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Abstract 

This work proposes a semi-analytical method to model the vibroacoustic behavior of submerged 

cylindrical shells periodically stiffened by axisymmetric frames and excited by a homogeneous 

and fully developed turbulent boundary layer (TBL). The process requires the computation of 

the TBL wall-pressure cross spectral density function and the sensitivity functions for stiffened 

cylindrical shells. The former is deduced from an existent TBL model and the latter are derived 

from a wavenumber-point reciprocity principle and a spectral formulation of the problem. The 

stiffeners’ dynamic behavior is introduced in the formulation through circumferential 

admittances that are computed by a standard finite element code using shell elements. Four 

degrees of freedom are taken into account for the coupling between the shell and the stiffeners: 

three translation directions and one tangential rotation. To investigate the effect of the stiffeners 

on the radiated noise, two case studies are considered. The first one examines a fluid-loaded 

cylindrical shell with regularly spaced simple supports. The influence of Bloch-Floquet 

waves and the support spacing on the noise radiation are highlighted. The second case study 

inspects the fluid-loaded cylindrical shell with two different periodic ring stiffeners, 

namely stiffeners with T-shaped and I-shaped cross-sections. Their influence on the 

vibroacoustics of the shell is thoroughly analyzed.  
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1. Introduction 

Stiffened structures excited by a turbulent boundary layer (TBL) are found in many 

vehicles such as aircrafts, trains, and submarines. Predicting the noise and vibrations they 

generate is very important at the design stage, as well as for optimization and refinement 

of the products. In naval applications, for example, a submarine hull can be modelled as 

a stiffened cylindrical shell. In order to control the radiated noise from a submarine, it is 

therefore important to understand how a stiffened cylindrical shell reacts to TBL 

excitation. This paper proposes the modelling of an infinite periodically stiffened 

cylindrical shell immersed in a heavy fluid (i.e. water) and excited by a homogeneous and 

fully developed TBL. The model will allow engineers to investigate the effect of the 

periodicity of the stiffeners and their influence on the shell vibroacoustics. This study is 

thus multidisciplinary and includes the vibration analysis of periodically stiffened 

cylindrical structures, as well as the prediction of the radiated noise under the excitation 

of a partially correlated pressure field.  

The dynamic response and the sound radiation from periodically stiffened st ructures 

have been addressed by many authors. Before reviewing the extensive state of the art on 

the topic, however, let us briefly introduce which will be the main new contributions of 

this work to the field. On the one hand, we are proposing a semi-analytical method to 

characterize the vibroacoustic response of a periodically stiffened cylindrical shell excited 

by a TBL. The suggested formulation has not been attempted before, to the best of our 

knowledge, and it presents some singular features. First, it is based on an original 

reciprocity principle, which allows us to identify the so-called sensitivity functions of the 

structure. Those are computed considering four degrees of freedom (DoF) in the coupling 

between the shell and the stiffeners, namely three translations and a tangential rotation, 

while previous works only assumed one DoF along the radial direction. Moreover, in the 

current approach the stiffeners are represented by admittances calculated with the finite 

element method, which allows one to describe the deformation of the stiffener cross 

sections, contrary to what occurs in the beam-like models generally adopted in literature. 

All results in a more realistic modelling of periodically stiffened shells. In addition, the 

current study reveals the bumps observed in the spectra of the far-field radiated pressure 

can be directly attributed to the propagation of Bloch-Floquet waves in the periodically 

stiffened shell. 
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As said before, the study of periodically stiffened structures has now a long history. 

Mead [1] analyzed the free wave propagation in an infinite periodically supported beam 

using the so-called space-harmonic method. He showed that the vibration energy can 

propagate only in certain frequency bands. Outside these bands, the waves decay strongly 

with the distance along the beam, and the energy cannot propagate. Subsequently, 

Rumerman [2] proposed a mathematical formulation for wave propagation and forced 

vibration of periodically stiffened infinite plates. Assuming plane wave excitation, he was 

able to obtain an explicit solution. The principle of superposition was then used to 

construct the solution for an arbitrary excitation. A similar approach was employed by 

Mace [3] to investigate the vibrations of an infinite periodically stiffened fluid-loaded 

plate excited by convective harmonic pressure. He demonstrated that the propagating 

wave, corresponding to the near field wave in an unstiffened plate, was damped by 

acoustic radiation. The results showed that the responses to a convected harmonic pressure 

and the far field directivity contain peaks at certain frequencies and angles, which were 

attributed to the free wave propagation characteristics of the fluid-loaded plate.  

Among the intensive research carried out on the wave propagation in continuous 

periodic structures at the University of Southampton (see the review paper in [4]), Mead 

also studied the radiation of regularly stiffened plates [5]. He employed the space-

harmonic approach for the prediction of the structural and acoustic response of the 

periodically stiffened plate, taking the fluid-loading effects into account. Plates stiffened 

in one or two orthogonal directions were considered. It was shown that five space 

harmonics in each spatial direction are enough to predict the peaks of the radiated sound 

power spectrum.  

Lee and Kim [6] developed an exact solution procedure to calculate the sound 

transmission through an infinitely long elastic panel stiffened only in one direction. The 

stiffener was modelled as a set of lumped masses attached to the panel. The dynamic 

equation was derived using the space harmonic approach and the virtual energy principle. 

