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The third order Benjamin-Ono equation on the torus :
well-posedness, traveling waves and stability.

Louise Gassot

Abstract

We consider the third order Benjamin-Ono equation on the torus

∂tu = ∂x

(
−∂xxu−

3

2
uH∂xu−

3

2
H(u∂xu) + u3

)
.

We prove that for any t ∈ R, the flow map continuously extends to Hs
r,0(T) if s ≥ 0, but does

not admit a continuous extension to H−sr,0 (T) if 0 < s < 1
2 . Moreover, we show that the extension

is not weakly sequentially continuous in L2
r,0(T). We then classify the traveling wave solutions

for the third order Benjamin-Ono equation in L2
r,0(T) and study their orbital stability.
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1 Introduction
We are interested in the third equation of the integrable Benjamin-Ono hierarchy on the torus

∂tu = ∂x

(
−∂xxu−

3

2
uH∂xu−

3

2
H(u∂xu) + u3

)
. (1)

The operator H is the Hilbert transform, defined as

Hf(x) =
∑
n∈Z\0

−i sgn(n)f̂(n) einx, f =
∑
n∈Z

f̂(n) einx, f̂(n) =
1

2π

∫ 2π

0
f(x) e−inx dx.
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1.1 Benjamin-Ono equations and integrability
The Benjamin-Ono equation on the torus

∂tu = H∂xxu− ∂x(u2),

was introduced by Benjamin [2] and Ono [12] in order to describe long internal waves in a
two-layer fluid of great depth. This equation admits an infinite number of conserved quantities
Hk, k ≥ 1 (see Nakamura [11] for a proof on the real line). The evolution equations associated
to the conservation laws

∂tu = ∂x(∇Hk(u)) (2)

are the equations for the Benjamin-Ono hierarchy [8].
From Nakamura [10] and Bock, Kruskal [3], we know that the Benjamin-Ono equation admits

a Lax pair
d

dt
Lu = [Bu, Lu],

Lu = Dh− Tu, Bu = iD2 + 2iTD(Πu) − 2iDTu.

Here, D = −i∂x and Tu is the Toeplitz operator on the Hardy space

L2
+(T) = {h ∈ L2(T) | ∀n < 0, ĥ(n) = 0}

defined as
Tu : h ∈ L2

+(T) 7→ Π(uh) ∈ L2
+(T),

and Π : L2(T) → L2
+(T) is the Szegő projector. The Hamiltonians Hk(u) are defined from the

Lax operator Lu as
Hk(u) = 〈Lku1|1〉. (3)

In particular, the Hamiltonian for equation (1) is

H4(u) +
1

2
H2(u)2 =

1

2π

∫ 2π

0

(
1

2
(∂xu)2 − 3

4
u2H∂xu+

1

4
u4

)
dx. (4)

In [5], Gérard and Kappeler constructed global Birkhoff coordinates for the Benjamin-Ono
equation on the torus. In these coordinates, the evolution equations for the Benjamin-Ono
hierarchy are easier to understand. Indeed, denote by Φ the Birkhoff map

Φ : u ∈ L2
r,0(T) 7→ (ζn(u))n≥1 ∈ h

1
2
+,

where L2
r,0(T) is the subspace of real valued functions in L2(T) with zero mean, and

h
1
2
+ =

{
(ζn)n≥1 |

∑
n≥1

n|ζn|2< +∞
}
.

Then in the Birkhoff coordinates, equation (2) of the hierarchy associated to Hk becomes

∂tζn = iω(k)
n ζn, n ≥ 1

when the frequencies

ω(k)
n =

∂(Hk ◦ Φ−1)

∂|ζn|2

are well-defined. For instance, this formula is valid if the sequence ζ(0) = (ζn(0))n≥1 only has a
finite number of nonzero terms, or in other words, if Φ−1(ζ(0)) is a finite gap potential. In this
case, the frequencies ω(k)

n only depend on the actions |ζp|2, and the evolution simply reads

ζn(t) = ζn(0) eiω
(k)
n (ζ(0))t, t ∈ R, n ≥ 1.
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For the third equation of the hierarchy (1), the frequencies write

ω(4)
n (ζ) = n3 + n

∑
p≥1

p|ζp|2−3
∑
p≥1

min(p, n)2|ζp|2+3
∑
p,q≥1

min(p, q, n)|ζp|2|ζq|2. (5)

More details about the frequencies ω(k)
n and formula (5) can be found in Appendix A.1.

We refer to Saut [15] for a detailed survey of the Benjamin-Ono equation and of its hierarchy.

1.2 Main results
Our first main result is the determination the well-posedness threshold for the third order
Benjamin-Ono equation. For s ∈ R, we use the notation

H−sr,0 (T) = {u ∈ Hs(T,R) | 〈u|1〉 = 0}.

We prove that the flow map is globally C0-well-posed (in the sense of Definitions 1 and 2 from [6])
in Hs

r,0(T) when s ≥ 0, but is not globally C0-well-posed in H−sr,0 (T) when 0 < s < 1
2 .

Theorem 1.1. For all t ∈ R, the flow map for equation (1) St : u0 7→ u(t), defined for finite
gap potentials, admits a continuous extension to Hs

r,0(T) for all s ≥ 0, but does not admit a
continuous extension to H−sr,0 (T) for 0 < s < 1

2 .

Remark 1.2. Note that if s ≥ 1
2 , the maps t ∈ R 7→ u(t) constructed in this way are solutions

to equation (1) in the distribution sense.

We also investigate the question of the sequential weak continuity for the flow map.

Theorem 1.3. For all t ∈ R, the extension of flow map for equation (1) St : u0 7→ u(t) is
weakly sequentially continuous in Hs

r,0(T) for s > 0, but is not weakly sequentially continuous in
L2
r,0(T).

In [6], Gérard, Kappeler and Topalov proved that the flow map for the Benjamin-Ono equa-
tion is globally C0-well-posed in Hs

r,0(T) for s > −1
2 , whereas from [13] there is no continuous

extension of the flow map to Hs
r,0(T) when s < −1

2 . We expect that the well-posedness threshold
on the torus increases by 1

2 for each new equation in the hierarchy : for the equation correspond-

ing to the k-th Hamiltonian Hk, k ≥ 4, the threshold should be H
k
2
−2

r,0 (T) (see Remarks 2.6
and A.1). Note that all the equations for the Benjamin-Ono hierarchy have critical Sobolev
exponent −1

2 .
Let us mention former approaches to the Cauchy problem for higher order Benjamin-Ono

equations. Tanaka [17] considered more general third order type Benjamin-Ono equations on
the torus

∂tu = ∂x(−∂xxu− c1uH∂xu− c2H(u∂xu) + u3),

and proved local well-posedness in Hs(T) for s > 5
2 . He deduced global well-posedness in Hs(T),

s ≥ 3 for the integrable case c1 = c2 = 3
2 .

On the real line, Feng and Han [4] proved local well-posedness in Hs(R), s ≥ 4 for the
third equation of the Benjamin-Ono hierarchy (1). Considering more general third order type
Benjamin-Ono equations under the form

∂tu− bH∂xxu− a∂xxxu = cv∂xv − d∂x(vH∂xv +H(v∂xv)),

Linares, Pilod and Ponce [7] established local well-posedness in Hs(R), s ≥ 2, then Molinet and
Pilod [9] proved global well-posedness in Hs(R), s ≥ 1.

Concerning Benjamin-Ono equations of fourth order on the torus and on the real line,
Tanaka [16] proved local well-posedness in Hs, s > 7

2 for a more general family of fourth order
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type Benjamin-Ono equations, and deduced global well-posedness in Hs, s ≥ 4 in the integrable
case.

Our second main result is the classification of the traveling waves for the third order Benjamin-
Ono equation in L2

r,0(T), i.e. the solutions to (1) under the form u(t, x) = u0(x + ct), t ∈ R,
x ∈ T, u0 ∈ L2

r,0(T).

