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Abstract: Infrastructure as a service (IaaS) clouds offer huge opportunities
to solve large-scale scientific problems. Executing workflows in such
environments can be expensive in time if not scheduled rightly. Although
scheduling workflows in the cloud is widely studied, most approaches
focus on two user’s quality of service requirements namely makespan (i.e.,
completion time) and costs. Other important features of cloud computing
such as the heterogeneity of resources and reliability must be considered. In
this paper, we present a reliability-aware method based on discrete particle
swarm optimisation (RDPSO) for workflow scheduling in multiple and
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heterogeneous cloud data centres. Our aim is to optimise data transfer time
while minimising makespan and enhancing reliability. Based on simulation,
our results show a significant improvement in terms of makespan, transferred
data and reliability relative to reliability-aware HEFT method (heterogeneous
earliest finish time), for the real-world workflows.

Keywords: cloud computing; workflow scheduling; data transfer; reliability;
discrete particle swarm optimisation.
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1 Introduction

The consistent requirements of workflow applications in data and computing involve a
greater performance computing environment in order to perform them in a reasonable
time and without failures. The problem of workflow scheduling is NP-hard (Ullman,
1975) and has been widely studied over the years in the context of distributed
systems, mainly in grid environments. However, with the emergence of the cloud
computing infrastructures, scientific-workflows scheduling still remains a fundamental
issue. Cloud computing is a model for enabling on-demand network access to a dynamic
shared-resources pool that can be rapidly provisioned (Mell and Grance, 2011) and that
makes the satisfaction of some quality of service (QoS) constraints difficult. Several
QoS constraints are used in workflow scheduling problems in the context of grids (Chen
and Zhang, 2009; Bouali et al., 2015; Oukfif et al., 2015; Kianpisheh et al., 2016) or
cloud systems (Chen and Zhang, 2012; Jian et al., 2014; Poola et al., 2016; Rehani and
Garg, 2017; Choudhary et al., 2018). Among all these constraints, optimising makespan
and cost are the two prime constraints that are broadly studied in Wu et al. (2015).
However other QoS constraints, like reliability, can be useful because of their impact
in workflow scheduling problems for cloud systems to achieve acceptable performance.
In cloud systems, users pay to use cloud resources. Thus they are more demanding on
performance and reliability. However, computing resources and networks are not failure
free and any type of failure may be crucial to the applications execution.

Using reliable scheduling algorithm can deal with such failures but it is known to be
a NP-hard problem (Hakem and Butelle, 2007). This is the reason why many heuristics
(Hakem and Butelle, 2007; Doğan and Özgüner, 2005; Dongarra et al., 2007; Fard et al.,
2012; Kumar et al., 2018) and meta-heuristics such as genetic algorithm (GA) (Wang
et al., 2011; Rehani and Garg, 2017), particle swarm optimisation (PSO) (Chen and
Zhang, 2012; Bouali et al., 2015) and ant colony optimisation (ACO) (Chen and Zhang,
2009; Kianpisheh et al., 2016) have been proposed for that issue.

Unfortunately, most studies are based on a reliability model of resources which is
not appropriate for real cloud systems and hence neglecting the resources heterogeneity
and the network links reliability mostly in multiple cloud data centres. Moreover, most
approaches do not consider the extra-time incurred during data transfers between tasks
which can influence the performance of the whole application. Indeed, in multiple cloud
data centres, resources are deployed on different regions and therefore data transfer times
become significant and directly influence the response time of workflow applications. In



4 K. Oukfif et al.

fact, cloud services that rely on virtual machines (VMs) are located in several distributed
data centres, hence requiring to consider data transfer times and network reliability.

In this work, we propose a reliability-aware strategy based on discrete PSO (DPSO)
for workflow scheduling in multiple cloud data centres where reliability is specified
jointly by those of computing resources and network links. Our approach pays attention
to minimising the workflow completion time, including both the task computation time
and the data transfer time, while enhancing the overall reliability of resources and
network links. The remainder of this paper is organised as follows. Section 2 reviews the
related work, followed by our reliability-aware scheduling algorithm formalisation, and
scheduling based on DPSO in Sections 3 and 4, respectively. Our proposed approach is
evaluated in Section 5 and Section 6 concludes the paper.

2 Related work

Previous work was done to optimise data transfer and reliability in distributed
environments such as grids, and more recently, these two constraints have been
re-examined by many researchers for cloud environments.

In this section, we address existing research related to optimising data transfer and
enhancing reliability constraints in distributed computing systems such as grid and cloud
infrastructures.

In the literature, we note these important works of Hakem and Butelle (2007), Doğan
and Özgüner (2005) and Dongarra et al. (2007) which address the problem of optimising
reliability considering times of data transfer.