It was shown that the wave reflection produced by the stiffeners changed the dispersion 

relationship and caused the panel to be excited in a coincidental manner by incident sound 

waves, at frequencies below the critical frequency. Additionally, Yuan et al [7] numerically 

and experimentally studied the vibroacoustic response of a fluid-loaded, simply supported 

rectangular plate covered by a composite acoustic coating. They found that only when the 

loss modulus of the damping layer was sufficiently high and the stiffness of the decoupling 
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layer was sufficiently low, the system can provide an excellent vibration isolation and 

noise reduction effect. Likewise, Fu et al. [8] developed an analytical model to investigate 

the sound transmission loss from an orthogonally rib-stiffened plate structure under 

diffuse acoustic field excitation. Numerical results showed that if the effects of the modal 

coupling terms are neglected, the sound power could be either overestimated or 

underestimated depending on the frequency range and excitation locations. 

As regards cylindrical structures not so many works exist in literature. Mead and 

Bardell [9] computed the propagation constants of a periodic frame-stiffened cylindrical 

shell using an exact closed-form solution. They determined the stop and pass-bands of 

free wave motion in the structure. For the cylinder with solid rectangular-section frames, 

a narrow frequency band was observed where two distinctly different wave motions can 

propagate simultaneously. Hodges et al. [10] used the space-harmonic method to present 

the theory of vibrations of a cylinder braced by circular T-section ribs spaced regularly 

along its length. A good agreement was obtained between their modelling and 

measurements on a ribbed cylinder over a frequency range from zero to about three times 

the ring frequency [11]. It was shown that the first three pass-bands for vibration 

transmission along the cylinder occurred in this frequency range, associated with the first 

two resonant modes of a single bay of the structure and with a cross-sectional resonance 

of the T-section ribs. 

Noise emission was addressed by Burroughs [12], who derived analytical expressions 

for the far-field acoustic radiation from a point-driven circular cylindrical shell reinforced 

by doubly periodic rings. The rings interacted with the shell only through the radial 

direction. Radiation from the shell appeared like an array of ring radiators located at the 

ring support. More recently, Yan et al. [13,14] applied the space-harmonic approach to 

predict the sound radiation from a submerged periodic ring-stiffened shell excited by a 

harmonic line force. The stiffeners had uniform rectangular section and they could interact 

with the shell along four degrees of freedom (i.e. three translations and one tangential 

rotation). It was found that characteristics of the vibrational power flow propagation vary 

with different circumferential mode orders and frequencies. For the circumferential mode 

order n = 0, the power flow in the shell wall was predominantly carried by the motion in 

the axial direction.  

The vibration of an infinitely long cylindrical shell with internal periodic lengthwise 

ribs was analytically formulated by Tong et al. [15]. The lengthwise rib was modeled as 

an elastic beam with longitudinal and flexural motions. A circumferential mode expansion 
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was employed to obtain the shell motion using periodicity in the circumferential direction 

and the Fourier transform in the longitudinal direction. It was demonstrated that the 

acoustic radiation resonances in the far field are due to the supersonic components of the 

radiated flexural Bloch waves. Cao et al. [16] studied the acoustic radiation from shear 

deformable stiffened laminated cylindrical shells excited by a radial point force. Initial 

axial loadings and double periodic rings were considered. The mathematical problem was 

based on the use of the space Fourier transform and the Poisson summation formula. The 

pressure radiated in the far field was estimated using the phase-stationary theorem. It was 

pointed out that the shear deformation of the rings cannot be neglected in the high 

frequency range. Cao et al.’s work was extended by Tang et al. [17] to investigate acoustic 

radiation from a point driven, infinite, and periodically ring-stiffened shell, in the presence 

of mean flow. To obtain more accurate results, both the effects of in-plane and out-of-

plane vibrations of the ring-stiffeners on the radial displacement of the shell were taken 

into account. It was demonstrated that the effects of the Mach number on the sound 

pressure radiated by the shell were not significant as the Mach number was not greater 

than 0.02. 

As reviewed above, many researchers have studied the dynamical behavior of stiffened 

structures. However, only few studies focused on stiffened structures excited by TBLs 

(see for example, [18,19]). In this line, Rumerman [20] derived expressions for the 

broadband estimation of the acoustic power radiated from a finite ribbed plate excited by 

a TBL. The response was directly formulated in terms of acoustic power, and the effects 

of the supports were taken into account using power scattering coefficients, which were 

calculated through a Wiener–Hopf analysis. Maxit et al. [21] developed a methodology 

for estimating the vibro-acoustic response of a periodically stiffened plate excited by a 

TBL, from the knowledge of the wall pressure spectrum induced by the TBL and from the 

sensitivity functions of the panel. The latter included the responses of the panel to unit 

convected harmonic pressure waves, which can be estimated from a wavenumber-point 

reciprocity principle [21-24]. The computational process to estimate the stiffened panel 

response to TBL excitation is then reduced to a numerical integration of a product of two 

analytical quantities, the first one is the wall pressure spectrum and the second one is the 

square of the absolute value of the sensitivity functions.  

In this work, a similar approach has been employed to study the noise radiated by a 

cylindrical shell periodically stiffened by axisymmetric frames and excited by a 

homogeneous and fully developed TBL. In addition to modelling a fluid-loaded 
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cylindrical shell instead of a fluid-loaded plate, the present case exhibits two challenges. 