Definition 1.4. For N ≥ 1, we say that u ∈ L2
r,0(T) is a N gap potential if the set {n ≥ 1 |

ζn(u) 6= 0}, where Φ(u) = (ζn(u))n≥1, is finite and of cardinality N .

Theorem 1.5. A potential u0 ∈ L2
r,0(T) defines a traveling wave for equation (1) if and only if

• either u0 is a one gap potential ;

• either u0 is a two gap potential, and the two nonzero indexes p < q satisfy, with γp = |ζp|2
and γq = |ζq|2,

0 < γp <
1

2

(
p+

√
p2 + 4q

p+ q

3

)
and

γq =
q p+q3 − γ

2
p + pγp

2γp + q
.

Note that from [5], the one gap potentials are the only traveling wave solutions to the
Benjamin-Ono equation ; they have been characterized by Amick and Toland [1].

Our last main result answers the question of orbital stability for these two types of traveling
waves.

Definition 1.6. Let u0 ∈ L2
r,0(T) be a one gap traveling wave. We say the u0 is orbitally stable

if for all ε > 0, there exists δ > 0 such that if v is a solution to (1) with initial condition
v0 ∈ L2

r,0(T) such that ‖v0 − u0‖L2(T)≤ δ, then

sup
t∈R

inf
θ∈T
‖v(t)− u0(·+ θ)‖L2(T)≤ ε.

Theorem 1.7. The one gap traveling waves are orbitally stable, whereas the two gap traveling
waves are orbitally unstable.

For the Benjamin-Ono equation, Pava and Natali [14] proved the orbital stability of the

traveling wave solutions in H
1
2
r,0(T). In [6], Gérard, Kappeler and Topalov improved the orbital

stability of these solutions to H−sr,0 (T), 0 ≤ s < 1
2 .

Plan of the paper The paper is organized as follows. We first prove the well-posedness
threshold for the third order Benjamin-Ono equation (1) in Section 2. Finally, in Section 3, we
classify the traveling wave solutions and study their orbital stability properties.

In Appendix A.1, we describe how to compute the Hamiltonians Hk and frequencies ω(k)
n =

∂Hk◦Φ−1

∂|ζn|2 in terms of the action variables |ζp|2. In Appendix A.2, we retrieve the Hamiltonian
and frequencies of the third order Benjamin-Ono equation (see formulas (4) and (5)) by starting
from the definition (3) of the higher order Hamiltonians. In Appendix A.3, we provide an
alternative proof of a result from [18] about the structure of the higher order Hamiltonians by
using formula (3), which may be of independent interest.

Acknowledgements The author would like to thank her PhD advisor Professor P. Gérard
for introducing her to this problem, and for his continuous support and advices.
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2 Well-posedness threshold for the fourth Hamiltonian
Let N ∈ N and let UN be the set

UN = {u ∈ L2
r,0(T) | ζN (u) 6= 0, ζj(u) = 0 ∀j > N}.

We know from [5], Theorem 3, that the restriction of the Birkhoff map Φ to UN is a real analytic
diffeomorphism onto some Euclidean space. In Birkhoff coordinates, the evolution along the flow
of equation (1) for an initial data u0 ∈ UN writes{

∂tζn = iω
(4)
n (u0)ζn

ζn(0) = ζn(u0)
, n ≥ 1,

where for all n ≥ 1, the frequencies ω(4)
n (u0) are given by (5)

ω(4)
n (u0) = n3 + n

∑
p≥1

p|ζp(u0)|2−3
∑
p≥1

min(p, n)2|ζp(u0)|2+3
∑
p,q≥1

min(p, q, n)|ζp(u0)|2|ζq(u0)|2.

This implies that
ζn(u(t)) = ζn(u0) eiω

(4)
n (u0)t, t ∈ R, n ≥ 1.

Therefore, for any finite gap inifial data u0, belonging to some of the sets UN , the flow map
St : u0 ∈ UN 7→ u(t) ∈ UN is well-defined.

In part 2.1, we prove that for all t ∈ R, this flow map extends by continuity to Hs
r,0(T) for

s ≥ 0. We also show that the extension is sequentially weakly continuous in Hs
r,0(T) for s > 0,

but not in L2
r,0(T). In part 2.2, we prove that the flow map does not extend by continuity to

H−sr,0 (T) for s > 0. This gives a threshold for the global C0-well-posedness of the third order
Benjamin-Ono equation in the sense of Definitions 1 and 2 from [6].

2.1 Well-posedness in Hs
r,0(T), s ≥ 0

Proposition 2.1. Let s ≥ 0. For any u0 ∈ Hs
r,0(T), there exists a continuous map t ∈ R 7→

St(u0) = u(t) ∈ Hs
r,0(T) with u(0) = u0 such that the following holds.

For any finite gap sequence (uk0)k converging to u0 in Hs
r,0(T), for any t ∈ R, uk(t) = St(uk0)

converges to u(t) in Hs
r,0(T) as k goes to infinity.

Moreover, the extension of the flow map S : u0 ∈ Hs
r,0(T) 7→ (t 7→ u(t)) ∈ C(R, Hs

r,0(T)) is
continuous.

Recall that from [6], as mentioned in the proofs of Proposition 2 and Theorem 8, we have
the following result. For s ≥ 0, the Birkhoff map Φ defines a homeomorphism between Hs

r,0(T)
and the space

h
1
2

+s
+ =

{
(ζn)n≥1 |

∑
n≥1

n1+2s|ζn|2< +∞
}
.

The proof of Proposition 2.1 therefore relies on the following sequential convergence result ob-
tained after applying the Birkhoff map.

Lemma 2.2. Fix s ≥ 0. Let ζk = (ζkn)n≥1, k ∈ N, and ζ be elements of h
1
2

+s
+ such that

‖ζk − ζ‖
h

1
2+s

+

−→
k→+∞

0. Then for all t ∈ R,

‖(ζkn eiω
(4)
n (ζk)t)n − (ζn eiω

(4)
n (ζ)t)n‖

h
1
2+s

+

−→
k→+∞

0,

where the convergence is uniform on bounded time intervals.
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Proof. Note that since (ζk)k converges to ζ in h
1
2

+s
+ , then for all n ∈ N, formula (5) for ω(4)

n (ζk)

implies that ω(4)
n (ζk) converges to ω(4)

n (ζ) as k goes to infinity.
Let ε > 0. Fix K ∈ N such that for all k ≥ K,

‖ζk − ζ‖
h

1
2+s

+

≤ ε.

Using that ζ ∈ h
1
2

+s
+ , fix N ∈ N such that( ∑

n≥N
n1+2s|ζn|2

) 1
2 ≤ ε.

Now, if k ≥ K,

‖(ζkn eiω
(4)
n (ζk)t)n − (ζn eiω

(4)
n (ζ)t)n‖

h
1
2+s

+

≤ ‖(ζkn)n − (ζn)n‖
h

1
2+s

+

+‖(ζn( eiω
(4)
n (ζk)t − eiω

(4)
n (ζ)t))n‖

h
1
2+s

+

≤ 3ε+

(
N−1∑
n=0

n1+2s|ζn( eiω
(4)
n (ζk)t − eiω

(4)
n (ζ)t)|2

) 1
2

,

which is less than 4ε for k large enough by convergence term by term of the elements in the sum.
Moreover, this convergence is uniform on bounded time intervals.

Proof of Proposition 2.1. Let s ≥ 0 and u0 ∈ Hs
r,0(T). Fix t ∈ R, and a sequence of finite gap

initial data (uk0)k converging to u0 in Hs
r,0(T).

We first establish that for all t ∈ R, (uk(t))k has a limit in Hs
r,0(T) as k goes to +∞. By

assumption, Φ(uk0) converges to Φ(u0) in h
1
2

+s
+ . Define the sequence ζ(t) by

ζn(t) := ζn(u0) eiω
(4)
n (u0)t, n ∈ N.

