x 0 ) with

x 1 < x 2 and ∀ σ ∈ V t,x1 ∩ V t,x2 we have X(σ; t, x 1 ) < X(σ; t, x 2 ).
Lemma 2. With the additional assumption: u in i continuous on [0, x 0 ], one obtains for all t ∈ (0, T ] the existence of the following limit lim x→x0,x<x0

u i (t, x) that we denote by ūi (t).

The proof of the lemma 2 stands on two cases: case 1: Let assume s0 (t) = 0. So, we have s(t, x) = 0 ∀ x < x 0 and the "mild" solution take the form

u i (t, x) = u in i (X u,i (0; t, x))J u,i (0; t, x) + t 0 µ(X u,i (s; t, x))m i (s)J u,i (s; t, x)ds.
Let denote by X 0 u,i (s, t) the limit lim

x→x0,x<x0
X u,i (s; t, x) for all s ∈ (0, t]. Using the dominated convergence theorem of Lebesgue, one has the existence of the limit

lim x→x0,x<x0 J u,i (s; t, x) because ∂v i ∂x is bounded on [0, T ]×[ε 0 , x 0
) for all ε > 0 and the characteristic X u,i (σ; t, x) is far from 0. We denote by J 0 u,i this limit that means lim

x→x0,x<x0 J u,i (s; t, x) = J 0 u,i (s, t).
We apply again the dominated convergence theorem of Lebesgue and deduce from the previous form of the "mild solution" the existence of the limit

lim x→x0,x<x0 u i (t, x) = u in i (X 0 u,i (0, t))J 0 u,i (0, t) + t 0 µ(X 0 u,i (s, t))m i (s)J 0 u,i (s, t)ds.
case 2: Let assume s0 (t) > 0. For this case there exists x t ∈ (0, x 0 ) such that s(t, x) > 0 ∀ x ∈ (x t , x 0 ). So we get the following expression for the "mild" solution

u i (t, x) = t s(t,x) µ(X u,i (s; t, x))m i (s)J u,i (s; t, x)ds.
Let consider the sequence (x k ) k∈N → x 0 , with x k < x 0 and let prove the following convergence

u i (t, x k ) -→ k→+∞ t s0(t) µ(X 0 u,i (s, t))m i (s)J 0 u,i (s, t)ds. (20) 
To prove the relation ( 20) we know that s(t, x k ) < s0 (t), so one can compute

|u i (t, x k ) - t s0(t) µ(X 0 u,i (s, t))m i (s)J 0 u,i (s, t)ds| ≤ | t s0(t) m i (s) µ(X u,i (s, t, x k ))J u,i (s; t, x k ) -µ(X 0 u,i (s, t))J 0 u,i (s, t) ds| +| s0(t) s(t,x k ) µ(X u,i (s, t, x k ))m i (s)J u,i (s; t, x k )ds.|
The first term converge to 0 thanks to the dominated convergence theorem of Lebesgue and the second term goes to 0 thanks to the fact that s(t, x k ) → s0 (t) and that the term under the integral is bounded. That achieves the proof of the convergence result.

Lemma 3. Under assumptions of lemma 2, the limit ūi (t) = lim x→x0,x<x0

u i (t, x) is a measurable and bounded function which means ū(t) belongs to L ∞ (0, T ).

Proof. In this proof we drop the index i for sake of simplicity.

Let first prove the measurability of ū(t) thanks to the fact that the function (t, x) ∈ [0, T ] × (0, x 0 ) → s(t, x) is measurable (see Annexe 1 for the proof).

Step 1: Let's prove that the "mild" solution given by ( 19) is a measurable function at (t, x). Let introduce the sets A + = {(t, x) : s(t, x) > 0} and A 0 = {(t, x) : s(t, x) = 0}. We split the solution as follows u = u 1 + u 2 where

u 1 (t, x) = 0 if (t, x) ∈ A + , u in (X u (0, t, x))m(s)J u (0, t, x) if (t, x) ∈ A 0 , (21) 
u 2 (t, x) = t s(t,x) µ(X u (s, t, x))m(s)J u (s, t, x)ds. ( 22 
)
From the measurability of s we deduce that A + and A 0 are measurable. Knowing that (t, x) → u in (X u (0, t, x))J u (0, t, x) is a continuous function on A 0 , so it is also measurable on A 0 . That achieves the proof of the measurability for u 1 . For the measurability of u 2 , we put

D = (t, x, y) ∈ R 3 : (t, x) ∈ [0, T ] × (0, x 0 ); y ∈ V t,x ∩ [0, t[ and introduce the function φ : D → R such that φ(t, x, y) = t y µ(X u (s, t, x))m(s)J u (s, t, x)ds. Let check the continuity of φ on D. We consider the sequence (t k , x k , y k ) k∈N ∈ D such that (t k , x k , y k ) -→ k→+∞ (t, x, y). The continuity of φ requires to prove the convergence to zero when k → +∞ of T 0 µ(X u (s, t k , x k ))m(s)J u (s, t k , x k )I [y k ,t k ] (s) -µ(X u (s, t, x))m(s)J u (s, t, x)I [y,t] (s)ds (23) 
The relation of equation ( 23) is based on the dominated convergence theorem of Lebesgue. The fact that the functions under the integral are bounded, it suffices to prove that ∀s ∈ [0, T ] -{y, t} one obtains µ(X u (s,

t k , x k ))m(s)J u (s, t k , x k )I [y k ,t k ] (s) -→ k→+∞ µ(X u (s, t, x))m(s)J u (s, t, x)I [y,t] (s).
Case 1. Let assume s / ∈ (y, t). In this case the result is straightforward because all terms vanish when k is high. Case 2. Let assume s ∈ (y, t). So, one need just to show µ(X u (s, (s, t, x). Knowing that y k → y and t k → t then for k large enougth we have s ∈ (y k , t k ) that implies s belongs either to V t,x and to V t k ,x k . So X u (s, t k , x k ) -→ k→+∞ X u (s, t, x) thanks to the continuity of the characteristic equation. It remains to prove the convergence of the sequence of Jacobian functions and for that we need to prove the following result

t k , x k ))J u (s, t k , x k ) -→ k→+∞ µ(X u (s, t, x))J u
T s ∂v ∂ x (σ, X u (σ, t k , x k ))I [s,t k ] (σ) - ∂v ∂ x (σ, X u (σ, t, x))I [s,t] (σ) dσ(σ) -→ k→+∞ 0.
Here also we base our reasoning on the Lebesgue's dominated convergence theorem and achieve the proof by showing the pointwize convergence of the function under the previous integral for almost every σ ∈ (s, t). Subcase 2.1.