First, in the previous study for the stiffened flat plate [21], the stiffeners were modelled 

by torsional and flexural beam models. This could be valid for straight stiffeners and for 

low frequencies. However, it is not valid for modelling ring stiffeners. In the present study, 

axisymmetric frames with arbitrary cross-section have been considered. Their dynamic 

behaviors have been characterized by a finite element model based on shell elements [25]. 

In particular, the deformation of the cross-section could be described as well as the 

coupling between the different types of motions due to the curvature of the stiffener. 

Second, the rigid coupling between the shell and the frames need to be defined about the 

four relevant DoF, instead of considering only the couplings with two DoF (i.e. the normal 

translation and the torsional rotation). For a flat-plate model, the in-plane and the flexural 

motions are not coupled together and it is well justified to consider only the two DoF 

related to the flexural motions. However, for a cylindrical shell the in-plane and flexural 

motions can be coupled together, in particular below the ring frequency. Therefore, to 

correctly describe the interaction between the shell and the stiffeners, the four DoF need 

to be considered.  

This paper is divided in two sections. Section 2 contains all theoretical developments. 

It first describes the wavenumber-frequency formulation of the radiated pressure by the 

cylindrical shell excited by a random pressure field. The wavenumber-point reciprocity 

technique is then introduced to facilitate the evaluation of the quantities characterizing 

the immersed stiffened shell in this formalism. A model for the periodically stiffened 

cylindrical shell loaded by a fluid in the wavenumber space is worked out. The section 

finishes with some considerations concerning practical implementation aspects of the 

method. Section 3 focuses on a thorough analysis of the physics behind noise radiated by 

an infinite cylindrical shell with periodic simple supports and by a cylindrical shell with 

periodic stiffeners of rectangular and T-shaped cross sections. Conclusions close the paper 

in Section 4. 

 

2.  Theoretical formulation  

2.1 Statement of the problem 

Let us consider an infinite cylindrical shell of radius R reinforced by periodic ring 

stiffeners separated a distance d apart. The shell is immersed in a fluid that moves with 
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free stream velocity 𝑈0. We assume that a stationary, homogenous, turbulent boundary 

layer of thickness 𝛿𝑡𝑏𝑙 has fully developed on the shell surface. Consequently, the shell 

vibrates and radiates sound outwards. A general sketch of the situation is depicted in Fig. 

1.   

It is the main purpose of this work to characterize the sound emitted by the shell. To 

that goal we have assumed the shell motion and the TBL to be weakly coupled, in the 

sense that the vibrations of the former do not affect the flow fluctuations beneath the TBL. 

We have also supposed that the acoustic wave propagation is neither influenced by the 

TBL nor by the free stream velocity.  

The problem can be mathematically described as follows. Consider an arbitrary point 

M in the flow with cylindrical coordinates  , ,x r  ; x standing for the streamwise 

direction,   for the azimuthal angle and r for the radial distance. For a given angular 

frequency, 𝜔 , the auto spectral density (ASD) of the radiated acoustic pressure at M, 

 , , ,ppS x r  , can be obtained in terms of the TBL wall-pressure cross spectral density 

(CSD), 
tbl

pp , and the frequency response function (FRF) of the shell, p FH . Indeed, for a 

partially space-correlated random excitation, such as the TBL, one can write (see [26] for 

details), 

     
2 2

2
2

0 0

, , , , , , , , , ,tbl

pp p F ppS x r H x r x x x R d d dxdx

 

          
 

 

      . 

 

(1) 

The FRF  , , , , ,p FH x r x     in Eq. (1) provides the acoustic pressure at point 

 , ,M x r  in the fluid, when a unit radial point force is applied at point  , ,M x R  on 

the shell (see Fig. 1), while 
tbl

pp  characterizes the intense pressure fluctuations beneath 

the TBL. Solving the integral in Eq. (1) is all what is needed to get the radiated sound 

pressure field, so the remaining theoretical sections in this work are devoted to finding 

appropriate expressions for the excitation 
tbl

pp  and the response p FH .  

2.2 Turbulent boundary layer on a cylindrical shell 

Several models have been proposed in literature to characterize the wall-pressure field 

(WPF) developed beneath a TBL (see e.g., [27-29]). However, these models are mainly 

intended for TBLs over flat surfaces. In the spatial domain, they provide the CSD of the 

wall-pressure,  , ,tbl

ppS x y   , with x and y respectively representing the streamwise and 
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spanwise directions. The CSD for the WPF is also often given in the wavenumber space, 

 , ,tbl

pp x yS k k  , so that  

   , , , , yx
jk yjk xtbl tbl

pp x y ppS k k S x y e e dxdy 
 



 

   , 

 

(2) 

 
 

 2

1
, , , ,

2

yx
jk yjk xtbl tbl

pp pp x y x yS x y S k k e e dk dk 


 

 

   . 

 

(3) 

Despite of existent models only being established for TBL over flat areas, our interest 

is in cylindrical shells for applications in the naval and/or aeronautical sectors. This means  

that the curvature of the shell will be large in comparison to the TBL thickness (typically 

around 100 times bigger) and its effects on the TBL models minimal [30]. Therefore, and 

as carried out in previous studies (see e.g., [31], [32]), we could well adopt flat TBL 

models for our big cylindrical shells. In fact, the only modification that needs to be made 

to them is that of imposing a periodicity condition in the spanwise direction. The latter 

corresponds to the angular position on the shell circumference, so the WPF must be 2πR 

periodic along it.   

