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Abstract

In this work, a hybrid numerical approach to predict the vibrational responses
of planar structures excited by a turbulent boundary layer is presented. The
approach combines an uncorrelated wall plane wave technique with the finite
element method. The wall pressure field induced by a turbulent boundary
layer is obtained as a set of uncorrelated wall pressure plane waves. The
amplitude of these plane waves are determined from the cross spectrum den-
sity function of the wall pressure field given either by empirical models from
literature or from experimental data. The response of the planar structure
subject to a turbulent boundary layer excitation is then obtained from an
ensemble average of the different realizations. The numerical technique is
computationally efficient as it rapidly converges using a small number of
realizations. To demonstrate the method, the vibrational responses of two
panels with simply supported or clamped boundary conditions and excited
by turbulent flow are considered. In the case study comprising a plate with
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simply supported boundary conditions, an analytical solution is employed
for verification of the method. For both cases studies, numerical results from
the hybrid approach are compared with experimental data measured in two
different anechoic wind tunnels.

Keywords: Uncorrelated wall plane wave, finite element method, turbulent
boundary layer, flow-induced vibration

1. INTRODUCTION1

The vibrational response of elastic structures subject to flow excitation is2

a seminal problem in a variety of technical applications, for example, an air-3

craft fuselage excited by turbulent boundary layer, a hydrofoil operating in4

turbulent flow or a telecommunications tower excited by wind. In such cases,5

the correct prediction of the vibrational response is crucial to minimise struc-6

tural fatigue as well as structure-borne radiating noise (Leibowitz, 1975; Boily7

and Charron, 1999; Ciappi et al., 2014, 2018). To predict the vibrational re-8

sponses for such problems, the forcing function arising from the turbulent9

flow field on the elastic structure should be obtained. This can be achieved10

by solving the Navier Stokes equations for given geometry and flow condi-11

tions. Numerical approaches such as direct numerical simulation (DNS) or12

large eddy simulation (LES) can be implemented to solve the Navier Stokes13

equations as well as take into account interaction of the flow with the body.14

However, these methods are computationally demanding as their implemen-15

tation for simulation of realistic scenarios often become impractical due to16

the significant range of spatial and temporal scales of the turbulence that17

need to be resolved (Shtilman and Chasnov, 1992). An alternative approach18

involves a steady-state Reynolds-averaged Navier Stokes (RANS) solution to19

predict the turbulent boundary layer (TBL) parameters (Bailly et al., 1997;20

Peltier and Hambric, 2007). RANS is an attractive approach as it is capable21

of predicting TBL parameter mean values with good fidelity. These param-22

eters can then be used as an input to analytical or semi-empirical models23

to predict the wall pressure field under the turbulent boundary layer (Blake,24

1986; Lee et al., 2005; Chen and MacGillivray, 2014).25

A vast number of studies have been carried out to predict the vibrational26

responses of plates excited by a turbulent flow field in air, including analytical27

models of infinite and finite plates (Strawderman, 1969; De Rosa and Franco,28

2008), numerical models (Birgersson et al., 2003; Hambric et al., 2004; Birg-29
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ersson and Finnveden, 2005; De Rosa and Franco, 2008; Hong and Shin, 2010;30

Ciappi et al., 2016), and from experiments (Ciappi et al., 2016). Birgersson31

et al. (2003) proposed a wavenumber domain approach to investigate the32

response of structures to TBL excitation. The cross spectral density of the33

TBL wall pressure was expressed as a finite Fourier series. The structural34

response to each term in the series was calculated using the spectral finite35

element method (FEM) and the total response was then obtained using the36

superposition principle. A spectral super element formulation for modelling37

plate vibration excited by distributed forces was developed by Birgersson38

and Finnveden (2005). Ichchou et al. (2009) employed ”rain-on-the-roof”39

excitation represented by statistically independent point sources, to excite a40

flat plate in the mid frequency range, showing good agreement with results41

obtained using an FEM model. Turbulence induced vibration of aerospace42

composite plates was numerically and experimentally investigated by Ciappi43

et al. (2016). It was demonstrated that at high Mach number, the fluid-44

loading effect on the composite panels cannot be neglected. More recently,45

Marchetto et al. (2017) compared the responses of a panel excited by a TBL46

as well as by a diffuse acoustic field.47

De Rosa et al. (2015) presented a pseudo deterministic excitation method48

to evaluate the dynamic response of a linear system excited by a turbulent49

load. The method achieved a significant reduction in computational time50

compared to the full stochastic solution. Errico et al. (2018) proposed an51

approach to model structures excited by aerodynamic and acoustic sources52

based on a wave finite element method. The approach was employed to pre-53

dict flow-induced vibrations of periodic flat and curved structures (Errico54

et al., 2019). Similitude laws for scaling the vibration response of flat pan-55

els to a turbulent boundary layer excitation were proposed by Franco et al.56

(2019). These laws remove the necessity of repeating experiment or numer-57

ical simulations due to the change in flow speeds, dimensions and material58

properties of panel.59

In many numerical approaches to predict vibrational responses of struc-60

tures excited by turbulent flow, the system response depends on the cross61

spectrum density (CSD) function of the wall pressure fluctuations. In order62

to correctly describe the partial correlation of the excitation, a large number63