If σ / ∈ [s, t) then the result is straightforward because one obtains 0 → 0. Subcase 2.2. If σ ∈ [s, t) then the fact that σ ∈ [s, t k ] for large k implies that one needs just to prove ∂v ∂x (σ, X u (σ, t k , x k )) -→ k→+∞ ∂v ∂x (σ, X u (σ, t, x)). The proof stands on the fact that σ is chosen in V t,x ∩ V t k ,x k that implies X u (σ, t k , x k ) -→ k→+∞ X u (σ, t, x).
Then from the continuity of ∂v ∂x with respect to X u we achieve the proof of the continuity of φ on D.

For the measurability of u 2 , one can write

u 2 = φ • ψ with ψ : [0, T ] × (0, x 0 ) → R 3 such that ψ(t, x) = (t, x, s(t, x)).
We remark that g([0, T ] × (0, x 0 )) ⊂ D and is also measurable because s is measurable. Then from Rudin'book [Theorem I. 7, page 10] we obtain that u 2 is a measurable function. What achieves the Step 1 of the proof.

Step 2 Knowing that u(t, x) is measurable, we apply the Fubini theorem and deduce the existence of B ⊂ (0, x 0 ) with mes(B) = 0 (the measure of B) such that ∀x ∈ (0,

x 0 ) B the function t ∈ [0, T ] → u(t, x) is measurable. So, ∀k ∈ N * , ∃ z k ∈ (x 0 -1 k , x 0 ) such that t → u(t, z k ) is a measurable function. We have z k → x 0 then we deduce from Lemma 2 that u(t, z k ) -→ k→+∞ ū(t) ∀t ∈ [0, T ].
Then ū(t) is measurable as limit of measurable sequence. Now we easily see that u is bounded since we integrate bounded function on bounded intervals. Then we have ū ∈ L ∞ (0, T ).

Using the change of variables y = X u,i (0, t, x) in the expression (19), we deduce:

x0 0 u i (t, x)dx = x0 0 ũin i (X u,i (0; t, x))J u,i (0; t, x)dx + t 0 m i (s) x0 0 µ(X u,i (s; t, x))J u,i (s; t, x)dx ds, = Xi(0;t,x0) Xi(0;t,0) ũin i (y)dy + t 0 m i (s) Xi(s;t,x0) Xi(s;t,0) µ(y)dyds, ||ũ in i || L 1 + ||µ|| L 1 t 0 m i (s)ds.

Equation (2)

For i = 1, 2, characteristic curves associated to the growth velocity of fibrils v f,i are defined by:

   d ds X f,i (s; t, x) = v f,i (s, X f,i (s; t, x)), X f,i (t; t, x) = x. (24) 
As done previously (here there is no maximal size for the fibrils, L = ∞), we obtain the unique mild solution:

f i (t, x) = f in i (X f,i (0; t, x))e -γ f,i t J f,i (0; t, x) + t 0 µ(X f,i (s; t, x))m i (s) e -γ f,i (t-s) J f,i (s; t, x)ds, where J f,i (s; t, x) = ∂ x X f,i (s; t, x) = exp(- t s ∂ x v f,i (σ, X f,i (σ; t, x))dσ
) is the Jacobian. We then have:

+∞ 0 f i (t, x)dx +∞ X f,i (0;t,0) f in i (y)dy + t 0 m i (s) +∞ X f,i (s;t,0)
µ(y)dy ds.

The estimations are directly derived from this relation.

Equation (3)

For the last equations, characteristic curves are defined as follow, for i = 1, 2 (no maximal size:

L = +∞)    d ds X fa,i (s; t, x) = -b a,i (s), X fa,i (t; t, x) = x. (25) 
So the unique mild solution reads

f a,i (t, x) = f in a,i (X fa,i (0; t, x)) + γ f,i t 0 f i (s, X fa,i (s; t, x))ds,
which gives us the last estimation.

4.2. Proof of theorem 1. Let denote by Σ T the subset of C([0, T ]) such as:

Σ T = {m i ∈ C 0 ([0, T ]) / 0 m i (t) M T and m i (0) = m 0 i }, ( 26 
)
where T is in (0, +∞) and M T is given by the subset above. We build the following mapping h:

h : Σ T -→ C 0 ([0, T ]) mi -→ m i = h( mi ), (27) 
with m i (t) the solution of the following equation:

ṁi (t) = -m i (t) Ãi (t) + Bi (t), i = 1, 2, (28) 
where

Ãi (t) = +∞ 0 xµ(x)dx + x0 0 xµ(x)dx + +∞ 0 g f,i (x) fi (t, x)dx + x0 0 g i (x)ũ i (t, x)dx, (29) 
Bi (t) = b a,i (t) +∞ 0 fa,i (t, x)dx + b f,i +∞ 0 fi (t, x)dx + b i x0 0 ũi (t, x)dx, (30) 
and functions (ũ i , fi , fa,i ) are solutions of the following system of PDE:

       ∂ t ũi (t, x) + ∂ x ((g i (x) mi (t) -b i )ũ i (t, x)) = µ(x) mi (t), ∂ t fi (t, x) + ∂ x (g f,i (x) mi (t) -b f,i ) fi (t, x) = µ(x) mi (t) -γ f,i fi (t, x), ∂ t fa,i (t, x) -b a,i (t)∂ x fa,i (t, x) = γ f,i fi (t, x). (31) 
To prove the existence of solutions, we follow a Schauder fixed point theorem.