Let us denote by  , ,tbl

pp xk n   the CSD of the WPF in the wavenumber space satisfying 

the periodicity condition. Here n is an integer that designates a circumferential counter. It 

is shown in Appendix A, that, from a given TBL model for flat surfaces,  , ,tbl

pp x yS k k  , 

one can readily obtain its analogous for the shell as 

 
1

, , , ,
2

tbl tbl

pp x pp x

n
k n S k

R R
  



 
  

 
. (4) 

The spatial domain counterpart of Eq. (4) is the one to be input in Eq. (1) for computing 

the radiated acoustic pressure. This can be obtained as (see Appendix A),  

   
1

, , , ,
2

xjtbl tbl

pp pp

k x jn

x x

n

x k n e dk e    




 

 
  

 
  . 

 

(5) 

 The specific TBL model used for the computations in the current work is of no matter 

at this point and will be later introduced in Section 2.5. 

2.3 Shell frequency response function and the reciprocity principle 

The next step to compute the radiated sound pressure in Eq. (1) is that of obtaining a 

proper expression for the shell FRF. This can be derived from the wavenumber-point 

reciprocity technique introduced in [21,22], which is based on the wavenumber-frequency 
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formulation of [21,26]. Let us briefly outline the procedure.  

Introducing Eq. (5) into Eq. (1), we get, after some integral manipulations (see [21,26]), 

     
2

, , , 2 , , , , , , , ,
n

tbl

pp p x pp x x

n

S x r H x r k n k n dk      


 

    

 

(6) 

where 

   
2

0

1
, , , , , , , , , , .

2
xjk x jn

p x p FH x r k n H x r x e e Rd dx



     




 



    (7) 

 , , , , ,p xH x r k n    is called the pressure circumferential sensitivity function at point  

 , ,M x r . As seen from Eq. (7), it determines the acoustic pressure at M  when the shell 

is excited by wall-pressure waves    
, , , [ , ]xj k x n

p x e x


   
 

    . One should bear 

in mind that the pressure field beneath a turbulent boundary can be characterized using 

realizations of uncorrelated wall plane waves [37]. Therefore,  , , , , ,p xH x r k n    in 

combination with  , ,tbl

pp xk n   is all what we need to get the ASD of the radiated pressure 

at the field point M. One way to calculate the circumferential sensitivity function of the 

shell consists in exciting its surface by wall plane waves with wavenumber couples  ,xk n . 

Unfortunately, that would result in a very lengthy procedure because the summation and 

integral of Eq. (6) involve a large number of couples. To avoid such a costly approach, a 

second interpretation of the sensitivity function can be considered, which relies on the 

Lyamshev reciprocity principle [21, 22] (see the illustration in Fig. 2). In the present 

situation, the principle states that the ratio between the acoustic pressure at point M  and 

the radial point force applied at M  on the shell, namely p FH , equals the ratio of the 

radial velocity at point M  over the volume velocity at M , which we denote by 
vv QH . 

That is to say, 

   , , , , , , , , , ,
vp F v QH x r x H x x r      . (8) 

Introducing Eq. (8) into Eq. (7) yields, 

   
2

0

, , , , , , , , , , .
2

x

v

jk x jn

p x v Q

R
H x r k n H x x r e e d dx



     




 



    (9) 

From Eq. (9), a second interpretation of the circumferential sensitivity function is 

therefore possible. This function can now be viewed as the product of the radius R with 

the Fourier transform along x and the Fourier series decomposition along   of the radial 
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velocity of the shell, when the shell is excited by an acoustic monopole of unit volume 

velocity located at  , ,M x r . The advantage of this interpretation is that it allows one to 

obtain the circumferential sensitivity functions, for a large set of wavenumber couples 

 ,xk n , from a single computation involving the shell response to a monopole excitation 

at the field point  , ,M x r . The radiated pressure at M due to the shell TBL excitation 

can then be obtained from Eq. (6), where the sensitivity functions are computed as a 

response to the monopole source at M and then multiplied with a CSD model for the TBL.  

The next section is devoted to finding an analytical expression for the 

circumferential sensitivity functions for a periodically stiffened shell immersed in a fluid. 

Following the explanation above, our goal will be that of finding the radial velocity of the 

shell in the Fourier domain  ,xk n , when it is excited by a monopole source. 

2.4 Circumferential sensitivity function for a submerged cylindrical shell with regularly 

spaced stiffeners 

2.4.1 Mathematical problem formulation 

The procedure that will be used to calculate the circumferential sensitivity function relies 

on the reciprocity principle, as manifested in Eq. (9), and is somewhat akin to previous 

formulations in literature (see e.g., [3,16,17]). Nonetheless, it still presents some 

significant differences with respect to those works. First, the shell excitation is due to a 

monopole source within the fluid. Second, the coupling between the shell and the 

stiffeners takes place through four DoF, namely the three translational directions plus the 

tangential angular rotation. Third and final, the dynamic behavior of the stiffeners is 

obtained from finite element models, which facilitates incorporating realistic designs for 

them.  