of points distributed on the structural surface from which the frequency re-64

sponse functions are calculated need to be considered (Hambric et al., 2004;65

Hong and Shin, 2010). The coupling between a statistical model to describe66

the wall pressure fluctuations and a deterministic numerical model of the67
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structure represents a difficulty in the calculation process. The current study68

proposes a way of addressing this difficulty by employing a hybrid numerical69

approach involving the coupling between statistical and deterministic meth-70

ods, to predict the vibrational response of a panel under TBL excitation. To71

this end, the turbulent boundary layer excitation is modelled using a set of72

uncorrelated wall plane waves. The synthesized wall pressure corresponding73

to each realization within the set of uncorrelated wall plane waves is applied74

to a standard FEM model of the panel. This process is repeated for each75

realization of the wall pressure field. The vibrational response of the panel76

is then obtained from an ensemble average of the different realizations of the77

wall pressure. To demonstrate the technique, two case studies are considered78

corresponding to simply supported and clamped plates. The vibrational re-79

sponse is predicted numerically and analytically (for the simply supported80

plate). The results for both case studies are validated with experimental81

data.82

2. Mathematical formulation83

2.1. Hybrid numerical approach84

Figure 1 shows an elastic rectangular baffled panel with arbitrary bound-85

ary conditions. The plate is excited by a turbulent flow field. It is assumed86

that the TBL is homogeneous, stationary and fully developed over the panel87

surface. Further, it is assumed that the wall pressure field (WPF) is not88

altered by the vibration of the panel.89

Flow 

direction 

TBL excitation 

 

 
 

 

 

Figure 1: A baffled panel under TBL excitation

The uncorrelated wall plane wave technique (UWPW) recently introduced
by Maxit (2016) is used to simulate the pressure field beneath a turbulent
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boundary layer. The UWPW approach is summarized in what follows. The
space-frequency cross spectrum of the wall pressure fluctuations is given by
(Graham, 1997; Maxit, 2016)

STBL
pp (x− x′, ω) = Ψpp(ω)

(

Uc

ω

)2

S̃pp(x− x′, ω), (1)

where Ψpp(ω) and S̃pp(x− x′, ω) are respectively the auto spectrum density
(ASD) function and normalized CSD function of the pressure field. Uc is the
convective velocity, ω is the angular frequency, and x, x′ correspond to point
locations on the plate. The CSD of the wall pressure field in the physical
space is related to the CSD of the wall pressure spectrum in the wavenumber
domain, denoted by φpp(k, ω), using a spatial Fourier transform as follows

STBL
pp (x− x′, ω) =

1

4π2

∫

∞

φpp(k, ω)e
ik(x−x′)dk, (2)

where i =
√
−1 is the imaginary unit and k is the wavevector with compo-90

nents kx and ky in the streamwise and spanwise directions, respectively. The91

cross spectrum of the wall pressure can be computed using different models92

for the ASD of the pressure field and the normalized CSD of the pressure93

field, denoted by φ̃pp(k, ω), independently from each other as follows94

φpp(k, ω) = Ψpp(ω)

(

Uc

ω

)2

φ̃pp(k, ω). (3)

The improper integral in equation (2) can be approximated using the
rectangular method by truncating and sampling the wavenumber space as
follows (Maxit, 2016)

STBL
pp (x− x′, ω) ≈ 1

4π2

Nx
∑

i=1

Ny
∑

j=1

φpp(k
i
x, k

j
y, ω)e

ik(x−x′)δkxδky. (4)

where δkx, δky are the wavenumber resolutions in the streamwise and span-
wise directions, respectively. Nx and Ny are the number of points considered
along the kx and ky directions. The total pressure beneath a turbulent bound-
ary layer is now represented by a set of UWPWs. As the wall plane waves
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are uncorrelated, the CSD function of the wall pressure fluctuations induced
by a set of wall plane waves can be written as

SUWPW
pp (x− x′, ω) =

Nx
∑

i=1

Ny
∑

j=1

Λije
ik(x−x′), (5)

where Λij is the ASD function of the stochastic amplitude of UWPW with
indices i and j. Equating equations (4) and (5) allows the CSD function of
the pressure field by the TBL to be approximately equal to the CSD function
of the UWPWs if the amplitudes of the UWPWs are

Λij =
φpp(kx, ky, ω)δkxδky

4π2
. (6)

The amplitude of each wall pressure plane wave is defined such that the set
of UWPWs represent the statistical properties of the WPF generated by the
TBL. The statistical model to describe the WPF can now be coupled to a
deterministic model based on the FEM. This important step allows the WPF
to be expressed as a deterministic load input to the FEM. The WPF for the
lth realization of the UWPW can be expressed by (Maxit, 2016; Karimi et al.,
2019)

plinc(x, ω) =
Nx
∑

i=1

Ny
∑

j=1

√

Λije
i(kxx+kyy+ϕl

ij), (7)

where ϕ is a random phase uniformly distributed in [0 2π], expressing that95

the waves are uncorrelated. Substituting equation (6) into equation (7) and96

considering the qth node of an FEM mesh, the nodal pressure can be written97

as follows98

plinc(x
q, ω) =

Nx
∑

i=1

Ny
∑

j=1

√

φpp(kx, ky, ω)δkxδky
4π2

ei(kxx
q+kyyq+ϕl

ij). (8)