In fact, Hakem and Butelle (2007) used a list scheduling heuristic called
BSA (Bi-objective Scheduling Algorithm) for scheduling parallel applications on
heterogeneous distributed computing systems which considers not only the makespan
but also the application failure probability. Doğan and Özgüner (2005) presented two
bi-objective scheduling heuristics for minimising time and enhancing reliability of
applications in heterogeneous computing systems. The first one was an improvement
of the traditional dynamic-level scheduling (DLS) algorithm (Sih and Lee, 1993) called
bi-objective dynamic level scheduling (BDLS). The second one was based on genetic
algorithm and is called bi-objective genetic algorithm (BGA) optimising the same
criteria as the first one.

A bi-objective scheduling algorithm (Dongarra et al., 2007) which optimises
makespan and reliability on heterogeneous systems was presented for independent tasks.
The authors demonstrated that tasks should be mapped to the resource so that the
product of task time and resource failure rate can be minimised. This product was then
used for enhancing the HEFT algorithm (Topcuoglu et al., 2002) to consider reliability
giving the reliable-HEFT heuristic.

Chen and Zhang (2009) have considered reliability, time and cost as QoS parameters
while scheduling workflows in grids. The proposed algorithm optimised a parameter
while meeting constraints of the two others. The algorithm is based on ACO where
seven heuristics were defined and selected on pheromone values. Thereafter, the same
authors presented a set base version of discrete PSO (S-PSO) for cloud workflow
scheduling, taking into account the following users QoS constraints: deadline, budget,
and reliability (Chen and Zhang, 2012). These constraints are optimised separately
since users are encouraged to specify one preferred QoS as an optimisation objective.
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However, in their paper, no cloud model specification was given. In addition, the
reliability constraint has not been modelled. It has been just specified by the thresholds
(like being no smaller than a user-defined variable MinReliability) and thus data
transmission reliability was not specified.

In contrast, in the work of Jian et al. (2014), a PSO algorithm for workflow
scheduling in cloud to enhance reliability was used where data transmission reliability is
considered. But unfortunately, the reliability of the cloud resources and data transmission
were expressed as levels that lack precision (values in the interval of [1, 5] to set).

Lee et al. (2010) discussed the effect of the reliability of workflow execution
on its cost in distributed computing systems and then they proposed an algorithm
called reliability for profit assurance (RPA) for workflow scheduling that incorporates
a cost-aware replication scheme to enhance reliability. Task replication approaches
are frequently adopted to deal with resource failures. However, replicas created for
enhancing reliability are often leading to the waste of resources. The reliability model
adopted by the authors did not incorporate communication links reliability.

The reputation-based look-ahead genetic algorithm (LAGA) was presented by Wang
et al. (2011) for large-scale distributed systems. LAGA has been optimised in terms of
completion time and failure rate. The completion time was used to obtain a task order
at each generation, and then the lowest failure rate was taken into account to select a
resource in a mutation operation. We note that the LAGA authors focused on intensive
computer applications where link reliability and communication time between tasks were
not modelled.

In some work, maintaining reliability is in relation to energy consumption. Fard
et al. (2012) suggested a multi-objective list scheduling (MOLS) method for workflow
execution in distributed computing systems. They used a Pareto optimality to achieve
four objectives: makespan, financial cost, energy consumption and reliability.

Guo et al. (2018) proposed an algorithm called Deadline Reliability-Based
Fault-Tolerant Scheduling Algorithm for Energy (DRB-FTSA-E) which optimises
energy and reliability while meeting the time constraint in a heterogeneous system.

Even recently, the management of system reliability has attracted researchers’
attention (Kianpisheh et al., 2016; Wen et al., 2016; Poola et al., 2016; Zhang
et al., 2017; Rehani and Garg, 2017; Xiao et al., 2018). Kianpisheh et al. (2016)
proposed a constrained-based workflow scheduling algorithm to maximise reliability.
They proposed three novel workflow scheduling heuristics which were based on ant
colony system. The aggregation of these heuristics minimised violations of time, cost
and reliability constraints. For simplicity, the network was assumed to be reliable which
is unrealistic in multiple cloud data centres environments. Wen et al. (2016) presented
a deploying workflow applications algorithm on federated clouds. Their method is able
to evaluate the most reliable scheme that meets application security requirements and
that optimises its cost. Poola et al. (2016) used the adaptive and just in-time (AJIT)
scheduling algorithm to support fault tolerance. Despite targeting the cloud by their
resource model, the network reliability was not modelled with the AJIT approach.