Lemma 4. If

0 < T < 1 ||µ|| L 1 max i (b a,i γ f,i + b f,i + b i ) , ( 32 
)
with b a,i = sup [0,T ] b a,i (t), then h(Σ T ) is a subset of Σ T .
Proof. Let (ũ i , fi , fa,i ) be mild solutions of system (31). Then, for all t in [0, T ], Ãi and Bi are well-defined thanks to lemma 1. Their non-negativity is obvious as soon as initial data verify condition (5). Equation ( 28) is an ordinary differential equation and admits a continuous solution on [0, T ]. This implies that m i (t), i = 1, 2 is bounded by a constant M T , that can be computed.

m i (t) = m i (0) exp - t 0 Ãi (s)ds + t 0 Bi (s) exp - t s Ãi (σ)dσ ds.
As function Ãi is non-negative, we obtain

m i (t) m i (0) + t 0 Bi (s)ds m i (0) + T sup [0,T ] Bi (t). ( 33 
)
We have to determine an upper bound for Bi (t), using equation (30):

Bi (t) sup [0,T ] b a,i (t)|| fa,i (t, .)|| L 1 + b f,i sup [0,T ] || fi (t, .)|| L 1 + b i sup [0,T ] x0 0 ũi (t, x)dx .
Estimations (18) provide the needed upper bounds. Moreover, mi is upper-bounded by M T for all t lower than T , as it is in Σ T . We obtain:

m i (t) m i (0) + T b a,i ||f in a,i || L 1 + (b f,i + b a,i γ f,i )||f in i || L 1 + b i ||u in i || L 1 + ||µ|| L 1 M T T 2 (b a,i γ f,i + b f,i + b i ), with b a,i = sup [0,T ]
b a,i (t). This relation gives us the upper bound M T :

M T =max i m i (0) + T b a,i ||f in a,i || L 1 + (b f,i + b a,i γ fi )||f in i || L 1 + b i ||u in i || L 1 + M T T 2 ||µ|| L 1 max i (b a,i γ f,i + b f,i + b i ), M T [1 -T 2 ||µ|| L 1 max i (b a,i γ f,i + b f,i + b i )] = max i m i (0) + T b a,i ||f in a,i || L 1 + T max i (b f,i + b a,i γ f,i )||f in i || L 1 + b i ||u in i || L 1 . (34) 
Because T verifies relation (32), we have:

1 -T 2 ||µ|| L 1 max i (b a,i γ f,i + b f,i + b i ) > 0,
and the upper bound M T is well defined.

Lemma 5. h(Σ T ) is a relatively compact subspace of C 0 b ([0, T ]). Proof. We know that h(Σ T ) is a bounded subspace of C 0 b ([0, T ]). To use Ascoli theorem, we have to show the uniform equicontinuity of h. Let mi and ñi be two elements of Σ T , such as m i = h( mi ) and n i = h(ñ i ). We want to show that there exists a constant K > 0 such as

m i -n i L ∞ ([0,T ]) K mi -ñi L ∞ ([0,T ]) , i = 1, 2.
To lighten notations, we drop out subscript i for now. We have

ṁ(t) = -Ãm (t)m(t) + Bm (t), ṅ(t) = -Ãn (t)n(t) + Bn (t),
where Ãm , Bm , Ãn and Bn are obtained from system (31). We are interested in the following quantity:

ṁ -ṅ = -Ãm m + Bm + Ãn n -Bn .
We can transform this equality:

( ṁ -ṅ)(m -n) = (m -n)(-Ãm m + Bm + Ãn n -Bn ), = -(m -n) 2 Ãn -m(m -n)( Ãm -Ãn ) + (m -n)( Bm -Bn ).
Then, according to Schauder fixed point theorem, the application h admits a fixed point m * i = h(m * i ). This implies that system (I) admits at least one solution. Uniqueness: to prove uniqueness of the solution let us assume that (u 1 , f 1 , f a,1 , m 1 ) and (u 2 , f 2 , f a,2 , m 2 ) are two solutions of the system (I) with the same initial data (u in , f in , f in a , m 0 ) as in equation ( 5). Using the same arguments as in the proof of lemma 5 (see equation ( 35)) one deduces

|m 1 (t) -m 2 (t)| 2 t 0 M 2 T |A 1 (s) -A 2 (s)| 2 + |B 1 (s) -|B 2 (s)| 2 e 2(t-s) ds, so, |m 1 (t) -m 2 (t)| 2 e 2T t 0 M 2 T |A 1 (s) -A 2 (s)| 2 + |B 1 (s) -|B 2 (s)| 2 ds.
Now, using the result of lemma 6 to estimate the right hand side of the previous inequality, we have

|m 1 (t) -m 2 (t)| 2 e 2T t 0 M 2 T α 2 + β 2 |m 1 (s) -m 2 (s)| 2 ds e 2T M 2 T α 2 + β 2 t 0 |m 1 (s) -m 2 (s)| 2 ds.
So the Grönwall lemma gives

|m 1 (t) -m 2 (t)| 2 |m 1 (0) -m 2 (0)| 2 e t 0 e 2T (M 2 T α 2 +β 2 )ds ,
then using the fact that we have the same initial data, means m

1 (0) = m 2 (0) = m 0 , we deduce m 1 (t) = m 2 (t) so f 1 ≡ f 2 , u 1 ≡ u 2 and f a1 ≡ f a2 .
That concludes the uniqueness of the solution of (1)-( 4).

The non-negativity of the unique solution of (1)-( 4) is obvious as soon as initial data fulfill relation (5). The reader can easily check this point from explicit relations of mild solutions.