Using equation (8) as the deterministic load, FEM is now implemented
to compute the lth realization of the structural displacement ul by solving
the following linear system of equations

Dul = f l, (9)

where D is the dynamic stiffness given by

D = K− iωC− ω2M, (10)
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K, C and M are respectively stiffness, damping and mass matrices of the
structure, and f l is the force vector corresponding to the lth realization of
the TBL pressure field given by equation (8). It should be noted that the
mass and stiffness matrices are not frequency dependent and need to be
constructed only once for a given geometry. After the inverse of the dynamic
stiffness matrix is obtained, the plate displacement response can be computed
for each realization as follows

ul = D−1f l. (11)

The ASD of the plate displacement due to the TBL excitation is then calcu-
lated from the ensemble average of the different realizations by

Suu = E
[

ulul
]

l
, (12)

where E [ ] represents the ensemble average over the realizations and the99

overline denotes the complex conjugate. This process is repeated for each100

frequency to obtain the spectra of the structural response.101

Figure 2 illustrates the computational sequences for the UWPW-FEM102

approach. First, a mesh is created from the geometry. A RANS simulation,103

theoretical formula or experimental data can be used to estimate the TBL104

parameters over the surface of a structure for a given geometry and flow105

condition. The cross-spectrum of the wall pressure is evaluated from the TBL106

parameters using semi-empirical models. The spectra of the wall pressure107

is then applied in conjunction with the UWPW technique to obtain the108

WPF. The WPF is then used as an input to the FEM solver to compute109

the vibrational response. This process is repeated for each realization of110

the WPF. Finally, the structural response of the system is obtained from an111

ensemble average of the different realizations of the wall pressure fields at112

each frequency.113

2.2. Analytical model114

For verification of the hybrid numerical approach, an analytical model is115

herein presented for the case of a plate with simply supported boundary con-116

ditions on all its edges. The vibrational response of a panel due to excitation117

by a pressure field can be obtained using the modal expansion method and118

by identifying a panel sensitivity function. The ASD of the panel velocity is119
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Geometry 

Theoretical 
formula 

Extract TBL 
parameters  

Semi-empirical 
wall pressure 

model 

Synthesise WPF 
of l realisations 

Ensemble 
average of all 

responses 

START 

END 

-empi

FEM solver 

FEM mesh 

Solve the linear 
system 

Nodal 
displacement of l 

realisations 

th

Noda

Experiment 

RANS simulation  

OR 

OR 

Construct 
dynamic stiffness 

matrix (D) 

UWPW technique  Hydrodynamic 

evaluation  

Se

Figure 2: Flowchart outlining the computational process of the hybrid UWPW-FEM
approach

given by (Maury et al., 2002)120

Svv(x, ω) =
1

4π2

∫

∞

φpp(k, ω) |H(x,k, ω)|2 dk, (13)

where H(x,k, ω) is the sensitivity function which corresponds to the velocity121

at point x when the panel is excited by a unit wall plane wave. φpp(k, ω)122

is the CSD of the wall pressure field defined previously. Using numerical123

integration based on the rectangular method by truncating and regularly124

sampling the wavenumber domain, equation (13) can be expressed as125

Svv(x, ω) ≈
1

4π2

Nx
∑

i=1

Ny
∑

j=1

φpp(k, ω) |H(x,k, ω)|2 δkxδky, (14)

Using the normal modes of the panel, an analytical solution for the panel
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sensitivity function can be derived as follows (Maxit, 2016; Marchetto et al.,
2017)

H(x,k, ω) = iω
M
∑

m=1

N
∑

n=1

ψmn(k)ϕmn(x)

Ωmn(ω2
mn − ω2 + iηωωmn)

, (15)

where M and N are the truncation number of modal orders in the x and
y directions, respectively. For the modal expansion, the number of modes
within the extended frequency band [0 1.5ωmax] were considered, where ωmax

represents the highest angular frequency of interest. η is the structural loss
factor, Ωmn = ρshLxLy/4 is the modal mass, ωmn and ϕmn are respectively
the modal frequencies and mode shapes of the panel given by

ωmn =

√

D

ρsh

(

(
mπ

Lx

)2 + (
nπ

Ly

)2
)

, (16)

ϕmn(x) = sin(
mπx

Lx

)sin(
nπy

Ly

). (17)

Lx and Ly are respectively the length and width of the plate. D = Eh3/(12(1−
ν2)) is the flexural rigidity, ρs is the density, h is the panel thickness, E is
the Young’s modulus and ν is Poisson’s ratio. The modal forces ψmn are
calculated by integration over the panel surface A as follows

