
HAL Id: hal-02414571
https://hal.science/hal-02414571v1

Submitted on 16 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The deal.II Library, Version 9.1
Daniel Arndt, Wolfgang Bangerth, Thomas Clevenger, Denis Davydov, Marc
Fehling, Daniel Garcia-Sanchez, Graham Harper, Timo Heister, Luca Heltai,

Martin Kronbichler, et al.

To cite this version:
Daniel Arndt, Wolfgang Bangerth, Thomas Clevenger, Denis Davydov, Marc Fehling, et al..
The deal.II Library, Version 9.1. Journal of Numerical Mathematics, 2019, 27 (4), pp.203-213.
�10.1515/jnma-2019-0064�. �hal-02414571�

https://hal.science/hal-02414571v1
https://hal.archives-ouvertes.fr


The deal.II Library, Version 9.1

Daniel Arndt*1, Wolfgang Bangerth2, Thomas C. Clevenger3,
Denis Davydov4, Marc Fehling5, Daniel Garcia-Sanchez6, Graham

Harper2, Timo Heister3,7, Luca Heltai8, Martin Kronbichler9,
Ross Maguire Kynch10, Matthias Maier11, Jean-Paul Pelteret4,

Bruno Turcksin*1, and David Wells12

1Computational Engineering and Energy Sciences Group, Computional Sciences and
Engineering Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., TN 37831, USA.

{arndtd,turcksinbr}@ornl.gov
2Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874,

USA. bangerth@colostate.edu, harper@math.colostate.edu
3School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC,

29634, USA {tcleven, heister}@clemson.edu
4Chair of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg,

Egerlandstr. 5, 91058 Erlangen, Germany. {denis.davydov,jean-paul.pelteret}@fau.de
5Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich,

Germany. m.fehling@fz-juelich.de
6Sorbonne Universités, UPMC Univ. Paris 06, CNRS-UMR 7588, Institut des NanoSciences

de Paris, F-75005, Paris, France daniel.garcia-sanchez@insp.upmc.fr
7Scientific Computing and Imaging Institute, 72 S Central Campus Drive, Room 3750 Salt

Lake City, UT 84112. heister@sci.utah.edu
8SISSA, International School for Advanced Studies, Via Bonomea 265, 34136, Trieste, Italy.

luca.heltai@sissa.it
9Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15,

85748 Garching, Germany. kronbichler@lnm.mw.tum.de
10Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea
University, Bay Campus, Fabian Way, Swansea SA1 8EN, Wales, UK. rkynch@gmail.com
11Department of Mathematics, Texas A&M University, 3368 TAMU, College Station, TX

77845, USA. maier@math.tamu.edu
12Department of Mathematics, University of North Carolina, Chapel Hill, NC 27516, USA.

drwells@email.unc.edu

Abstract: This paper provides an overview of the new features of the finite element library
deal.II, version 9.1.

1 Overview

deal.II version 9.1.0 was released May 21, 2019. This paper provides an overview of the
new features of this release and serves as a citable reference for the deal.II software library
version 9.1. deal.II is an object-oriented finite element library used around the world in the

∗ This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with
the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. The Department of Energy will provide public
access to these results of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).



2

development of finite element solvers. It is available for free under the GNU Lesser General Public
License (LGPL). Downloads are available at https://www.dealii.org/ and https://github.
com/dealii/dealii.

The major changes of this release are:

– Improved support for automatic differentiation (see Section 2.1),

– Dedicated support for symbolic algebra (see Section 2.2),

– Full support for hp adaptivity in parallel computations (see Section 2.3),

– An interface to the HDF5 file format and libraries (see Section 2.4),

– Significantly extended GPU support (see Section 2.5),

– Parallel geometric multigrid (GMG) improvements (see [17] and Section 2.6),

– Four new tutorial programs (step-61, step-62, step-63, step-64), as well as one new code
gallery program (see Section 2.7).

The major changes are discussed in detail in Section 2. There are a number of other noteworthy
changes in the current deal.II release that we briefly outline in the remainder of this section:

– The release contains a number of performance improvements and bug fixes for the matrix-
free framework. One notable improvement is the support for renumbering of degrees of
freedom within the cells for discontinuous elements, avoiding some reshuffling operations
across the SIMD lanes with vectorization over several cells and faces, which is especially
useful on processors with AVX-512 vectorization (8 doubles), speeding up operations by
up to 10%. Secondly, the strategy for the most efficient tensor product evaluators according
to the performance analysis of [37] in the context of more quadrature points than shape
functions has been revised for better performance.

– A new class ParsedConvergenceTable has been introduced that greatly simplifies the con-
struction of convergence tables, reading the options for the generation of the table from a
parameter file, and providing methods that, combined with a parameter file, allow one to
generate convergence tables using one-liners in user codes.