Consider the infinite shell of Fig. 1 having thickness h, density  , Young modulus 

E, Poisson's coefficient  and damping loss factor  . We denote by U, V and W the 

longitudinal (streamwise), tangential (circumference spanwise) and radial displacements 

of the shell, whereas   stands for the angular rotation (in the tangential direction).   

is related to the radial displacement through    , ,
W

x x
x

 


 


. The shell stiffeners are 

regularly spaced along the x direction and separated apart a distance d. They are all 

identical with either rectangular or T-shaped cross sections and, as said, their dynamics 

are numerically modelled with the finite element method. The coupling between the thin 
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shell and each stiffener takes place alongside a circumference of the cylindrical neutral 

surface of the shell. The coupling is supposed to be rigid and involves the four DoF U, V, 

W and  . Additionally, let L, T and F respectively denote the longitudinal, tangential and 

radial loads the stiffeners apply on the shell. At each junction, we will impose continuity 

of the displacement fields between the stiffener and the shell, as well as force equilibrium.  

The shell is immersed in an infinite fluid domain with density 𝜌0 and speed of sound 𝑐0 

(note that no fluid is considered inside the shell), and it is excited by acoustic waves generated 

from a point monopole source within the fluid, located at  , ,s s sS x r .  

To begin with, let us focus on how to obtain the shell displacements U, V and W (the 

coupling with   will be introduced at a later stage) as a response to the stiffener loads and 

the acoustic excitation. The latter will involve both, the incident waves from the monopole 

source and the acoustic waves radiated by the shell vibration. In what follows, a time 

dependence 
j te 

 is assumed for all developments though it will be omitted in the notation. 

 The mathematical problem to be solved reads  

 

 

 

     

 

 

 
3 3

, 0 0 ,

, 0 0 ,

, , , ,e

U x L x

V x T x

W x F x p x F x

 

  

   



        
        

          
                 

, 

 

(10) 

where  3 3  stands for the Flügge equations of motion for a cylindrical shell (see e.g., 

[25]), and 
2 2

*

(1 )R

E h





  with  * 1E E j   being the complex Young modulus.  

The loads applied to the shell by the regularly spaced stiffeners can be decomposed 

as   

 

 

 

   

   

       

,

,

,

m

m

m

m m

L x L x md

T x T x md

F x F x md M x md

  

  

    





   
   

    
        

 , 

 

 

 

(11) 

where ,  ,  m m mL T F  represent the longitudinal, tangential and radial line forces exerted by 

stiffener m on the shell, while mM designates the tangential line moment exerted by such 

stiffener.  

As for the acoustic monopole excitation of the shell, we shall split the total pressure in 
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the fluid domain,
tp , into the sum of the monopole blocked pressured eF  (i.e. the pressure 

generated by the monopole acoustic waves on the cylindrical shell as if that was rigid) and the 

pressure, p, radiated outwards by the shell vibrations. That is to say, etp F p   [33]. The 

radiated pressure must satisfy, on the one hand, the homogeneous Helmholtz equation in the 

fluid medium, 

   2

0, , , , 0p x r k p x r    , (12) 

where   is the Laplacian operator in cylindrical coordinates and 𝑘0 = 𝜔 𝑐0⁄   denotes, 

as usual, the acoustic wavenumber. If the free stream velocity 𝑈0 was to be considered, 

one could solve the convected Helmholtz equation instead (see e.g., [34,35]). On the other 

hand, velocity continuity must be ensured between the shell motion and the fluid. The 

Euler equation allows to express that condition as  

   2

0, , ,
p

x R W x
r

   





. 

 

 

(13) 

 

2.4.2 Resolution in the wavenumber domain 

The solution to equations Eqs. (10) - (13) can be found by setting them in the wavenumber 

domain. Let us remind that, for a general field ( , )f x  , its Fourier series decomposition 

along coordinate   and the Fourier transform along x are given by 

2
j

0

2
j( )

0

1
( , ) ( , ) ( , ) d ,

2

1
( , ) ( , ) ( , ) d d .

2
x

n

k x n

x

f x f x n f x e

f x f k n f x e x







  


  






 









 
 

 

(14) 

f and f are respectively named the circumferential and the spectral fields of f . xk  is the 

space Fourier variable and n is the circumferential number. Note that the definitions in Eq. 

(14) are consistent with those in Eqs. (4)-(5) concerning the spectrum of the TBL wall 

pressure field, as well as with that in Eq. (9) involving the alternative interpretation of the 

circumferential sensitivity functions. 

Applying Eq. (14) to Eq. (10), the equations of motion of the shell become  
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 

 

 

     

 

 

 

, 0 ,

, , 0 ,

, , , ,

0

0

x x

x x x

x e x x x

U k n L k n

k n V k n T k n

W k n F k n p k n F k n



       
       

            
              

, 

 

(15) 

where  
   is the spectral Flügge matrix that depends analytically on the shell parameters (see 

Appendix B). As regards the monopole source at  , ,s s sS x r , it generates a spectral blocked 

pressure on the shell [33] 

(2)
( )

2)

0

(

( )
( , )

2 ( )

s x sj n k xn r s
e x

r n r

H k r
F k n e

k R

j

H k R





  



, 

 

(16) 

where 
(2)

nH  is the Hankel function of the second kind and order n, and 

   

2 2

0 0

2 2

0

  if ,

 otherwise.

x x

r

x

k k k k
k

j k k

  
 

 

 

Furthermore, the Fourier transform of Eqs. (12) and (13) permits relating the spectral 

radiated pressure to the spectral radial displacement of the shell through the fluid 

impedance,
fZ ,  

( , ) ( , ) ( , )x f x xp k n j Z k n W k n , 
 

 

(2)