ψmn(kx, ky) =

∫

A

ei(kxx+kyy)ϕmn(x)dA = IxmI
y
n (18)

where126

{Irs |(r, s) = (x,m) ∨ (y, n)} =















(

sπ

Lr

)

(−1)sei(krLr) − 1

k2r −
(

sπ

Lr

)2 , kr 6=
sπ

Lr

1
2
iLr, otherwise















.(19)

3. Results and discussion127

To demonstrate the UWPW-FEM approach, two case studies compris-128

ing rectangular panels with different boundary conditions and excited by a129

TBL are examined. The first case study investigates a panel with simply130

supported boundary conditions. Numerical results for the simply supported131
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panel from the UWPW-FEM technique as well as analytical results obtained132

using the sensitivity function are compared with experimental data obtained133

in an anechoic wind tunnel. The second case study examines the vibrational134

response of a panel with clamped boundary conditions. Dimensions and ma-135

terial properties of both panels are given in Table 1. The fluid density and136

the kinematic viscosity were set to 1.225 kg/m3 and 1.5111 × 10−5 m2/s, re-137

spectively. For each case study, the structural loss factor was experimentally138

estimated using the -3 dB bandwidth method for the first few resonances139

of the plate. The mean value of the loss factors was used in the numeri-140

cal simulations. The simulations were conducted using Matlab on a desktop141

personal computer with 32 GB of RAM and a total of four physical cores.142

For the UWPW-FEM technique, the wall pressure field was synthesized in143

Matlab and then imported as a load to the FEM model of the panel in the144

commercial software COMSOL Multiphysics (v5.3a) using Matlab LiveLink.145

To obtain the panel response analytically or numerically, truncation of146

wavenumber domain is required. A truncated number of wavenumbers in147

the x and y directions need to be defined for equations (8) and (14). The148

criterion for defining the cut-off wavenumbers in the streamwise and span-149

wise directions must be chosen such that the significant contributions of the150

integrands of these equations are correctly taken into account. It has been151

previously demonstrated that in the vibration response, the wavenumbers152

below or close to the natural flexural wavenumber of the plate are dominant153

(Hambric et al., 2004; Maxit, 2016; Marchetto et al., 2018). Hence, a cut-off154

wavenumber of 2kp,max was used in both the streamwise and spanwise direc-155

tions, where kp,max = (ωmax

√

ρsh/D)1/2 is the flexural wavenumber of the156

plate at the maximum frequency of interest denoted by ωmax. The wavenum-157

ber resolutions were set to δkx = δky = 0.25 (1/m). Based on the cut-off158

wavenumber, a mesh size of ∆x = ∆y = π/(2kp,max) was selected in this159

work. A frequency resolution of 2 Hz was used in all numerical simulations.160

It is worth noting that if a very wide frequency range is considered, the fre-161

quency range can be divided into frequency bands. A different mesh size162

based on the highest frequency of interest for a given band can be employed,163

thereby increasing the efficiency of the method.164

3.1. Case study A - Simply supported plate165

The first case study considers a simply supported baffled rectangular166

panel used in the experiment by Marchetto et al. (2018) which was con-167

ducted in an anechoic wind tunnel at the Université de Sherbrooke. The168
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Table 1. Dimensions and mechanical properties of the panels
Parameter Case A Case B

Simply supported plate Clamped plate
Young’s modulus E (GPa) 70 200
Poisson’s ratio ν 0.3 0.29
Density ρ (kg/m3) 2700 7850
Length Lx (mm) 480 470
Width Ly (mm) 420 370
Thickness h (mm) 3.17 1.59
Damping loss factor η 0.005 0.005

experimental fabrication method proposed by Robin et al. (2016) was used169

to replicate simply supported boundary conditions. The panel was made170

of aluminium and the edge of the panel was placed 1.8 m from the nozzle.171

The vibration of the panel was measured using an accelerometer located at172

(x=0.3 m, y=0.33 m, z=0 m) on the panel surface as shown in Figure 3.173

The experiments were conducted at flow speeds of 20 m/s and 40 m/s.174

Flush-mounted  

simply supported plate 

8”×4”×  ” 

Plywood panel 

Sandpaper strip 
Airflow outlet 

Accelerometer 

Figure 3: Experimental set-up in the anechoic wind tunnel at the Université de Sherbrooke
(Marchetto et al., 2018). The accelerometer location is at (x=0.3 m, y=0.33 m, z=0 m)
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Figure 4: Predicted velocity spectra using different TBL models at flow velocity U∞ =
40 m/s versus wind tunnel measurements (dB ref. 1 (m/s)2/Hz).