– The FE_BernardiRaugel class implements the non-standard Bernardi-Raugel (BR) element
that can be used to construct a stable velocity-pressure pair for the Stokes equation [12].
The BR element is an enriched version of the Qd

1 element with added bubble functions on
each edge (in 2d) or face (in 3d). It addresses the fact that the Qd

1 × Q0 combination is not
inf-sup stable (requiring a larger velocity space), and that the Qd

2 ×Q0 combination is stable
but converges with only first-order at the cost of the large number of velocity unknowns.
The BR space is thus intermediate between the Qd

1 and Qd
2 spaces.

The element is currently only implemented for parallelogram meshes due to difficulties
associated with the mapping of shape functions: The shape functions of the Qd

1 part of the
element need to be mapped as scalars, as is common for the vector components of the Qd

1
element; on the other hand, the vector-valued edge bubble functions need to be mapped
using the Piola transform as is common for the Raviart-Thomas element. deal.II does not
currently have the ability to use different mappings for individual shape functions, though
this functionality is planned for the next release.

https://www.dealii.org/
https://github.com/dealii/dealii
https://github.com/dealii/dealii


3

– The FE_NedelecSZ class is a new implementation of the Nédélec element on quadrilaterals
and hexahedra. It is based on the work of Zaglmayr [58] and overcomes the sign conflict
issues present in traditional Nédélec elements that arise from the edge and face parame-
terizations used in the basis functions. Therefore, this element should provide consistent
results for general quadrilateral and hexahedral elements for which the relative orienta-
tions of edges and faces (as seen from all adjacent cells) are often difficult to establish. The
FE_NedelecSZ element addresses the sign conflict problem by assigning a globally defined
orientation to local edges and faces. A detailed overview of the implementation of the
FE_NedelecSZ element in deal.II can be found in [40].

– All of the elementary geometrical objects of the library (namely Point<dim>, Segment<dim>,
and BoundingBox<dim>) have been augmented with the traits needed to comply with
boost::geometry concepts. A new interface to boost::geometry::index::rtree has been
added that simplifies the construction of spatial indices based on points, bounding boxes,
or segments.

In addition to these changes, the changelog lists more than 200 other features and bugfixes.

2 Major changes to the library

This release of deal.II contains a number of large and significant changes that will be discussed
in this section.

It of course also contains a vast number of smaller changes and added functionality; the details
of these can be found in the file that lists all changes for this release, see [42].

2.1 Improved support for automatic differentiation

In the previous release, numerous classes that are used to assemble linear systems and right
hand sides, as well those used to define constitutive laws, were given full support for “white-
listed” automatically differentiable (AD) number types from the ADOL-C and Sacado libraries.
This included the classes that represent the local contributions of one cell to the global linear
system (i.e., FullMatrix and Vector) as well as the classes commonly used for the computations
at individual quadrature points (primarily the Tensor and SymmetricTensor classes of various
ranks). In the current release we have provided a unified interface to these AD libraries, focusing
on two specific use contexts:

1. The construction and linearization of finite element residuals; and

2. The construction and linearization of constitutive model kinetic variables.

In the first context, the finite element degrees of freedom are considered the independent variables.
From these primitives, theEnergyFunctionalhelper class in the namespaceDifferentiation::AD
may be used to compute both the residual and its linearization by directly defining the contri-
bution to the (twice differentiated) scalar total energy functional from each cell. Similarly, the
ResidualLinearization class requires the (once-differentiated) finite element residual to be de-
fined on a per-cell basis, and this contribution is automatically linearized.

The second context aims directly at constitutive model formulations, and serves to compute
the directional derivatives of components of (multi-field) constitutive laws with respect to the
scalar, vector, tensor, and symmetric tensor fields in terms of which they are parameterized. The
ScalarFunction class may be used to define a scalar function (such as strain energy function) that
may be twice differentiated, while the VectorFunction may be used to define a vector function
(such as a set of kinematic fields) that may be differentiated once. Since the total derivatives of all
components are computed at once, these two helper classes provide an interface to retrieve each

https://dealii.org/developer/doxygen/deal.II/changes_between_9_0_1_and_9_1_0.html


4

sub-component of the gradient and Hessian (for a ScalarFunction) or values and Jacobian (for
a VectorFunction).

Although these aforementioned helper classes have been documented with a specific use in mind,
they remain generic and may (with a reinterpretation of the meaning of the independent and de-
pendent variables) be used for other purposes as well. Furthermore, through the implementation
of TapedDrivers and TapelessDrivers classes that interface with the active AD library, the
generic helper classes hide library-dependent implementation details and facilitate switching
between the supported libraries and AD number types based on the user’s requirements.

2.2 Dedicated support for symbolic algebra, including algebra differentiation

To complement the automatic differentiation features in deal.II, this release sees the first step
towards integrating and supporting a highly performant computer algebra system (CAS) via
the SymEngine library [54]. This allows the development of exact algebraic expressions using
variables that are manipulated symbolically and may represent any value (or supported data
structure). In the context of finite element simulations, typical applications include (but, due to
the generality of the CAS, are not limited to) the development of constitutive models and the
implementation of finite element assembly operations through the construction and linearization
of finite element residuals.