A bi-objective genetic algorithm (BOGA) was suggested by Zhang et al. (2017)
to optimise energy consumption and reliability of a parallel application executed
on heterogeneous processors of a cluster, but the reliability of the communication’s
links has not been taken into account. Rehani and Garg (2017) used the NSGA-II
meta-heuristic for a multi-objective workflow scheduling in cloud. Their cloud model
is a single site where the bandwidth linkage is supposed to be a uniform speed
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and links reliability was completely ignored. Xiao et al. (2018) proposed a heuristic
called maximising reliability with energy constraint (MREC) for each task of a parallel
application on heterogeneous distributed systems. The reliability was expressed based on
the failure rate of the processor on which a task was assigned to, but network reliability
was not considered despite the fact that the adopted resource model was for distributed
systems.

Finally, a lot of research has focused on data transfer regardless of the reliability
constraint. For example, Babu and Krishna (2013) proposed an adaptable time-cost
heuristic to handle time-basic workflows with least cost. A k-means clustering-based
data placement strategy coupled with a multilevel task replication approach is used by
Zhang et al. (2015). The aim was to minimise the overall data transfer between multiple
data centres of a cloud without taking into account the reliability constraint. Thereafter,
Chen et al. (2017) proposed an approach that partitioned graphs in order to execute
data-intensive scientific workflow in distributed data centres, and that optimised the
overall data transfer cost.

Table 1 Criteria studied by previous prime work and their execution platforms compared to
our approach

Paper Algorithm Makespan Reliability Platform
Ex. Comm. VMR LinkR

Hakem and Butelle (2007) BSA X X X X DCS
Doğan and Özgüner (2005) BDLS, BGA X X X X DCS
Dongarra et al. (2007) Reliable-HEFT X X X cluster
Chen and Zhang (2009) ACO X X grid
Chen and Zhang (2012) S-PSO X X X cloud-S
Lee et al. (2010) RPA X X DCS
Wang et al. (2011) LAGA X X DCS
Fard et al. (2012) MOLS X X X grid
Kianpisheh et al. (2016) ACO X X X grid
Poola et al. (2016) AJIT X X X cloud-S
Zhang et al. (2017) BOGA X X X cluster
Rehani and Garg (2017) NSGA-II X X cloud-S
Xiao et al. (2018) MREC X DCS
Guo et al. (2018) DRB-FTSA-E X X X DCS
Our proposal RDPSO X X X X cloud-M

Table 1 summarises the main previous work compared to our approach (RDPSO). In
the category makespan, Ex. and Comm. refer to execution time and communication
time respectively. For the category reliability, VMR and LinkR denote respectively
the reliability of VM and the reliability of Links. We note that with the exception of
the studies (Chen and Zhang, 2012; Poola et al., 2016; Rehani and Garg, 2017) that
were realised in a single data centre cloud (cloud-S), other studies have been performed
either in distributed computing systems (DCS), clusters or in a grid platforms while
our approach is modelled and validated on multiple cloud data centres (cloud-M). Note
that in this table, we only presented the makespan and the reliability constraints. Other
constraints, such as cost and energy, of some studies are not presented.
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3 Scheduling problem formalisation

In our context, a schedule is defined in terms of application mapping, a resource
infrastructure and performance criteria. In this work, the criteria considered are the
makespan or completion time (including data transfer times) and reliability.

In the following sub-sections, before formalising these parts, we recall the issue we
want to address and the particularities of our context.

3.1 Our context

Our approach is proposed in the context of an IaaS cloud with multiple data centres,
where workflow applications have to be scheduled on different data centres for
execution. In order to achieve the goal of minimising application completion time
while enhancing reliability, we clearly model data transfer times when computing the
makespan and integrate the reliability of communication (link reliability) to express the
reliability of the resources.

3.2 Application model

A scientific workflow application (w) is modelled as a directed acyclic graph (DAG):
G = (N,E), where N is a set of n nodes designating tasks ti (1 6 i 6 n), and E is
a set of directed edges. An edge e(i, j) ∈ E corresponds to a dependence constraint
between task ti and task tj , in which ti is an immediate parent task of tj , and tj the
immediate child task of ti. A child task cannot be executed until all of its parent tasks
are completed. The data matrix, with n.n dimensions, represents the amount of data
exchanged between tasks.

3.3 Cloud resource model

In this work, we present a resource model that considers the data transfer times between
multiple data centres so that computer resources can be deployed on different data
centres or regions. Also, we consider resources reliabilities of both computer resources
and network links.

3.3.1 Time model

In IaaS cloud, computer resources are instantiated as virtual machines (VMs). Typically,
cloud providers offer multiple types of VM . Each vmi is defined in terms of its
computing capacity CCvmi . We suppose that for every VM type, we can estimate its
computing capacity in floating point operations per second (FLOPS). Thus we can
estimate the execution time of a task on a given VM type. Besides, we define the
computing time (CT (ti, vmp)) as the estimated execution time of the task ti in a VM of
type vmp according to its size Iti likewise defined in floating point operations (FLOP ).
It is calculated as in equation (1).

