
HAL Id: hal-02414557
https://hal.science/hal-02414557

Submitted on 16 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Annular acoustic black holes to reduce propagative
Bloch- Floquet flexural waves in periodically supported

cylindrical shells
Jie Deng, Oriol Guasch, Laurent Maxit, Zheng Ling

To cite this version:
Jie Deng, Oriol Guasch, Laurent Maxit, Zheng Ling. Annular acoustic black holes to reduce propaga-
tive Bloch- Floquet flexural waves in periodically supported cylindrical shells. Internoise 2019, Jun
2019, Madrid, Spain. �hal-02414557�

https://hal.science/hal-02414557
https://hal.archives-ouvertes.fr


_______________________________ 
1 dengjie@cqu.edu.cn, 2oriol.guasch@salle.url.edu, 
3laurent.maxit@insa-lyon.fr, 4,*zling@cqu.edu.cn, corresponding author 
 

 

Annular acoustic black holes to reduce propagative Bloch-

Floquet flexural waves in periodically supported cylindrical 

shells 
 

Deng Jie1  

State Key Laboratory of Mechanical Transmission, College of Automotive 

Engineering Chongqing University, Chongqing 400044, PR China 

 

Guasch Oriol2 

GTM - Grup de recerca en Tecnologies Mèdia, La Salle, Universitat Ramon Llull C/ 

Quatre Camins 30, 08022 Barcelona, Catalonia, Spain 

 

Maxit Laurent3 

INSA–Lyon, Laboratoire Vibrations-Acoustique (LVA), 25 bis, av. Jean Capelle, F-

69621 Villeurbanne Cedex, France 

 

Zheng Ling4,*  

State Key Laboratory of Mechanical Transmission, College of Automotive 

Engineering Chongqing University, Chongqing 400044, PR China 

 

ABSTRACT 

Current designs of acoustic black holes are mainly intended for straight beams and 

flat plates. However, many structures of interest in naval and aeronautical 

applications essentially consist in a periodically stiffened cylindrical shell, which 

could benefit from the acoustic black hole (ABH) effect to reduce vibrations and 

noise radiation. In this work, we suggest the design of annular ABHs to that purpose. 

To test the feasibility of such annular ABHs we consider the idealized case of a 

periodically simply supported cylindrical shell of infinite length. Such a structure 

allows for the propagation of Bloch-Floquet flexural waves at some passbands, 

which can play an important role in the radiation of noise at the far field. By means 

of wave finite element models, we show that the proposed annular ABHs constitute 

an effective way of reducing the shell flexural motion. 
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1. INTRODUCTION 

It is well-known that the vibroacoustic behavior of infinite structures, like beams 

or plates, with periodic supports or stiffeners, is characterized by the formation of wave 

frequency stopbands and passbands [1,2]. In this work we are interested in the case of  
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Figure 1 Unit cell for the uniform cylindrical shell. 

periodically simply supported cylindrical shells [3], which are of importance in many 

naval and aeronautical applications. In particular, we address the problem of trying to 

suppress propagative Bloch-Floquet (BF) in the shell. Those may result in the radiation 

of noticeable noise at the acoustic far-field [4]. To that purpose, we suggest the design of 

annular acoustic black holes (ABHs) and check their efficiency in reducing vibrations by 

means of finite element simulations.  

Acoustic black holes consisting of power-law profiles tending to zero thickness 

have been proposed for beam terminations to reduce flexural vibrations [5], and several 

methods have been investigated in literature to improve their performance [6-9]. ABHs 

in the form of circular cuneate indentations have been also intended and tested in plates 

[10-12]. Besides, rectangular ABHs were analyzed in [13-14], while ring-shaped ABHs 

for vibration isolation in plates have been recently advocated in [15]. Beams and plates 

with periodic ABH distributions were reported in [16,17]. It is worthwhile mentioning 

that the ABH concept has been also used for acoustic wave attenuation at duct 

terminations [18,19]. 

In the current work, we embed annular ABHs with power law profile in the 

longitudinal axis of an infinite cylindrical shell with periodic simple supports. A wave 

finite element model is employed to test their performance in the reduction of BF waves, 

by comparison with a uniform cylindrical shell without ABHs. Dispersion curves are 

presented for the infinite shells, as well as transmissibility functions for points within a 

finite structure consisting of ten unit cylindrical cells.  

 

2.  WAVE FINITE ELEMENT MODEL 

We consider the case of an infinite cylindrical shell with periodic simple supports, 

its geometry and physical parameters being detailed in Table 1. The supports are 

separated apart a distance of 1.35 m and the shell is submitted to a ring force distribution, 

1 N in amplitude. A thin damping layer is attached at the inner side of the shell to attenuate 

BF waves. To analyze the performance of such a structure we focus on a unit cell, the 

support being placed on its center (see Figure 1). Given that the damping layers have only 

limited impact on the propagative waves, we propose the design and insertion of annular 

ABHs in the uniform shell to attenuate wave transmission, which, as said before, have 

power law profiles in the longitudinal direction. The unit cell for the cylindrical shell with 

an ABH indentation is shown in Figure 2, and its parameters are also described in Table 

1. The same amount of damping is included in both, the uniform and ABH shell 

configurations for a fair comparison.  
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Figure 2 Unit cell for the ABH cylindrical shell. 