The Expression class in the namespace Differentiation::SD interfaces to SymEngine and forms
the basis of symbolic computations, offering a full set of overloaded operators and a C++ style
interface. This class offers the following basic functionality:

– symbolic variable definition,

– symbolic function definition,

– expression creation using standard C++ syntax,

– expression parsing,

– comparison operations,

– logical operations,

– conditional expression construction,

– differentiation,

– substitution (partial and complete), and

– serialization.

deal.IInow also provides an extensive set of math operations, with a syntax mimicking that used
in the C++ standard library. Using the Expression class as a basis, we have developed a set of
functions that can be used to create deal.II Tensors and SymmetricTensors of symbolic variables
and symbolic functions. This gives full symbolic tensor algebra support using the pre-existing
Tensor and SymmetricTensor classes and associated functions. We have also implemented a set
of utility functions with the following features:

– differentiate scalar expressions with respect to other scalar expressions, as well as tensors
and symmetric tensors of expressions;

– differentiate tensors and symmetric tensors of expressions with respect to scalar expres-
sions, as well as other tensors and symmetric tensors of expressions;

– create symbolic substitution maps;



5

– resolve explicit dependencies between expressions; and

– perform scalar and tensor valued substitution (including conversion from symbolic to real-
valued scalars and tensors).

In the next release we expect to implement classes to assist in performing assembly oper-
ations in the same spirit as it is already possible using automatic differentiation using the
Differentiation::ADnamespace, although in a fully symbolic manner. We will also address per-
formance issues of the Expression class by leveraging the optimization capabilities of SymEngine,
including common subexpression elimination (CSE), as well as by generating high performance
code-paths to evaluate these expressions through the use of a custom-generated std::function
(so-called “lambda” optimization) or by compiling expressions using the LLVM JIT compiler.

2.3 Full support for hp adaptivity in parallel computations

deal.II has had support for hp adaptive methods since around 2005 (documented in [11]) and
for parallel computations on distributed meshes since around 2010 (see [9]), but not for both at
the same time. The challenges to combine these are related to a number of areas:

1. Data structures: The data structures necessary to store the indices of degrees of freedom
are substantially more complicated for hp algorithms than for the h adaptive schemes that
were already implemented. This is because the number of degrees of freedom per cell is
now no longer constant. Furthermore, faces and edges may need to store more than one
set of indices if the adjacent cells use different polynomial degrees; in the case of edges, the
number of sets of indices may also be of variable size.

All of this poses challenges in the parallel context because some of the information may not
be known, or not be known right away, for cells that are not locally owned (i.e., for ghost
and “artificial” cells), and for which the data structures stored on different processors have
to be reconciled.

2. Algorithms: Already for h adaptive meshes, enumerating all degrees of freedom uniquely
on the global mesh is difficult, as evidenced by the complications of the algorithms shown
in Section 3.1 of [9], which requires more than one page of text and is implemented in many
hundreds of lines of code.

These difficulties are even more pronounced when using hp adaptivity. The main obstacle
is the desire to unify the indices of matching degrees of freedom on adjacent cells whenever
elements with continuous polynomials are used. For example, the edge degree of freedom
of a Q2 element has to be merged with the middle one of the three edge degrees of freedom
of a Q4 element on a neighboring cell. Section 4.2 of [11] discusses a sequential algorithm
that eliminates one of these degrees of freedom in favor of another, but it introduces a
“master” and a “slave” side of the interface. This is of no major consequence in sequential
computations, but is inconvenient in parallel computations if the “master” side is a ghost
cell whose degree of freedom indices are not (yet) available while enumerating local degrees
of freedom, or if the master is an artificial cell whose information will never be available on
a processor.

An earlier implementation of the algorithm enumerating degrees of freedom, already avail-
able in deal.II 9.0, simply did not unify indices on processor boundaries. However, this
makes the total number of degrees of freedom dependent on both the partition of the mesh
and the number of processors available. We have therefore re-implemented the algorithm
so that the unification does happen also on processor boundaries, and will report on the
details elsewhere.



6

3. Data transfer patterns: An important algorithm in parallel finite element methods is the
exchange of information stored on cells during mesh repartitioning. This happens, for
example, when interpolating the solution from one mesh to the next adaptively refined mesh;
or when adapting the polynomial degrees associated with each cell and repartitioning in
order to balance the computational cost of each processor’s partition. When using h adaptive
methods, the amount of data associated with each cell is fixed and the algorithms that
implement the data transfer are consequently relatively simple. On the other hand, in
hp contexts, each cell may have a different number of unknowns associated with it, and the
algorithms that transfer the data are substantially more complicated. In order to implement
those, we rely on recent enhancements of the p4est library (documented in [15]) to transfer
data of variable size across processors. Furthermore, the amount of data associated with
each cell may be large on cells with higher polynomial degrees, and might profit from
compression before sending.