3.1.1. Vibration response using the sensitivity function of the panel175

Figure 4 compares the velocity spectra predicted analytically with the
experimental data at a flow speed of 40 m/s, for a frequency range from 60 Hz
to 2 kHz. The Goody model described in Appendix A was used to evaluate
the ASD function of the wall pressure field. Note that Ψpp(ω) is a one-sided
radial frequency spectrum. Hence Ψpp(ω) was multiplied by 2π to convert it
to a one-sided cyclic frequency spectrum density Ψpp(f). For the normalized
CSD function, the Corcos, generalized Corcos and Mellen models described
in Appendix B were employed, whereby analytical results for each model
are compared. The TBL parameters were calculated based on theoretical
formula for a flat plate from literature. The boundary layer thickness δ and
the displacement thickness δ∗ are given by (Çengel and Cimbala, 2006)

δ ∼= 0.38x

Re0.2x

, δ∗ ∼= 0.048x

Re0.2x

(20)

where Rex represents the Reynolds number and x corresponds to the distance
from the nozzle to the centre of the panel. The wall shear stress τw was
calculated using the following empirical relations (Hambric et al., 2004)

τw ∼=
0.0225ρfU

2
∞

(8U∞δ∗/ν)0.25
(21)
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where U∞ is the free flow velocity, ρf is the fluid density and ν is the kinematic
viscosity. The convective velocity Uc was approximated as follows (Bull,
1967)

Uc
∼= U∞(0.59 + 0.3e−0.89δ

∗ω/U∞). (22)

It can be observed from Figure 4 that analytical results using the Mellen176

model are in very good agreement with experimental data. Compared to ex-177

perimental results, results obtained using the Corcos model are over predicted178

but under predicted using the generalized Corcos model. Over-prediction of179

the pressure spectrum at low wavenumbers using the Corcos model has been180

previously reported (Graham, 1997). Discrepancy between predicted results181

for the three TBL models is examined in further detail in Appendix C.182

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

Figure 5: Comparison between TBL parameters extracted from measurements (solid line)
and the standard TBL parameters from literature (dotted-dash line) at U∞ = 40 m/s, (a)
convective speed normalized by the flow velocity, (b) streamwise exponential decay rate
αx, (c) spanwise exponential decay rate αy

The input TBL parameters for the Mellen and Goody models correspond-183

ing to the convective velocity, boundary layer thickness, displacement thick-184

ness and wall shear stress were obtained using theoretical and empirical equa-185

tions from the literature given by equations (20)-(22). In the experiment, the186

Mellen model was fitted to the measured wall pressure field using the least187

square method to estimate the decay rates, αx and αy, and the convective188
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velocity Uc (Marchetto et al., 2018). Figure 5 compares the convective speed189

and exponential decay coefficients as a function of frequency for the Mellen190

model extracted from the wind tunnel measurement with the standard val-191

ues of these parameters from the literature for a flat plate. Figure 5 shows a192

good match between the convective speed given by equation (22) and those193

estimated from the experiment in the current frequency range. However, the194

measured values of the decay coefficients are larger than those commonly195

found in the literature. The experimental ASD function of the wall pressure196

is also presented as a function of frequency in Figure 6 and compared with197

predicted results by the Goody model. At low frequencies, the spectral level198

is under-predicted by the Goody model. However above 600 Hz, the Goody199

model produces larger spectral values compared to the measured data. The200

maximum discrepancy occurs at very low frequency as can be observed in201

Figure 6.202

Figure 7 presents two analytical results for the vibration responses of the203

panel as well as the experimental velocity spectra as a reference solution.204

Analytical1 represents the vibration response of the panel when the standard205

Mellen and Goody models are implemented. Analytical2 corresponds to the206

predicted velocity spectra using the experimental ASD function of the wall207

pressure field and the Mellen model for the CSD function using the experi-208

mental input parameters. For the latter, the measured TBL parameters in209

Figure 5 were substituted into the Mellen model to evaluate the normalized210

CSD function, which was then used with the experimental pressure spectrum211

to calculate the forcing function for the panel. The two analytical results are212

in very good agreement with the measured data. Better agreement with213

the reference solution was observed at low frequencies using measured TBL214

input parameters (Analytical2). This is due to the difference between the215

experimental ASD function and the Goody model as well as discrepancy be-216

tween standard Mellen model and experimentally fitted Mellen model (see217

Appendix C.).218
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Figure 6: Measured ASD function of the wall pressure versus predicted results using the
Goody model at U∞ = 40 m/s (dB ref. 1 Pa2/Hz)

Figure 7: Velocity spectra obtained using the standard Mellen and Goody models
(Analytical1), using the measured pressure spectrum and experimentally fitted Mellen
model (Analytical2), and from wind tunnel measurements (dB ref. 1 (m/s)2/Hz)
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3.1.2. Vibration response using the hybrid UWPW-FEM approach219

The UWPW technique described in Section 2.1 was used to synthesize the220

pressure field at the surface of the panel. The standard Mellen and Goody221

models were herein used to evaluate the CSD function of the pressure field.222

Figure 8 shows the visualization of a realization of the surface pressure field at223

two discrete resonance frequencies corresponding to 177 Hz and 1005 Hz, for224

a flow speed of 40 m/s. The Goody and Mellen models were respectively used225

for the ASD and normalized CSD functions of the pressure field. Figure 8(a)226

shows that at low frequencies, a coarse mesh can resolve the waves as they227

have larger wavelengths. However, at higher frequencies, a finer mesh is228

needed to properly describe and synthesize the wall pressure field for plane229

waves with short wavelengths (Figure 8(b)). In this work, the criteria used230

for the mesh size ensures that the plane waves with the shortest wavelength231

corresponding to the highest frequency of interest are adequately resolved.232

A mesh of 24 elements in the streamwise direction and 21 elements in the233

spanwise direction was used. The displacement of the panel at two discrete234

resonance frequencies 177 Hz and 1005 Hz are respectively shown in Figure 9235

and Figure 10, using the single realization of the wall pressure given by236

Figures 8(a) and (b) as well as 30 realizations of the WPF. Whilst a similar237

pattern for displacement fields can be observed using a single realization and238