5. System (II)-Proof of the main results.

5.1. Existence and uniqueness of solutions. We first prove the existence of initial conditions on [0, τ ), defined by the following system, with i = 1, 2:

               φi (t) = S i (t) -γ i ϕ i (t) -δ i ϕ i (t)ϕ pc (t), φa,i (t) = γ i ϕ i (t), φpc (t) = -δ 1 ϕ 1 (t)ϕ pc t) -δ 2 ϕ 2 (t)ϕ pc (t), φCi (t) = δ i ϕ i (t)ϕ pc (t), ϕ pc (0) = p 0 c 0, ϕ i (0) = ϕ a,i (0) = ϕ Ci (0) = 0 (39)
with S i given by ( 13).

Due to the non continuity of S i we can't directly apply the Cauchy-Lipschitz theorem. So, in order to prove the existence result we use the following change of unknown ψ i (t) = ϕ i (t) -t 0 S i (σ)dσ which is relevant because S i ∈ L ∞ (0, T ) thanks to Lemma 3. We the system (39) as follow

                                 ψi (t) = -γ i ψ i (t) -δ i ψ i (t)ϕ pc (t) -δ i t 0 S i (σ)dσ ϕ pc (t) -γ i t 0 S i (σ)dσ, φa,i (t) = γ i ψ i (t) + γ i t 0 S i (σ)dσ, φpc (t) = -δ 1 ψ 1 (t)ϕ pc (t) -δ 2 ψ 2 (t)ϕ pc (t) - t 0 δ 1 S 1 (σ) + δ 2 S 2 (σ) dσ ϕ pc (t), φCi (t) = δ i ψ i (t)ϕ pc (t) + δ i t 0 S i (σ)dσ ϕ pc (t), ϕ pc (0) = p 0 c 0, ψ i (0) = ϕ a,i (0) = ϕ Ci (0) = 0. ( 40 
)
For the existence let us note the vector

X(t) = t (ψ 1 (t), ψ 2 (t), ϕ a,1 (t), ϕ a,2 (t), ϕ pc (t), ϕ C1 (t), ϕ C2 (t))
. We have to solve the following Cauchy problem:

Ẋ(t) = F (t, X(t)), 0 t < τ, X(0) = t (0, 0, 0, 0, p 0 c , 0, 0), (41) 
where F (t, X) is defined by

F (t, X) =            -γ 1 X 1 -δ 1 X 1 X 5 -δ 1 ( t 0 S 1 (σ)dσ)X 5 -γ 1 t 0 S 1 (σ)dσ -γ 2 X 2 -δ 2 X 2 X 5 -δ 2 ( t 0 S 2 (σ)dσ)X 5 -γ 2 t 0 S 2 (σ)dσ γ 1 X 1 + γ 1 t 0 S 1 (σ)dσ γ 2 X 2 + γ 2 t 0 S 2 (σ)dσ -δ 1 X 1 X 5 -δ 2 X 2 X 5 -( t 0 (δ 1 S 1 + δ 2 S 2 )(σ)dσ)X 5 δ 1 X 1 X 5 + δ 1 ( t 0 S 1 (σ)dσ)X 5 δ 2 X 2 X 5 + δ 2 ( t 0 S 2 (σ)dσ)X 5            =           F 1 (t, X) F 2 (t, X) F 3 (t, X) F 4 (t, X) F 5 (t, X) F 6 (t, X) F 7 (t, X)           .
Function F is continuous for t and Lipschitz with respect to the second variable X. Indeed components F i , i = 1 to 7, are continuously differentiable with respect to the second variable. Cauchy-Lipschitz theorem gives the local existence and uniqueness of solution for problem (41). Thereby we have the local existence of solution for the system (39). The global existence of the solution of (39) on [0, τ ) requires the solution X(t) = t (ϕ 1 (t), ϕ 2 (t), ϕ a,1 (t), ϕ a,2 (t), ϕ pc (t), ϕ C1 (t), ϕ C2 (t)) to be bounded and non-negative on [0, τ ). To prove that, let us start with the initial conditions defined in system (39). We know that:

φpc (t) = -(δ 1 ϕ 1 (t) + δ 2 ϕ 2 (t))ϕ pc (t). ( 42 
)
This equation can easily be written as: ϕ pc (t) = p 0 c e (-t 0 (δ1ϕ1(s)+δ2ϕ2(s))ds) , which is positive for all t in [0, τ ], as p 0 c is greater than 0. In addition it is straightforward that ϕ pc (t) ≤ p 0 c .

Then, for i = 1, 2, we have

φi (t) = S i (t) -γ i ϕ i (t) -δ i ϕ i (t)ϕ pc (t) -(γ i + δ i ϕ pc (t))ϕ i (t), ϕ i (t) ϕ i (0) exp - t 0 γ i + δ i ϕ pc (s)ds .
As ϕ i (0) = 0, we have the non-negativity of ϕ i (t) for t in [0, τ ], and i = 1, 2. In addition, one can deduce that ϕ(t) ≤ τ 0 S i (σ)dσ. As ϕ 1 (t), ϕ 2 (t) and ϕ pc (t) are greater or equal to 0, for all t in [0, τ ], functions ϕ a,i and ϕ Ci , i = 1, 2 are increasing. This implies the non-negativity of these functions for all t in [0, τ ], as ϕ a,i (0) and ϕ Ci , i = 1, 2 are null. One can easily verifies that ϕ a,i and ϕ Ci , i = 1, 2 are bounded. We further define X(τ ) as X(τ ) = lim t→τ -X(t). We prove existence and uniqueness of solutions of system (II) on [τ, +∞) with a method of steps. We first study the system (II) on [τ, 2τ ). We have to solve the following Cauchy problem:

Ẏ (t) = G(t, Y (t), Y (t -τ )), τ t < 2τ, Y (t) = X(t), 0 t τ, ( 43 
)
where

Y (t) = t u 0 1 (t), u 0 2 (t), u a,1 (t), u a,2 (t), p c (t), p sc (t), C 1 (t), C 2 (t) , X(t) = t (ϕ 1 (t), ϕ 2 (t), ϕ a,1 (t), ϕ a,2 (t), ϕ pc (t), 0, ϕ C1 (t), ϕ C2 (t))
, and G is defined by:

G(t, Y, Z) =             S 1 (t) -γ 1 Y 1 -δ 1 Y 1 Y 5 + δ 1 Z 1 Z 5 S 2 (t) -γ 2 Y 2 -δ 2 Y 2 Y 5 + δ 2 Z 2 Z 5 γ 1 Y 1 γ 2 Y 2 -δ 1 Y 1 Y 5 -δ 2 Y 2 Y 5 δ 1 Z 1 Z 5 + δ 2 Z 2 Z 5 δ 1 Y 1 Y 5 -δ 1 Z 1 Z 5 δ 2 Y 2 Y 5 -δ 2 Y 2 Y 5             .
Here, we perform again a change of variable as done previously in order to overcome the non continuity of S i , i = 1, 2. With the same strategy, we can actually re-write system (43) as follow:

   Ẏ (t) = G(t, Ỹ (t), X(t -τ )) = G(t, Ỹ (t)), τ t < 2τ, Ỹ (t) = X(t), 0 t < τ
where Ỹ (t) and X are respectively the same vectors as Y (t) and X(t) when replacing u 0 i (t) by

u 0 i (t) - t τ S i (σ)dσ (respectively ϕ i (t) by ϕ i (t) - t τ S i (σ)dσ).
As we did previously, we easily show that G is a continuous function, and continuously differentiable with respect to the second variable. So, Cauchy-Lipschitz theorem gives the local existence and uniqueness of solutions on [τ, 2τ ) for the above problem. That implies the local existence of solution to system (43). To prove that the solution is global we investigate again the positivity and the finite bounds of

Y (t) = t u 0 1 (t), u 0 2 (t), u a,1 (t), u a,2 (t), p c (t), p sc (t), C 1 (t), C 2 (t) .
For that, we begin with the relation

ṗc (t) = -(δ 1 u 0 1 (t) + δ 2 u 0 2 (t))p c (t) =⇒ p c (t) = p c (τ ) exp - t τ δ 1 u 0 1 (s) + δ 2 u 0 2 (s)ds ,
is positive or null for all t in [τ, 2τ ), as p c (τ ) = ϕ pc (τ ) is greater or equal to 0. For the non-negativity of u 0 i (t), i = 1, 2 for all t in [τ, +2τ ), we have

u0 i (t) -γ i u 0 i (t) -δ i u 0 i (t)p c (t) =⇒ u 0 i (t) u 0 i (τ ) exp - t 0 [γ i + δ i p c (s)]ds that induces u 0 i (t) ≥ 0 for all t ∈ (τ, 2τ ) because u 0 i (τ ) ≥ 0.
Knowing that u 0 i (t) ≥ 0 it's straightforward that p c (t) ≤ ϕ pc (τ ) < +∞.

For the upper bound of u 0 i one can remark that u0

i (t) ≤ S i (t) + δ i p c (t -τ )u 0 i (t -τ ). Knowing that t ∈ [τ, 2τ ) that implies t τ = t -τ ∈ [0, τ ] so u 0 i (t τ
) is known and correspond to the initial function ϕ i which is already bounded. Then a simple integration on [τ, t] with t < 2τ achieves the proof that u 0 i is bounded. Given the non-negativity of p c , u 0 1 and u 0 2 , we have, for all t in [τ, 2τ ):

ua,i (t) 0 =⇒ u a,i (t) u a,i (τ ) 0, i = 1, 2, ṗ sc (t) 0 =⇒ p sc (t) p sc (τ ) = 0.
In addition, it is straightforward to verify that u a,i and p sc are bounded. We finally consider functions C i :

Ċi (t) = δ i u 0 i (t)p c (t) -δ i u 0 i (t -τ )p c (t -τ ), C i (t) = C i (τ ) + δ i t τ u 0 i (s)p c (s)ds -δ i t τ u 0 i (s -τ )p c (s -τ )ds, = δ i τ 0 u 0 i (s)p c (s)ds + δ i t τ u 0 i (s)p c (s)ds -δ i t-τ 0 u 0 i (s)p c (s)ds, = δ i t t-τ u 0 i (s)p c (s)ds, τ ≤ t < 2τ.
Thanks to non-negativity of u 0 i and p c , this proves that C i , i = 1, 2 is non-negative on [τ, 2τ ) and obviously bounded. That achieves the global existence solution on [τ, 2τ ). We then iterate this process on intervals [nτ, (n + 1)τ ), n ≥ 2 and n ∈ N * , and obtain existence and uniqueness of solutions of system (II) on [0, T ].

6. Numerical simulations. In this section, we give illustrations of the dynamics of our model, through numerical simulations, using only one type of Aβ. The numerical scheme is based on a finite volumes method for the size discretization of the advection-reaction equations combined with a second order Runge-Kutta time discretization. We use the Van Leer flux limiters for the advection part which is known to be of order two. So, the numerical solutions of our model are TVD (Total Variation Diminishing) and of order two. We neglect any difficulties due to truncation of the computational domain and introduce the regular mesh with constant size step ∆x > 0: the cells are the intervals [x k-1 , x k ], k ∈ N with x k = (k + 1/2)∆x and x -1 = 0. We denote by F n k on of the numerical unknown (it can be the fibrils or the proto-oligomers or the fibrils inside the plaque). In the particular case where F = f , f n k is intended to be an approximation of 1 ∆x n+1) defines the time-discretization, with possibly variable step ∆t (n) = t (n+1) -t (n) in order to adapt the velocity time variation. For instance the numerical scheme for fibrils size-density (see equation ( 2)) is defined by the relation