4. Balancing computational cost: For h adaptive algorithms, the amount of work associated
with each cell is essentially the same, both during the assembly of linear systems as well as
during the solver phase. For hp adaptive methods, this is no longer the case. Consequently,
balancing the cost of work between different processors’ partitions is no longer as easy as
ensuring that every processor owns a roughly equal number of cells. Rather, one needs to
introduce a weighting factor for each cell that describes its relative cost compared to some
reference. To make things worse, the relative cost of assembly on a cell might not match
the relative cost of the linear solver associated with this cell, leading to difficult trade-offs
in defining optimal weighting factors. In this release, we supplied the basic functionality
to attach any amount of weighting factors to cells, but users still have to find reasonable
weights for themselves.

All of these issues have been addressed in the current release and are available to users. We will
report on the details of the algorithms and their performance in a separate publication.

2.4 Interface to the HDF5 file format and libraries

HDF5 is an open-source library and file format designed to store large amounts of data. The HDF5
format is specially tailored for high volume parallel I/O operations using MPI. HDF5 files are self-
describing and allow complex data relationships and a large variety of datatypes. In addition,
the HDF5 format is designed for long-term preservation of data; a HDF5 file created by an HPC
system can be easily read by a commodity laptop.

deal.II’s new HDF5 interface allows to write HDF5 files and manipulate datasets, groups, and
attributes in serial and in parallel using MPI. The HDF5MPI library calls that modify the structure
of the file are always collective, whereas writing and reading raw data in a dataset can be done
independently or collectively. In the deal.II’s HDF5 interface all the calls are set to collective
in order to maximize performance. This means that all the MPI processes have to contribute to
every single call, even if they don’t have data to write. We have added the following classes to
the deal.II’s HDF5 namespace.

– The new HDF5::File class can be used to open and create HDF5 files in serial or in parallel.

– The new HDF5::Group class can be used to open and create groups. HDF5 files have a tree
structure. The root contains groups and the groups can contain other groups.

– The new HDF5::DataSet class can be used to open and create datasets which can be placed
inside groups or at the root of the HDF5 file. A dataset can be a vector, a matrix, or a tensor. It
is possible to read and write in the dataset using hyperslabs or unordered data. Hyperslabs
are portions of datasets which can be a contiguous collection of points in a dataset, or a
regular pattern of points or blocks in a dataset.



7

– It is possible to define attributes in theHDF5::File, HDF5::Group andHDF5::DataSet classes.
An attribute is a small metadata such as a number or a string. Attributes are commonly
used to store simulation parameters.

As we have shown in step-62, the deal.II’s HDF5 interface can be easily used to exchange data
with Python and Jupyter notebooks.

2.5 GPU support via CUDA

GPU support was significantly extended for the current release:

– The CUDAWrappers::PreconditionILU and CUDAWrappers::PreconditionIC classes can
now be used for preconditioning CUDAWrappers::SparseMatrix objects.

– LinearAlgebra::distributed::Vector: the MPI-parallel vector class has gained a second
template argument MemorySpace which can either be Host or CUDA. In the latter case, the
data resides in GPU memory. By default, the template parameter is Host and the behavior
is unchanged compared to previous versions. When using CUDA, the ghost exchange can
be performed either by first copying the relevant data to the host, performing MPI commu-
nication, and finally moving the data to the device or, if CUDA-aware MPI is available, by
performing MPI communication directly between GPUs.

– Constrained degrees of freedom: the matrix-free framework now supports constrained
degrees of freedom. The implementation is based on the algorithms described in [43].
With this addition, both Dirichlet boundary conditions and the constraints arising from
adaptively refined meshes can be imposed within the matrix-free framework.

– MPI matrix-free computations: using LinearAlgebra::distributed::Vector, the matrix-
free framework can scale to multiple GPUs by taking advantage of MPI. Each MPI process
can only use one GPU and therefore, if multiple GPUs are available in one node, it is neces-
sary to have as many ranks as there are GPUs. Using Nvidia Multi-Process Service (MPS),
it is also possible for multiple processes to use the same GPU. This can be advantageous if
the amount of work on one rank is not sufficient to fully utilize a GPU.

The matrix-free GPU components integrated in deal.II have been compared against CPUs in
[38], where the application to geometric multigrid solvers is discussed.

2.6 Parallel geometric multigrid improvements

For the 9.1 release, the geometric multigrid facilities have been extended and revised for per-
formance. The geometric multigrid algorithms for uniform and adaptively refined meshes in
deal.II are based on so-called local coarsening, i.e., smoothening is done level-per-level, skip-
ping parts of the domain where the mesh is not as refined. The algorithm for the assignment
of the owner on level cells and the implications on load balancing have been analyzed in de-
tail in [17]. While most of the functionality has already been available since the 8.5 release of
deal.II presented in [6], several components have been finalized, such as the support for certain
renumbering algorithms that are beneficial for matrix-free execution, and interfaces that allow
the combination with matrix-free GPU computations as showcased in [38].