30 realizations of the WPF, at least 30 realizations of the WPF are required239

to obtain a converged solution at the highest frequency of interest considered240

here. The effect of the number of realizations on the structural response of the241

panel is shown in Figure 11. The analytical solution described in Section 2.2242

is also provided to verify the UWPW-FEM results. A close match between243

the numerical and analytical results can be observed. Using 30 realizations,244

the maximum estimated error in the calculation of the panel response was less245

than 1 dB for the frequency range considered here. As such, 30 realizations246

was used for all subsequent calculations.247

Figure 12 presents the predicted velocity spectra using the UWPW-FEM248

approach as well as measured velocity spectra for the simply supported panel249

at flow speeds of 20 m/s and 40 m/s. The numerical results are in excellent250

agreement with experimental data. As expected, with increasing flow speed,251

the magnitude of the vibrational response of the panel increases. A slight252

difference between resonant frequencies predicted numerically and obtained253

experimentally is observed, whereby the first ten resonances are listed in Ta-254

ble 2 for each case study. This can be attributed to differences in the panel255
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material properties as well as in the implementation of the boundary condi-256

tions in the numerical model and the experiment. To further demonstrate257

capability of the UWPW-FEM approach, velocity spectra at higher flow258

speeds of 60 m/s and 80 m/s are shown in Figure 13. Numerical results show259

good agreement with those obtained analytically. For the parameters chosen260

here, the aerodynamic coincidence frequency is 7.3 Hz, 29 Hz, 66 Hz and261

117 Hz for flow speeds of 20 m/s, 40 m/s, 60 m/s and 80 m/s, respectively.262

At these frequencies, the flexural wavenumber kp = (ω
√

ρsh/D)1/2 equals263

the convective wavenumber kc = ω/Uc and is given by fc = U2
c

√

ρsh/D/(2π)264

and TBL strongly excites the structure (Marchetto et al., 2018).265

(a)

(b)

Figure 8: A realization of the wall pressure field using the Mellen and Goody models for
a flow speed of 40 m/s at (a) 177 Hz and (b) 1005 Hz
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(a)

(b)

Figure 9: Panel displacement field for a flow speed of 40 m/s at 177 Hz using (a)
one realization of the WPF corresponding to the WPF shown in Figure 8(a) and (b) 30
realizations of the WPF
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(a)

(b)

Figure 10: Panel displacement field for a flow speed of 40 m/s at 1005 Hz using (a)
one realization of the WPF corresponding to the WPF shown in Figure 8(b) and (b) 30
realizations of the WPF
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Figure 11: Velocity spectra predicted numerically using the UWPW-FEM technique for
different number of realizations, as well as predicted analytically, for a flow speed of 40 m/s
(dB ref. 1 (m/s)2/Hz)
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(a)

(b)

Figure 12: Predicted and measured velocity spectra for a simply supported plate for a
flow speed of (a) 20 m/s and (b) 40 m/s (dB ref. 1 (m/s)2/Hz)
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Table 2. The first ten natural frequencies of the panels in case studies A and B
Case Study A Case Study B

Mode FEM (Hz) Experiment (Hz) Mode FEM (Hz) Experiment (Hz)
(1,1) 78 82 (1,1) 84 86
(2,1) 177 180 (2,1) 144 148
(1,2) 208 213 (1,2) 192 192
(2,2) 308 310 (3,1) 244 244
(3,1) 344 346 (2,2) 248 246
(1,3) 426 435 (3,2) 344 345
(3,2) 474 474 (1,3) 358 356
(2,3) 526 528 (4,1) 380 378
(4,1) 578 579 (2,3) 412 389
(3,3) 692 692 (4,2) 476 413

Figure 13: Predicted spectral velocity for a simply supported plate predicted numerically
using the UWPW-FEM technique and analytically, for flow speeds of 60 m/s and 80 m/s
(dB ref. 1 (m/s)2/Hz)
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3.2. Case study B - Clamped plate266

In the second case study we examined a steel flat plate with clamped267

boundary conditions along its edges excited by turbulent flow. The plate268

was used in the experiment conducted by Han et al. (1999) in a wind tunnel269

at Purdue University. Figure 14 shows a schematic diagram of the wind270

tunnel test section and plate. The plate vibration was measured using a271

scanning laser Doppler vibrometer at a point 150 mm from the plate’s left272

edge and 120 mm from its bottom edge. The experiment was carried out at273

flow speeds of 35.8 m/s and 44.7 m/s (Han et al., 1999; Hambric et al., 2004).274