x k x k-1 f (t (n) , z)dz, where t (0) = 0 < t (1) < • • • < t (n) < t (
f * k = f n k + ∆t (n) - f lux n k+1 -f lux n k ∆x + µ(i)m n -γ f f n k , (44) 
f (n+1) k = 1 2 (f n k + f * k ) + ∆t (n) 2 - f lux * k+1 -f lux * k ∆x + µ(i)m * -γ f f * k . (45) 
The interface fluxes, f lux n k = (vf ) n k and f lux * k = (v * f * ) n k are computed by using Van Leer approximation respectively with vf evaluated at time t (n) and at intermediate time t * thanks to the second order Runge-Kutta method. Here m (n) and m * are the numerical approximations of the monomers concentration respectively at first and second stage of the Runge-Kutta method based on the equation ( 4). For the flux with Van Leer limiter method, we compute:

if v n k > 0        θ = f n k-1 -f n k-2 + f n k -f n k-1 , f lux n k = v n k f n k-1 + (f n k -f n k-1 )φ(θ) , with = 1.0e -12 else        θ = f n k -f n k-1 + f n k+1 -f n k , f lux n k = v n k f n k -(f n k -f n k-1 )φ 1 θ + 1 , with 1 = 1.0e -10
where the limiter function φ given by φ(θ) = 1 2

|θ| + θ 1 + |θ| .
We apply this scheme for the part of the model dealing with partial differential equations. For the other part of the model dealing with ordinary differential equation, the approximation is done thanks to the second order Runge-Kutta method. Boundaries conditions are taken into account thanks to fictious mesh added at the domain.

For the parameters of the simulations we consider the followings:

g f (x) = g(x) = x 1/3 , b f = b a = b = 1, γ f = γ = δ = 0.1, τ = 3, x 0 = 5.
For all the simulations we take initial conditions for the quantities involved in the prion catalysis process as follow u 0 (t = 0) = 0, p c (t = 0) = 1, p sc (t = 0) = 0, C(t = 0) = 0, u a (t = 0) = 0,

µ(x) =        exp 1 (x -0.9) 2 -1.2 1 - x 2 10
if 0 < x < 1.9, 0 elsewhere.

6.1.

Results with free initial size-density repartition for fibrils, proto-oligomers and plaque. We first consider the case where there are only Aβ monomers and prions PrP c initially, which corresponds to what can be done experimentally.

In terms of initial conditions, we therefore have: f in (x) = 0, f in a (x) = 0 and u in (x) = 0. Figure 2 displays the evolution in time of the size density repartition of fibrils, proto-oligomers and fibrils in plaque, as well as the evolution of the total mass, which remains constant as expected. One can observe the creation of fibrils and proto-oligomers is only due to function µ, which allows to create small polymers. In this case, there are very few polymers with a large size. Evolutions of concentration of Aβ monomers, oligomers, oligomers in plaque, PrP c , PrP ol and complexes are presented in Figure 3. One can note that, because there is no polymer initially, few oligomers are created and thus, the emergence of PrP ol prions remains quite slow. and fibrils in plaque fa(t, x) for different times (t = 10, 20, 30, 40). The last figure displays the evolution of the total mass.

6.2.

Results with gaussian initial distribution for fibrils, proto-oligomers and plaque. We now assume that proto-oligomers and fibrils are present initially with monomers and PrP c . Initial conditions are given by: In a first time we observe an increase in monomers, meaning that proto-oligomers and fibrils initially depolymerize. Then monomer concentration decreases, which corresponds to the formation of larger polymers. Oligomers appear after a certain time, and their concentration decreases after a while, meaning that proto-oligomers do not reach the size x 0 . With the increase of Aβ oligomers, we notice the emergence of Aβ/ PrP c complexes and of PrP sc .

f in (x) = exp(-5(x-1.5) 2 2 ) √ 0.4π , u in (x) =        exp(-5(x-1) 2 2 ) √ 0.4π if 1 ≤ x ≤ x 0 , 0 elsewhere, f in a (x) = exp(-5(x-1.75) 2 2 ) √ 0.4π .
Figures 5 and 6 display the evolution of size density repartition of fibrils f (t, x), proto-oligomers u(t, x) and fibrils in plaque f a (t, x) for given times. One observes that fibrils become larger with time, but after a certain there are more small fibrils due to the spontaneous term µ than large ones. Likewise, because fibrils in plaque only depolymerize, we notice a larger concentration of small ones. For proto-oligomers, we observe the impact of µ function as small proto-oligomers rapidly appear. Some proto-oligomers finally reach the maximal size x 0 and become oligomers.

7. Discussion. The role of Aβ oligomers and PrP c prions in Alzheimer's disease remains to be fully understood. Recent evidence suggests that Aβ oligomers can interact with PrP c to induce cytotoxic damages to neurons, increasing their apoptosis. Moreover, this interaction could misfold PrP c into pathogenic prions PrP sc , potentially leading to the emergence of prion diseases such as Creutzfeldt-Jakob disease. Mathematical modeling can help to qualitatively explain polymerization kinetics and evolution of polymer length that are involved in the emergence of AD.

In this work, we propose a mathematical model to describe the polymerization of Aβ monomers, and the interactions between Aβ oligomers and PrP sc . Polymerization process is modeled with partial differential equations, based on Lifshitz-Slyozov equations [?]. One can note that in our model, we study the evolution of three different species (proto-oligomers, fibrils and fibrils in plaque) through advection-reaction equations, making the analysis more complex. PrP ol catalysis, through interactions with Aβ oligomers, is described using ordinary and delayed differential equations. These two submodels are linked through the source term of oligomers coming from proto-oligomers, and can be studied one at a time. For the first one, we use Schauder fixed point theorem to prove existence and uniqueness of mild solutions, even in the case of singular polymerization rates. Existence and uniqueness of solutions for the second submodel are obtained with Cauchy-Lipschitz theorem. Numerical simulations with different initial conditions are given to illustrate the different profiles that can be obtained with this model. Because we have no experimental data available, we only provide simulations with one type of Aβ.