A number of data structures and implementations in deal.II have been adapted to ensure scala-
bility of the matrix-free algorithms and geometric multigrid infrastructure on more than 100,000
MPI ranks. A geometric multigrid solver for the Poisson equation as described in [39] has been
used as a performance test during the acceptance phase of the SuperMUC-NG supercomputer in
Garching, Germany. Scaling tests have been performed on up to the full machine with 304,128
cores of the Intel Xeon Skylake architecture and an arithmetic performance of around 5 PFlop/s
for a geometric multigrid solver with polynomials of degree 4 has been reached. Compared



8

to the official LINPACK performance of the machine of 19.5 PFlop/s (the machine is listed on
position 8 of the top-500 list of November 2018), this can be considered an extremely good value
for PDE solvers which have classically only reached a few percent of the LINPACK performance.
More importantly, this is achieved within a flexible framework supporting arbitrary polynomial
order on adaptively refined, unstructured meshes and with algorithms in the matrix-free module
of deal.II designed to minimize time to solution and scalability, rather than maximizing the
number of floating point operations. The largest Poisson problem that has been solved on 304k
cores contained 2.15 trillion unknowns (or 7.1 million unknowns per MPI rank) and was solved
in 3.5 seconds. Also, CFD production runs with 1011 unknowns and 105 time steps have been
completed in less than seven hours, demonstrating the capabilities of deal.II for large-scale
parallel computations. The scaling tests also revealed several relatively expensive operations in
the setup of the multigrid unknowns in deal.II’s DoFHandler and MGTransfer classes. While
a few bottlenecks have already been resolved for the present release, we plan several further
improvements of the setup stage for the next release.

Furthermore, the implementation of the Chebyshev iteration, deal.II’s most popular smoother
in the matrix-free context, has been revised to reduce the number of vector accesses. The vector
operations have become an increasing bottleneck due to the level of optimization available for the
operator evaluation with our matrix-free framework [37], especially on newer CPUs which can
perform a large number of arithmetic operations per byte loaded from main memory. This speeds
up matrix-free multigrid solvers by up to 10–15% on geometries with affine (parallelogram and
parallelpiped) cells, and up to 5% on deformed cells.

2.7 New and improved tutorial and code gallery programs

Many of the deal.II tutorial programs were substantially revised as part of this release. In
particular, we have converted many places that now allow for simpler code through the use of
C++11 features such as range-based for loops and lambda functions.

In addition, there are four new tutorial programs and one new code gallery program:

– step-61 is a program that implements the “weak Galerkin” method to solve the Laplace
equation. Weak Galerkin methods are related to the Hybridized Discontinuous Galerkin
method in that they introduce degrees of freedom on the interfaces between cells, but they
do not require the reformulation of the problem as a first-order system and instead re-define
what the gradient of a discontinuous function is.

– step-62 demonstrates the solution of problems related to phononic or photonic crystals.
Among the techniques shown in this program is the solution of complex-valued linear
systems, and the use of absorbing boundary conditions through the Perfectly Matched
Layer technique.

– step-63 implements a geometric multigrid preconditioner and solver for the advection-
diffusion equation, yielding optimal complexity. The tutorial compares point-based smoothers
to cell-based smoothers and demonstrates the effect of downstream ordering on smoother
performance.

– step-64 demonstrates the usage of matrix-free methods on Nvidia GPUs. GPUs are shown
to be advantageous for these kind of operations because of their superior hardware charac-
teristics, in particular a higher memory bandwidth than server CPUs within a given power
envelope.

– The MCMC-Laplace code gallery program is a code useful for the forward solution used as a
building block in Bayesian inverse problems, and for sampling the parameter space through
a Metropolis–Hastings sampler (a kind of Monte Carlo Markov Chain method).



9

2.8 Incompatible changes

The 9.1 release includes around 15 incompatible changes; see [42]. The majority of these changes
should not be visible to typical user codes; some remove previously deprecated classes and func-
tions; and the majority change internal interfaces that are not usually used in external applications.
However, some are worth mentioning:

– The VectorView class was removed. We recommend either copying the vector subset into
a Vector or using a BlockVector.

– The function Subscriptor::subscribe(), used through the SmartPointer class, now re-
quires a pointer to a std::atomic<bool> that tracks whether or not the pointer to the
subscribed-to object is still valid.

– The ConstraintMatrix class gained a template parameter for the scalar type and was been
renamed AffineConstraints. Several methods that take vectors or matrices as arguments,
such as AffineConstraints::distribute_local_to_global(), now require that all matrix
and vector arguments have matching number types.

– Similarly, the functions create_mass_matrix and create_boundary_mass_matrix in the
MatrixCreator namespace no longer support matrix and vector objects of different types.

3 How to cite deal.II

In order to justify the work the developers of deal.II put into this software, we ask that papers
using the library reference one of the deal.II papers. This helps us justify the effort we put into
it.