CT (ti, vmp) =
Iti

CCvmp

(1)



8 K. Oukfif et al.

In multiple cloud data centres, VMs are deployed on different regions. Therefore
data transfer times become significant and directly influence the response time of the
workflow applications. Hence, we consider these times when calculating the workflow’s
completion time. We consider the number U of data centres in the cloud infrastructure.
We define the Transfer Time TT(i,j) between two tasks corresponding to a weight of an
edge (i, j) ∈ E in the application graph (DAG), which corresponds to the time taken
to transfer data from task ti (executed on vmp lodged in data centre Ua) to task tj
(executed on vmk lodged in data centre Ub), as in the following equation.

TT(i,j) =
dataij

Transferrate(p,k)

(2)

where dataij is the size of the output data produced by task ti and transferred to tj .
Since VMs are located on different data centres, the transfer rates or the

bandwidths Transferrate(p,k)
between them are heterogeneous. We note that when two

communicating tasks are executed on the same VM , the transfer time is equal to zero
and when they run on different VMs hosted in the same data centre, the transfer time
is also neglected. Thus, we propose a new model that describes multiple cloud data
centres platforms. In our model, the Total Computing Time TCT (ti, vmp) of a task in
a VM is computed as depicted in equation (3). In this equation, m refers to the number
of edges in which ti is a parent task. The Boolean sm is equal to 0 whenever ti and
tj run on the same VM (p = k) or 1 otherwise. Also, rm is equal to 0 whenever vmp

and vmk are hosted in the same data centre (Ua = Ub) or 1 otherwise.

TCT (ti, vmp) = CT (ti, vmp) +

m∑
i=1

sm.rm.TT(i,j) (3)

The total computing time TCT (w) of all tasks in the workflow is defined as in
equation (4).

TCT (w) = max{TCT (ti, vmp)} (4)

3.3.2 Reliability model

We assume that the failure of VMs and communication links in the system follows a
Poisson process which is the simplest and most used process that models the occurrence
of failures (Zhang et al., 2017). Then we associate a failure rate for each of the VM and
communication link. Let λp denotes the failure rate by time unit of vmp and λL(k,p)

the
failure rate of the communication link L(k,p) between vmk and vmp. These failure rates
can be derived from the resource’s profiling service, file log, and statistical prediction
techniques (Tang et al., 2012).

In this model, the reliability of a task ti is equal to the probability of its successful
execution on the VM to which it is assigned, and the probability of successful data
transfers to that task from its immediate predecessors. We use the network reliability
approximation for data transmission as proposed by Qin and Jiang (2006) and Tang
et al. (2012). The reliability R(ti, vmp) of ti executed or mapped on vmp is computed
as follows:

R(ti, vmp) = e−λp.CT (ti,vmp) (5)
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Since the communication time between the tasks assigned on the same VM is zero, then
the data transfer is considered as failure free. Thereby, the term R(j,i) corresponding to
the reliability of the transfer between tj executed on vmk and ti executed on vmp , can
be computed as follows:

R(i,j) = e
−λL(k,p)

.TT(j,i) (6)

From equations (5) and (6), the reliability of task ti, denoted as R(ti), can be defined
by the equation (7), where predti is the set of predecessors tasks of the task ti.

R(ti) =
∏

tj∈predti

R(ti, vmp)R(i,j) (7)

The reliability of a workflow w is equal to the reliability of all its tasks and can be
expressed as follows:

R(w) =
∏
ti∈N

R(ti) (8)

3.3.3 Criteria of the model

The goal of our scheduling approach is to enhance the reliability and minimise the
makespan and data transfers of the workflow application. To maximise the reliability
of workflow scheduling, we need to minimise the following reliability index (i.e., the
failure factor):

Rindex(w) =
∑

vmp∈VM

∑
ti∈N

(λp.CT (ti, vmp) + λL(k,p)
.TT(j,i)) (9)

The problem can be formally defined as follows: find a schedule S for the workflow (w)
with a minimum TCT (w) and a maximum R(w) (thus with a minimum Rindex(w)).

To solve this problem, we propose a strategy based on the PSO meta-heuristic.
PSO has fewer parameters than other meta-heuristics as GA or ACO, and it converges
promptly.

