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The third order Benjamin-Ono equation on the torus : well-posedness, traveling waves and stability

We consider the third order Benjamin-Ono equation on the torus

We prove that for any t ∈ R, the flow map continuously extends to H s r,0 (T) if s ≥ 0, but does not admit a continuous extension to H -s r,0 (T) if 0 < s < 1 2 . Moreover, we show that the extension is not weakly sequentially continuous in L 2 r,0 (T). We then classify the traveling wave solutions for the third order Benjamin-Ono equation in L 2 r,0 (T) and study their orbital stability.

Introduction

We are interested in the third equation of the integrable Benjamin-Ono hierarchy on the torus

∂ t u = ∂ x -∂ xx u - 3 2 uH∂ x u - 3 2 H(u∂ x u) + u 3 . (1) 
The operator H is the Hilbert transform, defined as

Hf (x) = n∈Z\0 -i sgn(n) f (n) e inx , f = n∈Z f (n) e inx , f (n) = 1 2π
2π 0 f (x) e -inx dx.

Benjamin-Ono equations and integrability

The Benjamin-Ono equation on the torus

∂ t u = H∂ xx u -∂ x (u 2 ),
was introduced by Benjamin [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF] and Ono [START_REF] Ono | Algebraic solitary waves in stratified fluids[END_REF] in order to describe long internal waves in a two-layer fluid of great depth. This equation admits an infinite number of conserved quantities H k , k ≥ 1 (see Nakamura [START_REF] Nakamura | Bäcklund transform and conservation laws of the Benjamin-Ono equation[END_REF] for a proof on the real line). The evolution equations associated to the conservation laws

∂ t u = ∂ x (∇H k (u)) (2) 
are the equations for the Benjamin-Ono hierarchy [START_REF] Matsuno | Bilinear transformation method[END_REF].

From Nakamura [START_REF] Nakamura | A direct method of calculating periodic wave solutions to nonlinear evolution equations. I. Exact two-periodic wave solution[END_REF] and Bock, Kruskal [START_REF] Bock | A two-parameter Miura transformation of the Benjamin-Ono equation[END_REF], we know that the Benjamin-Ono equation admits a Lax pair

d dt L u = [B u , L u ], L u = Dh -T u , B u = iD 2 + 2iT D(Πu) -2iDT u .
Here, D = -i∂ x and T u is the Toeplitz operator on the Hardy space

L 2 + (T) = {h ∈ L 2 (T) | ∀n < 0, h(n) = 0}
defined as T u : h ∈ L 2 + (T) → Π(uh) ∈ L 2 + (T), and Π : L 2 (T) → L 2 + (T) is the Szegő projector. The Hamiltonians H k (u) are defined from the Lax operator L u as

H k (u) = L k u 1|1 . (3) 
In particular, the Hamiltonian for equation [START_REF] Amick | Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane[END_REF] is

H 4 (u) + 1 2 H 2 (u) 2 = 1 2π 2π 0 1 2 (∂ x u) 2 - 3 4 u 2 H∂ x u + 1 4 u 4 dx. (4) 
In [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF], Gérard and Kappeler constructed global Birkhoff coordinates for the Benjamin-Ono equation on the torus. In these coordinates, the evolution equations for the Benjamin-Ono hierarchy are easier to understand. Indeed, denote by Φ the Birkhoff map

Φ : u ∈ L 2 r,0 (T) → (ζ n (u)) n≥1 ∈ h 1 2 + ,
where L 2 r,0 (T) is the subspace of real valued functions in L 2 (T) with zero mean, and

h 1 2 + = (ζ n ) n≥1 | n≥1 n|ζ n | 2 < +∞ .
Then in the Birkhoff coordinates, equation [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF] of the hierarchy associated to H k becomes

∂ t ζ n = iω (k) n ζ n , n ≥ 1
when the frequencies

ω (k) n = ∂(H k • Φ -1 ) ∂|ζ n | 2
are well-defined. For instance, this formula is valid if the sequence ζ(0) = (ζ n (0)) n≥1 only has a finite number of nonzero terms, or in other words, if Φ -1 (ζ(0)) is a finite gap potential. In this case, the frequencies ω

(k)
n only depend on the actions |ζ p | 2 , and the evolution simply reads

ζ n (t) = ζ n (0) e iω (k) n (ζ(0))t , t ∈ R, n ≥ 1.
For the third equation of the hierarchy (1), the frequencies write

ω (4) n (ζ) = n 3 + n p≥1 p|ζ p | 2 -3 p≥1 min(p, n) 2 |ζ p | 2 +3 p,q≥1
min(p, q, n)|ζ p | 2 |ζ q | 2 .

(5)

More details about the frequencies ω (k) n and formula (5) can be found in Appendix A.1. We refer to Saut [START_REF] Saut | Benjamin-Ono and Intermediate Long Wave equation: modeling[END_REF] for a detailed survey of the Benjamin-Ono equation and of its hierarchy.

Main results

Our first main result is the determination the well-posedness threshold for the third order Benjamin-Ono equation. For s ∈ R, we use the notation

H -s r,0 (T) = {u ∈ H s (T, R) | u|1 = 0}.
We prove that the flow map is globally C 0 -well-posed (in the sense of Definitions 1 and 2 from [START_REF] Gérard | On the flow map of the Benjamin-Ono equation on the torus[END_REF]) in H s r,0 (T) when s ≥ 0, but is not globally C 0 -well-posed in H -s r,0 (T) when 0 < s < 1 2 . Theorem 1.1. For all t ∈ R, the flow map for equation (1) S t : u 0 → u(t), defined for finite gap potentials, admits a continuous extension to H s r,0 (T) for all s ≥ 0, but does not admit a continuous extension to H -s r,0 (T) for 0 < s < 1 2 .

Remark 1.2. Note that if s ≥ 1 2 , the maps t ∈ R → u(t) constructed in this way are solutions to equation [START_REF] Amick | Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane[END_REF] in the distribution sense.

We also investigate the question of the sequential weak continuity for the flow map.

Theorem 1.3. For all t ∈ R, the extension of flow map for equation (1) S t : u 0 → u(t) is weakly sequentially continuous in H s r,0 (T) for s > 0, but is not weakly sequentially continuous in L 2 r,0 (T).

In [START_REF] Gérard | On the flow map of the Benjamin-Ono equation on the torus[END_REF], Gérard, Kappeler and Topalov proved that the flow map for the Benjamin-Ono equation is globally C 0 -well-posed in H s r,0 (T) for s > -1 2 , whereas from [START_REF] Pava | Ill-posedness for periodic nonlinear dispersive equations[END_REF] there is no continuous extension of the flow map to H s r,0 (T) when s < -1 2 . We expect that the well-posedness threshold on the torus increases by 1 2 for each new equation in the hierarchy : for the equation corresponding to the k-th Hamiltonian H k , k ≥ 4, the threshold should be H k 2 -2 r,0 (T) (see Remarks 2.6 and A.1). Note that all the equations for the Benjamin-Ono hierarchy have critical Sobolev exponent - 1 2 . Let us mention former approaches to the Cauchy problem for higher order Benjamin-Ono equations. Tanaka [START_REF] Tanaka | Local well-posedness for third order Benjamin-Ono type equations on the torus[END_REF] considered more general third order type Benjamin-Ono equations on the torus

∂ t u = ∂ x (-∂ xx u -c 1 uH∂ x u -c 2 H(u∂ x u) + u 3 ),
and proved local well-posedness in H s (T) for s > 5 2 . He deduced global well-posedness in H s (T), s ≥ 3 for the integrable case c 1 = c 2 = 3 2 . On the real line, Feng and Han [START_REF] Feng | On the Cauchy problem for the third order Benjamin-Ono equation[END_REF] proved local well-posedness in H s (R), s ≥ 4 for the third equation of the Benjamin-Ono hierarchy [START_REF] Amick | Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane[END_REF]. Considering more general third order type Benjamin-Ono equations under the form

∂ t u -bH∂ xx u -a∂ xxx u = cv∂ x v -d∂ x (vH∂ x v + H(v∂ x v)),
Linares, Pilod and Ponce [START_REF] Linares | Well-posedness for a higher-order Benjamin-Ono equation[END_REF] established local well-posedness in H s (R), s ≥ 2, then Molinet and Pilod [START_REF] Molinet | Global well-posedness and limit behavior for a higher-order Benjamin-Ono equation[END_REF] proved global well-posedness in H s (R), s ≥ 1.

Concerning Benjamin-Ono equations of fourth order on the torus and on the real line, Tanaka [START_REF] Tanaka | Local well-posedness for fourth order Benjamin-Ono type equations[END_REF] proved local well-posedness in H s , s > 7 2 for a more general family of fourth order type Benjamin-Ono equations, and deduced global well-posedness in H s , s ≥ 4 in the integrable case.

Our second main result is the classification of the traveling waves for the third order Benjamin-Ono equation in L 2 r,0 (T), i.e. the solutions to (1) under the form u(t, x)

= u 0 (x + ct), t ∈ R, x ∈ T, u 0 ∈ L 2 r,0 (T). Definition 1.4. For N ≥ 1, we say that u ∈ L 2 r,0 (T) is a N gap potential if the set {n ≥ 1 | ζ n (u) = 0}, where Φ(u) = (ζ n (u)) n≥1
, is finite and of cardinality N . Theorem 1.5. A potential u 0 ∈ L 2 r,0 (T) defines a traveling wave for equation (1) if and only if • either u 0 is a one gap potential ;

• either u 0 is a two gap potential, and the two nonzero indexes p < q satisfy, with

γ p = |ζ p | 2 and γ q = |ζ q | 2 , 0 < γ p < 1 2 p + p 2 + 4q p + q 3 and γ q = q p+q 3 -γ 2 p + pγ p 2γ p + q .
Note that from [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF], the one gap potentials are the only traveling wave solutions to the Benjamin-Ono equation ; they have been characterized by Amick and Toland [START_REF] Amick | Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane[END_REF].

Our last main result answers the question of orbital stability for these two types of traveling waves.

Definition 1.6. Let u 0 ∈ L 2 r,0 (T) be a one gap traveling wave. We say the u 0 is orbitally stable if for all ε > 0, there exists δ > 0 such that if v is a solution to [START_REF] Amick | Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane[END_REF] 

with initial condition v 0 ∈ L 2 r,0 (T) such that v 0 -u 0 L 2 (T) ≤ δ, then sup t∈R inf θ∈T v(t) -u 0 (• + θ) L 2 (T) ≤ ε.
Theorem 1.7. The one gap traveling waves are orbitally stable, whereas the two gap traveling waves are orbitally unstable.

For the Benjamin-Ono equation, Pava and Natali [START_REF] Pava | Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions[END_REF] proved the orbital stability of the traveling wave solutions in H

1 2
r,0 (T). In [START_REF] Gérard | On the flow map of the Benjamin-Ono equation on the torus[END_REF], Gérard, Kappeler and Topalov improved the orbital stability of these solutions to H -s r,0 (T), 0 ≤ s < 1 2 .

Plan of the paper

The paper is organized as follows. We first prove the well-posedness threshold for the third order Benjamin-Ono equation (1) in Section 2. Finally, in Section 3, we classify the traveling wave solutions and study their orbital stability properties. In Appendix A.1, we describe how to compute the Hamiltonians H k and frequencies ω

(k) n = ∂H k •Φ -1 ∂|ζn| 2
in terms of the action variables |ζ p | 2 . In Appendix A.2, we retrieve the Hamiltonian and frequencies of the third order Benjamin-Ono equation (see formulas (4) and ( 5)) by starting from the definition (3) of the higher order Hamiltonians. In Appendix A.3, we provide an alternative proof of a result from [START_REF] Tzvetkov | Invariant Measures and Long-Time Behavior for the Benjamin-Ono Equation[END_REF] about the structure of the higher order Hamiltonians by using formula (3), which may be of independent interest.

Well-posedness threshold for the fourth Hamiltonian

Let N ∈ N and let U N be the set

U N = {u ∈ L 2 r,0 (T) | ζ N (u) = 0, ζ j (u) = 0 ∀j > N }.
We know from [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF], Theorem 3, that the restriction of the Birkhoff map Φ to U N is a real analytic diffeomorphism onto some Euclidean space. In Birkhoff coordinates, the evolution along the flow of equation ( 1) for an initial data u 0 ∈ U N writes

∂ t ζ n = iω (4) n (u 0 )ζ n ζ n (0) = ζ n (u 0 ) , n ≥ 1,
where for all n ≥ 1, the frequencies ω

n (u 0 ) are given by ( 5)

ω (4) n (u 0 ) = n 3 + n p≥1 p|ζ p (u 0 )| 2 -3 p≥1 min(p, n) 2 |ζ p (u 0 )| 2 +3 p,q≥1 min(p, q, n)|ζ p (u 0 )| 2 |ζ q (u 0 )| 2 .
This implies that

ζ n (u(t)) = ζ n (u 0 ) e iω (4) n (u 0 )t , t ∈ R, n ≥ 1.
Therefore, for any finite gap inifial data u 0 , belonging to some of the sets U N , the flow map

S t : u 0 ∈ U N → u(t) ∈ U N is well-defined.
In part 2.1, we prove that for all t ∈ R, this flow map extends by continuity to H s r,0 (T) for s ≥ 0. We also show that the extension is sequentially weakly continuous in H s r,0 (T) for s > 0, but not in L 2 r,0 (T). In part 2.2, we prove that the flow map does not extend by continuity to H -s r,0 (T) for s > 0. This gives a threshold for the global C 0 -well-posedness of the third order Benjamin-Ono equation in the sense of Definitions 1 and 2 from [START_REF] Gérard | On the flow map of the Benjamin-Ono equation on the torus[END_REF].

2.1 Well-posedness in H s r,0 (T), s ≥ 0 Proposition 2.1. Let s ≥ 0. For any u 0 ∈ H s r,0 (T), there exists a continuous map t ∈ R → S t (u 0 ) = u(t) ∈ H s r,0 (T) with u(0) = u 0 such that the following holds. For any finite gap sequence (u k 0 ) k converging to u 0 in H s r,0 (T), for any t ∈ R, u k (t) = S t (u k 0 ) converges to u(t) in H s r,0 (T) as k goes to infinity. Moreover, the extension of the flow map S :

u 0 ∈ H s r,0 (T) → (t → u(t)) ∈ C(R, H s r,0 (T)) is continuous.
Recall that from [START_REF] Gérard | On the flow map of the Benjamin-Ono equation on the torus[END_REF], as mentioned in the proofs of Proposition 2 and Theorem 8, we have the following result. For s ≥ 0, the Birkhoff map Φ defines a homeomorphism between H s r,0 (T) and the space

h 1 2 +s + = (ζ n ) n≥1 | n≥1 n 1+2s |ζ n | 2 < +∞ .
The proof of Proposition 2.1 therefore relies on the following sequential convergence result obtained after applying the Birkhoff map. 

Lemma 2.2. Fix s ≥ 0. Let ζ k = (ζ k n ) n≥1 , k ∈ N,
n (ζ k ) implies that ω (4) n (ζ k ) converges to ω (4) n (ζ) as k goes to infinity. Let ε > 0. Fix K ∈ N such that for all k ≥ K, ζ k -ζ h 1 2 +s + ≤ ε. Using that ζ ∈ h 1 2 +s + , fix N ∈ N such that n≥N n 1+2s |ζ n | 2 1 2 ≤ ε. Now, if k ≥ K, (ζ k n e iω (4) n (ζ k )t ) n -(ζ n e iω (4) n (ζ)t ) n h 1 2 +s + ≤ (ζ k n ) n -(ζ n ) n h 1 2 +s + + (ζ n ( e iω (4) n (ζ k )t -e iω (4) n (ζ)t )) n h 1 2 +s + ≤ 3ε + N -1 n=0 n 1+2s |ζ n ( e iω (4) n (ζ k )t -e iω (4) n (ζ)t )| 2 1 2
, which is less than 4ε for k large enough by convergence term by term of the elements in the sum. Moreover, this convergence is uniform on bounded time intervals.

Proof of Proposition 2.1. Let s ≥ 0 and u 0 ∈ H s r,0 (T). Fix t ∈ R, and a sequence of finite gap initial data (u k 0 ) k converging to u 0 in H s r,0 (T). We first establish that for all t ∈ R, (u k (t)) k has a limit in H s r,0 (T) as k goes to +∞. By assumption, Φ(u k 0 ) converges to Φ(u 0 ) in h + . Since Φ -1 defines a continuous application from h

1 2 +s + to H s r,0 (T), we deduce that u k (t) converges in H s r,0 (T) to u(t) := Φ -1 (ζ(t)).
Moreover, the convergence is uniform on bounded time intervals. We now prove the continuity of the flow map S t . Let u k 0 ∈ H s r,0 (T), k ∈ N, be a sequence of initial data converging to some u 0 in H s r,0 (T). Then Φ(u k 0 ) converges to Φ(u 0 ) in h 1 2 +s + , and the above Lemma 2.2 again implies that

Φ(u k (t)) converges to Φ(u(t)) in h 1 2 +s + . In other terms, u k (t) converges to u(t) in H s r,0 (T),
where again this convergence is uniform on bounded intervals.

Corollary 2.3. For all s > 0 and all t ∈ R, the extension of the flow map restricted to H s r,0 (T) :

u 0 ∈ H s r,0 (T) → u(t) ∈ H s r,0 (T) is sequentially weakly continuous. Proof. Let u k 0 ∈ H s r,0 (T), k ∈ N, be a sequence weakly converging in H s r,0 (T) to u 0 ∈ H s r,0 (T). Since the embedding H s r,0 (T) → L 2 r,0 (T) is compact, (u k 0 ) k is strongly convergent to u 0 in L 2 r,0 (T)
. By continuity of the flow map S t , one deduces that (u k (t)) k converges strongly to u(t) in L 2 r,0 (T). This implies that (u k (t)) k converges weakly to u(t) in H s r,0 (T).

Proposition 2.4. For all t ∈ R * , the extension of the flow map restricted to L 2 r,0 (T) :

u 0 ∈ L 2 r,0 (T) → u(t) ∈ L 2 r,0 (T) is not sequentially weakly continuous. Proof. Fix t ∈ R * and u 0 ∈ L 2 r,0 (T) \ {0}. We construct a sequence (u k 0 ) k in L 2 r,0 (T) weakly convergent to u 0 in L 2 r,0 (T) but such that u k (t) = S t (u k 0 ) is not weakly convergent to u(t) = S t (u 0 ) in L 2 r,0 (T). Let α > 0 to be chosen later. For k ∈ N, we choose (ζ p (u k 0 )) p converging weakly to (ζ p (u 0 )) p in h 1 2
+ (so that u k 0 converges weakly to u 0 in L 2 r,0 (T)) and such that

|ζ p (u k 0 )| 2 = |ζ p (u 0 )| 2 + α p δ k,p , p ≥ 1.
For instance, for p = k we choose ζ p (u k 0 ) = ζ p (u 0 ), and for p = k, we choose

ζ k (u k 0 ) = |ζ k (u 0 )| 2 + α k ζ k (u 0 ) |ζ k (u 0 )| if ζ k (u 0 ) = 0 and ζ k (u k 0 ) = α k if ζ k (u 0 ) = 0. Fix t = 0. If u k (t) was weakly convergent to u 0 in L 2 r,0 (T), then (ζ p (u k (t)) p would converge weakly to (ζ p (u(t)) p in h 1 2
+ , and therefore component by component :

ζ p (u k 0 ) e iω (4) p (u k 0 )t -→ k→+∞ ζ p (u 0 ) e iω (4) p (u 0 )t , p ≥ 1.
In particular, let p ≥ 1 such that ζ p (u 0 ) = 0. Then there exists a sequence

(n k ) k of integers such that ω (4) p (u k 0 )t + 2πn k -→ k→+∞ ω (4) p (u 0 )t.
From the expression (5) of ω

p (u k 0 ) and the strong convergence of

(ζ p (u k 0 )) p to (ζ p (u 0 )) p in 2 + = {(ζ p ) p≥1 | p≥1 |ζ p | 2 < +∞} by compactness, we get +∞ p=1 p|ζ p (u 0 )| 2 +α + 2πn k t = +∞ p=1 p|ζ p (u k 0 )| 2 + 2πn k t -→ k→+∞ +∞ p=1 p|ζ p (u 0 )| 2 .
We get a contradiction by choosing α ∈ 2π t Z.

2.2 Ill-posedness in H -s r,0 (T), s > 0 Proposition 2.5. For all t > 0, there is no continuous local extension of the flow map S t to H -s r,0 (T) for 0 < s < 1 2 in the distribution sense.

Proof. Let us fix 0 < s < 1 2 and an initial data u 0 ∈ H -s r,0 (T) \ L 2 r,0 (T). From [START_REF] Gérard | On the flow map of the Benjamin-Ono equation on the torus[END_REF], Theorem 5, the Birkhoff map extends by continuity as an homeomorphism

Φ : u ∈ H -s r,0 → Φ(u) = (ζ n (u)) n≥1 ∈ h 1 2 -s +
where h

1 2 -s + = (ζ n ) n≥1 | n≥1 n 1-2s |ζ n | 2 < +∞ . Therefore, (ζ n (u 0 )) n≥1 := Φ(u 0 ) ∈ h 1 2 -s +
is well defined. Let u k 0 , k ∈ N, be a sequence finite gap initial data, to be chosen later, such that u k 0 converges in H -s r,0 (T) to u 0 . Write

Φ(u k 0 ) = (ζ n (u k 0 )1 n≤N k ) n , k ∈ N.
Since u k 0 is a finite gap potential, it belongs to L 2 r,0 (T). Recall that

ω (4) n (u k 0 ) -n N k p=1 p|ζ p (u k 0 )| 2 = ω n (u k 0 )
where

ω n (u k 0 ) = n 3 -3 N k p=1 min(p, n) 2 |ζ p (u k 0 )| 2 +3 N k p=1 N k q=1 min(p, q, n)|ζ p (u k 0 )| 2 |ζ q (u k 0 )| 2 .
Since u k 0 converges to u 0 in H -s r,0 (T), the series p≥1 |ζ p (u 0 )| 2 is convergent, and

p≥1 |ζ p (u k 0 )| 2 -→ k→+∞ p≥1 |ζ p (u 0 )| 2 .
In particular, the term ω n (u k 0 ) converges as k goes to infinity to

ω n (u 0 ) = n 3 -3 +∞ p=1 min(p, n) 2 |ζ p (u 0 )| 2 +3 +∞ p=1 +∞ q=1 min(p, q, n)|ζ p (u 0 )| 2 |ζ q (u 0 )| 2 .
For k ∈ N, let

τ k := N k p=1 p|ζ p (u k 0 )| 2 = 1 2 u k 0 2 L 2 (T) and v k (t, •) := u k (t, • -τ k t).
We use the following identity from the proof of Proposition B.1. in [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF] :

ζ n (u(• + τ )) = ζ n (u) e iτ n , τ ∈ R, u ∈ L 2 r,0 (T),
to deduce that for n ∈ N,

ζ n (v k (t)) = ζ n (u k (t)) e -inτ k t = ζ n (u k 0 ) e i(ω (4) n (u k 0 )-nτ k )t . Since ω (4) n (u k 0 ) -nτ k -→ k→+∞ ω n (u 0 ), the sequence (ζ n (v k (t))) k is convergent : ζ n (v k (t)) -→ k→+∞ ζ n (u 0 ) e i ωn(u 0 )t . (6) 
Let t > 0. If there was a local extension of the flow map S t in the distribution sense, then u k (t) would be weakly convergent to u(t) in H -s r,0 (T). Applying the Birkhoff map, which is weakly sequentially continuous (see [START_REF] Gérard | On the flow map of the Benjamin-Ono equation on the torus[END_REF], Theorem 6), Φ(u k (t)) would converge weakly to Φ(u(t))

in h 1 2 -s + . In particular, for all n, ζ n (v k (t)) e iτ k nt = ζ n (u k (t)) -→ k→+∞ ζ n (u(t)). (7) 
We deduce from ( 6) and ( 7) that if ζ n (u 0 ) = 0, then

e iτ k nt -→ k→+∞ ζ n (u(t)) ζ n (u 0 ) e -i ωn(u 0 )t . (8) 
We construct the sequence (u k 0 ) k in order to contradict this latter point. Let n ∈ N such that ζ n (u 0 ) = 0. Fix k ∈ N. From the fact that u 0 does not belong to L 2 r,0 (T),

p>k p|ζ p (u 0 )| 2 = +∞, therefore one can choose N k ≥ k + 1 such that N k p=k+1 p|ζ p (u 0 )| 2 ≥ 2π nt .
Let 0 < α k < 1 such that there exists an integer m k such that

p≤k p|ζ p (u 0 )| 2 +α k N k p=k+1 p|ζ p (u 0 )| 2 = 1 nt (kπ + 2πm k ).
We define u k 0 by

ζ p (u k 0 ) =      ζ p (u 0 ) if p ≤ k √ α k ζ p (u 0 ) if k < p ≤ N k 0 if N k < p , p ∈ N.
By construction, u k 0 is finite gap and converges to u 0 in H -s r,0 (T). However,

τ k = p≤k p|ζ p (u 0 )| 2 +α k N k p=k+1 p|ζ p (u 0 )| 2 = 1 nt (kπ + 2πm k ),
which implies that e iτ k nt = (-1) k .

In particular, the sequence ( e iτ k nt ) k is not convergent, and we get a contradiction with (8).

Remark 2.6. We expect that with a similar argument, one can prove the following fact. For the higher equations of the hierarchy, the well-posedness threshold increases by 1 2 for each equation (see Remark A.1).

Traveling waves for the fourth Hamiltonian

In this part, we classify all traveling wave solutions to equation ( 1)

∂ x (-cu -∂ xx u - 3 2 u 2 H∂ x u - 3 2 H(u∂ x u) + u 3 ) = 0.
A traveling wave of speed c ∈ R is a solution to (1) of the form u(t, x) = u 0 (x + ct). The argument of [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF], Proposition B.1., applies for the higher equations of the Benjamin-Ono hierarchy, implying that a potential u 0 is a traveling wave solution to (1) of speed c ∈ R if and only if for all t ∈ R and n ≥ 1,

e icnt ζ n (u 0 ) = e iω (4) n (u 0 )t ζ n (u 0 ),
or in other words :

∀n ≥ 1, if ζ n (u 0 ) = 0, then cn = ω (4) n (u 0 ). (9) 
In particular, all one gap potentials are traveling wave solutions. Note that these potentials are the only traveling wave solutions to the Benjamin-Ono equation and write (see [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF], Appendix B) . As we will see in this section, the one gap potentials are not the only traveling wave solutions for equation [START_REF] Amick | Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear Neumann problem in the plane[END_REF].

u 0 (x) = pw e ipx 1 -w e ipx + pw e -ipx 1 -w e -ipx
In part 3.1, we first show that the traveling waves are necessarily one gap and two gap potentials, then provide a classification of the two gap traveling waves in term of their actions. In part 3.2, we prove that the one gap traveling waves are orbitally stable whereas the two gap traveling waves are orbitally unstable.

Classification of traveling wave solutions

In the following, it will be more convenient to work with the actions γ p = |ζ p (u 0 )| 2 . Formula (5) for ω

(4) n (u 0 ) ω (4) n (u 0 ) = n 3 + n p≥1 pγ p -3 p≥1 min(p, n) 2 γ p + 3 p,q≥1
min(p, q, n)γ p γ q shows that ω (4)

n (u 0 ) n
is equivalent to n 2 as n goes to infinity, therefore, from condition (9), the traveling waves for the third equation of the hierarchy (1) are necessarily finite gap solutions. Proposition 3.1. Let u 0 be a two gap potential, and p < q be the indices of the two nonzero gaps with gaps γ p > 0 and γ q > 0. Then u 0 is a traveling wave for equation (1) if and only if

0 < γ p < 1 2 p + p 2 + 4q p + q 3 and γ q = q p+q 3 + pγ p -γ 2 p 2γ p + q .
Proof. Let u 0 be such a two gap potential. Then u 0 is a traveling wave if and only if

ω (4) p (u 0 ) p = ω (4) 
q (u 0 ) q

, where ω

p (u 0 ) p = p 2 + (pγ p + qγ q ) -3p(γ p + γ q ) + 3(γ 2 p + 2γ p γ q + γ 2 q )

and ω

q (u 0 ) q = q 2 + (pγ p + qγ q ) -3(

p 2 q γ p + qγ q ) + 3( p q γ 2 p + 2 p q γ p γ q + γ 2 q ).
Taking the difference of the two terms, ω

p (u 0 ) p = ω (4) 
q (u 0 ) q , if and only if

0 = q 2 -p 2 + 3 -p( p q -1)γ p -(q -p)γ q + ( p q -1)γ 2 p + 2( p q -1)γ p γ q .
Dividing by 3(1 -p q ), this necessary and sufficient condition becomes

0 = q p + q 3 + pγ p -qγ q -γ 2 p -2γ p γ q ,
i.e. (2γ p + q)γ q = q p + q 3 + pγ p -γ 2 p .

Fix γ p > 0 and γ q satisfying this latter equality. We get that γ q > 0 if and only if the left-hand side of the equality is positive, i.e.

0 < γ p < 1 2 p + p 2 + 4q p + q 3 . (11) 
Conversely, any two gap solution u 0 satisfying [START_REF] Nakamura | A direct method of calculating periodic wave solutions to nonlinear evolution equations. I. Exact two-periodic wave solution[END_REF] and [START_REF] Nakamura | Bäcklund transform and conservation laws of the Benjamin-Ono equation[END_REF] verifies

ω (4) p (u 0 ) p = ω (4) 
q (u 0 ) q , therefore is a traveling wave solution.

Let us give an idea of the form of a two gap potential u 0 with gaps at indices p < q. By Theorem 3 in [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF], the extension of Πu 0 as an holomorphic function on the unit disc

{z ∈ C | |z|< 1} satisfies Πu 0 (z) = -z Q (z) Q(z)
where Q(z) = det(Id -zM ) and M = (M nm ) 0≤n,m≤q-1 is a q × q matrix defined by

M nm =    δ m,n+1 if ζ n+1 = 0 √ µ n+1 κm κ n+1 ζm(u 0 )ζ n+1 (u 0 ) (λm-λn-1) if ζ n+1 = 0 .
A precise definition of µ n , κ n and λ n can be found in [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF]. Therefore, Q and Q respectively write

Q(z) = 1 -z p M p-1,0 -z q M q-1,0 M p-1,p and Q (z) = -pz p-1 M p-1,0 -qz q-1 M q-1,0 M p-1,p
This leads to u 0 (x) = p e ipx M p-1,0 + q e iqx M q-1,0 M p-1,p 1 -e ipx M p-1,0 -e iqx M q-1,0 M p-1,p + p e -ipx M p-1,0 + q e -iqx M q-1,0 M p-1,p 1 -e -ipx M p-1,0 -e -iqx M q-1,0 M p-1,p .

Proposition 3.2. There are no three gap traveling waves.

Proof. Let p < q < r the indices for the nonzero gaps for a three gap potential u 0 . The speeds for each mode write

ω (4) p (u 0 ) p = p 2 + (pγ p + qγ q + rγ r ) -3p(γ p + γ q + γ r ) + 3(γ 2 p + 2γ p (γ q + γ r ) + γ 2 q + 2γ q γ r + γ 2 r ), ω (4) 
q (u 0 ) q = q 2 + (pγ p + qγ q + rγ r ) -3( p 2 q γ p + q(γ q + γ r ))

+ 3( p q γ 2 p + 2 p q γ p (γ q + γ r ) + γ 2 q + 2γ q γ r + γ 2 r )
and

ω (4) r (u 0 ) r = r 2 + (pγ p + qγ q + rγ r ) -3( p 2 r γ p + q 2 r γ q + rγ r ) + 3( p r γ 2 p + 2 p r γ p (γ q + γ r ) + q r γ 2 q + 2 q r γ q γ r + γ 2 r ).
Let us now subtract the equalities.

ω (4) q (u 0 ) q - ω (4) p (u 0 ) p = q 2 -p 2 -3(( p q -1)pγ p + (q -p)(γ q + γ r )) + 3(( p q -1)γ 2 p + 2( p q -1)γ p (γ q + γ r )).
Dividing by 3(1 -p q ), we get that if

ω (4) q (u 0 ) q = ω (4) 
p (u 0 ) p , then 0 = q p + q 3 + pγ p -q(γ q + γ r ) -γ 2 p -2γ p (γ q + γ r ), or equivalently

(q + 2γ p )(γ q + γ r ) = q p + q 3 + pγ p -γ 2 p . (12) 
Doing the same for indices p and r, ω

r (u 0 ) r - ω (4) p (u 0 ) p = r 2 -p 2 -3(( p r -1)pγ p + ( q 2 r -p)γ q + (r -p)γ r ) + 3(( p r -1)γ 2 p + 2( p r -1)γ p (γ q + γ r ) + ( q r -1)γ 2 q + 2( q r -1)γ q γ r ). (4) 
Dividing by 3(1

-p r ), if ω (4) r (u 0 ) r = ω (4) 
p (u 0 ) p , then

0 = r r + p 3 + pγ p + pr -q 2 r -p γ q -rγ r -γ 2 p -2γ p (γ q + γ r ) - r -q r -p γ 2 q -2 r -q r -p γ q γ r . (13) 
Subtracting ( 13) and ( 12), if

ω (4) p (u 0 ) p = ω (4) 
q (u 0 ) q

= ω (4) r (u 0 ) r , then (r -q + 2 r -q r -p γ q )γ r = r 2 -q 2 + p(r -q) 3 + ( pr -q 2 r -p + q)γ q -r -q r -p γ 2 q .

Since pr -q 2 r -p + q = pr -q 2 + qr -pq r -p = (p + q) r -q r -p , by multiplication by r-p r-q , we get

(r -p + 2γ q )γ r = (r -p) r + q + p 3 + (p + q)γ q -γ 2 q . (14) 
Now, if u 0 is a traveling wave, the first equality (12) implies

γ q + γ r = q p+q 3 + pγ p -γ 2 p q + 2γ p = p + q 3 + -2γ p p+q 3 + pγ p -γ 2 p q + 2γ p = p + q 3 + γ p 3(q + 2γ p ) (p -2q -3γ p ),
in particular, since p < q and γ p > 0, necessarily

γ q + γ r < p + q 3 . (15) 
However, the second equality [START_REF] Pava | Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions[END_REF] implies that

γ r = (r -p) r+q+p 3 + (p + q)γ q -γ 2 q r -p + 2γ q = (r -p) q+p 3 + (p + q)γ q -γ 2 q r -p + 2γ q + (r -p) r 3 r -p + 2γ q = p + q 3 + -2γ q p+q 3 + (p + q)γ q -γ 2 q r -p + 2γ q + (r -p) r 3 r -p + 2γ q = p + q 3 + γ q p+q 3 -γ q r -p + 2γ q + (r -p)r 3(r -p + 2γ q ) .
Since from [START_REF] Saut | Benjamin-Ono and Intermediate Long Wave equation: modeling[END_REF],

γ q < p + q 3 ,
we get from this latter equality for γ r that γ r > p + q 3 , but this is a contradiction with (15).

Corollary 3.3.

There are no N gap traveling waves for N ≥ 3.

Proof. The proof is the same as for the three gap traveling waves case, but with some additional terms which might hinder understanding for a first reading. We explain here how to adapt the proof. Let u 0 be a N gap potential, N ≥ 3, and p q < r < r 4 < • • • < r N be the indices for the nonzero gaps. Let

Γ r := γ r + N k=4 γ r k .
The speeds for the three smallest modes at indices p, q and r write

ω (4) p (u 0 ) p = p 2 + (pγ p + qγ q + rγ r + N k=4 r k γ r k ) -3p(γ p + γ q + Γ r ) + 3(γ 2 p + 2γ p (γ q + Γ r ) + γ 2 q + 2γ q Γ r + γ 2 r ), ω (4) 
q (u 0 ) q = q 2 + (pγ p + qγ q + rγ r + N k=4 r k γ r k ) -3( p 2 q γ p + q(γ q + Γ r )) + 3( p q γ 2 p + 2 p q γ p (γ q + Γ r ) + γ 2 q + 2γ q Γ r + Γ 2 r )
and

ω (4) r (u 0 ) r = r 2 + (pγ p + qγ q + rγ r + N k=4 r k γ r k ) -3( p 2 r γ p + q 2 r γ q + rΓ r ) + 3( p r γ 2 p + 2 p r γ p (γ q + Γ r ) + q r γ 2 q + 2 q r γ q Γ r + Γ 2 r ).
The rest of the proof is identical up to replacing γ r by Γ r everywhere from this point on.

Orbital stability

Proposition 3.4. The one gap traveling waves in L 2 r,0 (T) are orbitally stable.

Proof. Let u 0 be a one gap traveling wave, u k 0 a sequence of initial data converging to u 0 in L 2 r,0 (T), and t k a sequence of times. We prove that up to some subsequence,

inf θ∈T u k (t k ) -u 0 (• + θ) L 2 r,0 (T) -→ k→+∞ 0.
It is enough to show that there exists θ ∈ T such that in L 2 r,0 (T),

u k (t k ) -→ k→+∞ u 0 (• + θ),
i.e. such that in h

1 2 + , Φ(u k (t k )) -→ k→+∞ Φ(u 0 (• + Recall that Φ(u k (t k )) = (ζ n (u k 0 ) e iω (4) n (u k 0 )t k ) n .
Let p ≥ 1 be the index for which ζ p (u 0 ) = 0. Up to some subsequence, there exists θ ∈ T such that e iω (4)

p (u k 0 )t k -→ k→+∞ e iθ . Moreover, since u k 0 converges to u 0 in L 2 r,0 (T), p|ζ p (u k 0 ) -ζ p (u 0 )| 2 + n =p n|ζ n (u k 0 )| 2 -→ k→+∞ 0.
We deduce that

Φ(u k (t k )) -Φ(u 0 (• + θ)) 2 h 1 2 + = p|ζ p (u k 0 ) e iω (4) n (u k 0 )t k -ζ p (u 0 ) e iθ | 2 + n =p n|ζ n (u k 0 )| 2 -→ k→+∞ 0.
Proposition 3.5. The two gap traveling waves in L 2 r,0 (T) are orbitally unstable.

Proof. Let u 0 be a two gap traveling wave such that the nonzero terms of the sequence Φ(u 0 ) = (ζ n (u 0 )) n≥1 are ζ p (u 0 ) and ζ q (u 0 ). We define the sequence u k 0 of two gap initial data by their nonzero gaps at indices p and q, denoted ζ p (u k 0 ) and ζ q (u k 0 ), as follows. We fix ζ p (u k 0 ) := ζ p (u 0 ) and choose any sequence of nonzero complex numbers

(ζ q (u k 0 )) k such that ζ q (u k 0 ) -→ k→+∞ ζ q (u 0 ) but for all k ∈ N, ε k := |ζ q (u k 0 )| 2 -|ζ q | 2 = 0.
Then we construct t k ∈ R in order to negate the orbital stability of u 0 .

Assume by contradiction that

inf θ∈T u k (t k ) -u 0 (• + θ) L 2 r,0 (T) -→ k→+∞ 0.
Then there exists a sequence θ k ∈ T, k ∈ N, such that in L 2 r,0 (T),

u k (t k , • -θ k ) -u 0 L 2 r,0 (T) -→ k→+∞ 0.
Applying the Birkhoff map, which is continuous on L 2 r,0 (T),

ζ p (u k 0 ) e iω (4) p (u k 0 )t k -ipθ k = ζ p (u k (t k )) e -ipθ k -→ k→+∞ ζ p (u 0 ) and ζ q (u k 0 ) e iω (4) q (u k 0 )t k -iqθ k = ζ q (u k (t k )) e -iqθ k -→ k→+∞ ζ q (u 0 ).
This implies by taking the arguments that for some integers n p,k and n q,k ,

ω (4) p (u k 0 )t k -pθ k + 2πn p,k -→ k→+∞ 0 and ω (4) q (u k 0 )t k -qθ k + 2πn q,k -→ k→+∞ 0, therefore pqt k ω (4) q (u k 0 ) q - ω (4) p (u k 0 ) p + 2π(pn q,k -qn p,k ) -→ k→+∞ 0. ( 16 
)
However, writing

ε k = |ζ q (u k 0 )| 2 -|ζ q (u 0 )| 2 = γ q (u k 0 ) -γ q (u 0 )
, we get that the speeds of the two modes p and q for the initial data u k 0 are given by ω

p (u k 0 ) p = ω (4) 
p (u 0 ) p + qε k -3pε k + 6ε k (γ p (u 0 ) + γ q (u 0 )) + 3ε 2 k and ω (4) 
q (u k 0 ) q = ω (4) q (u 0 ) q + qε k -3qε k + 6ε k ( p q γ p (u 0 ) + γ q (u 0 )) + 3ε 2 k . (4) 
Since u 0 is a traveling wave, ω

q (u 0 ) q and therefore ω

q (u k 0 ) q - ω (4) 
p (u k 0 ) p = -3(q -p + 2(1 - p q )γ p (u 0 ))ε k . Since ε k = 0, then ω (4) 
q (u k 0 ) q = ω (4) p (u k 0 ) p (4) 
. It is therefore possible to choose a sequence t k such that the limit [START_REF] Tanaka | Local well-posedness for fourth order Benjamin-Ono type equations[END_REF] does not hold and get a contradiction. For instance, we can choose t k such that

-3pqt k (q -p + 2(1 - p q )γ p )ε k = π.

A Appendices

A.1 About the hierarchy

The aim of this Appendix is to provide a way to compute the Hamiltonians H k and frequencies ω (k)

n for the higher order Benjamin-Ono equations in terms of the actions γ p = |ζ p (u 0 )| 2 . In particular, we establish formula ( 5)

ω (4) n (u 0 ) = n 3 + n p≥1 pγ p -3 p≥1 min(p, n) 2 γ p + 3 p,q≥1
min(p, q, n)γ p γ q for finite gap potentials u 0 . We need to recall first some notation. Given u ∈ L 2 r,0 (T) , we consider its Lax operator

L u = -i∂ x -T u acting on L 2 + (T), with domain H 1 + (T) = H 1 (T) ∩ L 2 + (T). The spectrum of L u is discrete, with eigenvalues λ 0 (u) < λ 1 (u) < • • • < λ n (u) < • • • .
Moreover (see [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF]),

γ n (u) = λ n (u) -λ n-1 (u) -1, n ≥ 1 is non-negative and satisfies γ n (u) = |ζ n (u)| 2 .
We also define f n (u) ∈ H 1 + (T) as the L 2normalized eigenfunction for L u associated to the eigenvalue λ n (u).

Let u 0 be a finite gap potential and use the above notation. From [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF] (3.8), a variant of the generating function, denoted by H ε , is defined as

H ε = +∞ n=0 | 1|f n | 2 1 + ελ n .
From the decomposition (2.12) in [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF] : Πu = -+∞ n=1 λ n 1|f n f n , we know using formula (3) that

H k (u) = +∞ n=0 | 1|f n | 2 λ k n = (-1) k k! d k dε k | ε=0 H ε .
We now make use of the generating function to derive a recurrence formula for the H k . Set

g ε := - d dε log H ε = - 1 H ε d dε H ε ,
then from [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF] (3.11), g ε writes

g ε = λ 0 1 + ελ 0 + +∞ n=1 γ n (1 + ε(λ n-1 + 1))(1 + ελ n ) .
Using the identity

- d k+1 dε k+1 H ε = d k dε k g ε H ε = k l=0 k l d l dε l (g ε ) d k-l dε k-l ( H ε ).
and defining

P l := (-1) l l! d l dε l | ε=0 (g ε ),
we get the recurrence relation

H k+1 = 1 k + 1 k l=0 P l H k-l . (17) 
Moreover, the frequencies ω

(k) n = ∂H k ∂γn , satisfy the recurrence formula ω (k+1) n = 1 k + 1 k l=0 ∂P l ∂γ n H k-l + P l ω (k-l) n . (18) 
We now simplify P l and ∂P l ∂γn :

P l = λ l+1 0 + n≥1 γ n l m=0 (λ n-1 + 1) m λ l-m n ,
and since λ n-1 + 1 = λ n -γ n ,

P l = λ l+1 0 + n≥1 λ l+1 n -(λ n -γ n ) l+1 .
From (3.13), λ n = n -s n+1 where s n = ∞ k=n γ n for n ≥ 1, therefore

P l = (-1) l+1 s l+1 1 + n≥1 (n -s n+1 ) l+1 -(n -s n ) l+1 . (19) 
We deduce

1 l + 1 ∂P l ∂γ n = (-1) l+1 s l 1 + (n -s n ) l - p<n (p -s p+1 ) l -(p -s p ) l = n p=1 (p -s p ) l -(p -1 -s p ) l = n l + n p=1 l-1 m=1 l m (p m -(p -1) m )(-1) l-m s l-m p = n l + l-1 m=1 l m (-1) l-m p,p 1 ,...,p l-m 1≤p≤min(n,p 1 ,...,p l-m ) (p m -(p -1) m )γ p 1 . . . γ p l-m , therefore 1 l + 1 ∂P l ∂γ n = n l + l-1 m=1 l m (-1) l-m p 1 ,...,p l-m min(n, p 1 , . . . , p l-m ) m γ p 1 . . . γ p l-m .
Let us compute the first small terms by using [START_REF] Tanaka | Local well-posedness for third order Benjamin-Ono type equations on the torus[END_REF] and [START_REF] Tzvetkov | Invariant Measures and Long-Time Behavior for the Benjamin-Ono Equation[END_REF]. The Hamiltonian with index 0 is constant H 0 = 1, leading to ω (0) n = 0, P 0 = 0 and ∂P 0 ∂γn = 0. Concerning index 1, H 1 = -u|1 = 0 because we assumed that u ∈ L 2 r,0 (T) is of average zero. This leads to ω (1) n = 0, P 1 = 2 p≥1 pγ p and ∂P 1 ∂γn = 2n. Because of cancellations for several of these small terms, the recurrence relations [START_REF] Tanaka | Local well-posedness for third order Benjamin-Ono type equations on the torus[END_REF] and [START_REF] Tzvetkov | Invariant Measures and Long-Time Behavior for the Benjamin-Ono Equation[END_REF] write, for k ≥ 2,

H k = 1 k (P 1 H k-2 + P 2 H k-3 + • • • + P k-3 H 2 + P k-1 ) (20) 
and

ω (k) n = 1 k ∂P 1 ∂γ n H k-2 + ∂P 2 ∂γ n H k-3 + • • • + ∂P k-3 ∂γ n H 2 + P 1 ω (k-2) n + P 2 ω (k-3) n + • • • + P k-3 ω (2) n + ∂P k-1 ∂γ n . (21) 
The second index leads to the conservation of the mass

H 2 = u 2 2 = P 1 2 , ω (2) 
n = n. Moreover,

P 2 = -s 3 1 + ∞ p=1 (p -s p+1 ) 3 -(p -s p ) 3 = 3 p≥1 p 2 γ p -3 p≥1 s 2 p and ∂P 2 ∂γ n = 3(n 2 -2 ∞ p=1 min(p, n)γ p ).
For the third index, we retrieve identity (8.6) from [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF] for the Hamiltonian

H 3 = P 2 3 = p≥1 p 2 γ p - p≥1 s 2 
p and formula (8.4) from [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF] for the frequencies

ω (3) n = n 2 -2 +∞ p=1 min(p, n)γ p .
We now use that

P 3 = s 4 1 + +∞ p=1 (p -s p+1 ) 4 -(p -s p ) 4
and

∂P 3 ∂γ n = 4(n 3 -3 p min(p, n) 2 γ p + 3 p,q min(p, q, n)γ p γ q )
to get the formula for the Hamiltonian of index 4

H 4 = 1 4 (P 3 + P 1 H 2 ) = 1 4 P 3 + 1 2 H 2 2
and the frequencies

ω (4) n = 1 4 ∂P 3 ∂γ n + nH 2 = n 3 + n p≥1 pγ p -3 p≥1 min(p, n) 2 γ p + 3 p,q≥1
min(p, q, n)γ p γ q .

In the same way, using that

P 4 = -s 5 1 + +∞ p=1 (p -s p+1 ) 5 -(p -s p ) 5
and 1 5

∂P 4 ∂γ n = n 4 -4 p≥1 min(p, n) 3 γ p + 6 p,q≥1
min(p, q, n) 2 γ p γ q -4 p,q,r≥1 min(p, q, r, n)γ p γ q γ r , we can get a formula for the Hamiltonian with index 5 min(p, q, n) 2 γ p γ q -4 p,q,r≥1 min(p, q, r, n)γ p γ q γ r . (22)

H 5 = 1 
Remark A.1. Note that formulas (5) and (22) for ω

n (u 0 ) and ω

n (u 0 ), which have been established for finite gap potentials u 0 , still make sense for ω (4)

n (u 0 ) if u 0 ∈ L 2
r,0 (T) and for ω

(5) n (u 0 ) if u 0 ∈ H 1 2
r,0 (T), but diverge if u 0 ∈ H s r,0 (T) for s right below these respective exponents (s < 0 and s < 

A.2 Equation for the fourth Hamiltonian

From formula (3) and the decomposition (2.12) in [START_REF] Gérard | On the integrability of the Benjamin-Ono equation on the torus[END_REF] :

Πu = -+∞ n=1 λ n 1|f n f n , we see that for k ≥ 2, H k (u) = L k-2 u Πu|Πu , (23) 
where

L u (h) = Dh -Π(uh), D = -i∂ x , h ∈ H 1 + (T). For instance, H 3 (u) = 1 2π 2π 0 1 2 uH∂ x u - 1 3 u 3 dx leads to the Benjamin-Ono equation ∂ t u = H∂ 2 x u -∂ x (u 2 ).
Proposition A.2. The Hamiltonian for the third order equation of the Benjamin-Ono hierarchy (1) is

H 4 (u) = 1 2π 2π 0 1 2 (∂ x u) 2 - 3 4 u 2 H∂ x u + 1 4 u 4 - 1 8 u 4 L 2 (T) ,
therefore the third order equation of the Benjamin-Ono hierarchy writes

∂ t u = ∂ x (-∂ xx u - 3 2 uH∂ x u - 3 2 H(u∂ x u) + u 3 )
Proof. Let u 0 ∈ L 2 r,0 (T). We develop

H 4 (u) = DΠu 2 L 2 (T) -2Re DΠu|Π(uΠu)) + Π(uΠu) 2 L 2 (T) ,
and study each term separately.

But if we take the fourth power of the identity u = Πu + Πu

u 4 = (Πu) 4 + Πu 4 + 4(Πu) 3 Πu + 4Πu 3 Πu + 6Πu 2 (Πu) 2 ,
and make use of the fact that the mean of u is zero, we get

u 4 L 4 (T) = 1 2π 2π 0 4(Πu) 3 Πu + 4Πu 3 Πu + 6(Πu) 2 Πu 2 dx.
By subtraction, the following cancellations happen :

Π(uΠu) 2 L 2 (T) - 1 4 u 4 L 4 (T) = 1 2π 2π 0 |Π(ΠuΠu)| 2 dx - 1 2 1 2π 2π 0 (Πu) 2 Πu 2 dx.
To conclude, since ΠuΠu is real, we can use the identity

f 2 +| f |1 | 2 = 2 Πf 2 for real valued functions f ∈ L 2 (T) to get 1 2π 2π 0 |Π(ΠuΠu)| 2 dx = 1 2 1 2π 2π 0 |ΠuΠu| 2 dx - 1 2 | ΠuΠu, 1 | 2 , leading to Π(uΠu) 2 L 2 (T) - 1 4 u 4 L 4 (T) = - 1 2 | ΠuΠu, 1 | 2 = - 1 2 Πu 4 L 2 (T) = - 1 8 u 4 L 2 (T) .

A.3 Structure of the higher order Hamiltonians

The aim of this Appendix is to give an alternative proof of Proposition 2.2 in [START_REF] Tzvetkov | Invariant Measures and Long-Time Behavior for the Benjamin-Ono Equation[END_REF]. We first recall the notation introduced in [START_REF] Tzvetkov | Invariant Measures and Long-Time Behavior for the Benjamin-Ono Equation[END_REF] for the sake of completeness. For a smooth function u ∈ C ∞ (T), define by induction the sets P n (u) as

P 1 (u) = {H ε 1 ∂ α 1 x u | ε 1 ∈ {0, 1}, α 1 ∈ N}, P 2 (u) = {(H ε 1 ∂ α 1 x u)(H ε 2 ∂ α 2 x u) | ε 1 , ε 2 ∈ {0, 1}, α 1 , α 2 ∈ N} and for n ≥ 2, P n (u) = k l=1 H ε l p j l (u) | k ∈ 2, n , ε 1 , . . . , ε k ∈ {0, 1}, k l=1 j l = n, p j l (u) ∈ P j l (u) .
Moreover, for p n (u) ∈ P n (u), the term p n (u) is uniquely defined from p n (u) by removing all the symbols H in the expression of p n (u) and only keeping the symbols ∂ α i

x u. In this case, if

p n (u) = n i=1 ∂ α i x u,
the maximal order of derivative involved and the sum of these orders are respectively denoted

|p n (u)|= sup i∈ 1,n α i and p n (u) = n i=1 α i .
We now retrieve a proof of the following result (Proposition 2.2 in [START_REF] Tzvetkov | Invariant Measures and Long-Time Behavior for the Benjamin-Ono Equation[END_REF]).

Proposition A.3. Let k = 2(m + 1) be an even integer. Then there exists c ∈ R such that the k-th Hamiltonian H k writes, for all u ∈ C ∞ (T),

H k+2 (u) = 1 2 u 2 Ḣm+1 (T) +c 2π 0 u(H∂ m x u)(∂ m+1 x u) dx + R,
where for some real numbers c(p),

R = 2m+4 j=3 p(u)∈P j (u) p(u) =2m+4-j |p(u)|≤m c(p) 2π 0 p(u) dx.
Note that H k+2 (u) = 1 2 E k/2 (u) with the notation from [START_REF] Tzvetkov | Invariant Measures and Long-Time Behavior for the Benjamin-Ono Equation[END_REF]. Proof. Recall formula (23)

H k+2 (u) = L k u Πu|Πu = L m+1 u Πu|L m+1 u Πu = (D -T u ) m+1 Πu|(D -T u ) m+1 Πu ,
where D = -i∂ x and T u : h ∈ L 2 + (T) → Π(uh). We expand H k+2 (u) as a sum of terms depending on whether we applied the operator D or the operator T u when applying L u .

It is possible to decompose H k+2 (u) as follows : We take the real part and sum over the indices j. When distinguishing the cases j = 0 and j ≥ 1, we see that for some suitable A as in (24), A decomposes as A = -2(m + 1)Re( uD m+1 (Πu)|D m Πu ) -2Re( D m+1 (u)Πu|D m Πu ) + A.

H k+2 (u) = 1 2 u 2 Ḣm+1 (T) +A + B,
Write Πu = u+iHu

2

, then there exists some real constants c(ε 1 , ε 2 ) such that

A = ε 1 ,ε 2 ∈{0,1} c(ε 1 , ε 2 ) 2π 0 u∂ m x (H ε 1 u)∂ m+1
x (H ε 2 u) dx -Re( D m+1 (u)iHu|D m (Πu) ) + A.

On the one hand, the terms in the sum are simplified as follows (see the remark from Tzvetkov and Visciglia [START_REF] Tzvetkov | Invariant Measures and Long-Time Behavior for the Benjamin-Ono Equation[END_REF]). When

ε 1 = ε 2 , 2π 0 u∂ m x (H ε 1 u)∂ m+1 x (H ε 1 u) dx = 1 2 2π 0 u∂ x ((∂ m x (H ε 1 u)) 2 ) dx = - 1 2 2π 0 ∂ x (u)(∂ m x (H ε 1 u)) 2 dx
so this term is a remainder term to be added to A. Moreover, by integration by parts, as a remainder term to be added to A.

• We now tackle term B , for which we have applied T u at least twice. We show that it can be written for some real numbers c(p) as a sum Let B be one of the terms in B obtained by applying T u (j -1) times on the left side and (k -1) times on the right side.

Assume that we have applied T u at least once in each side of the brackets, i.e. j-1 ∈ 1, m+1 and k -1 ∈ 1, m+1 . Then we can apply Leibniz' rule and decompose the left side as a complex linear combination of terms of the form p(u) where p(u) ∈ P j (u), p(u) = m+2-j and |p(u)|≤ m (for the right side we just replace j by k). The term B is therefore a complex linear combination of terms 2π 0 p(u) dx, where p(u) ∈ P l (u) for some l = j + k ∈ 4, 2m + 4 , p(u) = 2m + 4 -l and |p(u)|≤ m.

Otherwise, we have applied T u at least twice in the same side of the brackets, let us say the left, and we only have applied the operator D on the other side : j -1 ∈ 2, m+1 and k -1 = 0. 

2

 2 the sequence ζ(t) by ζ n (t) := ζ n (u 0 ) e iω (4) n (u 0 )t , n ∈ N. Lemma 2.2 immediately implies that the sequence (Φ(u k (t))) k converges to ζ(t) in h 1 +s

  with the nonzero gap being at index p ≥ 1 and w = ζp(u 0 ) √ p+γp(u 0 )

D

  is obtained when one only applies operator D, A is obtained when one applies only once the operator T u and (2m + 1) times the operatorD A = -2Re   m j=0 D m-j Π(uD j Πu)|D m+1 Πu m-j (uD j Πu)|D m+1 Πu   ,and B is obtained when we apply at least twice in total the operator T u .• We first prove that one can decompose A as j ∈ 0, m . By integration by parts and Leibniz' formula,D m-j (uD j Πu)|D m+1 Πu = D m+1-j (uD j Πu)|D m Πu = uD m+1 (Πu)|D m Πu + D m+1-j (u)D j (Πu)|D m Πu + m-j k=1 m + 1 -j k D k (u)D m+1-k (Πu)|D m Πu .

∂

  x (u)∂ m x (u)∂ m x (Hu) dx -∂ m x (Hu) dx.Therefore, the sum can be written as a linear combination of the term 2π 0 u(H∂ m x u)∂ m+1 x u dx and other terms that can be added to the remainder A. On the other end, Re( D m+1 (u)iHu|D m (Πu) ) = Re( Since u is real valued, so is Hu, therefore Re( ∂ m+1 x (u)Hu|i∂ m x (Hu) ) = 0.By integration by parts, we then write Re( D m+1 (u)iHu|D m (Πu)

  )∈P j (u) p(u) =2m+4-j |p(u)|≤m

  Again by Leibniz' rule, B decomposes as a sumB = m+2 j=3 p(u)∈P j (u) p(u) =m+2-j |p(u)|≤m-1 c(p) p(u)|D m+1 Πu .

  But then by integration by parts and Leibniz' rule again,B = m+2 j=3 p(u)∈P j (u) p(u) =m+2-j |p(u)|≤m-1 c(p) Dp(u)|D m Πu = m+2 j=3 p(u)∈P j (u) p(u) =m+3-j |p(u)|≤m c (p) p(u)|D m Πu = dx,which is of the desired form.

  and ζ be elements of h

	Proof. Note that since (ζ k ) k converges to ζ in h	1 2 +s + , then for all n ∈ N, formula (5) for ω	(4)
	ζ k -ζ	h + 1 2 +s	-→ k→+∞	0. Then for all t ∈ R,			1 2 +s +	such that
				(ζ k n e iω (4) n (ζ k )t ) n -(ζ n e iω (4) n (ζ)t ) n	h + 1 2 +s	-→ k→+∞	0,
	where the convergence is uniform on bounded time intervals.

  5 (P 4 + P 2 H 2 + P 1 H 3 )

	leading to															
	ω (5) n = n(	p 2 γ p -		s 2 p ) + (	pγ p )(n 2 -2	min(p, n)γ p )
	p≥1						p≥1			p≥1				p≥1
	+ n 4 -4			min(p, n) 3 γ p + 6			
		p≥1								p,q≥1		
	and the frequencies											
	ω (5) n =	1 5	(	∂P 1 ∂γ n	H 3 + P 1 ω (3) n +	∂P 2 ∂γ n	H 2 + P 2 ω (2) n +	∂P 4 ∂γ n	)
		=	2 5	n(	p≥1	p 2 γ p -	p≥1	s 2 p ) +	2 5	(	p≥1	pγ p )(n 2 -2	p≥1	min(p, n)γ p )
		+	3 5	(n 2 -2	p≥1	min(p, n)γ p )(	p≥1	pγ p ) +	3 5	(	p≥1	p 2 γ p -	p≥1	s 2 p )n +	1 5	∂P 4 ∂γ n	,

  1 2 ). One can actually show by induction the following facts. In the formula (19) for P k , there is one term c 1 +∞ p=1 p k γ p , the other terms being convergent if +∞ p=1 p k-1 γ p < +∞. This implies that in the formula (20) for H k appears one term c 2 +∞ p=1 p k-1 γ p , the other terms being convergent if +∞ p=1 p k-2 γ p < +∞. Consequently, in formula (21) for ω γ p , the other terms being convergent if +∞ p=1 p k-4 γ p < +∞. From these facts, one can see that the formula for ω (T) where s k = k 2 -2, however there is no continuous extension to H s k r,0 (T) when s k -1 2 < s < s k . This explains why the well-posedness threshold for the equation associated to the Hamiltonian H k in the hierarchy should be H s k

		(k) n , k ≥ 4, appears one term
	c 3 potentials in H s k +∞ p=1 p k-3 (k) n r,0	can be extended by continuity to

r,0 (T).
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First, since u is real, u(-n) = u(n), therefore

Then, u being with average zero, u = Πu + Πu, leading to

Taking the real part, Finally, we treat the last term Π(uΠu) 2 L 2 (T) . Note that by decomposing u = Πu + Πu,

By removing the useless projections,