There are various ways to reference deal.II. To acknowledge the use of the current version of the
library, please reference the present document. For up to date information and a bibtex entry
for this document see:

https://www.dealii.org/publications.html

The original deal.II paper containing an overview of its architecture is [10]. If you rely on
specific features of the library, please consider citing any of the following:

– For geometric multigrid: [34, 33, 17];

– For distributed parallel computing: [9];

– For hp adaptivity: [11];

– For partition-of-unity (PUM) and enrichment methods of the finite element space: [21];

– For matrix-free and fast assembly techniques: [36, 37];

– For computations on lower-dimensional manifolds: [22];

– For integration with CAD files and tools: [28];

– For Boundary Elements Computations: [26];

– For LinearOperator and PackagedOperation facilities: [44, 45].

– For uses of the WorkStream interface: [56];

– For uses of the ParameterAcceptor concept, the MeshWorker::ScratchData base class, and
the ParsedConvergenceTable class: [52].

deal.II can interface with many other libraries:

https://dealii.org/developer/doxygen/deal.II/changes_between_9_0_1_and_9_1_0.html
https://www.dealii.org/publications.html


10

– ADOL-C [27, 57]

– ARPACK [41]

– Assimp [53]

– BLAS and LAPACK [5]

– cuSOLVER [18]

– cuSPARSE [19]

– Gmsh [24]

– GSL [23]

– Ginkgo [25]

– HDF5 [55]

– METIS [35]

– MUMPS [2, 3, 4, 46]

– muparser [47]

– nanoflann [14]

– NetCDF [50]

– OpenCASCADE [48]

– p4est [15, 16]

– PETSc [7, 8]

– ROL [51]

– ScaLAPACK [13]

– SLEPc [29]

– SUNDIALS [32]

– SymEngine [54]

– TBB [49]

– Trilinos [30, 31]

– UMFPACK [20]

Please consider citing the appropriate references if you use interfaces to these libraries.

The two previous releases of deal.II can be cited as [6, 1].

4 Acknowledgments

deal.II is a world-wide project with dozens of contributors around the globe. Other than the
authors of this paper, the following people contributed code to this release:
Giovanni Alzetta, Mathias Anselmann, Daniel Appel, Alexander Blank, Vishal Boddu, Benjamin
Brands, Pi-Yueh Chuang, Sambit Das, Stefano Dominici, Nivesh Dommaraju, Niklas Fehn, Isuru
Fernando, Andreas Fink, Rene Gassmöller, Alexander Grayver, Joshua Hanophy, Logan Har-
bour, Daniel Jodlbauer, Stefan Kaessmair, Eldar Khattatov, Alexander Knieps, Uwe Köcher, Kurt
Kremitzki, Dustin Kumor, Damien Lebrun-Grandie, Jonathan Matthews, Stefan Meggendorfer,
Pratik Nayak, Lei Qiao, Ce Qin, Reza Rastak, Roland Richter, Alberto Sartori, Svenja Schoeder,
Sebastian Stark, Antoni Vidal, Jiaxin Wang, Yuxiang Wang, Zhuoran Wang.

Their contributions are much appreciated!

deal.II and its developers are financially supported through a variety of funding sources:

D. Arndt and M. Kronbichler were partially supported by the German Research Foundation
(DFG) under the project “High-order discontinuous Galerkin for the exa-scale” (ExaDG) within
the priority program “Software for Exascale Computing” (SPPEXA).

W. Bangerth, T. C. Clevenger, and T. Heister were partially supported by the National Science
Foundation under award OAC-1835673 as part of the Cyberinfrastructure for Sustained Scientific
Innovation (CSSI) program and by the Computational Infrastructure in Geodynamics initiative
(CIG), through the National Science Foundation under Award No. EAR-1550901 and The Univer-
sity of California – Davis.

W. Bangerth and T. Heister were also partially supported by award DMS-1821210.

D. Davydov was supported by the German Research Foundation (DFG), grant DA 1664/2-1 and
the Bayerisches Kompetenznetzwerk für Technisch-Wissenschaftliches Hoch- und Höchstleis-
tungsrechnen (KONWIHR).

T. Heister was also partially supported by NSF Award DMS-1522191, and by Technical Data
Analysis, Inc. through US Navy SBIR N16A-T003.

M. Kronbichler was also supported by the Bayerisches Kompetenznetzwerk für Technisch-
Wissenschaftliches Hoch- und Höchstleistungsrechnen (KONWIHR) in the context of the project
“Performance tuning of high-order discontinuous Galerkin solvers for SuperMUC-NG”.



11

R. M. Kynch was supported by the Engineering and Physical Science Research Council (EPSRC)
UK through grant EP/K023950/1 while working at Swansea University, UK 2013-2015 where the
majority of his contribution was undertaken.

M. Maier was partially supported by ARO MURI Award No. W911NF-14-0247.

B. Turcksin: Research sponsored by the Laboratory Directed Research and Development Program
of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of
Energy.

D. Wells was supported by the National Science Foundation (NSF) through Grant DMS-1344962.

The Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg University has pro-
vided hosting services for the deal.IIweb page.

References
[1] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmoeller, T. Heis-

ter, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells.
The deal.II library, version 9.0. J. Numer. Math., 26(4):173–184, 2018.