0

(2)
( , )

n r

f x

r n r

H k Rj
Z k n

k H k R

 
 


. (17) 

Substituting Eq. (17) into Eq. (15) and inverting the matrix system provides the spectral 

displacements of the shell, 

 

 

   

 

 

 

11 12 13

21 22 23

31 32 33

, ( , ) ( , ) ( , ) 0 ,

, ( , ) ( , ) ( , ) 0 ,

, ( , ) ( , ) ( , ) , ,

x x x x x

x x x x x

x x x x e x x

U k n I k n I k n I k n L k n

V k n I k n I k n I k n T k n

W k n I k n I k n I k n F k n F k n

       
       

        
              

, 

 

(18) 

where    ,  1,2,3 ,  1,2,3ijI i j  correspond to the entries of the inverse of the Flügge matrix 

taking the fluid impedance into account.   

For properly resolving the coupling with the ring stiffeners, we should next introduce the 

angular rotation in the formulation. In the wavenumber space, the spectral angular rotation is 

related to the spectral radial displacement by    , ,x x xk n jk W k n   . One can then easily 
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express Eq. (18) in the matrix form, 

       , , , ,x x x xk n k n k n k n   eW I F F , (19) 

where now,  

-  

 

 

 

 

,

,
,

,

,

x

x

x

x

x

U k n

V k n
k n

W k n

k n

 
 
 
 
 
  

W  stands for the spectral vector of the shell DoF,  

-  

11 12 13 13

21 22 23 23

31 32 33 33

31 32 33 33

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

x x x x

x x x x

x

x x x x

x x x x x x x x

I k n I k n I k n I k n

I k n I k n I k n I k n
k n

I k n I k n I k n I k n

jk I k n jk I k n jk I k n jk I k n

 
 
 
 
 
  

I   represents the spectral 

admittance matrix of the fluid loaded shell, 

-  
 

0

0
,

,

0

x

e x

k n
F k n

 
 
 
 
 
 

e
F  is the spectral force vector due the external monopole excitation 

and 

-  

 

 

 

 

, x

m

m jk md

x

m m

x m

L n

T n
k n e

F n

jk M n






 
 
 
 
 
  

F  is the spectral force vector due to the stiffener loads. 

 For convenience, we may rewrite   

     , xjk md

x x m

m

k n k n e






 F J F  (20) 

with  

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0

x

x

k

jk

 
 
 
 
 

 

J  and  

 

 

 

 

m

m

m

m

m

L n

T n
n

F n

M n

 
 
 
 
 
  

F . 

Next, consider a finite element model of a ring stiffener. Given that the stiffener is 
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axisymmetric, axisymmetric shell elements could be adopted for efficiency; yet this is not 

mandatory. Classical 2D shell elements may be used as well, with a 3D surface mesh for the 

web and flange in the case of a T-shaped cross-section stiffener. The finite element model allows 

one to numerically estimate the circumferential admittance matrix of the stiffener, say Y  , 

which relates the circumferential applied forces at the foot of the stiffener, r

mF  , to its 

circumferential displacements,  r

m nW , namely, 

     r r

m mn n nW Y F  , (21) 

with  

 

 

 

 

r

m

r

mr

m r

m

r

m

U n

V n
n

W n

n

 
 
 
 
 
  

W ,  

 

 

 

 

r

m

r

mr

m r

m

r

m

L n

T n
n

F n

M n

 
 
 
 
 
  

F  and  

 

       

       

       

       

UL UT UF UM

VL VT VF VM

WL WT WF WM

L T F M

Y n Y n Y n Y n

Y n Y n Y n Y n
n

Y n Y n Y n Y n

Y n Y n Y n Y n   

 
 
 
 
 
  

Y . 

 

(22) 

As said, the entries Y  of the circumferential admittance matrix Eq. (22), can directly be 

obtained from the finite element simulation as  
 

 

n
Y n

n





  , where  n   is the 

circumferential displacement in response e.g., to a unit circumferential line load  n . 

Knowing Y  and enforcing displacement and rotation continuity at each m-th ( m ) 

shell-stiffener junction i.e.,    r

m mn nW W  , as well as force equilibrium, 

    0r

m mn n F F , Eq. (21) becomes  

     m mn n n F Z W , with  -1
Z Y . (23) 

Furthermore, taking the inverse Fourier transform of the spectral displacements and rotation for

x md we get 
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 

 

 

 

 

,

,1

2 ,

,

x

x

m

x
jk mdm

m x

m x

m

x

U k n
U

V k nV
n e dk

W W k n

k n










 
  
  
   
  
  
  
  

W . 

 

(24) 

Substituting Eq. (24) in Eq. (23) and then inserting the output in Eq. (20), provides, after making 

use of Poisson’s formula,  

  2 2x xj k k md

x x

m m

m
e k k

d d

 


 


 

 
   

 
  , (25) 

the following expression for the stiffeners’ spectral force vector, 

     
1 2

, ,x x x

m

m
k n k n k n

d d





 
   

 
F J Z W . (26) 

Using this result, the spectral displacement vector in Eq. (19) can be written as 

         
1

, , , ,x x x xk n k n k n n k n
d

 
  

 
eW I F Z ξ , (27) 

with  
2

, ,x x

m

m
k n k n

d





 
  

 
ξ W  and  

     

11 12 13 13

21 22 23 23

31 32 33 33

2

31 32 33 33

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
, ,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

x x x x x

x x x x x

x x x

x x x x x

x x x x x x x x

I k n I k n I k n jk I k n

I k n I k n I k n jk I k n
k n k n k

I k n I k n I k n jk I k n

jk I k n jk I k n jk I k n k I k n

 
 


  
 
 
 

I I J . 