The displacement thickness was measured for these flow speeds to be 2.9 mm275

and 2.4 mm, respectively. These values were used in equations (20)-(22) to276

calculate the input TBL parameters for the CSD function of the WPF.277

Flow 

direction 

Laser 

vibrometer 

Wind tunnel 

test section 

Flat plate 

1520 

470 

370 

610 

 

 
 

Figure 14: Schematic diagram showing the experimental set-up in the wind tunnel at
Purdue University, (dimensions in mm)

Figure 15 presents predicted and measured velocity spectra for the clamped278

plate at a flow speed of 44.7 m/s. The UWPW-FEM results are shown using279

the Corcos, generalized Corcos and Mellen models. A similar trend to Fig-280

ure 4 was observed indicating that using the Mellen model for the normalized281

CSD function of the pressure field provides the closest prediction to the ex-282

perimental data. Similar to the first case study, there is a small discrepancy283

between the predicted resonant frequencies and those obtained experimen-284

tally, whereby the first ten resonances are compared in Table 2 using the285
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Mellen model. In the experiment, the plate was bolted along its edges to a286

fixture to simulate clamped boundary conditions. However, the experimen-287

tal boundary conditions may not exactly correspond to zero displacement288

and zero rotation along all edges of the plate, as modelled using the FEM.289

Further, there may be small differences in the plate material properties in290

the experiment and those used in the FEM model.291

For the second case study, the aerodynamic coincidence frequency is 47 Hz292

and 74 Hz for flow speeds of 35.8 m/s and 44.7 m/s, respectively. The first293

two modes of the clamped plate occur at frequencies close to the aerodynamic294

coincidence frequency. The three TBL models have almost the same levels295

of magnitude as shown at the convection peak in Figure C1. Hence, at low296

frequencies, the velocity spectra generated using the three TBL models are297

almost identical. At higher frequencies, the predicted velocity using the three298

models are different from each other which is consistent with the behaviour299

of the TBL models in the wavenumber domain in Figure C1. Comparison300

between predicted spectral velocity using the Mellen model and experimental301

data for a flow speed of 35.8 m/s is presented in Figure 16, showing excellent302

agreement. It is worth noting that the maximum flow parameter ρfU
2
∞
L3
y/D303

for the cases studied here is approximately 2.8 for case study A at the highest304

considered flow speed of 80 m/s, and 1.7 for case study B at 44.7 m/s. These305

values for the flow parameter are well below the critical values at which static306

instability (divergence) or dynamic instability (flutter) occurs (Ellen, 1973;307

Bochkarev et al., 2016)308
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Figure 15: Predicted and measured velocity spectra for the clamped plate for a flow speed
of 44.7 m/s (dB ref. 1 (m/s)2/Hz)

Figure 16: Predicted and measured velocity spectra for the clamped plate for a flow speed
of 35.8 m/s (dB ref. 1 (m/s)2/Hz).
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4. Summary309

An uncorrelated wall plane wave technique was employed to determin-310

istically synthesize the wall pressure field underneath a turbulent boundary311

layer. The pressure field was then used as an input to an FEM model of312

a panel to predict its vibrational response. One of the main advantages of313

using the UWPW technique is that the deterministic WPF is calculated at314

each FEM nodal point for a small number of realizations, and can be applied315

as an input to the FEM or any other element-based approach to evaluate the316

panel structural response. An analytical method based on a sensitivity func-317

tion was employed to verify the numerical method for the case of a simply318

supported plate. Experimental data for panels with different material prop-319

erties, flow conditions and boundary conditions were also used to validate the320

proposed approach. It was shown that the hybrid UWPW-FEM technique321

can be confidently used to predict the structural responses of panels excited322

by turbulent flow. Among the three TBL models considered in this work,323

the Mellen model provided better estimation of the WPF compared with324

experimental data. It has been shown that except at low frequencies, for a325

flat plate under low Mach number TBL excitation, theoretical expressions326

from literature can be used to estimate the input TBL parameters required327

to compute the CSD function of the pressure field. Whilst the case studies328

presented here comprise simple panels with simply supported or clamped329

boundary conditions, the proposed method can be applied to study the vi-330

brations of complex panels under TBL excitation. Further, in the presence331

of complex flow conditions, a RANS simulation can be performed for more332

accurate calculation of the TBL parameters.333
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Appendices338

Appendix A: Auto spectrum density function339

The Goody model340

The empirical model of the auto spectrum density function of the pressure
field is given by Goody (2004)

Ψpp(ω) =

3τ 2wδ

(

ωδ

Ue

)2

Ue



0.5 +

(

ωδ

Ue

)0.75




3.7
(

1.1R−0.57T

(

ωδ

Ue

))7
(.1)

where RT = U2
τ δ/Ueν and Ue is the velocity at the boundary layer edge.341

Appendix B: Normalized cross spectrum density function342

The Corcos model343

The Corcos normalized wavevector-frequency spectrum is given by Corcos344

(1963)345

φ̃pp(kx, ky, ω) =
4αxαy



α2
x +

(

kx

kc
− 1

)2






α2
y +

(

ky

kc

)2




(.2)

where kc = ω/Uc. The exponential decay coefficients in the normalized CSD346

function in the streamwise and spanwise directions are respectively αx = 0.1347

and αy = 0.77 (Graham, 1997).348

The generalized Corcos model349

The normalized wavevector-frequency spectrum of the generalized Corcos350

model is given by Caiazzo et al. (2016)351

φ̃pp(kx, ky, ω) =
ω2

U2
c

4Bn(kx)Bm(ky)
(

− AkxAkyαωβω

nm

)