To the best of our knowledge, this is the first model describing both Aβ polymerization process and interactions with PrP c . However, because it is developed in an in vitro context, some in vivo processes are not included in the model. For instance, one could add the production of Aβ monomers on diseased neuronal membranes, as proposed in [?, ?]. Neurons could also be damaged due to the binding of Aβ oligomers to PrP c , as done in [?]. Nevertheless, we believe that our model gives insights on Aβ polymerization and on the interactions between Aβ and PrP c . It remains to compare our numerical simulations to experimental data and to find optimal parameter estimates. This can help to highlight differences between Aβ-40 and Aβ-42 and to identify new possible therapeutic targets to slow down or even avoid the emergence of Alzheimer's disease or prion diseases.

Appendix A. Measurability of s(t, x). In this appendix, we aim to show the measurability of the function s(t, x) introduced in the proof of lemma 1. Let us consider the set Q = [0, T ]×(0, x 0 ). For all (t, x) in Q let s(t, x) be defined as:

s(t, x) = sup{s ∈ [0, t], X(s; t, x) = x 0 }, (46) 
where we understand that s(t, x) = 0 if X(s; t, x) < x 0 for any s in [0, t].

For α in R, we consider the following set:

A α = {(t, x) ∈ Q, s(t, x) α}. (47) 
We want to show that A α is measurable. Let us note that if α is lower or equal to 0, then A α is exactly Q and if α is greater or equal to T , A α is the empty set. We then assume that α is in T ).

Proposition 1. With these notations, we have A α = B α , where

B α = {(t, X(t; s, x 0 )), (t, s) ∈ F α } ∩ Q, with F α = {(t, s) ∈ R 2 , 0 s t T }. Proof. 1. A α ⊆ B α
Let us take (t, x) in A α . We have (t, x) in Q and X(s(t, x); t, x) = x 0 , which is equivalent to x = X(t; s(t, x), x 0 ). We also have α s(t, x) t T , whence (t, s(t, x)) is in F α . Therefore (t, x), which is equal to (t, X(t; s(t, x), x 0 )), is in B α .

B α ⊆ A α

Let us consider (t, x) = (t, X(t; s 1 , x 0 )) in B α . Then we have 0 < x = X(t; s 1 , x 0 ) < x 0 and α s 1 t T . Then necessarily s(t, x) s 1 , so s(t, x) α, that is (t, x) is in A α .

We can note that the set {(t, X(t; s, x 0 )), (t, s) ∈ F α } is the image of the compact set F α by a continuous function, so it is a compact set. It follows that it is a closed set, and then a measurable set. Q is also measurable, and therefore so is B α . As B α is exactly A α by proposition 1, A α is measurable. Finally, the function s from Q to R is measurable.

Appendix B. Proof of lemma 6. We provide here the proof of lemma 6 introduced in section 4.2, to prove that h(Σ T ) is a relatively compact subspace of C 0 b ([0, T ]). Proof. According to equation ( 29), we have:

|A m (t) -A n (t)| | +∞ 0 g f (x)(f m (t, x) -f n (t, x))dx| I A1 (48) + | x0 0 g(x)(u m (t, x) -u n (t, x))dx| I A2
.

Let us focus on I A1 . We know that:

f m (t, x) = f in (X m (0; t, x))e -γ f t J m (0; t, x) + t 0 µ(X m (s; t, x)) m(s) e -γ f (t-s) J m (s; t, x)ds,
and the same holds for f n (t, x). Therefore, we have 

I A1 e -γ f t | +∞ 0 g f (x) f in (X m (0; t, x))J m (0; t, x) -f in (X n (0; t, x))J n (0; t, x) dx| K1 +| +∞ 0 t 0 g f (x)e -γ f (t-s) µ(X m (s; t, x)) m(s)J m (s; t, x) -µ(X n (s; t, x))ñ(s)J n (s; t, x)dsdx| K2 . ( 
+ t 0 m(s) -ñ(s)|||gµ|| L 1 ds.
Lemma 8 provides the existence of constants C 1 and C 2 such as:

K 2 sup [0,T ] | m -ñ| (52) M T C 1 T sup [0,T ] sup(g f (X m (t; s, y))µ(y)) + M T G f C 2 T ||µ|| L 1 + T ||gµ|| L 1 .
Combining relations ( 51) and ( 52) gives us the existence of a constant α 1 such as:

I A1 α 1 sup [0,T ] | m -ñ|. ( 53 
)
We perform the same analysis for I A2 , the second term in equation ( 48) and find the existence of a constant α 2 such as:

I A2 α 2 sup [0,T ] | m -ñ|. (54) 
Relations ( 53) and ( 54) implies the existence of a constant α such as:

sup [0,T ] |A m (t) -A n (t)| αsup [0,T ] | m(t) -ñ(t)|. ( 55 
)
We now focus on B m (t) -B n (t). According to equation (30), we have:

|B m (t) -B n (t)| b(t) | +∞ 0 f a,m (t, x) -f a,n (t, x)dx| I B1 +b f | +∞ 0 f m (t, x) -f n (t, x)dx| I B2 + b | x0 0 u m (t, x) -u n (t, x)dx| I B3 . ( 56 
)
We upper-bound I B2 and I B3 as we did previously for I A1 and I A2 , and finally find that there exist β 2 and β 3 such as:

I B2 β 2 sup [0,T ]
| m(t) -ñ(t)|, (57)

I B3 β 3 sup [0,T ] | m(t) -ñ(t)|. ( 58 
)
We now have to study I B1 , the first term in equation ( 56): ds.

I B1 = +∞ 0 |f a,
In I 11 , we make the following substitution: y = X(s; t, x) which can be written as x = X(t; s, y).

We then have: According to (57), there exists β 2 such as:

I 11 =
I 11 e T GM T β 2 sup [0,T ]
| m(t) -ñ(t)|.

We now go back to I B1 , and find that:

I B1 γ f t 0 e T GM T β 2 sup [0,T ]
| m(t) -ñ(t)|,

γ f T e T GM T β 2 sup [0,T ]
| m(t) -ñ(t)|.