[2] P. Amestoy, I. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric and
unsymmetric solvers. Comput. Methods in Appl. Mech. Eng., 184:501–520, 2000.

[3] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applica-
tions, 23(1):15–41, 2001.

[4] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for the
parallel solution of linear systems. Parallel Computing, 32(2):136–156, 2006.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[6] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P.
Pelteret, B. Turcksin, and D. Wells. The deal.II library, version 8.5. Journal of Numerical
Mathematics, 25(3):137–146, 2017.

[7] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout,
W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. May, L. C. McInnes, R. Mills,
T. Munson, K. Rupp, P. S. B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc users
manual. Technical Report ANL-95/11 - Revision 3.9, Argonne National Laboratory, 2018.

[8] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout,
W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. May, L. C. McInnes, R. Mills,
T. Munson, K. Rupp, P. S. B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Web
page. http://www.mcs.anl.gov/petsc, 2018.

[9] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and data structures for
massively parallel generic adaptive finite element codes. ACM Trans. Math. Softw., 38:14/1–28,
2011.

[10] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II — a general purpose object oriented
finite element library. ACM Trans. Math. Softw., 33(4), 2007.

[11] W. Bangerth and O. Kayser-Herold. Data structures and requirements for hp finite element
software. ACM Trans. Math. Softw., 36(1):4/1–4/31, 2009.

[12] C. Bernardi and G. Raugel. Analysis of some finite elements for the Stokes problem. Mathe-
matics of Computation, 44(169):71–79, 1985.

http://www.mcs.anl.gov/petsc


12

[13] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[14] J. L. Blanco and P. K. Rai. nanoflann: a C++ header-only fork of FLANN, a library for Nearest
Neighbor (NN) with KD-trees. https://github.com/jlblancoc/nanoflann, 2014.

[15] C. Burstedde. Parallel tree algorithms for AMR and non-standard data access. arXiv e-prints,
page arXiv:1803.08432, Mar 2018.

[16] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive
mesh refinement on forests of octrees. SIAM J. Sci. Comput., 33(3):1103–1133, 2011.

[17] T. C. Clevenger, T. Heister, G. Kanschat, and M. Kronbichler. A flexible, parallel, adaptive
geometric multigrid method for FEM. Technical report, arXiv:1904.03317, 2019.

[18] cuSOLVER Library. https://docs.nvidia.com/cuda/cusolver/index.html.

[19] cuSPARSE Library. https://docs.nvidia.com/cuda/cusparse/index.html.

[20] T. A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method.
ACM Trans. Math. Softw., 30:196–199, 2004.

[21] D. Davydov, T. Gerasimov, J.-P. Pelteret, and P. Steinmann. Convergence study of the
h-adaptive PUM and the hp-adaptive FEM applied to eigenvalue problems in quantum
mechanics. Advanced Modeling and Simulation in Engineering Sciences, 4(1):7, Dec 2017.

[22] A. DeSimone, L. Heltai, and C. Manigrasso. Tools for the solution of PDEs defined on curved
manifolds with deal.II. Technical Report 42/2009/M, SISSA, 2009.

[23] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, and
R. Ulerich. Gnu scientific library reference manual (edition 2.3), 2016.

[24] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element mesh generator with built-in
pre-and post-processing facilities. International journal for numerical methods in engineering,
79(11):1309–1331, 2009.

[25] Ginkgo: high-performance linear algebra library for manycore systems. https://github.
com/ginkgo-project/ginkgo.

[26] N. Giuliani, A. Mola, and L. Heltai. π-BEM: A flexible parallel implementation for adap-
tive, geometry aware, and high order boundary element methods. Advances in Engineering
Software, 121(March):39–58, 2018.

[27] A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C: a package for the automatic
differentiation of algorithms written in C/C++. ACM Transactions on Mathematical Software
(TOMS), 22(2):131–167, 1996.

[28] L. Heltai and A. Mola. Towards the Integration of CAD and FEM using open source libraries:
a Collection of deal.II Manifold Wrappers for the OpenCASCADE Library. Technical report,
SISSA, 2015. Submitted.

[29] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the
solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351–362, 2005.

[30] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,
K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro,
J. M. Willenbring, A. Williams, and K. S. Stanley. An overview of the Trilinos project. ACM
Trans. Math. Softw., 31:397–423, 2005.

https://github.com/jlblancoc/nanoflann
https://docs.nvidia.com/cuda/cusolver/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://github.com/ginkgo-project/ginkgo
https://github.com/ginkgo-project/ginkgo


13

[31] M. A. Heroux et al. Trilinos web page, 2018. http://trilinos.org.

[32] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S.
Woodward. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM
Transactions on Mathematical Software (TOMS), 31(3):363–396, 2005.

[33] B. Janssen and G. Kanschat. Adaptive multilevel methods with local smoothing for H1- and
Hcurl-conforming high order finite element methods. SIAM J. Sci. Comput., 33(4):2095–2114,
2011.

[34] G. Kanschat. Multi-level methods for discontinuous Galerkin FEM on locally refined meshes.
Comput. & Struct., 82(28):2437–2445, 2004.