4 Reliability-aware scheduling based on particle swarm optimisation

In this section, we will first give a brief description of PSO heuristic. Then we will
highlight the Reliability-aware Discrete PSO that we have developed and called RDPSO.
PSO is a population-based meta-heuristic inspired by social behaviour patterns such as
bird flocking and fish schooling. It was introduced by Kennedy and Eberhart in 1995
(Kennedy, 2011), and has been widely utilised. The stochastic optimisation algorithm is
based on a concept called a particle. A particle corresponds to an individual (i.e., fish
or bird) that has the ability to move or fly through the defined problem space. Each
particle is characterised by a position X , a velocity V , and a fitness value. Particles
positions are considered as potential solutions to the problem and are evaluated by a
fitness function. We seek to optimise this fitness function and enabling it to keep track of



10 K. Oukfif et al.

their best position pbest and the global best position gbest. Particle’s velocity represents
the direction and the magnitude of the next movement. It is calculated by considering its
actual velocity, pbest and gbest at each step of the algorithm. The movement of particles
towards these values is inspired by its actual velocity (weighted by an inertia factor) as
well as the gaps between its position and its pbest and the gbest value (weighted by
random numbers for the cognitive and the social coefficients respectively).

In each iteration of the PSO algorithm, the fitness function is generated. Then
pbest and gbest are updated. After that, the position and the velocity of a particle are
updated based on equations (10) and (11) respectively. The PSO algorithm iterates until
a stopping criterion is satisfied, which is generally a predefined fitness value estimated
to be acceptable or a specified maximum number of iterations. The pseudo code of the
PSO algorithm is presented in Algorithm 1.

vk+1
i = ωvki + c1r1[pbest

k
i − xk

i ] + c2r2[gbest
k
i − xk

i ] (10)

xk+1
i = xk

i + vk+1
i (11)

where

vki velocity of particle i at iteration k

vk+1
i velocity of particle i at iteration k + 1

ω inertia weight

xk
i current position of particle i at iteration k

pbesti best position of particle i

gbest position of best particle in a population

xk+1
i position of the particle i at iteration k + 1

c1, c2 acceleration coefficients

r1, r2 random number between 0 and 1.

In this work, we use a discrete variant of PSO named discrete particle swarm
optimisation (DPSO) that handles tasks dependencies as achieved in Bouali et al. (2015)
and Oukfif et al. (2015).

Every particle position is a possible solution. In our model, a particle has n
dimensions that correspond to the n tasks of the workflow. The n tasks must be assigned
to m VMs, where m < n. The particle position pattern shown in Figure 1 is a possible
mapping solution.

Figure 1 A particle mapping
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Algorithm 1 PSO algorithm
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Our approach based DPSO aims to optimise makespan and to enhance reliability
metrics simultaneously. We called it RDPSO for reliability-aware DPSO. To evaluate
the solutions with RDPSO, the fitness function is expressed using both the metrics
makespan and reliability.

We used the weighted sum ratios to incorporate makespan and the reliability index
into a single objective fitness function as indicated in formula (12). Note that the
makespan and the reliability index are normalised in this equation. The normalisation
allows to equalise the scale of the compared values. In fact, normalisation is necessary
so that the fitness function is not biased by one of the metrics having a high value.
In our algorithm, the Tmax and the Rindexmax values represent the maximum value
of makespan and Rindex metrics respectively found in the previous iteration. The
parameters α1, α2 are the relative weights assigned to makespan and reliability index
respectively according to the user’s compromise requirement, such as α1 + α2 = 1.

Fitness = α1
TCT

Tmax
+ α2

Rindex

Rindexmax

(12)

In the PSO algorithm, to evaluate the quality of the solution, the fitness function
is estimated after calculating TCT (w) and Rindex(w) using equations (4) and (9)
respectively.

5 Experimental results

In this section, we introduce the experiments realised in order to assess the performance
of the proposed approach. We developed a simulator based on CloudSim tool (Calheiros
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et al., 2011) to simulate a cloud with multiple data centres platforms. We used
various workflows from different scientific domains with different structures and we
implemented a standard approach for the comparison. We tested our approach with
simulations, but to get closer to the real world, we used VM configurations offered by
a public cloud provider and real workflows-based applications.

5.1 IaaS infrastructure settings

We modelled an IaaS cloud offering several heterogeneous data centres (3 or 5) each
having three or four different types of VMs. The features of the virtual machine
instances are based on the standard of Amazon Elastic Computing Cloud EC2 instance
(http://aws.amazon.com/ec2) offerings and are shown in Table 2.

Table 2 Type of VMs used in our experiments

VM type Name EC2 vCPU Clock speed (GHz)

1 m3.medium 1 2.5
2 m3.large 2 2.5
3 m3.xlarge 4 2.5
4 m3.2xlarge 8 2.5

In each data centre, three or five VMs are provisioned. We use the notation (i)dcx(j)vm
to indicate the configuration for the platform used for every test where (i) indicates
the number of data centres and (j) indicates the maximum number of VMs in each
data centre. For example, the notation 3dcx5vm indicates that the platform has three
data centres each having five VMs and thus the total number of VMs is 15. Thereby
we have four platforms as described in Table 3. The heterogeneity of data centres
is considered by using different numbers and types of VMs. On the platforms with
five data centres, we use all types of VMs including type 4 which is the most efficient.
On platforms with three data centres, we only have the first three types listed in Table 3.
For the network configuration, we use heterogeneous transfer rates means between VMs
instances set at 500 Mbps to 1 Gbps, and between data centres set at 50 Mbps to
100 Mbps.