Lemma 2.2 immediately implies that the sequence (Φ(uk(t)))k converges to ζ(t) in h
1
2

+s
+ . Since

Φ−1 defines a continuous application from h
1
2

+s
+ to Hs

r,0(T), we deduce that uk(t) converges in
Hs
r,0(T) to u(t) := Φ−1(ζ(t)). Moreover, the convergence is uniform on bounded time intervals.
We now prove the continuity of the flow map St. Let uk0 ∈ Hs

r,0(T), k ∈ N, be a sequence of

initial data converging to some u0 in Hs
r,0(T). Then Φ(uk0) converges to Φ(u0) in h

1
2

+s
+ , and the

above Lemma 2.2 again implies that Φ(uk(t)) converges to Φ(u(t)) in h
1
2

+s
+ . In other terms, uk(t)

converges to u(t) in Hs
r,0(T), where again this convergence is uniform on bounded intervals.

Corollary 2.3. For all s > 0 and all t ∈ R, the extension of the flow map restricted to Hs
r,0(T) :

u0 ∈ Hs
r,0(T) 7→ u(t) ∈ Hs

r,0(T) is sequentially weakly continuous.

Proof. Let uk0 ∈ Hs
r,0(T), k ∈ N, be a sequence weakly converging in Hs

r,0(T) to u0 ∈ Hs
r,0(T).

Since the embeddingHs
r,0(T) ↪→ L2

r,0(T) is compact, (uk0)k is strongly convergent to u0 in L2
r,0(T).

By continuity of the flow map St, one deduces that (uk(t))k converges strongly to u(t) in L2
r,0(T).

This implies that (uk(t))k converges weakly to u(t) in Hs
r,0(T).

Proposition 2.4. For all t ∈ R∗, the extension of the flow map restricted to L2
r,0(T) : u0 ∈

L2
r,0(T) 7→ u(t) ∈ L2

r,0(T) is not sequentially weakly continuous.
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Proof. Fix t ∈ R∗ and u0 ∈ L2
r,0(T) \ {0}. We construct a sequence (uk0)k in L2

r,0(T) weakly
convergent to u0 in L2

r,0(T) but such that uk(t) = St(uk0) is not weakly convergent to u(t) =

St(u0) in L2
r,0(T).

Let α > 0 to be chosen later. For k ∈ N, we choose (ζp(u
k
0))p converging weakly to (ζp(u0))p

in h
1
2
+ (so that uk0 converges weakly to u0 in L2

r,0(T)) and such that

|ζp(uk0)|2= |ζp(u0)|2+
α

p
δk,p, p ≥ 1.

For instance, for p 6= k we choose ζp(u
k
0) = ζp(u0), and for p = k, we choose ζk(u

k
0) =√

|ζk(u0)|2+α
k
ζk(u0)
|ζk(u0)| if ζk(u0) 6= 0 and ζk(uk0) = α

k if ζk(u0) = 0.
Fix t 6= 0. If uk(t) was weakly convergent to u0 in L2

r,0(T), then (ζp(uk(t))p would converge

weakly to (ζp(u(t))p in h
1
2
+, and therefore component by component :

ζp(u
k
0) eiω

(4)
p (uk0)t −→

k→+∞
ζp(u0) eiω

(4)
p (u0)t, p ≥ 1.

In particular, let p ≥ 1 such that ζp(u0) 6= 0. Then there exists a sequence (nk)k of integers such
that

ω(4)
p (uk0)t+ 2πnk −→

k→+∞
ω(4)
p (u0)t.

From the expression (5) of ω(4)
p (uk0) and the strong convergence of (ζp(u

k
0))p to (ζp(u0))p in

`2+ = {(ζp)p≥1 |
∑

p≥1|ζp|2< +∞} by compactness, we get

+∞∑
p=1

p|ζp(u0)|2+α+
2πnk
t

=

+∞∑
p=1

p|ζp(uk0)|2+
2πnk
t

−→
k→+∞

+∞∑
p=1

p|ζp(u0)|2.

We get a contradiction by choosing α 6∈ 2π
t Z.

2.2 Ill-posedness in H−sr,0 (T), s > 0

Proposition 2.5. For all t > 0, there is no continuous local extension of the flow map St to
H−sr,0 (T) for 0 < s < 1

2 in the distribution sense.

Proof. Let us fix 0 < s < 1
2 and an initial data u0 ∈ H−sr,0 (T) \ L2

r,0(T). From [6], Theorem 5,
the Birkhoff map extends by continuity as an homeomorphism

Φ : u ∈ H−sr,0 7→ Φ(u) = (ζn(u))n≥1 ∈ h
1
2
−s

+

where
h

1
2
−s

+ =
{

(ζn)n≥1 |
∑
n≥1

n1−2s|ζn|2< +∞
}
.

Therefore, (ζn(u0))n≥1 := Φ(u0) ∈ h
1
2
−s

+ is well defined. Let uk0, k ∈ N, be a sequence finite gap
initial data, to be chosen later, such that uk0 converges in H−sr,0 (T) to u0. Write

Φ(uk0) = (ζn(uk0)1n≤Nk
)n, k ∈ N.

Since uk0 is a finite gap potential, it belongs to L2
r,0(T). Recall that

ω(4)
n (uk0)− n

Nk∑
p=1

p|ζp(uk0)|2= ω̃n(uk0)

7



where

ω̃n(uk0) = n3 − 3

Nk∑
p=1

min(p, n)2|ζp(uk0)|2+3

Nk∑
p=1

Nk∑
q=1

min(p, q, n)|ζp(uk0)|2|ζq(uk0)|2.

Since uk0 converges to u0 in H−sr,0 (T), the series
∑

p≥1|ζp(u0)|2 is convergent, and∑
p≥1

|ζp(uk0)|2 −→
k→+∞

∑
p≥1

|ζp(u0)|2.

In particular, the term ω̃n(uk0) converges as k goes to infinity to

ω̃n(u0) = n3 − 3

+∞∑
p=1

min(p, n)2|ζp(u0)|2+3

+∞∑
p=1

+∞∑
q=1

min(p, q, n)|ζp(u0)|2|ζq(u0)|2.

For k ∈ N, let

τk :=

Nk∑
p=1

p|ζp(uk0)|2=
1

2
‖uk0‖2L2(T)

and
vk(t, ·) := uk(t, · − τkt).

We use the following identity from the proof of Proposition B.1. in [5] :

ζn(u(·+ τ)) = ζn(u) eiτn, τ ∈ R, u ∈ L2
r,0(T),

to deduce that for n ∈ N,

ζn(vk(t)) = ζn(uk(t)) e−inτkt

= ζn(uk0) ei(ω
(4)
n (uk0)−nτk)t.

Since
ω(4)
n (uk0)− nτk −→

k→+∞
ω̃n(u0),

the sequence (ζn(vk(t)))k is convergent :

ζn(vk(t)) −→
k→+∞

ζn(u0) eiω̃n(u0)t. (6)

Let t > 0. If there was a local extension of the flow map St in the distribution sense, then
uk(t) would be weakly convergent to u(t) in H−sr,0 (T). Applying the Birkhoff map, which is
weakly sequentially continuous (see [6], Theorem 6), Φ(uk(t)) would converge weakly to Φ(u(t))

in h
1
2
−s

+ . In particular, for all n,

ζn(vk(t)) eiτknt = ζn(uk(t)) −→
k→+∞

ζn(u(t)). (7)

We deduce from (6) and (7) that if ζn(u0) 6= 0, then

eiτknt −→
k→+∞

ζn(u(t))

ζn(u0)
e−iω̃n(u0)t. (8)

We construct the sequence (uk0)k in order to contradict this latter point. Let n ∈ N such that
ζn(u0) 6= 0. Fix k ∈ N. From the fact that u0 does not belong to L2

r,0(T),∑
p>k

p|ζp(u0)|2= +∞,

8



therefore one can choose Nk ≥ k + 1 such that

Nk∑
p=k+1

p|ζp(u0)|2≥ 2π

nt
.

Let 0 < αk < 1 such that there exists an integer mk such that

∑
p≤k

p|ζp(u0)|2+αk

Nk∑
p=k+1

p|ζp(u0)|2=
1

nt
(kπ + 2πmk).

We define uk0 by

ζp(u
k
0) =


ζp(u0) if p ≤ k
√
αkζp(u0) if k < p ≤ Nk

0 if Nk < p

, p ∈ N.

By construction, uk0 is finite gap and converges to u0 in H−sr,0 (T). However,

τk =
∑
p≤k

p|ζp(u0)|2+αk

Nk∑
p=k+1

p|ζp(u0)|2

=
1

nt
(kπ + 2πmk),

which implies that
eiτknt = (−1)k.

In particular, the sequence ( eiτknt)k is not convergent, and we get a contradiction with (8).

Remark 2.6. We expect that with a similar argument, one can prove the following fact. For the
higher equations of the hierarchy, the well-posedness threshold increases by 1

2 for each equation
(see Remark A.1).

3 Traveling waves for the fourth Hamiltonian
In this part, we classify all traveling wave solutions to equation (1)

∂x(−cu− ∂xxu−
3

2
u2H∂xu−

3

2
H(u∂xu) + u3) = 0.

A traveling wave of speed c ∈ R is a solution to (1) of the form u(t, x) = u0(x+ ct).
The argument of [5], Proposition B.1., applies for the higher equations of the Benjamin-Ono

hierarchy, implying that a potential u0 is a traveling wave solution to (1) of speed c ∈ R if and
only if for all t ∈ R and n ≥ 1,

eicntζn(u0) = eiω
(4)
n (u0)tζn(u0),

or in other words :
∀n ≥ 1, if ζn(u0) 6= 0, then cn = ω(4)

n (u0). (9)

In particular, all one gap potentials are traveling wave solutions. Note that these potentials are
the only traveling wave solutions to the Benjamin-Ono equation and write (see [5], Appendix B)

u0(x) =
pw eipx

1− w eipx
+

pw e−ipx

1− w e−ipx

9



with the nonzero gap being at index p ≥ 1 and w =
ζp(u0)√
p+γp(u0)

. As we will see in this section,

the one gap potentials are not the only traveling wave solutions for equation (1).
In part 3.1, we first show that the traveling waves are necessarily one gap and two gap

potentials, then provide a classification of the two gap traveling waves in term of their actions.
In part 3.2, we prove that the one gap traveling waves are orbitally stable whereas the two gap
traveling waves are orbitally unstable.

3.1 Classification of traveling wave solutions
In the following, it will be more convenient to work with the actions γp = |ζp(u0)|2. Formula (5)
for ω(4)

n (u0)

ω(4)
n (u0) = n3 + n

∑
p≥1

pγp − 3
∑
p≥1

min(p, n)2γp + 3
∑
p,q≥1

min(p, q, n)γpγq

shows that ω
(4)
n (u0)
n is equivalent to n2 as n goes to infinity, therefore, from condition (9), the

traveling waves for the third equation of the hierarchy (1) are necessarily finite gap solutions.

Proposition 3.1. Let u0 be a two gap potential, and p < q be the indices of the two nonzero
gaps with gaps γp > 0 and γq > 0. Then u0 is a traveling wave for equation (1) if and only if

0 < γp <
1

2

(
p+

√
p2 + 4q

p+ q

3

)

and

γq =
q p+q3 + pγp − γ2

p

2γp + q
.

Proof. Let u0 be such a two gap potential. Then u0 is a traveling wave if and only if ω
(4)
p (u0)
p =

ω
(4)
q (u0)
q , where

ω
(4)
p (u0)

p
= p2 + (pγp + qγq)− 3p(γp + γq) + 3(γ2

p + 2γpγq + γ2
q )

and
ω

(4)
q (u0)

q
= q2 + (pγp + qγq)− 3(

p2

q
γp + qγq) + 3(

p

q
γ2
p + 2

p

q
γpγq + γ2

q ).

Taking the difference of the two terms, ω
(4)
p (u0)
p =

ω
(4)
q (u0)
q , if and only if

0 = q2 − p2 + 3

(
−p(p

q
− 1)γp − (q − p)γq + (

p

q
− 1)γ2

p + 2(
p

q
− 1)γpγq

)
.

Dividing by 3(1− p
q ), this necessary and sufficient condition becomes

0 = q
p+ q

3
+ pγp − qγq − γ2

p − 2γpγq,

i.e.
(2γp + q)γq = q

p+ q

3
+ pγp − γ2

p . (10)

10



Fix γp > 0 and γq satisfying this latter equality. We get that γq > 0 if and only if the left-hand
side of the equality is positive, i.e.

0 < γp <
1

2

(
p+

√
p2 + 4q

p+ q

3

)
. (11)

Conversely, any two gap solution u0 satisfying (10) and (11) verifies ω
(4)
p (u0)
p =

ω
(4)
q (u0)
q , therefore

is a traveling wave solution.

Let us give an idea of the form of a two gap potential u0 with gaps at indices p < q. By
Theorem 3 in [5], the extension of Πu0 as an holomorphic function on the unit disc {z ∈ C |
|z|< 1} satisfies

Πu0(z) = −zQ
′(z)

Q(z)

where Q(z) = det(Id− zM) and M = (Mnm)0≤n,m≤q−1 is a q × q matrix defined by

Mnm =

δm,n+1 if ζn+1 = 0
√
µn+1

√
κm
κn+1

ζm(u0)ζn+1(u0)
(λm−λn−1) if ζn+1 6= 0

.

A precise definition of µn, κn and λn can be found in [5]. Therefore, Q and Q′ respectively write

Q(z) = 1− zpMp−1,0 − zqMq−1,0Mp−1,p

and
Q′(z) = −pzp−1Mp−1,0 − qzq−1Mq−1,0Mp−1,p

This leads to

u0(x) =
p eipxMp−1,0 + q eiqxMq−1,0Mp−1,p

1− eipxMp−1,0 − eiqxMq−1,0Mp−1,p
+

p e−ipxMp−1,0 + q e−iqxMq−1,0Mp−1,p

1− e−ipxMp−1,0 − e−iqxMq−1,0Mp−1,p

.

Proposition 3.2. There are no three gap traveling waves.

Proof. Let p < q < r the indices for the nonzero gaps for a three gap potential u0. The speeds
for each mode write

ω
(4)
p (u0)

p
= p2 + (pγp + qγq + rγr)− 3p(γp + γq + γr)

+ 3(γ2
p + 2γp(γq + γr) + γ2

q + 2γqγr + γ2
r ),

ω
(4)
q (u0)

q
= q2 + (pγp + qγq + rγr)− 3(

p2

q
γp + q(γq + γr))

+ 3(
p

q
γ2
p + 2

p

q
γp(γq + γr) + γ2

q + 2γqγr + γ2
r )

and

ω
(4)
r (u0)

r
= r2 + (pγp + qγq + rγr)− 3(

p2

r
γp +

q2

r
γq + rγr)

+ 3(
p

r
γ2
p + 2

p

r
γp(γq + γr) +

q

r
γ2
q + 2

q

r
γqγr + γ2

r ).
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Let us now subtract the equalities.

ω
(4)
q (u0)

q
− ω

(4)
p (u0)

p
= q2 − p2 − 3((

p

q
− 1)pγp + (q − p)(γq + γr))

+ 3((
p

q
− 1)γ2

p + 2(
p

q
− 1)γp(γq + γr)).

Dividing by 3(1− p
q ), we get that if ω

(4)
q (u0)
q =

ω
(4)
p (u0)
p , then

0 = q
p+ q

3
+ pγp − q(γq + γr)− γ2

p − 2γp(γq + γr),

or equivalently
(q + 2γp)(γq + γr) = q

p+ q

3
+ pγp − γ2

p . (12)

Doing the same for indices p and r,

ω
(4)
r (u0)

r
− ω

(4)
p (u0)

p
= r2 − p2 − 3((

p

r
− 1)pγp + (

q2

r
− p)γq + (r − p)γr)

+ 3((
p

r
− 1)γ2

p + 2(
p

r
− 1)γp(γq + γr) + (

q

r
− 1)γ2

q + 2(
q

r
− 1)γqγr).

Dividing by 3(1− p
r ), if ω

(4)
r (u0)
r =

ω
(4)
p (u0)
p , then

0 = r
r + p

3
+ pγp +

pr − q2

r − p
γq − rγr − γ2

p − 2γp(γq + γr)−
r − q
r − p

γ2
q − 2

r − q
r − p

γqγr. (13)

Subtracting (13) and (12), if ω
(4)
p (u0)
p =

ω
(4)
q (u0)
q = ω

(4)
r (u0)
r , then

(r − q + 2
r − q
r − p

γq)γr =
r2 − q2 + p(r − q)

3
+ (

pr − q2

r − p
+ q)γq −

r − q
r − p

γ2
q .

Since
pr − q2

r − p
+ q =

pr − q2 + qr − pq
r − p

= (p+ q)
r − q
r − p

,

by multiplication by r−p
r−q , we get

(r − p+ 2γq)γr = (r − p)r + q + p

3
+ (p+ q)γq − γ2

q . (14)

Now, if u0 is a traveling wave, the first equality (12) implies

γq + γr =
q p+q3 + pγp − γ2

p

q + 2γp

=
p+ q

3
+
−2γp

p+q
3 + pγp − γ2

p

q + 2γp

=
p+ q

3
+

γp
3(q + 2γp)

(p− 2q − 3γp),

in particular, since p < q and γp > 0, necessarily

γq + γr <
p+ q

3
. (15)
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However, the second equality (14) implies that

γr =
(r − p) r+q+p3 + (p+ q)γq − γ2

q

r − p+ 2γq

=
(r − p) q+p3 + (p+ q)γq − γ2

q

r − p+ 2γq
+

(r − p) r3
r − p+ 2γq

=
p+ q

3
+
−2γq

p+q
3 + (p+ q)γq − γ2

q

r − p+ 2γq
+

(r − p) r3
r − p+ 2γq

=
p+ q

3
+ γq

p+q
3 − γq

r − p+ 2γq
+

(r − p)r
3(r − p+ 2γq)

.

Since from (15),

γq <
p+ q

3
,

we get from this latter equality for γr that

γr >
p+ q

3
,

but this is a contradiction with (15).

Corollary 3.3. There are no N gap traveling waves for N ≥ 3.

Proof. The proof is the same as for the three gap traveling waves case, but with some additional
terms which might hinder understanding for a first reading. We explain here how to adapt the
proof.

Let u0 be a N gap potential, N ≥ 3, and p < q < r < r4 < · · · < rN be the indices for the
nonzero gaps. Let

Γr := γr +

N∑
k=4

γrk .

The speeds for the three smallest modes at indices p, q and r write

ω
(4)
p (u0)

p
= p2 + (pγp + qγq + rγr +

N∑
k=4

rkγrk)− 3p(γp + γq + Γr)

+ 3(γ2
p + 2γp(γq + Γr) + γ2

q + 2γqΓr + γ2
r ),

ω
(4)
q (u0)

q
= q2 + (pγp + qγq + rγr +

N∑
k=4

rkγrk)− 3(
p2

q
γp + q(γq + Γr))

+ 3(
p

q
γ2
p + 2

p

q
γp(γq + Γr) + γ2

q + 2γqΓr + Γ2
r)

and

ω
(4)
r (u0)

r
= r2 + (pγp + qγq + rγr +

N∑
k=4

rkγrk)− 3(
p2

r
γp +

q2

r
γq + rΓr)

+ 3(
p

r
γ2
p + 2

p

r
γp(γq + Γr) +

q

r
γ2
q + 2

q

r
γqΓr + Γ2

r).

The rest of the proof is identical up to replacing γr by Γr everywhere from this point on.
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3.2 Orbital stability
Proposition 3.4. The one gap traveling waves in L2

r,0(T) are orbitally stable.

Proof. Let u0 be a one gap traveling wave, uk0 a sequence of initial data converging to u0 in
L2
r,0(T), and tk a sequence of times. We prove that up to some subsequence,

inf
θ∈T
‖uk(tk)− u0(·+ θ)‖L2

r,0(T) −→
k→+∞

0.

It is enough to show that there exists θ ∈ T such that in L2
r,0(T),

uk(tk) −→
k→+∞

u0(·+ θ),

i.e. such that in h
1
2
+,

Φ(uk(tk)) −→
k→+∞

Φ(u0(·+ θ)).

Recall that
Φ(uk(tk)) = (ζn(uk0) eiω

(4)
n (uk0)tk)n.

Let p ≥ 1 be the index for which ζp(u0) 6= 0. Up to some subsequence, there exists θ ∈ T such
that eiω

(4)
p (uk0)tk −→

k→+∞
eiθ. Moreover, since uk0 converges to u0 in L2

r,0(T),

p|ζp(uk0)− ζp(u0)|2+
∑
n6=p

n|ζn(uk0)|2 −→
k→+∞

0.

We deduce that

‖Φ(uk(tk))− Φ(u0(·+ θ))‖2
h

1
2
+

= p|ζp(uk0) eiω
(4)
n (uk0)tk − ζp(u0) eiθ|2+

∑
n 6=p

n|ζn(uk0)|2

−→
k→+∞

0.

Proposition 3.5. The two gap traveling waves in L2
r,0(T) are orbitally unstable.

Proof. Let u0 be a two gap traveling wave such that the nonzero terms of the sequence Φ(u0) =
(ζn(u0))n≥1 are ζp(u0) and ζq(u0). We define the sequence uk0 of two gap initial data by their
nonzero gaps at indices p and q, denoted ζp(uk0) and ζq(uk0), as follows. We fix ζp(uk0) := ζp(u0)
and choose any sequence of nonzero complex numbers (ζq(u

k
0))k such that ζq(uk0) −→

k→+∞
ζq(u0)

but for all k ∈ N, εk := |ζq(uk0)|2−|ζq|2 6= 0. Then we construct tk ∈ R in order to negate the
orbital stability of u0.

Assume by contradiction that

inf
θ∈T
‖uk(tk)− u0(·+ θ)‖L2

r,0(T) −→
k→+∞

0.

Then there exists a sequence θk ∈ T, k ∈ N, such that in L2
r,0(T),

‖uk(tk, · − θk)− u0‖L2
r,0(T) −→

k→+∞
0.

Applying the Birkhoff map, which is continuous on L2
r,0(T),

ζp(u
k
0) eiω

(4)
p (uk0)tk−ipθk = ζp(uk(tk)) e−ipθk −→

k→+∞
ζp(u0)
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and
ζq(u

k
0) eiω

(4)
q (uk0)tk−iqθk = ζq(uk(tk)) e−iqθk −→

k→+∞
ζq(u0).

This implies by taking the arguments that for some integers np,k and nq,k,

ω(4)
p (uk0)tk − pθk + 2πnp,k −→

k→+∞
0

and
ω(4)
q (uk0)tk − qθk + 2πnq,k −→

k→+∞
0,

therefore

pqtk

(
ω

(4)
q (uk0)

q
− ω

(4)
p (uk0)

p

)
+ 2π(pnq,k − qnp,k) −→

k→+∞
0. (16)

However, writing εk = |ζq(uk0)|2−|ζq(u0)|2= γq(u
k
0) − γq(u0), we get that the speeds of the

two modes p and q for the initial data uk0 are given by

ω
(4)
p (uk0)

p
=
ω

(4)
p (u0)

p
+ qεk − 3pεk + 6εk(γp(u0) + γq(u0)) + 3ε2

k

and
ω

(4)
q (uk0)

q
=
ω

(4)
q (u0)

q
+ qεk − 3qεk + 6εk(

p

q
γp(u0) + γq(u0)) + 3ε2

k.

Since u0 is a traveling wave, ω
(4)
p (u0)
p =

ω
(4)
q (u0)
q and therefore

ω
(4)
q (uk0)

q
− ω

(4)
p (uk0)

p
= −3(q − p+ 2(1− p

q
)γp(u0))εk.

Since εk 6= 0, then ω
(4)
q (uk0)
q 6= ω

(4)
p (uk0)
p . It is therefore possible to choose a sequence tk such that

the limit (16) does not hold and get a contradiction. For instance, we can choose tk such that

−3pqtk(q − p+ 2(1− p

q
)γp)εk = π.

A Appendices

A.1 About the hierarchy
The aim of this Appendix is to provide a way to compute the Hamiltonians Hk and frequencies
ω

(k)
n for the higher order Benjamin-Ono equations in terms of the actions γp = |ζp(u0)|2. In

particular, we establish formula (5)

ω(4)
n (u0) = n3 + n

∑
p≥1

pγp − 3
∑
p≥1

min(p, n)2γp + 3
∑
p,q≥1

min(p, q, n)γpγq

for finite gap potentials u0.
We need to recall first some notation. Given u ∈ L2

r,0(T) , we consider its Lax operator
Lu = −i∂x − Tu acting on L2

+(T), with domain H1
+(T) = H1(T) ∩ L2

+(T). The spectrum of Lu
is discrete, with eigenvalues

λ0(u) < λ1(u) < · · · < λn(u) < · · · .
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Moreover (see [5]),
γn(u) = λn(u)− λn−1(u)− 1, n ≥ 1

is non-negative and satisfies γn(u) = |ζn(u)|2. We also define fn(u) ∈ H1
+(T) as the L2-

normalized eigenfunction for Lu associated to the eigenvalue λn(u).
Let u0 be a finite gap potential and use the above notation. From [5] (3.8), a variant of the

generating function, denoted by H̃ε, is defined as

H̃ε =
+∞∑
n=0

|〈1|fn〉|2

1 + ελn
.

From the decomposition (2.12) in [5] : Πu = −
∑+∞

n=1 λn〈1|fn〉fn, we know using formula (3)
that

Hk(u) =
+∞∑
n=0

|〈1|fn〉|2λkn

=
(−1)k

k!

dk

dεk
|ε=0H̃ε.

We now make use of the generating function to derive a recurrence formula for the Hk. Set

gε := − d

dε
log H̃ε = − 1

H̃ε

d

dε
H̃ε,

then from [5] (3.11), gε writes

gε =
λ0

1 + ελ0
+

+∞∑
n=1

γn
(1 + ε(λn−1 + 1))(1 + ελn)

.

Using the identity

− dk+1

dεk+1
H̃ε =

dk

dεk

(
gεH̃ε

)
=

k∑
l=0

(
k

l

)
dl

dεl
(gε)

dk−l

dεk−l
(H̃ε).

and defining

Pl :=
(−1)l

l!

dl

dεl
|ε=0(gε),

we get the recurrence relation

Hk+1 =
1

k + 1

k∑
l=0

PlHk−l. (17)

Moreover, the frequencies ω(k)
n = ∂Hk

∂γn
, satisfy the recurrence formula

ω(k+1)
n =

1

k + 1

k∑
l=0

∂Pl
∂γn
Hk−l + Plω

(k−l)
n . (18)

We now simplify Pl and ∂Pl
∂γn

:

Pl = λl+1
0 +

∑
n≥1

γn

l∑
m=0

(λn−1 + 1)mλl−mn ,
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and since λn−1 + 1 = λn − γn,

Pl = λl+1
0 +

∑
n≥1

λl+1
n − (λn − γn)l+1.

From (3.13), λn = n− sn+1 where sn =
∑∞

k=n γn for n ≥ 1, therefore

Pl = (−1)l+1sl+1
1 +

∑
n≥1

(n− sn+1)l+1 − (n− sn)l+1. (19)

We deduce

1

l + 1

∂Pl
∂γn

= (−1)l+1sl1 + (n− sn)l −
∑
p<n

(p− sp+1)l − (p− sp)l

=
n∑
p=1

(p− sp)l − (p− 1− sp)l

= nl +

n∑
p=1

l−1∑
m=1

(
l

m

)
(pm − (p− 1)m)(−1)l−msl−mp

= nl +
l−1∑
m=1

(
l

m

)
(−1)l−m

∑
p,p1,...,pl−m

1≤p≤min(n,p1,...,pl−m)

(pm − (p− 1)m)γp1 . . . γpl−m
,

therefore

1

l + 1

∂Pl
∂γn

= nl +

l−1∑
m=1

(
l

m

)
(−1)l−m

∑
p1,...,pl−m

min(n, p1, . . . , pl−m)mγp1 . . . γpl−m
.

Let us compute the first small terms by using (17) and (18). The Hamiltonian with index 0

is constant H0 = 1, leading to ω(0)
n = 0, P0 = 0 and ∂P0

∂γn
= 0.

Concerning index 1, H1 = −〈u|1〉 = 0 because we assumed that u ∈ L2
r,0(T) is of average

zero. This leads to ω(1)
n = 0, P1 = 2

∑
p≥1 pγp and

∂P1
∂γn

= 2n. Because of cancellations for several
of these small terms, the recurrence relations (17) and (18) write, for k ≥ 2,

Hk =
1

k
(P1Hk−2 + P2Hk−3 + · · ·+ Pk−3H2 + Pk−1) (20)

and

ω(k)
n =

1

k

(∂P1

∂γn
Hk−2 +

∂P2

∂γn
Hk−3 + · · ·+ ∂Pk−3

∂γn
H2

+ P1ω
(k−2)
n + P2ω

(k−3)
n + · · ·+ Pk−3ω

(2)
n +

∂Pk−1

∂γn

)
. (21)

The second index leads to the conservation of the mass

H2 =
‖u‖2

2
=
P1

2
,

ω(2)
n = n.

Moreover,

P2 = −s3
1 +

∞∑
p=1

(p− sp+1)3 − (p− sp)3 = 3
∑
p≥1

p2γp − 3
∑
p≥1

s2
p

17



and
∂P2

∂γn
= 3(n2 − 2

∞∑
p=1

min(p, n)γp).

For the third index, we retrieve identity (8.6) from [5] for the Hamiltonian

H3 =
P2

3
=
∑
p≥1

p2γp −
∑
p≥1

s2
p

and formula (8.4) from [5] for the frequencies

ω(3)
n = n2 − 2

+∞∑
p=1

min(p, n)γp.

We now use that

P3 = s4
1 +

+∞∑
p=1

(p− sp+1)4 − (p− sp)4

and
∂P3

∂γn
= 4(n3 − 3

∑
p

min(p, n)2γp + 3
∑
p,q

min(p, q, n)γpγq)

to get the formula for the Hamiltonian of index 4

H4 =
1

4
(P3 + P1H2) =

1

4
P3 +

1

2
H2

2

and the frequencies

ω(4)
n =

1

4

∂P3

∂γn
+ nH2

= n3 + n
∑
p≥1

pγp − 3
∑
p≥1

min(p, n)2γp + 3
∑
p,q≥1

min(p, q, n)γpγq.

In the same way, using that

P4 = −s5
1 +

+∞∑
p=1

(p− sp+1)5 − (p− sp)5

and
1

5

∂P4

∂γn
= n4 − 4

∑
p≥1

min(p, n)3γp + 6
∑
p,q≥1

min(p, q, n)2γpγq − 4
∑

p,q,r≥1

min(p, q, r, n)γpγqγr,

we can get a formula for the Hamiltonian with index 5

H5 =
1

5
(P4 + P2H2 + P1H3)

and the frequencies

ω(5)
n =

1

5
(
∂P1

∂γn
H3 + P1ω

(3)
n +

∂P2

∂γn
H2 + P2ω

(2)
n +

∂P4

∂γn
)

=
2

5
n(
∑
p≥1

p2γp −
∑
p≥1

s2
p) +

2

5
(
∑
p≥1

pγp)(n
2 − 2

∑
p≥1

min(p, n)γp)

+
3

5
(n2 − 2

∑
p≥1

min(p, n)γp)(
∑
p≥1

pγp) +
3

5
(
∑
p≥1

p2γp −
∑
p≥1

s2
p)n+

1

5

∂P4

∂γn
,
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leading to

ω(5)
n = n(

∑
p≥1

p2γp −
∑
p≥1

s2
p) + (

∑
p≥1

pγp)(n
2 − 2

∑
p≥1

min(p, n)γp)

+ n4 − 4
∑
p≥1

min(p, n)3γp + 6
∑
p,q≥1

min(p, q, n)2γpγq − 4
∑

p,q,r≥1

min(p, q, r, n)γpγqγr. (22)

Remark A.1. Note that formulas (5) and (22) for ω(4)
n (u0) and ω

(5)
n (u0), which have been

established for finite gap potentials u0, still make sense for ω(4)
n (u0) if u0 ∈ L2

r,0(T) and for

ω
(5)
n (u0) if u0 ∈ H

1
2
r,0(T), but diverge if u0 ∈ Hs

r,0(T) for s right below these respective exponents
(s < 0 and s < 1

2).
One can actually show by induction the following facts. In the formula (19) for Pk, there is

one term c1
∑+∞

p=1 p
kγp, the other terms being convergent if

∑+∞
p=1 p

k−1γp < +∞. This implies
that in the formula (20) for Hk appears one term c2

∑+∞
p=1 p

k−1γp, the other terms being conver-

gent if
∑+∞

p=1 p
k−2γp < +∞. Consequently, in formula (21) for ω(k)

n , k ≥ 4, appears one term
c3
∑+∞

p=1 p
k−3γp, the other terms being convergent if

∑+∞
p=1 p

k−4γp < +∞.

From these facts, one can see that the formula for ω(k)
n can be extended by continuity to

potentials in Hsk
r,0(T) where sk = k

2 − 2, however there is no continuous extension to Hsk
r,0(T)

when sk− 1
2 < s < sk. This explains why the well-posedness threshold for the equation associated

to the Hamiltonian Hk in the hierarchy should be Hsk
r,0(T).

A.2 Equation for the fourth Hamiltonian
From formula (3) and the decomposition (2.12) in [5] : Πu = −

∑+∞
n=1 λn〈1|fn〉fn, we see that

for k ≥ 2,
Hk(u) = 〈Lk−2

u Πu|Πu〉, (23)

where
Lu(h) = Dh−Π(uh), D = −i∂x, h ∈ H1

+(T).

For instance,

H3(u) =
1

2π

∫ 2π

0

1

2
uH∂xu−

1

3
u3 dx

leads to the Benjamin-Ono equation

∂tu = H∂2
xu− ∂x(u2).

Proposition A.2. The Hamiltonian for the third order equation of the Benjamin-Ono hierar-
chy (1) is

H4(u) =
1

2π

∫ 2π

0

(
1

2
(∂xu)2 − 3

4
u2H∂xu+

1

4
u4

)
− 1

8
‖u‖4L2(T),

therefore the third order equation of the Benjamin-Ono hierarchy writes

∂tu = ∂x(−∂xxu−
3

2
uH∂xu−

3

2
H(u∂xu) + u3)

Proof. Let u0 ∈ L2
r,0(T). We develop

H4(u) = ‖DΠu‖2L2(T)−2Re〈DΠu|Π(uΠu))〉+ ‖Π(uΠu)‖2L2(T),

and study each term separately.
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First, since u is real, û(−n) = û(n), therefore

‖DΠu‖2L2(T)=
∑
n≥0

|n|2|û(n)|2=
1

2

∑
n∈Z
|n|2|û(n)|2=

1

2
‖∂xu‖2L2(T).

Then, u being with average zero, u = Πu+ Πu, leading to

〈DΠu|Π(uΠu))〉 =
1

2π

∫ 2π

0
D(Πu)uΠudx

=
1

2π

∫ 2π

0
D(u)uΠudx− 1

2π

∫ 2π

0
D(Πu)uΠu dx

so that

2〈DΠu|Π(uΠu))〉 =
1

2π

∫ 2π

0
D(u2)Πudx− 1

2π

∫ 2π

0
D(Πu

2
)udx

= − 1

2π

∫ 2π

0
u2D(Πu) dx+

1

2π

∫ 2π

0
Πu

2
Dudx.

Taking the real part,

4Re〈DΠu|Π(uΠu))〉 = 2
(
〈DΠu|Π(uΠu))〉+ 〈DΠu|Π(uΠu))〉

)
= − 1

2π

∫ 2π

0
u2(D(Πu) +DΠu) dx+

1

2π

∫ 2π

0
Πu

2
Du+ (Πu)2Dudx.

Using that Df = −Df ,

4Re〈DΠu|Π(uΠu))〉 = − 1

2π

∫ 2π

0
u2(D(Πu)−D(Πu)) dx+

1

2π

∫ 2π

0
(Πu

2 − (Πu)2)Dudx

= − 1

2π

∫ 2π

0
u2(D(Πu)−D(Πu)) dx+

1

2π

∫ 2π

0
(Πu−Πu)uDudx

= − 1

2π

∫ 2π

0
u2(D(Πu)−D(Πu)) dx− 1

2

1

2π

∫ 2π

0
D(Πu−Πu)u2 dx

= −3

2

1

2π

∫ 2π

0
u2(D(Πu)−D(Πu)) dx.

It now remains to remark that D(Πu)−D(Πu) = −H∂xu in order to conclude the identity

2Re〈DΠu|Π(uΠu))〉 =
3

4
〈H∂xu|u2〉.

Finally, we treat the last term ‖Π(uΠu)‖2L2(T). Note that by decomposing u = Πu+ Πu,

Π(uΠu) = (Πu)2 + Π(ΠuΠu),

therefore

|Π(uΠu)|2 = |Πu|4+(Πu)2Π(ΠuΠu) + Πu
2
Π(ΠuΠu) + |Π(ΠuΠu)|2.

By removing the useless projections,

‖Π(uΠu)‖2L2(T) =
1

2π

∫ 2π

0
|Πu|4+(Πu)2ΠuΠu+ Πu

2
ΠuΠu+ |Π(ΠuΠu)|2 dx

=
1

2π

∫ 2π

0
(Πu)2Πu

2
+ (Πu)3Πu+ Πu

3
Πu+ |Π(ΠuΠu)|2 dx.
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But if we take the fourth power of the identity u = Πu+ Πu

u4 = (Πu)4 + Πu
4

+ 4(Πu)3Πu+ 4Πu
3
Πu+ 6Πu

2
(Πu)2,

and make use of the fact that the mean of u is zero, we get

‖u‖4L4(T)=
1

2π

∫ 2π

0
4(Πu)3Πu+ 4Πu

3
Πu+ 6(Πu)2Πu

2
dx.

By subtraction, the following cancellations happen :

‖Π(uΠu)‖2L2(T)−
1

4
‖u‖4L4(T) =

1

2π

∫ 2π

0
|Π(ΠuΠu)|2 dx− 1

2

1

2π

∫ 2π

0
(Πu)2Πu

2
dx.

To conclude, since ΠuΠu is real, we can use the identity ‖f‖2+|〈f |1〉|2= 2‖Πf‖2 for real valued
functions f ∈ L2(T) to get

1

2π

∫ 2π

0
|Π(ΠuΠu)|2 dx =

1

2

1

2π

∫ 2π

0
|ΠuΠu|2 dx− 1

2
|〈ΠuΠu,1〉|2,

leading to

‖Π(uΠu)‖2L2(T)−
1

4
‖u‖4L4(T) = −1

2
|〈ΠuΠu,1〉|2

= −1

2
‖Πu‖4L2(T)

= −1

8
‖u‖4L2(T).

A.3 Structure of the higher order Hamiltonians
The aim of this Appendix is to give an alternative proof of Proposition 2.2 in [18].

We first recall the notation introduced in [18] for the sake of completeness. For a smooth
function u ∈ C∞(T), define by induction the sets Pn(u) as

P1(u) = {Hε1∂α1
x u | ε1 ∈ {0, 1}, α1 ∈ N},

P2(u) = {(Hε1∂α1
x u)(Hε2∂α2

x u) | ε1, ε2 ∈ {0, 1}, α1, α2 ∈ N}
and for n ≥ 2,

Pn(u) =

{
k∏
l=1

Hεlpjl(u) | k ∈ J2, nK, ε1, . . . , εk ∈ {0, 1},
k∑
l=1

jl = n, pjl(u) ∈ Pjl(u)

}
.

Moreover, for pn(u) ∈ Pn(u), the term p̃n(u) is uniquely defined from pn(u) by removing all the
symbols H in the expression of pn(u) and only keeping the symbols ∂αi

x u. In this case, if

p̃n(u) =
n∏
i=1

∂αi
x u,

the maximal order of derivative involved and the sum of these orders are respectively denoted

|pn(u)|= sup
i∈J1,nK

αi

and

‖pn(u)‖=
n∑
i=1

αi.

We now retrieve a proof of the following result (Proposition 2.2 in [18]).
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Proposition A.3. Let k = 2(m+ 1) be an even integer. Then there exists c ∈ R such that the
k-th Hamiltonian Hk writes, for all u ∈ C∞(T),

Hk+2(u) =
1

2
‖u‖2

Ḣm+1(T)
+c

∫ 2π

0
u(H∂mx u)(∂m+1

x u) dx+R,

where for some real numbers c(p),

R =

2m+4∑
j=3

∑
p(u)∈Pj(u)

‖p(u)‖=2m+4−j
|p(u)|≤m

c(p)

∫ 2π

0
p(u) dx.

Note that Hk+2(u) = 1
2Ek/2(u) with the notation from [18].

Proof. Recall formula (23)

Hk+2(u) = 〈LkuΠu|Πu〉
= 〈Lm+1

u Πu|Lm+1
u Πu〉

= 〈(D − Tu)m+1Πu|(D − Tu)m+1Πu〉,

where D = −i∂x and Tu : h ∈ L2
+(T) 7→ Π(uh).

We expand Hk+2(u) as a sum of terms depending on whether we applied the operator D or
the operator Tu when applying Lu.

It is possible to decompose Hk+2(u) as follows :

Hk+2(u) =
1

2
‖u‖2

Ḣm+1(T)
+A+B,

where ‖Πu‖2
Ḣm+1(T)

= 1
2‖u‖

2
Ḣm+1(T)

is obtained when one only applies operator D, A is obtained
when one applies only once the operator Tu and (2m+ 1) times the operator D

A = −2Re

 m∑
j=0

〈Dm−jΠ(uDjΠu)|Dm+1Πu〉


= −2Re

 m∑
j=0

〈Dm−j(uDjΠu)|Dm+1Πu〉

 ,

and B is obtained when we apply at least twice in total the operator Tu.
• We first prove that one can decompose A as

A = c

∫ 2π

0
u(H∂mx u)(∂m+1

x u) dx+ Ã

where for some real numbers c(p),

Ã =
∑

p(u)∈P3(u)
‖p(u)‖=2m+1
|p(u)|≤m

c(p)

∫ 2π

0
p(u) dx. (24)

Let j ∈ J0,mK. By integration by parts and Leibniz’ formula,

〈Dm−j(uDjΠu)|Dm+1Πu〉 = 〈Dm+1−j(uDjΠu)|DmΠu〉
= 〈uDm+1(Πu)|DmΠu〉+ 〈Dm+1−j(u)Dj(Πu)|DmΠu〉

+

m−j∑
k=1

(
m+ 1− j

k

)
〈Dk(u)Dm+1−k(Πu)|DmΠu〉.
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We take the real part and sum over the indices j. When distinguishing the cases j = 0 and
j ≥ 1, we see that for some suitable Ã as in (24), A decomposes as

A = −2(m+ 1)Re(〈uDm+1(Πu)|DmΠu〉)− 2Re(〈Dm+1(u)Πu|DmΠu〉) + Ã.

Write Πu = u+iHu
2 , then there exists some real constants c(ε1, ε2) such that

A =
∑

ε1,ε2∈{0,1}

c(ε1, ε2)

∫ 2π

0
u∂mx (Hε1u)∂m+1

x (Hε2u) dx− Re(〈Dm+1(u)iHu|Dm(Πu)〉) + Ã.

On the one hand, the terms in the sum are simplified as follows (see the remark from Tzvetkov
and Visciglia [18]). When ε1 = ε2,∫ 2π

0
u∂mx (Hε1u)∂m+1

x (Hε1u) dx =
1

2

∫ 2π

0
u∂x((∂mx (Hε1u))2) dx

= −1

2

∫ 2π

0
∂x(u)(∂mx (Hε1u))2 dx

so this term is a remainder term to be added to Ã. Moreover, by integration by parts,∫ 2π

0
u∂mx (u)∂m+1

x (Hu) dx = −
∫ 2π

0
∂x(u)∂mx (u)∂mx (Hu) dx−

∫ 2π

0
u∂m+1

x (u)∂mx (Hu) dx.

Therefore, the sum can be written as a linear combination of the term
∫ 2π

0 u(H∂mx u)∂m+1
x udx

and other terms that can be added to the remainder Ã.
On the other end,

Re(〈Dm+1(u)iHu|Dm(Πu)〉) = Re(〈∂m+1
x (u)Hu|∂mx (Πu)〉)

=
1

2

(
Re(〈∂m+1

x (u)Hu|∂mx (u)〉) + Re(〈∂m+1
x (u)Hu|i∂mx (Hu)〉)

)
Since u is real valued, so is Hu, therefore

Re(〈∂m+1
x (u)Hu|i∂mx (Hu)〉) = 0.

By integration by parts, we then write

Re(〈Dm+1(u)iHu|Dm(Πu)〉) =
1

4π

∫ 2π

0
∂m+1
x (u)Hu∂mx (u) dx

= − 1

8π

∫ 2π

0
∂x(Hu)(∂mx (u))2 dx

as a remainder term to be added to Ã.
• We now tackle term B , for which we have applied Tu at least twice. We show that it can

be written for some real numbers c(p) as a sum

B =
2m+4∑
j=4

∑
p(u)∈Pj(u)

‖p(u)‖=2m+4−j
|p(u)|≤m

c(p)

∫ 2π

0
p(u) dx.

Let B̃ be one of the terms in B obtained by applying Tu (j−1) times on the left side and (k−1)
times on the right side.
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Assume that we have applied Tu at least once in each side of the brackets, i.e. j−1 ∈ J1,m+1K
and k−1 ∈ J1,m+1K. Then we can apply Leibniz’ rule and decompose the left side as a complex
linear combination of terms of the form p(u) where p(u) ∈ Pj(u), ‖p(u)‖= m+2−j and |p(u)|≤ m
(for the right side we just replace j by k). The term B̃ is therefore a complex linear combination
of terms

∫ 2π
0 p(u) dx, where p(u) ∈ Pl(u) for some l = j + k ∈ J4, 2m+ 4K, ‖p(u)‖= 2m+ 4− l

and |p(u)|≤ m.
Otherwise, we have applied Tu at least twice in the same side of the brackets, let us say the

left, and we only have applied the operator D on the other side : j−1 ∈ J2,m+1K and k−1 = 0.
Again by Leibniz’ rule, B̃ decomposes as a sum

B̃ =
m+2∑
j=3

∑
p(u)∈Pj(u)
‖p(u)‖=m+2−j
|p(u)|≤m−1

c(p)〈p(u)|Dm+1Πu〉.

But then by integration by parts and Leibniz’ rule again,

B̃ =
m+2∑
j=3

∑
p(u)∈Pj(u)
‖p(u)‖=m+2−j
|p(u)|≤m−1

c(p)〈Dp(u)|DmΠu〉

=
m+2∑
j=3

∑
p(u)∈Pj(u)
‖p(u)‖=m+3−j
|p(u)|≤m

c′(p)〈p(u)|DmΠu〉

=
m+3∑
j=4

∑
p(u)∈Pj(u)

‖p(u)‖=2m+4−j
|p(u)|≤m

c′′(p)

∫ 2π

0
p(u) dx,

which is of the desired form.
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