[35] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[36] M. Kronbichler and K. Kormann. A generic interface for parallel cell-based finite element
operator application. Comput. Fluids, 63:135–147, 2012.

[37] M. Kronbichler and K. Kormann. Fast matrix-free evaluation of discontinuous Galerkin
finite element operators. ACM Trans. Math. Soft., in press:1–37, 2019.

[38] M. Kronbichler and K. Ljungkvist. Multigrid for matrix-free high-order finite element com-
putations on graphics processors. ACM Trans. Parallel Comput., 6(1):2/1–32, 2019.

[39] M. Kronbichler and W. A. Wall. A performance comparison of continuous and discontinuous
Galerkin methods with fast multigrid solvers. SIAM J. Sci. Comput., 40(5):A3423–A3448, 2018.

[40] R. M. Kynch and P. D. Ledger. Resolving the sign conflict problem for hp–hexahedral Nédélec
elements with application to eddy current problems. Computers & Structures, 181:41–54, Mar.
2017.

[41] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK users’ guide: solution of large-scale
eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia, 1998.

[42] List of changes for 9.1. https://www.dealii.org/developer/doxygen/deal.II/changes_
between_9_0_1_and_9_1_0.html.

[43] K. Ljungkvist. Matrix-free finite-element computations on graphics processors with adap-
tively refined unstructured meshes. In Proceedings of the 25th High Performance Computing
Symposium, HPC ’17, pages 1:1–1:12, San Diego, CA, USA, 2017. Society for Computer Sim-
ulation International.

[44] M. Maier, M. Bardelloni, and L. Heltai. LinearOperator – a generic, high-level expression
syntax for linear algebra. Computers and Mathematics with Applications, 72(1):1–24, 2016.

[45] M. Maier, M. Bardelloni, and L. Heltai. LinearOperator Benchmarks, Version 1.0.0, Mar.
2016.

[46] MUMPS: a MUltifrontal Massively Parallel sparse direct Solver. http://graal.ens-lyon.
fr/MUMPS/.

[47] muparser: Fast Math Parser Library. http://muparser.beltoforion.de/.

[48] OpenCASCADE: Open CASCADE Technology, 3D modeling & numerical simulation. http:
//www.opencascade.org/.

[49] J. Reinders. Intel Threading Building Blocks. O’Reilly, 2007.

[50] R. Rew and G. Davis. NetCDF: an interface for scientific data access. Computer Graphics and
Applications, IEEE, 10(4):76–82, 1990.

http://trilinos.org
https://www.dealii.org/developer/doxygen/deal.II/changes_between_9_0_1_and_9_1_0.html
https://www.dealii.org/developer/doxygen/deal.II/changes_between_9_0_1_and_9_1_0.html
http://graal.ens-lyon.fr/MUMPS/
http://graal.ens-lyon.fr/MUMPS/
http://muparser.beltoforion.de/
http://www.opencascade.org/
http://www.opencascade.org/


14

[51] D. Ridzal and D. P. Kouri. Rapid optimization library. Technical report, Sandia National
Laboratories (SNL-NM), Albuquerque, NM (United States), 2014.

[52] A. Sartori, N. Giuliani, M. Bardelloni, and L. Heltai. deal2lkit: A toolkit library for high
performance programming in deal.II. SoftwareX, 7:318–327, 2018.

[53] T. Schulze, A. Gessler, K. Kulling, D. Nadlinger, J. Klein, M. Sibly, and M. Gubisch. Open
asset import library (assimp). Computer Software, URL: https://github. com/assimp/assimp, 2012.

[54] SymEngine: fast symbolic manipulation library, written in C++. https://github.com/
symengine/symengine, http://sympy.org/.

[55] The HDF Group. Hierarchical Data Format, version 5, 1997-2018. http://www.hdfgroup.
org/HDF5/.

[56] B. Turcksin, M. Kronbichler, and W. Bangerth. WorkStream – a design pattern for multicore-
enabled finite element computations. ACM Transactions on Mathematical Software, 43(1):2/1–
2/29, 2016.

[57] A. Walther and A. Griewank. Getting started with ADOL-C. In Combinatorial Scientific
Computing, Chapman-Hall CRC Computational Science, pages 181–202. U. Naumann and
O.Schenk, 2012.

[58] S. Zaglmayr. High Order Finite Element Methods for Electromagnetic Field Computation. PhD
thesis, Johannes Kepler University, Linz, Austria, 2006.

https://github.com/symengine/symengine
https://github.com/symengine/symengine
http://sympy.org/
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/

	Overview
	Major changes to the library
	Improved support for automatic differentiation
	Dedicated support for symbolic algebra, including algebra differentiation
	Full support for hp adaptivity in parallel computations
	Interface to the HDF5 file format and libraries
	GPU support via CUDA
	Parallel geometric multigrid improvements
	New and improved tutorial and code gallery programs
	Incompatible changes

	How to cite deal.II
	Acknowledgments