Table 3 Data centres, total number and types of VMs for each platform

Platform Data centres # total of VMs VMs’ type

3dcx3vm dc1, dc2, dc3 9 1, 2, 3
3dcx5vm dc1, dc2, dc3 15 1, 2, 3
5dcx3vm dc1, dc2, dc3, dc4, dc5 15 1, 2, 3, 4
5dcx5vm dc1, dc2, dc3, dc4, dc5 25 1, 2, 3, 4

The instances of failure probabilities for VMs and for all the network links are set from
10−3 to 10−4/h (Doğan and Özgüner, 2005; Wang et al., 2011).
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5.2 Workflow applications

We use four different real-world scientific workflows. We choose two data intensive
workflows (Montage and CyberShake) and two compute intensive workflows (LIGO
Inspiral and SIPHT). These applications are published by Pegasus project and well
described by Juve et al. (2013).

Figure 2 Scientific workflows, (a) CyberShake (b) SIPHT (c) Montage (d) LIGO Inspiral
(see online version for colours)

The CyberShake workflow, is par excellence a data-intensive application. It is
an application of seismology used to describe earthquakes by generating synthetic
seismograms. Montage, is another data-intensive workflow used in astronomy area,
generating custom mosaics of the sky using a set of input images. SIPHT, characterised
to be a CPU-intensive application, is used in bioinformatics to manage the process of
finding genes encoding RNAs for any bacterial replicon. Finally, the LIGO Inspiral
is an application in the field of physics for the detection of gravitational waves. It is
considered as a CPU-intensive application. Detailed workflow descriptions are available
in DAX format (https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator)
and include the DAGs, the sizes of data transferring and the reference execution time
[based on Xeon@2.33 GHz CPUs (cu = 8)]. Figure 2 shows the basic structures of the
four workflows.

To assess the performance of RDPSO, we used four sizes of workflows instances,
which are: small (25 or 30 tasks), medium (50 or 60 tasks), large (100 tasks) and extra
large (1,000 tasks).

5.3 Algorithms settings

To set up the RDPSO algorithm, we define its parameters as follows: the inertia weight
ω = 0.9, the acceleration coefficients c1 = c2 = 2.0 and the fitness parameters α1 =
α2 = 0.5. During the executions we used 50 particles in 100 to 500 iterations. These
values are adopted from similar works (Bouali et al., 2015; Oukfif et al., 2015; Jian
et al., 2014). The results are average over 10 trials.

To evaluate our algorithm, we used a version of the HEFT algorithm (Topcuoglu
et al., 2002) as a baseline after improving it to take into account reliability tasks as
realised by Dongarra et al. (2007). Then we adapted it to the model we proposed
in Subsection 3.3 [equation (3)] to support execution in multiple cloud data centres
platforms. We call this algorithm RHEFT for reliability-aware HEFT.
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The HEFT algorithm operates in two phases:

1 The prioritisation phase where priorities for all tasks are calculated. Then a tasks
list is generated by sorting tasks in respect to their descending priorities.

2 The resources selection phase where tasks are assigned to resources that minimise
their EFT (earliest execution finish time). The EFT of a task is calculated as
the time at which its execution ends, which is, its starting time added to its
execution time on a computer resource.

The RHEFT algorithm that we implemented improves HEFT by selecting resources
(VMs) that minimises makespan and enhances reliability during resources selection
phase. Furthermore communication times are calculated using the equation (3) for the
EFT .

5.4 Results and discussions

We evaluated our solution under various configurations of platforms (3dcx3vm,
3dcx5vm, 5dcx3vm and 5dcx5vm) and using four well known applications. The results
of makespan, transferred data and the overall reliability were compared with those
obtained by the RHEFT algorithm. We noted that since the data transfer times depend
on the amount of the transferred data, we chose to present the results according to this
latter.

5.4.1 Impact of the workflow size

First, our experiments aim to study the performance of our approach while scheduling
scientific workflows with increasing complexity. For this purpose, we varied the size
of the workflows in a number of tasks. We chose to present the results obtained in
3dcx5vm platform, but they are alike on the all used platforms. The experimental results
that are plotted in Figure 3(a), 3(b) and 3(c) represent makespan, amount of transferred
data and overall reliability respectively for different number of tasks. We used the four
workflow applications with 30 (25 for Montage), 50 (60 for SIPHT) and 100 tasks.