∑n−1
j=0 e

−iθj
∑m−1

j=0 e
−iθj

(.3)
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Bn(kx) =
Akx

1 +

(

kx − kc

αω

)2n (.4)

Bn(ky) =
Aky

1 +

(

ky

βω

)2m (.5)

Akx =
n sin( π

2n
)

παω

; Aky =
m sin( π

2m
)

πβω
(.6)

αω = kcαx; βω = kcαy; (.7)

θj =
π

2n
(1 + 2j) (.8)

The Mellen model352

The Mellen normalized wavenumber-frequency model is given by Mellen353

(1994)354

φ̃pp(kx, ky, ω) =
2π(αxαy)

2k3ω
(

(αxαykc)2 + (αxky)2 + α2
y (kx − kc)

2)3/2
(.9)

where αx = 0.1 and αy = 0.77.355

Appendix C356

Discrepancies in the results for the velocity spectra in Figure 4 predicted357

by the three TBL models are herein examined. The normalized cross spec-358

trum of the wall pressure field as a function of non-dimensionalized wavenum-359

ber kxUc/ω for the three TBL models at ky = 0 are compared in Figure C1.360

Close to the convective peak (kxUc/ω = 1), all three models have similar361

magnitudes. However, at higher frequencies or lower wavenumbers, the Cor-362

cos model provides a higher spectral level than that of the Mellen model.363

The generalized Corcos model with filter orders of m = 1 and n = 2 esti-364

mates a lower spectral level compared to the Mellen model prediction. This365

is consistent with the trend observed in Figure 4. It was also previously366
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demonstrated that the convective peak in the Mellen model expressed in the367

wavenumber domain has an oval shape, which is in better agreement with368

the measurements, in contrast to the model of Corcos and, by extension,369

the generalized Corcos which has a diamond-like shape (Mellen, 1990; Miller370

et al., 2012).371

Figure C1: Normalized cross spectrum models of the wall pressure field at ky = 0

The panel filters out the pressure waves with high wavenumbers and the372

panel response is essentially dominated by the wavenumbers below or close to373

the flexural wavenumber of the panel. As such, only the wavenumber region374

of the normalized CSD below the plate flexural wavenumber is of interest.375

The normalized CSD of the wall pressure field using the Corcos model, gen-376

eralized Corcos model, the standard Mellen model (Mellen1) and the exper-377

imentally fitted Mellen model (Mellen2) as a function of wavenumber in the378

streamwise direction, kx, are compared in Figure C2, at two discrete frequen-379

cies corresponding to 200 Hz (Figure C2(a)) and 2000 Hz (Figure C2(b)). At380

200 Hz and 2000 Hz, the flexural wavenumbers kp are respectively 16 (1/m)381

and 51 (1/m) which are below convected wavenumber as shown in Figure C2.382

At 200 Hz (Figure C2(a)), it can be observed that the experimentally fitted383

Mellen model produces a higher spectral level of almost 6 dB than that of the384

standard Mellen model. Further, the experimental ASD function at 200 Hz385
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in Figure 6 is approximately 7 dB above the predicted values by the Goody386

model. Since the CSD of the WPF is the product of the normalized CDS387

function and ASD function of the WPF as given by equation (1), a differ-388

ence of 13 dB between the standard and experimental CSD functions can389

be observed. This explains the reason why results at 200 Hz in Figure 7 for390

the velocity spectra obtained using the standard Mellen and Goody models391

(Analytical1) are lower by almost 13 dB than the velocity spectra obtained392

using the measured pressure spectra and experimentally fitted Mellen model393

(Analytical2). A similar interpretation can be provided for the discrepancy394

between the two sets of analytical results at 2000 Hz in Figure 7. At this395

frequency, the Goody model over-predicts the pressure spectrum by almost396

6 dB. Hence, when multiplied by the standard Mellen model (Mellen1) which397

is almost 5 dB lower than the experimentally fitted Mellen model (Mellen2),398

a small difference between the standard and experimental CSD functions of399

the wall pressure field occurs. Consequently, the velocity spectra at 2 kHz in400

Figure 7 represented by Analytical1 only slightly differs from results obtained401

using Analytical2.402
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(a)

(b)

Figure C2: Normalized CSD of the wall pressure field at ky = 0 using the standard Mellen
model (Mellen1), the experimentally fitted Mellen model (Mellen2), the Corcos model and
the generalized Corcos model at (a) 200 Hz and (b) 2000 Hz (dB ref. 1 Pa2/Hz). kp
indicates the panel flexural wavenumber
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