Given the periodicity of  
2

, , ,x x

m
k n k n m

d

 
    

 
ξ ξ , and resorting to Eq. (27), it 

follows that  

 

 

2
, ,

2 2 1 2
            , , , ,

x x

m

x x x

m

m
k n k n

d

m m m
k n k n n k n

d d d d



  









 
  

 

      
          

      



 e

ξ W

I F Z ξ

 

 

(28) 

from which one can deduce, 
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         , , , ,x x x xk n k n k n n k n 0 0ξ T S Z ξ , (29) 

with 

 
2 2

, , ,x x x

m

m m
k n k n k n

d d

 



   
     

   
0 eT I F ,  (30) 

and 

 0

1 2
, ,x x

m

m
k n k n

d d





 
  

 
S I . (31) 

Solving for ξ  in Eq. (29) and inserting the result in Eq. (27) yields the spectral displacement-

rotation vector we were looking for, 

           
11

, , , , ,x x x x xk n k n k n n k n k n
d

 
     

 
e 0 0W I F Y S T . 

 

(32) 

Finally, and according to the reciprocity principle in section 2.3, the circumferential 

sensitivity function in Eq. (9) can be directly obtained from the spectral radial 

displacement vector induced by the monopole located at  , ,s s sS x r . Taking the radial 

component of 𝐖̃(𝑘𝑥, 𝑛) in Eq. (32) we get, 

 , , , , ( , )p s s s x xH x r k n j RW k n  . (33) 

  

2.5 Implementation aspects 

In the precedent sections 2.2 to 2.4, we have left some points unspecified for the benefit 

of a more general formulation. In this section we will address them to make the 

simulations in the forthcoming sections reproducible.  

Concerning the cross spectral density of the TBL,  , ,tbl

pp x yS k k  , in Eq. (2) we have 

employed the model proposed by Chase [29]. From this model and Eq. (4) we can then 

compute the circumferential TBL excitation  , ,tbl

pp xk n  . The Chase model requires the 

convective velocity, 𝑈𝑐 (usually 𝑈𝑐 ≈ 0.5𝑈0 − 0.7𝑈0), the TBL thickness, 𝛿𝑡𝑏𝑙, and the 

friction velocity, 𝑣∗, as input parameters. As the original model is a two-sided angular 

frequency spectrum, we have multiplied it by a factor 4  to convert it into a one-sided 

frequency spectrum. The Chase model is summarized in Appendix B for completeness of 

the paper.  
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Furthermore, and as mentioned before, Appendix B also contains an explicit 

expression for the spectral Flügge matrix in Eq. (15),  
  , which governs the dynamics 

of the shell and is crucial for all developments in section 2.4.2.      

Another implementation aspect that is worth clarifying concerns the evaluation of 

infinite integrals and summations in some preceding expressions like Eq. (9), among many 

others. In practice, such developments must be truncated at some point. A criterion for 

doing so is as follows. For frequencies well above the hydrodynamic frequency, it is well 

known that the contribution of the convective peak is negligible to a good extent [36, 37]. 

Therefore, one can define an axial cut-off wavenumber xk  from the shell and fluid 

characteristics,  

 
0,max kkk fxx 

, (34) 

where fk  is the flexural wavenumber of a plate equivalent to the shell (i.e. a plate with 

the same thickness and material than the shell), and 
0k  is the acoustic wavenumber. The 

factor 
x  is a safety coefficient (typically 2x ). Similarly, one can define a cut-off 

circumferential order, N , as 

 0int max , 1N fN R k k  
  , 

 

(35) 

where 
N  stands for a second safety coefficient that can be taken as 5.1N .  

Once defined the threshold values Eq. (34) and Eq. (35), one can well estimate the 

main output of this work, namely the ASD function of the radiated pressure in Eq. (1) as,  

     
2

, , , 2 , , , , , , ,
x

x

kn N
tbl

pp p x pp x x

n N k

S x r H x r k n k n dk      


 

   . (36) 

The integral can be evaluated numerically using a quadrature rule.  

 On the other hand, infinite series summations also appear in the expressions for 

 and 0 0S T  (Eqs. (30) and (31)). Those can be approximated by truncating the summation 

over m between M  and M , where M  now stands for a cut-off stiffener number. A 

convergence study has revealed that M  can be fixed to 15. Moreover, the inverse of the 

matrix  0Y S  in Eq. (32) can be calculated with the Cramer formula. Finally, the spectral 

displacement-rotation vector 𝐖̃(𝑘𝑥, 𝑛) in Eq. (32) can be easily evaluated numerically.  

 As regard the computational cost, finite element model for the stiffeners apart, the  
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calculation of Eq. (36) can be performed on a standard PC (i.e. Intel Core i7-7500 2.7 

GHz 8 GB RAM) using a Matlab code, which only takes a few seconds per frequency. 

 

3. Numerical simulations and analysis of the results 

The theoretical formulation is applied to analyze three different situations. The first 

one consists of a preliminary study in which we compare the ASD of the radiated pressure 

for an infinite panel under TBL excitation, with that of an infinite cylinder without 

supports. That will reveal the influence of curvature on the radiated sound pressure field. 