For both RHEFT and RDPSO algorithms, as the number of tasks of each workflow
augments, the makespan, increases but is clearly improved by RDPSO [Figure 3(a)]. The
schedule generated by RDPSO produced values of makespan that decreased by about
28% for Montage that has 25 tasks and that exceeds 30% for CyberShake that has 30
tasks compared to those obtained with RHEFT. The makespan RDPSO enhancements
are very pronounced for all workflows except for SIPHT having 60 tasks for which
RHEFT outperforms RDPSO. The parallel structure of these workflows makes that
several tasks have the same value of the rank but ordered in a fixed list with HEFT.
This is not the case with RDPSO where the execution order of the parallel tasks can
change from one iteration to another so as to improve makespan.
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Figure 3 (a) Makespan, (b) amount of transferred data and (c) reliability variations on
3dcx5mv platform for Montage, CyberShake, Inspiral and SIPHT, with 30, 50
and 100 tasks (see online version for colours)
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The values obtained for transferred data [Figure 3(b)] with Montage and CyberShake
workflows increase with respect to the number of tasks since these two workflows are
data intensive. These values are reduced with RDPSO compared to those registered with
RHEFT. For the Inspiral workflow, the results obtained with RDPSO are closer to those
presented by RHEFT. Our approach recorded amounts of transferred data which are
reduced compared to RHEFT for SIPHT application having 30 or 60 tasks but it fails
to reduce these values for the SIPHT workflow that has 100 tasks.

Concerning reliability [Figure 3(c)], the values decrease while the number of the
tasks increases for the two algorithms. Likewise, RDPSO recorded best values compared
to RHEFT for Montage, CyberShake and Inspiral workflows.

We summarise in Table 4 the results obtained for workflows that have 100 tasks on
3dcx5vm platform.

Table 4 Comparison of results for workflows having 100 tasks in 3dcx5vm platform

Workflow Makespan Transferred data Reliability

RHEFT RDPSO RHEFT RDPSO RHEFT RDPSO

Montage 117.22463 78.72292 750.45070 483.54444 3.71E-01 5.97E-01
CyberShake 331.8782 235.79208 2,857.28185 2,393.98899 1.27E-01 4.39E-01
Inspiral 2,384.8249 999.06190 19.38876 18.49763 8.37E-08 2.73E-04
SIPHT 2,336.69602 1,857.78642 75.57317 156.14683 1.23E-04 1.41E-03

Table 5 Comparison of results for workflows having 1,000 tasks in 5dcx3vm platform

Workflow Makespan Transferred data Reliability

RHEFT RDPSO RHEFT RDPSO RHEFT RDPSO

Montage 515.45287 667.51229 11,066.9285 11,205.40756 4.12E-03 1.51E-04
CyberSHake 1,113.93309 1,164.10414 167,035.5456 159,361.5927 1.58E-10 4.09E-12
Inspiral 13,378.0107 8,134.19217 309.16844 303.666252 3.77E-23 1.76E-64
SIPHT 8,475.70674 16,174.637 1,771.13884 1,533.76228 7.57E-21 8.77E-51

Using extra large workflows, the results obtained are not improved by RDPSO in all
cases because of the widening of the meta-heuristic search space due to the large
dimension of the particles (Table 5). Regarding the makespan, the values recorded
for the Montage and CyberShake applications with RDPSO are higher but remain
close to those found by RHEFT. The makespan is improved only for the Inspiral
workflow. Transferred data is decreased in most cases, but overall reliability has not
been improved.

5.4.2 Impact of the characteristics of the platform

In this subsection, we show the effect of resource characteristics and their number
on the studied criteria (makespan, transferred data and reliability). Workflows with
100 tasks (Montage-100, CyberShake-100, Inspiral-100 and SIPHT-100) are selected
to examine the impact of the number of VMs and data centres on the makespan, the
amount of transferred data and the reliability with both approaches. Figures 4(a), 4(b)
and 4(c) represent the results obtained on different platforms. We observe that from
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platforms with three data centres (3dcx3mv and 3dcx5mv) to those with five data centres
(5dcx3mv and 5dcx5mv), the makespan decreases considerably with the increase of
the number of VMs or their types are more efficient [Figure 4(a)]. And we know that
using more VMs allows us to take advantage of parallelism, mainly in our case as all
the workflows used have a partial parallel structure. The makespan values recorded on
platforms with three data centres were decreased on platforms with five data centres by
about 40% for CyberShake, by more than 45% for Inspiral and about 50% for Montage
and SIPHT applications. The results obtained with the four workflows confirmed
that RDPSO has the lowest makespan than RHEFT in most cases. For example, the
improvement performed by RDPSO compared to RHEFT is about 25% for Montage,
28% for CyberShake, and 25% to 50% for Inspiral on platforms composed of three data
centres.