Therefore, there exists a constant β 1 such as: We use Grönwall's inequality to obtain the following relation: 

I B1 β 1 sup [0,T ] | m(t) -ñ(t)|. ( 59 

Figure 1 Figure 1 .

 11 Figure1displays a schematic representation of the whole model, with all interactions that are taken into account between the different structures.

Figure 2 .

 2 Figure2. Evolution of size density repartition of fibrils f (t, x), proto-oligomers u(t, x) and fibrils in plaque fa(t, x) for different times(t = 10, 20, 30, 40). The last figure displays the evolution of the total mass.

Figure 4 Figure 3 .

 43 Figure4displays the evolutions of monomer concentration, oligomers, oligomers in plaque, prions PrP c and PrP ol and complexes. As expected, the total mass remains constant.

Figure 4 .

 4 Figure 4. Time evolution of the concentrations of Aβ monomers, oligomers, oligomers in plaque, PrP c and PrP sc , Aβ/ PrP c complexes and total mass.

  +∞X(s;t,0)|f m (s, y) -f n (s, y)|J(t; s, y)dy, = +∞ X(s;t,0) |f m (s, y) -f n (s, y)| exp( t s ∂v ∂x (σ, X(σ; s, y))dσ)dy, = +∞ X(s;t,0) |f m (s, y) -f n (s, y)| exp( t s m(σ)g (X(σ; s, y))dσ)dy, +∞ X(s;t,0) |f m (s, y) -f n (s, y)| exp(M T G(t -s))dy, e T GM T+∞ 0 |f m (s, y) -f n (s, y)|dy.

Figure 5 .Figure 6 .

 56 Figure5. Evolution of size density repartition of fibrils f (t, x), proto-oligomers u(t, x) and fibrils in plaque fa(t, x) for different times(t = 0, 10, 20) 

  . Definitions of model parameters (rates and growth velocities) are reported in Table1.

	Parameter/	
	Variable	Definition
	t	Time
	x	Size of fibrils and proto-oligomers
	x 0	Maximal size of Aβ proto-oligomers
	µ(x)	Spontaneous creation of proto-oligomers or fibrils
	v i (t, x)	Polymerization/depolymerization rate of Aβ proto-oligomers
	v f,i (t, x)	Polymerization/depolymerization rate of Aβ fibrils
	g i (x)	Rate at which Aβ monomers are added to proto-oligomers
	g f,i (x)	Rate at which Aβ monomers are added to fibrils
	b i	Rate at which Aβ monomers are lost from proto-oligomers
	b f,i	Rate at which Aβ monomers are lost from fibrils
	b a,i (t)	Rate of Aβ monomers escaping amyloid plaque
	γ i	Displacement rate of Aβ oligomers into the plaque
	γ f,i	Displacement rate of Aβ fibrils into the plaque
	δ	

i Reaction rate between Aβ oligomers and PrP c τ Duration of PrP ol catalysis, with Aβ oligomers Table 1. Description of model parameters. Parameters are given for i = 1, 2, i = 1 corresponding to parameters related to Aβ-40.
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	Combining relations (57)-(59) proves the existence of a constant β such as:
	sup	|B m (t) -B n (t)| β sup	| m(t) -ñ(t)|.
	[0,T ]			[0,T ]

Because g(0) = 0 and g (x) G for all x in [0, +∞), we have:

|g(X n (s; t, x))| GX n (s; t, x),

and

|X n (s; t, x)| = |x + s t (g(X n (σ; t, x))ñ(σ) -b) dσ|, x + t s b + GM T |X n (σ; t, x)|dσ.

Grönwall's inequality finally gives us the existence of a constant L T such as

|X n (s; t, x)| L T (2bT + x).

Let us now go back to relation (60):

|X m (s; t, x) -X n (s; t, x)| GM T t s |X m (σ; t, x) -X n (σ; t, x)|dσ + GL T (x + 2bT )T 1/2 t s ( m(σ) -ñ(σ)) 2 dσ 1/2
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thus have:

1 2

According to Grönwall's inequality, we obtain:

(m(t) -n(t))

where C T > 0.

Lemma 6. There exists α and β real positive constants, such that

sup

Lemma 6 and relation ( 36) are sufficient to prove the uniform equicontinuity of h. Then Ascoli theorem gives that h(Σ T ) is a relatively compact subspace of C 0 b ([0, T ]). Proof of lemma 6 is given in Appendix B.

Lemma 7. The application h defined in system ( 27) is a continuous application.

Proof. Let ( mi,n ) n∈N a sequence of elements from Σ T which tends to mi in Σ T . Is the limit of h( mi,n ) equal to h( mi ) when n tends to infinity? We define sequences (ũ i,n ) n∈N , ( fi,n ) n∈N and ( fa,i,n ) n∈N , solutions of the following system of equations:

These sequences are used to compute Ãi,n and Bi,n such as:

We proceed in the same way as in the proof of lemma 5 to obtain the following relation:

We then apply lemma 6 and show that if mi,n tends to mi when n tends to infinity, then it implies that h( mi,n ) tends to h( mi ), which obviously is in Σ T .

We compute term K 1 with integration by substitution, with y = X p (0; t, x), p = m, n. First, let us note that: lim x→+∞ X(s; t, x) = +∞, 0 s t, and: if x < +∞, then X(s; t, x) < ∞, for all s, 0 s t.

We therefore have:

where G f is the upper bound for the derivative of g f , as stated in Hypothesis 1.

Let us now compute |X m (s; t, x) -X n (s; t, x)|.

Lemma 8. For all s, t such as 0 s, t T , there exists a constant C so that:

According to lemma 8, we obtain the existence of C 1 and C 2 such as:

| m -ñ| sup

[Xm(0;t,0),Xn(0;t,0)]

Let us now study term K 2 in equation ( 49):

Integrating by substitution with y = X(s; t, x) gives us: