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A framework for the stochastic description of relaxation processes in flexible macro-

molecules, including dissipative effects, is introduced, from an atomistic point of view.

Projection-operator techniques are employed to obtain multidimensional Fokker-

Planck operators governing the relaxation of internal coordinates and global degrees

of freedom, and depending upon parameters fully recoverable from classic force fields

(energetics) and continuum models (friction tensors). A hierarchy of approaches of

different complexity is proposed in this unified context, aimed primarily at the in-

terpretation of magnetic resonance relaxation experiments. In particular, a model

based on a harmonic internal Hamiltonian is discussed as a test case.

a)Electronic mail: antonino.polimeno@unipd.it
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I. INTRODUCTION

Internal and overall dynamics of proteins are involved in the determination and the reg-

ulation of their physical and chemical properties, biological functions and spectroscopic

signatures. Examples of dynamic-controlled classes of processes are the allosteric effects in

enzyme catalysis, the formation of non-specific transient encounter complexes in the protein-

protein association1 and the regulation of molecular recognition2. Therefore, monitoring and

describing protein dynamics is a fundamental area of investigation in modern physical chem-

istry. Internal and global motions in solution affect directly or indirectly most spectroscopic

methods aimed at the characterization of proteins. This is the case, for instance, for Nuclear

Magnetic Resonance (NMR) relaxation3–5, Fluorescence Anisotropy Decay6, Time Resolved

X-Ray7, site-directed spin-labeled Electron Spin Resonance8,9, Förster Fluorescence Reso-

nance Energy Transfer10, Atomic Force Microscopy11. Experimental observations need to

be rationalized in order to provide a meaningful description of at least some of the many

complex motions that combine to yield the observed relaxation processes. These include

global reorientation and large amplitude motions of entire domains, as well as local read-

justments and single-residue motions. In general, different spectroscopic techniques probe

different physical observables and provide information on motions taking place at different

time windows. It is convenient, when possible, to develop a computational interpretation

adapted to a specific experimental approach, within a general theoretical framework. This

concern is particularly relevant for the analysis of NMR relaxation experiments3,12 where

the definition of such variables can be dictated either by ad hoc considerations, such as the

model-free (MF) approach,13,14 or by explicit models of dynamics, as for instance in the

Slowly Relaxing Local Structure (SRLS) model.15,16

The description of the dynamics of a non-rigid molecule requires a precise definition of

several frames of reference. This is necessary when one needs to account accurately for

the tensorial nature of the magnetic interactions. To this aim, we shall use throughout

this work the following frames, shown in Fig. 1: i) a laboratory frame (LF), i.e. a fixed

frame, external to the molecule; ii) a molecular frame (MF), i.e. a frame attached to the

molecule, which is usually model-dependent; iii) an interaction frame (µF), i.e. a local

frame linked to the MF where some specific second rank tensor defining the property µ

observable spectroscopically is well-defined. Depending on the problem at hand, this could
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be for instance the frame where the 15N − 1H dipolar or 15N chemical shift (CSA) tensors

are diagonal.17,18 The spectroscopic observable is written, usually, in terms of suitable time

correlation functions or spectral densities (see below), and their fast and accurate evaluation

is the main target of a well-defined dynamic modeling approach.

A. Modeling and monitoring molecular motions

Models with various degrees of simplification can be used to interpret experimental dy-

namical data in macromolecules, and proteins in particular. For instance, one can make the

simplifying assumption that local motions are due, at least for semi-rigid systems, to a net-

work of dynamically coupled neighbors (Network Model)19,20 or caused by partial diffusive

reorientation within a local potential.16 One can also assume specific statistical characteris-

tics (diffusive or Brownian dynamics, fractional Brownian dynamics21 etc.). In general, two

alternative points of view, which are apparently not easily reconciled, are adopted. On one

side, one can resort to full molecular dynamics simulations, trying to describe a priori the

molecular object in its environment and attempting a direct prediction, from the collected

trajectory, of the desired relaxation parameters. On the other side, coarse-grained modeling

approaches, based on phenomenological hypotheses, can be employed. Both methods are

familiar to computational chemists and are used often in combination to interpret NMR

relaxation data.

Classical molecular dynamics (MD) simulations are nowadays the most powerful tool

available to simulate relaxation processes in molecules. Recent computational developments

now make it possible to carry on long simulations in the time scales of microseconds and

even milliseconds,22–26 which is compatible with the study of slow processes such as large

amplitude motions and folding processes. However, some considerations are in order. Al-

though MD brute force approaches are increasingly a natural choice, even with the rapid

development of computing power, the availability of sufficient computational resources to

collect long trajectories remains limited. Besides, some issues have important consequences

in the context of NMR relaxation. Firstly, sampling the MD trajectories can be tricky: cor-

rect statistics is based on ergodicity, which may be difficult to ensure in MD simulations,27

leading to the need to calculate a number of trajectories, each of which starting from a chosen

different initial configuration of the system. Such a choice, however, requires the knowledge
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of the free energy in the whole phase space of atomic coordinates or internal coordinates

in order to be done systematically. This information is usually not known, especially in

complex systems. The limitations of available force-fields should always be taken into ac-

count, especially when long (hundred of nanoseconds or longer) trajectories are employed.

Secondly, many of the commonly employed parameterizations for atomic interactions in

biological systems do not perform well at long times (i.e., those required to access NMR

relaxation data), although work is being carried out to correct the MD force-fields just using

NMR data as reference.27–29 Finally, recent investigations show that hydrodynamic proper-

ties, typically affected by the accuracy of force fields and statistics can be simulated via MD

with some difficulty.30,31 Phenomenological stochastic models offer an alternative for inter-

preting NMR relaxation in flexible molecules. Moreover, they provide a way to rationalize

complex observables, allowing to establish a hierarchy of causes and effects, via the defini-

tion of a coarse-grained description of the systems investigated. The adoption of stochastic

models in interpreting NMR relaxation data of complex systems dates back to 1982, with the

introduction of the MF approach, first applied to globular proteins.13,14 In MF, analytic ex-

pressions for orientational correlation functions (from which spectral densities are obtained

and consequently NMR relaxation data extracted) are introduced, describing the molecular

relaxation as the combination of two motions: the global tumbling of the whole molecule

and the effective, unspecified local motion of the 15N − 1H or 13C − 1H bond. Correla-

tion functions take a bi-exponential time dependence, which is in many cases sufficient to fit

NMR data. Since the first introduction of MF, different extensions of such an approach have

been presented, each of which had the effect of increasing the number of exponential terms

that contribute to the correlation function, by calling multiple timescale separation limits,

thereby obscuring the physical meaning of the parameters outside the range of applicability

of the approximations.

The SRLS model,32,33 developed in the early 90’s, allows for a more accurate description

of the geometry of the local motions. In this approach, the relevant dynamics of the molecule

is still given by the combination of the global tumbling and the local 15N−1H / 13C−1H bond

motion, but the assumption of timescale separation is not a prerequisite. Rather, decoupling

occurs naturally if global and internal motions show timescale separation at least of 3 - 4

orders of magnitude, making the correlation function be equal to the MF one (given the

same choice for the local geometry),34 while the exact solution is obtained in all the other
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cases. In the SRLS approach, molecular parameters (potential of mean force and diffusion

tensor, see below) always maintain their clear physical meaning. Both the SRLS and MF

approaches describe the relevant dynamics of the molecule as that of two diffusive stochastic

rotors, one describing the rotational motion of the whole molecule, and the second collecting

the local motions in which the probe (e.g., the amino-acid in a protein) is involved. The

nature of the internal motion, which is not easily mapped on to a specific set of internal

generalized coordinates, poses difficulties in the definition of a multi-scale approach aimed

at the ab initio solution of the stochastic equation. Extensions to the SRLS-NMR have

been introduced both for proteins35 and small molecules36 with some parameters, the most

important of which is the diffusion tensor associated to the internal motion, evaluated via a

multi-component fitting procedure.

A significant contribution toward the comprehension of the complex dynamics of flexible

macromolecules is due to Perico and Guenza37,38. By adopting a diffusive Gaussian model

these authors calculate in an exact manner first and second rank orientation correlation

functions, and demonstrate that a multiexponential decays is predicted unless local motion

and global reorientional tumbling are separated in time. The model is especially relevant to

discuss the crossover from flexible to semirigid chains, and it has been applied, for instance,

to the analysis of the dynamics of polymers.39

The Reorentational Eigenmode Dynamics (RED) approach proposed by Prompers and

Brüschweiler makes use of (short) MD simulations to calculate NMR data.40–42 The method

is based on the factorization of the time correlation functions into global and internal, as

in the MF method. However, the internal part of the correlation function takes into ac-

count the coupling among selected internal degrees of freedom, i.e. the orientations on the

protein of the NMR probes. In particular, the rank 2 spherical harmonics, functions of the

orientation of the NMR probes (e.g., N-H bonds) are used to build a variance-covariance

matrix, which is then diagonalized, thereby providing a set of reorentational eigenmodes.

The time series of the rank 2 spherical harmonics of each probe are then projected over the

eigenmodes, and these projections are employed to access the proper correlation functions.

The global tumbling is then added ad hoc, based on the overall rotational symmetry of the

protein. Several other approaches rely on stochastic modeling of the dynamics. We recall

here the Gaussian Network Model (GNM), the Anisotropic Network Model (ANM), the

Normal Mode Analysis (NMA) and the LE4PD method. In the GNM the molecule is seen
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as an ensemble of effective atoms (beads) each having a simple harmonic interaction with

other beads within a chosen cutoff radius.43 The GNM has been applied with some success

in a number of instances, such as the interpretation of the Debye-Waller factors measured

by X-ray crystallography of globular proteins (bovine pancreatic trypsin inhibitor44). The

GNM has also been adapted to the study of NMR relaxation data45 by considering the mo-

tion of the N-H bond decoupled from the global tumbling of the molecule and assuming a

MF approach. The ANM was introduced as an extension of the GNM to include anisotropy

explicitly into the fluctuations, and is based on the diagonalization of the Hessian of the

potential energy46,47 obtained from a molecular mechanics force field. The NMA describes

the (internal) dynamics of the protein as a superposition of normal modes48,49 calculated

theoretically from the Hessian matrix of the minimum energy conformation. The difference

with respect to ANM resides in the shape of the potential. In the ANM approach the po-

tential energy is explicitly approximated by a multidimensional parabola and the minimum

energy configuration is assumed to be known. Alternatively, in the NMA analysis, Monte

Carlo or MD simulations are performed beforehand in order to explore the potential energy

surface and determine the most populated conformation50 of the molecule. Then the Hessian

matrix is calculated numerically, and the energy surface approximated to a multidimensional

parabola around the reference configuration and the rest of the analysis is conducted as for

ANM. The LE4PD51,52 method is also based on a Langevin equation, does not assume har-

monic potentials, and takes into account the presence of energy barriers and more complex

energy profiles, such as in crankshaft or local torsional motions. This approach can be linked

formally to an initial Liouville equation, using a Mori-Zwanzig projection technique. Hy-

drodynamic interactions are accounted for by introducing site specific friction coefficients,

which account for the screening of the hydrodynamic interaction inside the hydrophobic core

of the protein, are derived from the Oseen tensor. The degree of exposure to the solvent of

each amino acid, which enters the definition of the hydrodynamic radius, is calculated from

the available surface area, which is measured at each step of the whole simulation trajectory

under study.
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B. Motivation and outline of the paper

We propose a description starting from the exact dynamics of a non-rigid protein inter-

acting with its solvent. A projection technique, which averages out the degrees of freedom

(dof) of the ’bath’ (the irrelevant dof, when one is interested in a small number of pro-

tein atoms), leads to the reduced Fokker-Planck equation for the relevant atoms, naturally

including hydrodynamic properties.

In order to combine the advantages of the semi-phenomenological methods described

above, a general strategy for the treatment of the dynamics must include a systematic view

of the system geometry, based on the molecular structure, as well as of the associated dynam-

ical features. In this perspective, we propose to treat explicitly the molecule as a non-rigid

body, initially described by a classical Liouville operator, and to obtain a Markovian stochas-

tic differential or master equation, with a relevant set of degrees of freedom as dynamical

variables. In order to do so, we proceed as follows. First, we set up the Liouville equation of

motion53 for a generic flexible body defined as a set of material points (atoms or extended

atoms), in terms of roto-translational and natural internal coordinates. The general descrip-

tion of a macromolecule in solution is then carried out in terms of a collection of flexible

bodies, to which a standard Nakajima-Zwanzig54,55 projection method is applied in order

to eliminate the ’irrelevant’, i.e. not directly observed, degrees of freedom. A generalized

master equation is thus obtained from which alternative modeling options, based on differ-

ent choices of the internal variables, of accuracy levels of the description of solvents effects

etc., can be envisaged. In particular, in the case of fully averaged irrelevant coordinates (hy-

drodynamic solvent, Brownian model etc.) different description levels of the macromolecule

are discussed. In such a limit, the partition of internal degrees of freedom into ’hard’ fast

relaxing constrained modes, and ’soft’ ones - i.e. medium and large-amplitude motions - is

discussed. We analyze the simplest case of a partially rigid Brownian system, i.e. with only

fast relaxing internal modes.

The paper is organized as follows. Section II introduces the classic Liouville description

of a flexible macromolecule for the probability density of all degrees of freedom. Section III

derives, using a standard Zwanzig projection approach, a general master equation, which is

simplified, under suitable approximation to the case of a semi-flexible rotator in Section IV.

The proposed parametrization is tested in Section V on a series of homologous molecules, the
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polyalanines (ALA−)n, with n = 2, . . . , 10. A brief discussion is included in Section VI, while

the actual computational treatment of the resulting model is presented in the accompanying

paper.56 We confine in the Appendices some of the more cumbersome derivations.

II. MODELING

A. Observables

In the case of nuclear magnetic resonance the experimental observables are related to the

normalized autocorrelation function of 2-nd rankWigner matrix elements for each interaction

frame. In general we can write the normalized autocorrelation function as:

Gµ(t) =
〈D2

0,0[Ωµ(t)]∗D2
0,0[Ωµ(0)]〉

〈D2
0,0(Ωµ)∗D2

0,0(Ωµ)〉
, (1)

where Ωµ is the set of Euler angles defining the orientations of the µ interaction frame µF

with respect to the LF (cf Figure 1). The average 〈. . .〉 is defined with respect to the phase

space of the system, in which the evolution of the phase density is dictated by the Markovian

time evolution operator Γ̂, associated to the equilibrium phase density ρ. The phase space

includes all coordinates and momenta. Γ̂ and ρ define the model and in principle they can be

the complete Liouville operator (see next section) with respect to which ρ can also be defined

(for instance as a Boltzmann distribution in a canonical ensemble). Therefore, assuming that

the system is isotropic, and taking into account the geometry defined in Figure 1:

Gµ(t) = 5〈D2
0,0(Ωµ)∗| exp(−Γ̂t)|D2

0,0(Ωµ)ρ〉 (2)

Here, Ωµ is interpreted as a function of the phase space coordinates, and is deduced from

the system geometry. The factor 5 arises from the normalization condition in an isotropic

medium. It is useful to separate the contributions to the spectral density function that orig-

inate from molecular motions, on the one hand, from those that come from the geometrical

features of the interactions involved, on the other hand. This is achieved using standard

algebra57 of Wigner matrices. Denoting Ω the Euler angles describing the orientation of the

MF with respect to the LF (cf Figure 1), and Ωµ the tilt of µF with respect to the MF, the
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TABLE I. Table of main mathematical symbols
Symbol Meaning
Ωµ Euler angles of the µ interaction frame µF with respect to the LF
Ω Euler angles of the MF with respect to the LF
Ωµ Euler angle of µF with respect to the MF
n number of atoms
rα,vα,pα,Mα Cartesian position, velocity, momentum and mass of α-th atom
H,K,U,L Hamiltonian, kinetic energy, potential energy, Lagrangian
R,V,P,M , position, velocity, momentum of center of mass and total mass
L angular momentum
cα position vectors relative to the center of mass (MF)
qµ µ-th internal variable
pµ µ-th conjugate momentum
I inertia tensor
Aµ gauge potential
gµν , g

µν metric tensor components
X ,P coordinate and momentum space
Q phase space X ,P
XI ,PI coordinate space and momentum space, expressed in internal coordinates

and momenta, for a set of external molecules
QI phase space XI ,PI
ρ(Q,QI , t) exact phase space density at time t
ΓT Liouville operator governing ρ(Q,QI , t)
ρ(Q, t) average phase space density at time t after projection of QI
ΓFP Fokker-Planck time evolution operator for ρ(Q, t)
ρ(Q) equilibrium distribution
ξ friction tensor
F free energy
q = (qs,qh),p = (ps,ph) harmonic (h) and non-harmonic (s) internal coordinates and momenta
K curvature matrix
y non-orientation degrees of freedom (q,L,p) in the SFB model (no non-

harmonic modes)
k curvature matrix for the total Hamiltonian in the SFB model
x scaled and rotated coordinates (kBT )−1/2S(y − y(0))

Γ SFB time evolution operator
p(x) equilibrium distribution in the SFB model (non-orientation dof only)
ωT dissipation matrix of Γ

ωK , ωξ scaled curvature matrix and friction tensor
ωio, ωint internal overall and interaction blocks of dissipation matrix ωT
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measurable spectral density for auto-correlated relaxation is given by:

Gµ(t) =
2∑

l,l̄=−2

D2
l,0(Ωµ)∗D2

l̄,0
(Ωµ)Gll̄(t) (3)

where

Gll̄(t) = 5〈D2
0,l(Ω)∗| exp(−Γ̂t)|D2

0,l̄
(Ω)ρ〉 (4)

In practice, one is currently interested in spectral densities, i.e. the Fourier-Laplace trans-

forms of Gµ(t) and Gll̄(t). Our main objective will therefore the evaluation of Jµ(ω), Jll̄(ω),

defined as:

Jµ(ω) =
2∑

l,l̄=−2

D2
l,0

(
Ωµ

)∗D2
l̄,0

(
Ωµ

)
Jll̄(ω) (5)

Jll̄(ω) =

∫ ∞
0

dte−iωtGll̄(t) (6)

Evaluating Eq. 6 constitutes the main object of our study, which requires to define a suitable

model for Γ̂ and ρ. In the remainder of this article, we analyze several possible models that

we derive from various levels of approximation. Additionally, a specific model is also defined,

which we discuss in full in the companion paper.56 For sake of clarity, we summarize in Table

I the meaning of some of the symbols defined in the following Sections.

B. Liouville equation

We begin by reviewing the derivation of the (classical) Liouville equation for a flexible

body. The treatment of non-rigid molecules is a well-known subject for students of vibra-

tional spectroscopy. The literature on the subject is vast, as for instance in58–63 to cite but a

few, and based on the methods of classical mechanics.53,64 Here, we shall in particular follow

closely the approach of Meyer,65 Lauvergnat,66 Littlejohn and Reinsch.67 Although the pro-

cedure is known and well-established, we feel that a summary of the main points of the basic

procedure can be helpful to the reader unfamiliar with these tools, and makes this report

self-contained. The starting point is the description of the molecule (flexible body) as a

collection of n material points, with Cartesian coordinates rα, velocities vα = ṙα and masses

Mα with α = 1, . . . , n. We define the Lagrangian function L = K−U =
∑

αMαv
2
α/2−U(r),
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the momenta pα = ∂L/∂vα = Mαvα and the Hamiltonian function H = K + U =∑
α p

2
α/2Mα + U(r), with the notation r = (r1, r2, . . . , rα, . . . , rn) ≡ (r1, r2, . . . , ri, . . . , r3n),

where the latter notation makes clear the contravariant nature of the 3n-dimensional vec-

tor of all coordinates r. Analogously p = (p1,p2, . . . ,pα, . . . ,pn) ≡ (p1, p2, . . . , pi, . . . , p3n);

in the following we employ Einstein’s summation convention of repeated indices whenever

tensorial properties need to be evidenced, e.g. uivi ≡
∑

i uiv
i, or a more compact matrix

vector notation, as in utrv ≡
∑

i uivi, otherwise.

The Liouville equation for the density ρ(r,p, t) is written as

∂ρ

∂t
= {H, ρ} (7)

where the Poisson brackets of two phase variables A and B is given by:

{A,B} =
∂A

∂ri
∂B

∂pi
− ∂A

∂pi

∂B

∂ri
(8)

We now define a transformed set of variables, in analogy with similar treatments employed

in vibrational spectroscopy. We first choose the six roto-translational degrees of freedom,

namely the center of mass R defined by MR =
∑

αMαrlfα where M =
∑

αMα is the

total mass. The three Euler angles denoted by Ω describing the orientation of the MF with

respect to the LF. Moreover, we choose 3n− 6 internal coordinates qµ (µ = 1, . . . , 3n− 6).

The specific definitions of Ω and q as functions of the native Cartesian coordinates can be

arbitrarily chosen, provided that proper invariance conditions are considered.67 A possible

choice can be based on the Casimir-Eckart conditions.63 Here we shall only assume that

these functions are known in terms of Cartesian coordinates and write:

rα = R + Etr(Ω)cα(q) (9)

where Etr(Ω) is the transpose of the Euler matrix57, and rotates the components of a generic

vector from the MF to the LF. In this expression, the vectors rα and R are related through

cα(q) = E(Ω)(rα − R), which represent the relative position vectors of the particles with
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respect to the center of mass in the LF. We define V = Ṙ, and

vα = V + Etr

(
ω × cα +

∂cα
∂qµ

q̇µ
)

(10)

where the angular velocity is defined from the antisymmetric matrix ω× = EĖtr. Therefore,

using the cα representation, and the property
∑n

α=1Mαcα = 0, the total angular momentum

LT =
∑

αMαrα × vα breaks into the sum of a center of mass, Lext, and about the center of

mass, contributions:

LT = Lext + EtrL = MR×V + Etr

[∑
α

Mαcα ×
(
ω × cα +

∂cα
∂qµ

q̇µ
)]

(11)

Defining the inertia tensor I =
∑

αMα(c2
α13 − cαc

tr
α ), and the gauge potential

Aµ = I−1

(∑
α

Mαcα ×
∂cα
∂qµ

)
(12)

the angular momentum about the center of mass with component in the MF is:53,64,67

L = I(ω + Aµq̇
µ) (13)

The Lagrangian is obtained in the form:53,64,67

L =
1

2
MV 2 +

1

2
LtrI−1L +

1

2
gµν q̇

µq̇ν − U (14)

where the internal energy is left here undefined: for an isolated molecule, one can assume it

to depend only on the internal (shape) coordinates. The metric tensor is defined:67

gµν =
∑
α

Mα
∂cα
∂qµ
· ∂cα
∂qν
−Atr

µ I ·Aν (15)

We now define the conjugate momenta P = ∇̂VL = MV, L = ∇̂ωL, pµ = ∂L/∂q̇µ.

Together with R, Ω and qµ they form a complete set of phase space coordinates, with
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respect to which the Liouville equation for ρ(R,Ω,q,P,L,p, t) can now be written:67

∂ρ

∂t
= {H, ρ} (16)

H =
1

2M
P 2 +

1

2
LtrI−1L +

1

2
gµν(pµ − LtrAµ)(pν − LtrAν) + U (17)

With these definitions, the Poisson brackets take the form:

{A,B} = (∇̂RA)tr∇̂PB − (∇̂PA)tr∇̂RB + (M̂A)tr∇̂LB (18)

− (∇̂LA)tr(M̂B)− Ltr(∇̂LA× ∇̂LB) +
∂A

∂qµ
∂B

∂pµ
− ∂A

∂pµ

∂B

∂qµ

The contravariant tensor gµν (gµλgλν = δνµ) is

gµν =
∑
α

1

Mα

(∇̂rαq
µ)tr∇̂rαq

ν (19)

Finally M̂ is the generator of infinitesimal rotations, with components in the MF57. Eq.

16 is completely defined once the following quantities are known, all functions of q: I, Aµ,

gµν (or gµν), U . Eq. 16 can be written in a more compact form by taking into account

the symplectic notation of Hamilton equations53. Thus, introducing the notation Q =

(R,Ω,q,P,L,p) ≡ (X ,P) (where the variables X and P account for all the configuration

coordinates and momenta) we can write:

∂ρ(Q, t)
∂t

= −Γ̂ρ(Q, t) = (∇̂Q)trJρ(Q)∇̂Qρ(Q)−1ρ(Q, t) (20)

Here ρ(Q) = exp(−H/kBT )/〈exp(−H/kBT )〉 is the Boltzmann distribution and the notation

〈f(Q)〉 =
∫
dQf(Q) is introduced. The generalized gradient and the 6n× 6n matrix J are

defined as:

∇̂Q =

 ∇̂X
∇̂P

 =



∇̂R

M̂

∇̂q

∇̂P

∇̂L

∇̂p


J = kBT

 0 −1

1 j

 (21)
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where the 3n× 3n matrix j is

j =


0 0 0

0 −L× 0

0 0 0

 (22)

The 3 × 3 matrix L× has elements defined in terms of the Levi-Civita tensor, (L×)αβ =∑
γ εαβγLγ, i.e. for a generic vector a, L×a = L× a.

III. MASTER AND FOKKER-PLANCK EQUATIONS

In this section, we review the derivation of the master equation, as obtained by a Zwanzig

projection, in the case where the flexible molecule is explicitly represented as an ensemble of

interacting particles, as defined in the previous section. The corresponding Fokker-Planck68

limit will be also introduced.

We first consider the case of a single flexible molecule (probe) interacting with a set of

other NI flexible molecules. Note that the set of additional molecules does not necessarily

represent the ’solvent’ or the ’bath’, and as a matter of fact, some or all of the NI objects may

equally well be subsets of atoms of a large macromolecule or components of a supra-molecular

arrangement. However, irrespective of their physical nature, they are considered coupled to

the probe, which is assumed to be the only moiety that is targeted by the spectroscopic

measurement, i.e. all or part of the molecule that is sensed by the spectroscopic apparatus.

Therefore, they are irrelevant as far as the experimental detection is concerned (hence the

suffix ’I’). Each element of the set is defined by its own MF, internal coordinates, total mass,

moment of inertia, gauge potential, metric tensor and so on. To keep things reasonably tidy

we define Q as above, for the probe, and the corresponding set of coordinates and momenta

for the other molecules QI = (QI1, . . . ,QINI ) = (XI ,PI) = (XI1, . . . ,XINI ,PI1, . . . ,PINI ),

i.e. XI is the collection of all configuration coordinates of the irrelevant molecules and so on.

The system Hamiltonian is written straightforwardly, in analogy with Eq. 17 as the sum

of the kinetic energy, and the potential energy U(X ,XI). The NI terms of the irrelevant

particles are collected in the irrelevant kinetic energy term KI(QI), whilst the probe kinetic

energy is denoted as K(Q). Finally, the potential energy term is a function of all the
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configuration coordinates. Thus, the total Hamiltonian HT is partitioned as:

HT (Q,QI) = K(Q) +KI(QI) + U(X ,XI) (23)

We do not for now further specify U(X ,XI), which can be thought, as usual, as the sum

of two-bodies terms that can be further partitioned between the probe internal energy,

the internal energy of the set of irrelevant configuration variables XI , and the interaction

potential energy between the probe and the irrelevant variables.

The total density ρT (Q,QI , t) is now governed by expressions equivalent to Eq. 20. Defin-

ing the equilibrium density ρT (Q,QI) = exp(−HT/kBT )/〈exp(−HT/kBT )〉T, and the aver-

age of a phase variable f(Q,QI) as: 〈f(Q,QI)〉T = 〈〈f(Q,QI)〉I〉 =
∫
dQ
∫
dQIf(Q,QI),

one has
∂ρT (Q,QI , t)

∂t
= −Γ̂TρT (Q,QI , t) (24)

where

Γ̂T = Γ̂ + Γ̂I = Γ̂ +

NI∑
κ=1

Γ̂Iκ = −(∇̂Q)trJρT (Q,QI)∇̂QρT (Q,QI)−1 (25)

−
NI∑
κ=1

(∇̂QIκ)trJIκρT (Q,QI) · ∇̂QIκρT (Q,QI)−1

Quantities ∇̂QIκ and JIκ are defined by analogy with ∇̂Q and J.

We are now in a position to apply a standard projection approach with respect to the

irrelevant coordinates QI . The well-known procedure54,55 is summarized in Appendix A, in

a form adapted to the case under investigation, so that only the main points are underlined

in the following. First, we define the averaged equilibrium and time dependent probability

ρ(Q), ρ(Q, t) and the conditional equilibrium probability ρ(QI |Q):

ρ(Q) = 〈ρT (Q,QI)〉I

ρ(Q, t) = 〈ρT (Q,QI , t)〉I (26)

ρ(QI |Q) = ρT (Q,QI)/ρ(Q)
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and the projection operator P̂ acting on a phase variable f(Q,QI) is:

P̂ · · · = ρ(QI |Q)〈. . .〉I (27)

We assume, keeping in line with most analogous treatments54,55 - and in agreement, as

we shall see below, with the requirements for calculating correlation functions of the type

given in Eq. 6 - that the probe is initially statistically uncorrelated from the ’irrelevant’

coordinates and momenta QI , so that the initial conditions for the phase density are defined

according to:

ρT (Q,QI , 0) = ρ(Q, 0)ρ(QI |Q) (28)

with ρ(Q, 0) to be specified later. A formal projection of the irrelevant coordinates can

now be carried out, which leads to the derivation of the following master equation (ME), as

shown in Appendix A, and equivalent to Eq. 24

∂ρ(Q, t)
∂t

= −
∫ t

0

dτ Γ̂(τ)ρ(Q, t− τ) (29)

where the time evolution operator is defined as Γ̂(τ) = −(∇̂Q)trJρ(Q)∇̂Qρ(Q)−1. The kernel

matrix operator Ĵ(τ) is:

Ĵ(τ) = kBT

 0 −1δ(τ)

1δ(τ) jδ(τ) + ξ̂(τ)

 (30)

where the generalized friction tensor operator is written as

ξ̂(τ) =


ξ̂TT(τ) ξ̂TR(τ) ξ̂TS(τ)

ξ̂RT(τ) ξ̂RR(τ) ξ̂RS(τ)

ξ̂ST(τ) ξ̂SR(τ) ξ̂SS(τ)

 (31)

The generalized friction tensor blocks ξ̂AB(τ), where the symbols A,B = T,R, S stand for

translation, rotation, and shape coordinates, are defined as the correlation functions of the

various forces and torques:

ξ̂AB(τ) = 〈fA exp(−Q̂Γ̂τ)f tr
B ρ(QI |Q)〉I (32)
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here Q̂ = 1−P̂ and A,B = T,R, S, i.e. fT = ∇̂RU−∇̂RU , fR = M̂U−M̂U , fS = ∇̂qU−∇̂qU .

The free energy is F = U0(X ) + Uint(X ,XI), and ρ(Q) is the Boltzmann distribution for

H = K(Q)+F (X ). For a generic function f(X ) depending on the configuration coordinates

only, one defines:

f = 〈f exp(−Uint/kBT )〉XI
/〈exp(−Uint/kBT )〉XI

(33)

In the standard limit of fast relaxing irrelevant coordinates, the Fokker-Planck equation in

Q is obtained69
∂ρ(Q, t)
∂t

= −Γ̂FPρ(Q, t) (34)

where the time evolution operator is now

Γ̂FP = P̂r− (∇̂Q)trJFPρ(Q)∇̂Qρ(Q)−1 (35)

where

JFP = kBT

 0 −1

1 ξ

 (36)

ξ is the (3n − 6) × (3n − 6) friction tensor (3n − 6) × (3n − 6), which in general depends

upon X :

ξ =


ξTT ξTR ξTS

ξRT ξRR ξRS

ξST ξSR ξSS

 (37)

For convenience we have collected in the term P̂r the precessional part (arising from the

−L× block)

P̂r = Ltr
(
∇̂LH × ∇̂L

)
(38)

The formal definitions of the friction tensor submatrices ξAB are:

ξAB =

∫ ∞
0

dτ〈fA exp(−Γ̂Iτ)f tr
B ρ(QI |Q)〉I , (39)

where Γ̂I is given in Eq. 26. Hydrodynamic models70,71 can be employed to evaluate approx-

imately ξAB. A hydrodynamics approach for the evaluation of ξ is summarized in Appendix

B, which generalizes the approach presented elsewhere70,71, limited to torsional angles only,
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to the case of generic internal coordinates.

IV. SEMI-FLEXIBLE BROWNIAN BODY

We now investigate possible approximations aimed at making the resulting model com-

putationally manageable. First, we may safely discard the center-of-mass coordinates and

momenta from our description. This is acceptable for a single flexible body in a isotropic

medium, for which only rotation-dependent correlation functions need to be defined. Next

we distinguish between two sets of internal coordinates q, which we shall call simply qs (soft

modes) and qh (harmonic modes): the latter set encompasses, as usual, more constrained

and faster relaxing degrees of freedom. Similarly, p is also split into ps and ph.

We perform a second order expansion about the qs-dependent values of qh with respect

to which a minimum is reached, assuming that such a minimum is unique

F ≈ U (0)(qs) + [qh − q
(0)
h (qs)]

trK(qs)[qh − q
(0)
h (qs)]/2. (40)

Pushing this approximation a little further, we may consider that the dependence of q
(0)
h

and K on qs is negligible, i.e. we may assume that the hard internal coordinates are given in

a fixed coordinate frame that is independent of soft variables qs. Similarly, we may consider

zeroth-order expansions of all other tensorial properties with respect to qh, i.e. the gauge

potential A, the inertia tensor I, the metric tensor g, and the friction tensor ξ (reduced to

its rotational and shape blocks). Finally, the FP equation takes the form:

∂ρ(Q, t)
∂t

= −Γ̂ρ(Q, t) (41)

Γ̂ = P̂r− ∇̂QtrJSFBρ(Q)∇̂Qρ(Q)−1 (42)

where Q = (Ω,q,L,p), q = (qs,qh), p = (ps,ph), ρ(Q) = exp(−H/kBT )/〈−H/kBT 〉,

〈f(Q)〉 =
∫
dQf(Q), P̂r defined by Eq. 38. Hamilton’s function is:

H =
1

2
LtrI−1(qs)L +

1

2
[p−A(qs)L]trg(qs)[p−A(qs)L]

+
1

2
[qh − q

(0)
h (qs)]

trK(qs)[qh − q
(0)
h (qs)] + U (0)(qs) (43)
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and tensor JSFB is

JSFB = kBT


0 0 −1 0

0 0 0 −1

1 0 ξRR(qs) ξRS(qs)

0 1 ξSR(qs) ξSS(qs)

 = kBT

 0 −1

1 ξ

 (44)

with a similar definition for ξ as in Eq. 39.

A. Harmonic internal coordinates

Numerically solving the model described above is still a formidable task, although man-

ageable in some specific circumstances. We address here the case of an empty qs set, i.e.

only harmonic shape variables are left, subject to a free energy having a quadratic form:

q ≡ qh, p ≡ ph.

All tensors and vectors I, A, g, K, ξ, q(0) are now considered approximately con-

stant. In practice, we are neglecting activated torsional rearrangements and/or crankshaft

motions72,73. Instead, we concentrate on the description of internal motions adopting the

common view of a harmonic or boson bath, but 1) directly recovered from the complete

Liouville description, 2) retaining full coupling with external tumbling, 3) including dissipa-

tive/stochastic effects. The model is therefore formally similar to other approaches which

have been proposed relying on a description of a macromolecule as a collection of harmonic

modes (vide supra).43–49 Since the total energy is a quadratic form, the model is relatively

manageable without neglecting neither inertial effects, nor internal-rotational coupling, at

least for the purpose of calculating observables as in Eq. 6. Let y = (q,L,p), so that

Q = (Ω,y). The total energy is H = (y−y(0))trk(y−y(0))/2, where y(0) = (q(0),0,0). The

time evolution equation is written exactly as in the previous cases, and it contains ρ(Q),

Boltzmann distribution defined on H (see below), the precessional term P̂r is defined again

by Eq. 38 and the general tensor J, in which all terms are now supposed constant. The

matrix k has the form

k =


K 0 0

0 I−1 + AtrgA −Atrg

0 −gA g

 (45)
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It is convenient to introduce the scaled and rotated variables defined as x = (kBT )−1/2S(y−

y(0)), where S = ΛUtr. U and Λ are defined as UtrkU = Λ2, with Λ diagonal. In terms of

the new set of coordinates Q = (Ω,x), we finally get

∂ρ(Q, t)
∂t

= −Γ̂ρ(Q, t) (46)

Γ̂ = P̂r− (∇̂Q)trωTρ(Q)∇̂Qρ(Q)−1 (47)

where ∇̂Q = (M̂, ∇̂x), H = −x2/2, ρ(Q) = ρ(x) = p(x)/8π2 = exp(−x2/2)/(2π)(6n−9)/28π2

ωT =

 0 −ωint

(ωint)tr ωio

 (48)

ωio (for the internal overall coordinates) and ωint (for interaction between rotation and

internal coordinates) are non-symmetric matrices (6n − 9) × (6n − 9) and 3 × (6n − 9)

respectively, with dimensions of frequencies: ωio is related to dissipative properties (friction

tensors) and it has the form:

ωio = S


0 0 −1

0 ξRR ξRS

1 ξSR ξSS

Str (49)

while ωint is

ωint = (kBT )1/2eStr (50)

where e = ( 0 1 0 ). The precessional operator can be written in the general form P̂r =∑
ijkωPijkxixj

∂
∂xk

, where coefficients ωPijk can be found straightforwardly (from now on we

neglect tensorial notation) as

ωPijk = (kBT )1/2
∑
pqr

εpqr(eS−1)ri(eStr)pj(eStr)qk (51)

A further simplifying approximation can be introduced by considering the order of magni-

tudes of the different contributions to the time evolution operator, as weighted by ωio, ωint,

ωP . The elements of ωio are of order O(Λξ), while ωint ∼ ωP are of the order O(kBT )1/2Λ.

In a normal solvent at room temperature ωP ∼ ωint elements can be considered negligible as
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additive terms with respect to ωio. This allows to neglect, at least as a first approximation,

the direct contribution of the precession terms. We shall therefore write Eq. 47 in the form:

Γ̂ = Γ̂0 + Γ̂int = −
∑
ij

ωio
ij

∂

∂xi
p(x)

∂

∂xj
p(x)−1 +

∑
ip

ωint
ip xiM̂p (52)

where i = 1, . . . , 6n− 9, p = 1, 2, 3.

Summarizing, this is the simplest description of the dynamic of a non-rigid body un-

dergoing diffusive fluctuations, that is recoverable from an initially atomistic model for the

Brownian probe, and fully retains inertial effects, dissipation and rotation/shape coupling.

It describes the macromolecule as a rotator coupled to 6n−9 (i.e. 3n−6 internal coordinates,

3n − 6 internal momenta and 3 components of the L vector) harmonic degrees of freedom,

in a fashion quite similar to standard spin-boson quantum mechanical approaches. Indeed,

the similarity can be exploited and manageable expressions can be found for the evaluation

of orientation correlation functions, at least in specific dynamic regimes. In the following,

we address this approximated model as the semi-flexible body (SFB).

V. PARAMETRIZATION

In a following paper, II56, we shall address the evaluation, based on the SFB model, of

correlation functions and spectral densities of suitable observables expressed as functions of

Q. Here we analyze the structure of the time evolution operator given in Eq. 52 by looking

at the parameters employed to evaluate ωio
ij , ωint

iα , which are in principle recoverable from

classical force fields and/or standard molecular dynamics (MD) calculations and hydrody-

namic estimates of friction tensors. We shall consider for a test trial of the model the series

made from the first nine polyalanines (ALA−)n, with n = 2, . . . , 10, as shown in Figure 2.

The molecular geometries shown in Figure 2 were optimized via a Molecular Mechan-

ics (MM) energy minimization, using the molecular modeling toolkit (MMTK) software

package.74 Minimization was carried out in vacuo using the Amber99 force field,75 which is

the default force field in MMTK. These optimized structures were used as reference geome-

tries for the calculation of tensors g, A, I, and the friction tensor ξ; the curvature matrix

K was evaluated first directly from the Hessian based on the same force field employed

in the MM optimization and next via the evaluation of the variance-covariance matrix C

21



(see below) for the internal coordinates based on a 200 ns-long MD simulation, carried out

with NAMD,76 following a standard protocol consisting in energy minimization, heating,

equilibration, and production. Parameters and conditions for the MD simulations are re-

ported in Table II. The friction tensor ξ was obtained following the algorithm discussed

in Appendix B, based on a generalized approach for flexible molecules implemented in the

software DiTe.70,71 Parameters for the calculation of the friction tensor were: temperature

298.15 K, viscosity 0.84 cP (water at 298.15 K), stick boundary conditions, and effective

radius 0.5 Å (see Appendix B). Box dimensions have been chosen equal to 30 Å up to the

case of 8-alanine, and tested for increased dimensions for 9 and 10-alanine. Kasahara et

al.77 have shown that 8-alanine is unaffected by the dimension of the simulation box ranging

from 30 to 50 Å. It has also been shown that no particular differences are found in the

backbone populations of 3-7 poly-alanines, and that one configuration (PPII) is relevant.78

Such an observation is compatible with the description of the molecules as flexible objects

oscillating around a global minimum, therefore in agreement with the basic hypothesis of

the SFB model. It should be stressed that poly-alanine molecules have been chosen as

sand-box examples solely to discuss the method. As such, we are mainly concerned with

testing the magnitude and behavior of the parameters derived in the previous sections, and

we are aware that the applicability of the SFB model can be limited, at least in the case of

the longer homologues. In particular the 10-alanine case requires additional investigations.

In the literature, the folded-unfolded equilibrium has been studied both in vacuum and in

water.79,80 In vacuum, the free energy profile has a single deep minimum centered on the

folded structure, with very steep energy barriers growing up to 40 kBT (at room tempera-

ture) for the elongated structure. In water the free energy profile assumes a bi-stable form,

showing a relative minimum of the elongated 10-alanine peptide at a energy 2 kBT higher

with respect to the folded configuration, and a barrier of 8 kBT .80. To further explore this

behavior we produced 80 ns MD trajectories of 10-alanine in cubic boxes of 40, 50, and 60

Å of side length (see below for further comments).

In the following, the MF is assumed to coincide with the principal frame reference for the

inertia tensor. In Figure 3 the principal values of the inertia tensors are shown as functions of

the number of alanines in the series. All molecules have, approximately, a spherical (n ≤ 5)

or spheroid prolate (n > 5) geometry.

In order to discuss the structure of the operator in Eq. 52, determined exclusively by

22



TABLE II. Setup conditions for the MD simulations of the 9 polyalanines (ALA−)n, with n =

2, . . . , 10

Parameter Value
Cubic box side length / Å 30 (60)a

Boundary conditions periodic
Number of water moleculesb 900, 892, 892, 885, 877, 866, 853, 845, 7150
Force field CHARMM22 with CMAP correction for the

peptides,81 TIP3P for water
Ensemble NpT
Thermostat Langevin, T = 298.15 K
Barostat Langevin, piston period 200 fs, piston decay

100 fs, p = 1 atm
Non-bonded interactions cut-off / Åc 12.0
Electrostatics particle mesh Ewald, order 6, tolerance 10−5

Integration time step / fsd 2
Minimization steps 5000
Heating time / ps 72
Equilibration time / ns 2
Production time / ns 200

aBox dimension of 60 Åfor (ALA−)10.
bFrom (ALA−)2 to (ALA−)10: number of molecules, chosen to reproduce the density of
bulk water at 298.15 K.
cSwitching at 10.0 Å; pairlist set equal to 13.5 Å.
dAll bonds with H atoms were constrained with the SHAKE algorithm.

matrices ωio, ωint, we analyze first the parameters directly related to the energy profile,

i.e. the curvature K, and to energy dissipation due to internal coordinates i.e. ξSS. It

is convenient to look at ωK =
√

gK and ωξ = gξSS which are, respectively, the intrinsic

harmonic frequency matrix and the dissipation frequency matrix of the internal coordinates

in the absence of coupling with overall rotation, i.e. the deterministic parameters of the set

of damped coupled oscillators q̈ = −ωξq̇− ω2
Kq.

In Figure 4 we show a map of log |(ωK)ij| , where ωK is obtained through the Hessian

of the internal energy. The matrix elements are organized in blocks related to residues;

matrix elements are clustered around values of 10−2 fs−1, as shown in the histograms of

Figure 5, with significant tails at both higher and lower frequencies (down to 10−5 fs−1).

The evaluation of the curvature matrix K based on the Hessian in vacuo is a crude, but fast

shortcut to characterize the energetics of the internal coordinates. A more refined approach,
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taking into account the presence of the surrounding medium (i.e. estimating a free energy

instead of an internal energy), is to estimate K from the variance-covariance matrix C

obtained from an MD trajectory, i.e. K = (kBT )−1C. This approach requires a significantly

increased effort, and in practice requires the following steps: i) first evaluate from a MD

trajectory covariance matrix expressed in Cartesian coordinates, then ii) convert it to the

corresponding matrix in internal coordinates82 and finally invert it to get K. A least for the

test case of relatively rigid polyalanines series, the results obtained are close to the simpler

estimate based on the Hessian.

In Figure 6 we show the map of log |(ωK)ij| obtained from the covariance calculated from

MD (O-H bending and H-O-H stretching not constrained). The matrix structure is similar to

the one observed in Figure 4, with a slightly broader distribution of values. This is confirmed

in Figure 7, which also shows a sightly more extended tail at lower frequencies. All things

considered, one can conclude that the Hessian-based evaluation, of negligible computational

cost, of the curvature matrix is satisfactorily in agreement with the computationally intensive

covariance-variance matrix method, which is based on a MD trajectory, and can therefore

be employed safely, at least for the trial set of molecules considered here, with the exception

of 10-alanine, for which we observe an increased internal mobility.

Next, we inspect the properties of the friction related matrix, ωξ. It is characterized by

a similar structure, as shown in Figure 8, although with a significantly larger extension in

the domain of higher frequencies, up to 10−5 fs−1. This is related to the fast relaxation of

conjugate momenta p, which is to be expected in the diffusive regime (relatively high friction)

of motion for molecular systems in water at room temperature. In the SFB operator we

made the choice of putting together the internal coordinates, their conjugate momenta, and

the angular momentum vector L in the collective ensemble x, since they relax significantly

faster than the molecular rotation Ω. This can be finally verified, by looking at the coupling

between internal dynamics and rotation, i.e. matrix ωint, and the overall relaxation of x,

i.e. the matrix ωio.

In Figure 10 we show the histogram graphs of log |(ωint)ij|, while in Figure 11 the same

information is given for log |(ωio
ij)|. The weak coupling is shown by the shift of the two sets

of distributions centered around 10−7 fs−1 and a tail up to 10−5 fs−1 for ωint, and with a

bimodal shape for for ωio, with a peak around 10−3 fs−1 and one, much faster around 102

fs−1. This time scale separation can be exploited to devise specific methods of solution for
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evaluating orientation correlation functions as given in Eq. 6, to take into account 1) how

the softness of the molecule influences the effective global rotational diffusion; and 2) that

relaxation as defined in Eq. 6 involves a fast component in order to account for the local

geometry. We discuss in the companion paper56, some methods for of a computationally

convenient evaluation of Eq. 6 based on Eq. 52.

An additional analysis of the parameters obtained from the MD simulations is useful to

discuss further the approximations introduced. Figure 12 compares the histograms of the ωK

frequencies for different box lengths, which are related to the configurational energy for the

case of 10-alanine. The three distributions are similar to each other, but differ appreciably

from the simulation in the 30 Å side length. The difference is in the fact that the distribution

is narrowed to higher frequencies, which in turn means a floppier internal dynamics. This is

confirmed by a comparison, shown in Figure 13, of map and histograms of log |ωK × fs| for

the 10-alanine peptide calculated via the Hessian (above) and the inversion of the covariance

matrix (below).

The friction tensor has been considerably simplified in the formulation of the SFB model.

The constant friction approximation is usually acceptable for small molecules and for

molecules not showing large amplitude motions.83–85 Examples of trajectories for 2-alanine,

4-alanine, 6-alanine and 10-alanine of diagonal friction matrix elements log |(ωξ)ii| in time

are shown in Figure 14. Fluctuations are observed which can be significant; however their

overall effect is damped if one considers the average eigenvalues of ωξ and their standard

deviation, Figure 15. For most eigenvalues, deviations from average values are below 1%.

Few eigenvalues in the larger peptides show more important deviations, which in principle

can be taken into account in the solution of the stochastic equation. This is, however, not

always necessary as the friction tensor calculated in the absolute energy minimum can be

sufficient to describe the most important features of the long-time dynamics of the system.85

Since including the dependence on the configuration requires a larger computational effort,

one should decide whether the constant-friction approximation is inappropriate based on the

quality of the agreement with experimental data. For the goal of this and of the following

paper,56 which is to show how to build a stochastic model of a system from its all-atom

description without resorting to phenomenological parameters, we have purposely chosen

the simplest implementation. In any event, inclusion of fast fluctuations in the solution of

the Fokker-Planck equation is possible and can be addressed with limited computational
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effort.56 The same rationale - limited computational effort for sake of testing - is behind

other assumptions. The choices of the effective hydrodynamic radius value and neglecting

hydrodynamic interactions, in particular, have been based on past experience of the authors

on the hydrodynamic modeling of the friction/diffusion tensor. In ref.86 it has been shown

that when the generalized diffusion tensor is calculated omitting the hydrodynamic interac-

tions between the beads (the heavy atoms of the molecule), the correct order of magnitude

of the diffusion tensor is obtained using an effective hydrodynamic radius of the order of 0.5

Å. This value is smaller with respect to the usually employed value of 2.0 Å, which is the

reference value when hydrodynamic interactions among beads are taken into account, e.g.

via the Rotne-Prager model.71,87

For the sake of completeness, the table below compares the principal values of the rotational

diffusion tensor of 2-alanine calculated with and without hydrodynamic interactions using,

respectively, effective radii of 0.5 Å and 2.0 Å. The principal values are of the same order

TABLE III. Principal values of the global rotational diffusion tensor of 2-alanine71 with and without
hydrodynamic interactions among the beads.

Hyd. coupling No hyd. coupling
DXX / 109 Hz 3.97 2.50
DY Y / 109 Hz 4.33 2.58
DZZ / 109 Hz 9.65 4.33

of magnitude. Of course, the two models provide different values and anisotropy, and in

the future, the more sophisticated choice of fully including hydrodynamics interactions can

be followed. Here we are interested in defining the basis of the overall methodology and

therefore we have dropped the implementation of the hydrodynamic interactions. Notice

that within the obvious limitation of the SFB model, we show in the companion paper56 that

predicted correlation functions are nevertheless in relatively good agreement with correla-

tion function obtained from molecular dynamics simulations. Relevant adjustments, such as

adding fluctuating tensors, hydrodynamic interactions etc, will have to be considered for a

fully quantitative comparison with experimental relaxation data, and to improve the model

applicability, beyond the "sand-box" cases considered here.
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VI. SUMMARY

A particularly interesting feature of stochastic approaches from a spectroscopist’s view-

point, is that they allow to build an adjustable fine-to-coarse grained hierarchy of dynamical

models of large molecular objects, depending on additional a priori extraneous information

that may provide suitable approximation strategies. However, in so doing, the proper theo-

retical framework is often not made clearly explicit, making sometime difficult to assess the

validity of the approximations used.

In this report, we propose a partial answer to this conundrum by establishing a system-

atic approach, summarized in Fig. 16, to describe the dynamics of a non rigid molecule,

based on elaborations from fundamental classical and statistical mechanics, in the form of

a family of multidimensional Fokker-Planck operators for the probability density of internal

and external degrees of freedom, retaining inertial effects and dissipation. The approach

developed provides a description of the dynamics of a non-rigid protein interacting with its

solvent. The projection technique, which averages out the degrees of freedom (dof) of the

’bath’ (the irrelevant dof, when one is interested in a small number of protein atoms) and

leads to the reduced FPE of the relevant atoms, naturally includes hydrodynamic properties.

These, by construction, include all elementary interactions between particles in the phase

space.

The Fokker-Planck equation for rigid-body dynamics derived in this paper seems particu-

larly relevant for the description of large molecular objects, such as proteins, which represent

the main domain of application in the authors’ perspective. It is a versatile method that

enables one to tackle virtually any classical non rigid dynamics, and can be seen as a com-

plementary approach to full blown long MD simulations when the purpose is the evaluation

and interpretation of correlations/spectral densities directly related to spectroscopic observ-

ables. The method provides a physically sound framework, which allows a clear introduction

of approximations and integration from additional modeling sources, thus leading naturally

to an integrated approach to the interpretation of relaxation properties of (large) molecular

objects. Resulting models can be discussed at different level of complexity, and we have

discussed the simplest illustration, the SFB model, which can be used to interpret magnetic

resonance relaxation of a stable molecule in solution, not subject to crankshaft large am-

plitude torsional motions. Here, we have shown that the SFB model retains a wealth of
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complex properties. The simplifying assumption of harmonic internal coordinates provided

a convenient illustration of the potential of our approach and its links to more conventional

approaches. As we show in the companion paper, the SFB model is amenable to practical

numerical implementation, by retaining the description of all the internal degrees of freedom

of the system at a modest computational price. Moreover, the SFB model provides a sound

theoretical framework and paves the way to the study of more demanding problems, where

soft degrees of freedom cannot be discarded and are explicitly considered to account for large

conformational transitions, and friction tensors with memory may occur. The fine-tuning

capability for the description of the dynamics of large molecular objects, for instance based

on Eqs. 41-44, will be developed in further work, extending the computational treatment of

the SFB model described in the companion paper.56

Appendix A: Projection of the irrelevant coordinates

We review here the projection of an irrelevant set of coordinates. As in section III we

have Q = (X ,P) and QI = (XI ,PI); we start from the density of states ρT (Q,QI , t) and

the corresponding Boltzmann distribution ρT (Q,QI) = exp(−HT/kBT )/〈exp(−HT/kBT )〉I ,

〈f(Q,QI)〉T = 〈〈f(Q,QI)〉I〉 =
∫
dQ
∫
dQIf(Q,QI). The Hamiltonian is

HT = K(Q) +KI(QI) + U(Q,QI) (A1)

The time evolution equation is in general

∂ρT (Q,QI , t)
∂t

= −Γ̂TρT (Q,QI , t) (A2)

Γ̂T = Γ̂ + Γ̂I = −(∇̂Q)trJρT (Q,QI)∇̂QρT (Q,QI)−1

− (∇̂QI )trJIρT (Q,QI)∇̂QIρT (Q,QI)−1

(A3)

we do not specify further ∂/∂Q and ∂/∂QI , which are generalized gradients; we assume that

J, JI are functions of Q, QI only, respectively, with the generic form

J = kBT

 0 −1

1 ξ

 , JI = kBT

 0 −1

1 ξI

 (A4)
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and ξ = ξ(Q), ξI = ξI(QI). We define the averaged equilibrium and time dependent

probability ρ(Q), ρ(Q, t) and the conditional equilibrium probability ρ(QI |Q):

ρ(Q) = 〈ρT (Q,QI)〉I

ρ(Q, t) = 〈ρT (Q,QI , t)〉I (A5)

ρ(QI |Q) = ρT (Q,QI)/ρ(Q)

and the projection operator

P̂ = ρ(QI |Q)〈. . .〉I (A6)

Finally we assume the initial condition

ρT (Q,QI , 0) = ρ(Q, 0)ρ(QI |Q) (A7)

The following properties are easily verified: i) P̂
2

= P̂ , ii) P̂
†

= P̂ , iii) P̂ ρT (Q,QI) =

ρT (Q,QI), iv) P̂ ρT (Q,QI , t) = ρ(QI |Q)ρ(Q, t), v) P̂ Γ̂If(Q,QI) = 0. After defining Q̂ =

1− P̂ , the well-known formal solution is obtained

∂P̂ρT (Q,QI , t)
∂t

= −P̂ Γ̂T P̂ ρT (Q,QI , t) +

∫ t

0

dτP̂ Γ̂T exp(−Q̂Γ̂T τ)Q̂Γ̂T P̂ ρT (Q,QI , t− τ)

+ P̂ Γ̂T exp(−Q̂Γ̂T t)Q̂ρT (Q,QI , 0) (A8)

The last term goes to zero due to the initial conditions; the first terms is the averaged

operator depending upon the average equilibrium distribution ρ(Q), the second and most

complex term is defined in terms of a general kernel K̂; summarizing

∂ρ(Q, t)
∂t

= (∇̂Q)trJρ(Q)∇̂Qρ(Q)−1ρ(Q, t) +

∫ t

0

K̂(τ)ρ(Q, t− τ) (A9)

The kernel operator K̂(τ) can be evaluated after some passages. One obtains:

K̂(τ) = 〈Γ̂T exp(−Q̂Γ̂τ)Q̂Γ̂Tρ(QI |Q)〉I

= 〈Γ̂ exp(−Q̂Γ̂τ)Q̂Γ̂ρ(QI |Q)〉I (A10)

= (kBT )2(∇̂Q)trJtrk̂(τ)J∇̂Qρ(Q)−1
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where

k̂(τ) = 〈ρT
(
∇̂Q
)
ρ−1
T exp(−Q̂Γ̂T τ)Q̂

(
∇̂Q
)tr

ρ(QI |Q)〉I

= 〈ρT
(
∇̂Q
)
ρ−1
T exp(−Q̂Γ̂T τ)Q̂

(
∇̂Qρ(QI |Q)

)tr

〉I (A11)

where an integration by parts is used in the last passage. With some further work one gets

k̂(τ) = − 1

(kBT )2
〈
(
∇̂QHT − ∇̂QHT

)
exp(−Q̂Γ̂T τ)

(
∇̂QHT − ∇̂QHT

)tr

ρ(QI |Q)〉I (A12)

where

∇̂QHT = 〈∇̂QHTρ(QI |Q)〉I (A13)

Since ∇̂PHT = ∇̂PK which does not depend upon QI , terms ∇̂PHT − ∇̂PHT go to zero,

and (given the assumed form of J) one is left with the generalized collision operator

K̂(τ) = (∇̂P)trξ̂(τ)ρ(Q)∇̂Pρ(Q)−1 (A14)

where

ξ̂(τ) = 〈
(
∂U

∂X
− ∂U

∂X

)tr

exp(−Q̂Γ̂τ)

(
∂U

∂X
− ∂U

∂X

)
ρ(QI |Q)〉I (A15)

It follows that

∂ρ(Q, t)
∂t

= −
∫ t

0

dτ Γ̂(τ)ρ(Q, t− τ) (A16)

Γ̂(τ) = −(∇̂Q)trĴ(τ)ρ(Q)∇̂Qρ(Q)−1 (A17)

where

Ĵ(τ) = Ĵδ(t) + kBT

 0 0

0 ξ̂(τ)

 (A18)

Appendix B: Generalized friction tensor

Following the hydrodynamics approach for flexible molecules70,71 we first calculate the

matrix of constraints B, that relates the generalized velocities of the molecule, Q̇ =
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(VCM , ω, q̇), to the Cartesian velocities of the atoms, v, i.e.

v = BQ̇ (B1)

To this purpose, it is sufficient to write the explicit expression that gives the velocity of the

j-th atom. We start by writing the relationship among the Cartesian coordinates of atom

α (Rα) in the laboratory frame (LF), and the generalized coordinates Q as

LRα = LRCM + Lrα = LRCM +E(Ω)cα(q) (B2)

and taking the total time derivative

vα = VCM + Ė(Ω)cα(q) +E(Ω)ċα(q)

= VCM + [E(Ω)cα(q)]×ω +E(Ω)
∂cα
∂q
q̇ =

= B(T )
α VCM + B(R)

α ω + B(I)
α q̇ =

= BαQ̇ (B3)

The derivatives of atoms internal Cartesian coordinates, cα with respect to the natural in-

ternal coordinates (q, distances, bond angles and torsion angles) are carried out analytically.

Collecting all of the atoms
v1

v2

...

vN

 =


B(T )

1 B(R)
1 B(I)

1

B(T )
2 B(R)

2 B(I)
2

...
...

...

B(T )
N B(R)

N B(I)
N



VCM

ω

q̇

 (B4)

The B matrix here defined can be used to calculate the generalized friction tensor as

ξQ = BtrξxB (B5)

where ξx is the model translational friction for a collection of spheres. If we neglect hydro-

dynamics interactions and assume that the same effective radius, Re, is assigned to all the
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atoms the model friction tensor for a number N of atoms reads

ξx = πCReη13N = ξ013N (B6)

and the generalized friction tensor is calculated as

ξQ = ξ0BtrB (B7)
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FIG. 1. Example of reference frames for protein GB3: µF is chosen as the dipolar frame on the
N-H group of the peptide bond between E24 and T25.

FIG. 2. Optimized molecular geometries of the sequence of polyalanines (ALA−)n, with n =

2, . . . , 10

FIG. 3. Principal values of inertia tensors of the set of the series (ALA−)n, with n = 2, . . . , 10:
squares x axis values, circles y axis values, diamonds z axis values

FIG. 4. Color map of log |(ωK)ij | for the series (ALA−)n, with n = 2, . . . , 10; ωK is calculated via
the direct estimate of the Hessian of internal energy in the references geometries.

FIG. 5. Histograms of log |(ωK)ij | for the series (ALA−)n, with n = 2, . . . , 10; ωK is calculated via
the direct estimate of the Hessian of internal energy in the references geometries.

FIG. 6. Color map of log |(ωK)ij | for the series (ALA−)n, with n = 2, . . . , 10; ωK is calculated via
the inversion of the covariance matrix.

FIG. 7. Histograms of log |(ωK)ij | for the series (ALA−)n, with n = 2, . . . , 10; ωK is calculated via
the inversion of the covariance matrix.

FIG. 8. Color map of log |(ωξ)ij | for the series (ALA−)n, with n = 2, . . . , 10; cfr. Appendix B for
the evaluation of ξ.

FIG. 9. Histograms of log |(ωξ)ij | for the series (ALA−)n, with n = 2, . . . , 10; cfr. Appendix Bfor
the evaluation of ξ.

FIG. 10. Histograms of log |(ωint)ij | for the series (ALA−)n, with n = 2, . . . , 10; the curvature
matrix is calculated via the inversion of the covariance matrix.

FIG. 11. Histograms of log |ωio
ij | for the series (ALA−)n, with n = 2, . . . , 10; the curvature matrix

is calculated via the inversion of the covariance matrix.

FIG. 12. Histograms of log |ωK × fs| calculated via the inversion of the covariance matrix for the
10-alanine peptide simulated in cubic boxes of side length of 40 Å (left panel), 50 Å (middle panel),
and 60 Å (right panel).

FIG. 13. Map and histograms of log |ωK × fs| for 10-alanine calculated via Hessian (a, b) and the
inversion of the covariance matrix (c,d).

FIG. 14. Examples of trajectories for 2-alanine, 4-alanine, 6-alanine and 10-alanine of diagonal
friction matrix elements log |(ωξ)ii| in time: i = 4 stretching degree of freedom in red, i = 5

bending degree of freedom in green, i = 6 torsional degree of freedom in green; trace of rotational
part in black.

FIG. 15. Average eigenvalues of ωξ for 2-alanine, 4-alanine, 6-alanine and 10-alanine, with standard
deviation (vertical bars).

FIG. 16. Summary view of levels of approximations: from the atomistic Liouville equation to the
SFB model. 40
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