The amount of transferred data [Figure 4(b)] increases with the number of data
centres. We explain this by the fact that the tasks of the workflow are needed to be run
in more data centres which implies more transfers. Comparing the values obtained on the
platforms 3dcx5vm and 5dcx3vm, although these two platforms have the same number
of VMs (15 vms), the transferred data quantities are not equivalent since in 5dcx3vm
we have to make more transfers between more data centres than in 3dcx5vm platform.
The results remain better with RDPSO for Montage and CyberShake applications.
The improvement reaches 35% for Montage on 3dc5vm and 33% for CyberShake on
5dcx5vm. We notice that concerning the platforms 3dcx3vm and 3dcx5vm, despite
dealing with three data centres in each one, tasks are assigned to more VMs in the
3dcx5vm platform in each data centre than in 3dcx3vm platform, so data transfers
decease more considerably in 3dcx5vm than in 3dcx3vm for CyberShake and Montage
applications. The decrease of the transferred data is less emphasised for Inspiral
workflow and exceptionally not optimised for SIPHT application which has a complex
structure.

The overall reliability of workflows with 100 tasks [Figure 4(c)] does not fluctuate
significantly through the different platforms for Montage and CyberShake workflows
unlike Inspiral and SIPHT workflows. This is due to the fact that these latter are
computing intensive and the value of the reliability is proportional to the computing
time. For all the workflows, the reliability increased with RDPSO when compared to
RHEFT mainly for Montage and Cybershake applications.

5.4.3 Details of transfers

In this subsection, we analysed data transfers between different data centres within the
same platform to show how the transferred data are optimised by RDPSO compared to
RHEFT.

We chose to detail the transfers made during scheduling workflows having 100 tasks
and 1000 tasks on the 5dcx3vm platform.
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Figure 4 (a) Makespan, (b) transferred data and (c) reliability variations on different
platforms for Montage-100, CyberShake-100, Inspiral-100 and SIPHT-100
workflows (see online version for colours)
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Figure 5 Transfers details on 5dcx3vm for workflows having 100 tasks (see online version
for colours)

Figure 6 Transfers details on 5dcx3vm for workflows having 1,000 tasks (see online version
for colours)

Figure 5 plots transfers details for workflows having 100 tasks between each pair of data
centres in the 5dcx3vm platform. The notation (dci←→ dcj) means transfers between
data centre i and data centre j. We discover that RDPSO avoids the large peaks of
data transfers recorded by RHEFT carried out between dc1 and dc4 (dc1←→ dc4), and
between dc2 and dc4 (dc2←→ dc4) for Montage and CyberShake workflows. In the
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case of Inspiral and SIPHT workflows, data transfers achieved by RDPSO are closer to
those performed by RHEFT.

Finally, our results are confirmed on a large scale concerning data transfers for
extra large workflows using the Montage-1000, CyberShake-1000, Inspiral-1000 and
SIPHT-1000 applications, and achieved on 5dcx3vm platform (Figure 6). The results
for the Montage and CyberShake applications again show that RDPSO avoids the large
peaks of transfers recorded by RHEFT carried out between dc1 and dc4 (dc1←→ dc4),
and between dc2 and dc4 (dc2←→ dc4). Our approach avoids the significant transfers
between dc1 and dc4 for Inspiral application and between dc1 and dc2 and between dc1
and dc4 for SIPHT application.

6 Conclusions and future work

The makespan still remains the most important metric to optimise when scheduling
applications. Particularly, in multiple cloud data centres platforms, this metric is
degraded due to data transfer times. In addition, most of the studies assume that links
are homogeneous with uniform bandwidth and that there is no VM failure during the
execution of a task or that failures of the network links are ignored. In our contribution,
we presented the RDPSO, a scheduling approach based on PSO. We aimed to minimise
the makespan and the data transfer times while enhancing the reliability’s workflow on
multiple cloud data centres. We also consider resources heterogeneity, VMs failures and
links failures.

We evaluated our algorithm using real-world workflows and presented the results
obtained by our heuristic in opposition to RHEFT. The results show that RDPSO
outperforms the RHEFT algorithm. The makespan is improved by RDPSO in most cases
and the overall reliability is enhanced. Our approach realised transfers with less amount
of data than the RHEFT algorithm even using extra large workflows.

As future work, we plan to expand our proposed approach to investigate additional
constraints such as cost and energy consumption in multiple cloud data centres. We
would like to consider variable costs to access resources that change across multiple
data centres. Moreover, according to the needs of users and providers, actual data
centres must be low-energy systems. Thereby, we will extend our approach to operate
in a bi-level (Sinha et al., 2018) by optimising resource allocation with corresponding
resource availability and reliability and by reducing energy consumption for workflows
scheduling. Finally, the resource model we proposed can be easily extended to federated
clouds and the experimental results can be perfected by comparing our PSO-based
algorithm with a GA-based approach.
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