 

The condensed unit cell mass and stiffness matrices M and K for the uniform and 

ABH cylindrical shells can be obtained by means of the finite element method (note that 

K will be complex if structural damping is assumed). At a given angular frequency 𝜔, the 

equation of motion of the cell reads 

 

  2 K M q f ,  (1) 

 

with 
T[ ]L Rq q q  being the displacement vector after condensation of the inner nodes, 

and 
T[ ]L Rf f f  the force vector at the FEM nodes (the subscripts L and R refer to the left 

and right end sides of the unit cell). Applying the periodic boundary condition 
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where exp( i )kL    and k represents the wave vector propagating in the structure, we 

get 
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with 𝚲𝑅 = [𝐈   λ𝐈]T and 𝚲𝐿 = [𝐈   𝜆−1𝐈]T. Here I stands for the identity matrix. One can 

then pre-multiply both sides of Equation 1 by LΛ to obtain  

 
Table 1 Geometry and physical parameters of the uniform and ABH cylindrical shells 

Parameter Value Description 

R 5 m Radius of the cylindrical shells 

tuni 0.03 m Thickness of the uniform shell 

t0 0.006 m Residual thickness of the ABH center 

L 1.35 m Length of 1 cell 

Labh 0.325 m Length of the ABH portion 

Lv 0.1625 m Length of the damping layers 

tv 0.006 m Thickness of the damping layers 

E 210 GPa Young modulus of the shell 

ρ 7800 kg/m3 Density of the shell 

Ev 5 GPa Young modulus of the damping layers 

ρv 950 kg/m3 Density of the damping layers 

η 0.5 Loss factor of the  damping layers 
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  2

L L Λ K M q Λ f . (4) 

 

Given that R Lq Λ q  and that force equilibrium demands L Λ f 0 , substitution into 

Equation 4 results in an eigenvalue problem for the FEM nodal displacements on the left 

side of the unit cell,  

 

 2( ) ( ) Lk k   K M q 0 ,  (5) 

 

where ( ) L Rk K Λ KΛ  and ( ) L Rk M Λ MΛ  denote the reduced stiffness and mass 

matrices. Limiting the range of k in [ / , / ]L L   (i.e. to the first Bernoulli zone), one 

can obtain the dispersion curve for the periodically simply supported cylindrical shell. 

 

3.  RESULTS 

 

3.1 Uniform shell 

Let us first focus on the results for the infinite uniform shell with periodic 

supports. The dispersion curves for the frequency range [0, 1000] Hz in terms of the 

wavenumber are shown in Figure 3a. As observed, four stopbands and passbands are 

clearly identified beyond the shell ring frequency.  In Figure 3b, we plot the transmission 

between two points located in a finite cylindrical shell of uniform thickness, consisting 

of ten unit cells. The points are placed in the first and last cells. As observed by direct 

comparison with Figure 3a, the transmissibility function strongly drops at the stopbands 

preventing vibration transmission. As opposed, BF waves get transmitted for the 

passband frequencies, the transmissibility reaching 25 dB. The inclusion of damping layer 

strips helps in reducing the peak values but do not result in substantial improvement. For 

better illustrating this phenomenon, in Figure 4a we have plotted the vibration shape of 

half the unit cell at 585 Hz, which corresponds to the central frequency of the third 

stopband. Figure 4b presents the vibration shape at 738 Hz, the central frequency of the 

third passband (see Figure 3a). The differences are apparent. 
 

 
Figure 3 (a) Dispersion curves for the undamped infinite uniform shell (b) Transmissibility for the finite 10 cells 

uniform shell. 

 



 

Figure 4 Vibration shape at (a) 585 Hz (center of the third stop band), (b) 738Hz (center of the third pass band) 

 

3.2 ABH shell 

To mitigate the transmission of BF waves we set annular ABHs in the infinite 

cylindrical shell (see Figure 2). The dispersion curves for the new periodic structure are 

shown in Figure 5a. The stiffness of the ABH unit cell is less rigid than that of the uniform 

cell so the number of stopbands and passbands in the analyzed frequency range increases. 

On the other hand, the transmissibility for the finite 10 ABH cell structure is presented in 

Figure 5b. Analogously to the uniform case, there is negligible transmission at the 

stopbands but some for the passbands. Note that as one could expect from the ABH 

physical principles, it is seen in the figure that including damping remarkably improves 

the transmissibility, especially at high frequencies. The great advantage of resorting to 

annular ABHs to reduce BF wave propagation becomes finally very clear in Figure 6, 

where we compare the transmissibilities of the uniform and the ABH 10 unit cell shells, 

for the damped and undamped cases.  

To end with, the vibration shapes at the central frequency of the third stopband 

and third passband are plotted in Figures 7a and 7b, analogously to what was done in 

Figures 4a and 4b for the uniform shell. The figures confirm the efficiency of the annular 

ABHs in reducing BF waves. One should bear in mind, however, that the residual 

thickness at the center of the ABH has been reduced to one fifth of the uniform one (see 

Table 1). In practice, this will weaken the shell and one should check whether that is 

admissible or not in terms of structural resistance.  

 

 
Figure 5 (a) Dispersion curves for the undamped infinite ABH shell and (b) Transmissibility for the finite 10 cells 

ABH shell. 

 

(a) (b) 



 
Figure 6 Comparison between the transmissibilities of the uniform and ABH cylindrical shells, (a) undamped shells, 

(b) damped shells.  

 

4.  CONCLUSIONS 

In this paper it has been proposed to reduce propagative Bloch-Floquet waves in 

periodically supported cylindrical shells by means of annular ABHs. The influence of the 

ABHs in the dispersion curves of shells of infinite length has been reported. Besides, we 

have checked the efficiency of the annular ABHs analyzing the transmissibility function 

between points in a finite cylindrical shell, consisting of ten simply supported unit cells. 

The new annular ABH design opens the door to benefit from the ABH effect in curved 

structures. Future work will involve developing a semi-analytical model for a quick 

parameter analysis, as well as inserting stiffeners to compensate for the weakening effect 

of the ABH residual thickness.  
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Figure 7 vibration shape at (a) 486 Hz (center of the third stop band), (b) 560 Hz (center of the third pass band). 
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