The other two cases are at the core of this paper and deal with submerged cylindrical shells 

with different types of periodic supports. Let us briefly survey the three configurations 

before starting the detailed analyses in the forthcoming subsections 

 

Preliminary study: non-stiffened infinite panel versus non-stiffened infinite cylindrical 

shell. For a better comprehension and calibration of the numerical simulations, we begin 

computing the acceleration ASD on a flat plate excited by a TBL, for which experimental 

measurements exist (see [38]). To show that our theoretical model provides correct 

vibration values, we calculate the acoustic pressure ASD radiated by a fluid loaded 

cylindrical shell and compare it with that radiated by an infinite panel. For points in the 

near field, one should obtain very similar results, the influence of the shell curvature being 

minimal. As opposed, when moving away from the structure the differences between the 

plate and the shell should become apparent. 

  

Case I: a submerged cylindrical shell with periodic simply supports. In this case we 

consider a fluid loaded cylindrical shell with regularly spaced simply supports. This 

simplification will allow us to analyze the effects of periodic stiffening without the influence 

of the deformable stiffener dynamics. In the present formulation this is akin to setting 

infinitely rigid stiffeners in the radial direction, while suppressing them in the other ones. 

To attain this effect, and prevent numerical instabilities, we have chosen the following 

values for the entries in the circumferential admittance matrix Eq. (22), 

    1UL VTY n Y n   m2/N,   1MY n   rad/N,   1510WFY n  m2/N and zero otherwise. 
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Case II: a submerged cylindrical shell with periodic deformable ring stiffeners . In this 

second case we include the dynamics of the deformable stiffeners in the simulations. Stiffeners 

with two different cross-sections are considered; a first one with rectangular cross section (I-

shaped) and a second one with T-shaped cross section (see Fig. 3). As explained in section 2.4, 

the circumferential admittance matrix, Y  , in Eq. (22) will be now estimated from a finite 

element model. The influence of the coupling between DoF will be studied.  

  

We have used the same cylindrical shell for the preliminary test and cases I and II. 

It has a radius of R=5 m and a thickness of h=0.03 m. The shell is made of standard steel 

( 7800    kg/m3, 
112.1 10E     Pa, 0.3   , 0.02   ) and is submerged in water 

( 0 1000  kg/m3, 0 1500c  m/s). The fundamental ring frequency of the cylindrical shell 

is 173 Hz. Likewise, we also use the same TBL excitation for all cases. The Chase model 

in Appendix B has been implemented with input parameters typical from naval 

applications corresponding to the measured data presented in [38], namely a flow speed 

of 5.3 m/s, a convection flow speed of 3.2 m/s, a friction velocity of 0.16 m/s and a 0.11 

m TBL thickness. From the CSD of Chase’s model, we have computed the circumferential 

TBL excitation  , ,tbl

pp xk n   taking into account the implementation aspects in section 

2.5, and then computed the ASD in 
2Pa /Hz  of the radiated pressure from Eq. (36).   

The frequency range of analysis comprises from 100 Hz to 1000 Hz. It is well above 

the hydrodynamic coincidence frequency, which is lower than 1 Hz. Note that the 

contributions of the convective peak of the WPF can then be neglected because they would 

be strongly filtered by the structure [36, 37]. Additionally, in the low wavenumber domain 

(delimited by xk and N  in Eqs. (34) and (35)), the dB levels of the wall-pressure field 

CSD will not experience significant variations, except for values close to the origin (see 

e.g., Fig. 4a in [21]). Therefore, the CSD function of the WPF at the low wavenumber 

range can be well approximated as being constant, without substantially affecting the 

summation in Eq. (36). This indicates that the term most influencing the radiated pressure 

in Eq. (36) will be the modulus of the circumferential sensitivity function of the stiffened 

shell, 
pH .  
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Finally, let us mention that the calculation process described in Sec. 2 has been 

validated numerically by comparison with results from the circumferential admittance 

approach in [25,41]. In appendix C, both methods are applied to case II with T-shaped 

stiffeners showing very good agreement. 

 

3.1 Preliminary study: non-stiffened infinite panel versus non-stiffened infinite 

cylindrical shell 

Let us start considering the acceleration ASD, 
panelS , of an infinite panel excited by a TBL, 

which is given by (see [23]),  

     
2

2

1
, , , , , ,

4

panel panel tbl

x y pp x y x yS z H k k S k k dk dk   


 

 

    

 

(37) 

as well as the ASD of the radiated acoustic pressure, 
panel

ppS , at a distance z from the panel, 

namely, 

     
2

2

1
, , , , , ,

4

panel panel tbl

pp p x y pp x y x yS z H z k k S k k dk dk  


 

 

   . 

 

(38) 

The acceleration and radiated pressure sensitivity functions of the panel, 
panelH   and 

panel

pH , can be expressed in terms of its impedance, pZ , and the fluid impedance, aZ , 

2
panel

p a

H
Z Z




 


, 

zk z
panel a
p

p a

Z e
H

Z Z



, 

 

(39) 

with  
2

* 2 2 2

p p x y pZ D k k h      and 

2

0
a

z

Z
k

 
  . 

*

pD   and ph   respectively stand for 

the complex flexural dynamic stiffness and the thickness of the panel, while the 

wavenumber zk  becomes,  

2 2 2 2 2

0 0

2 2 2

0

,  if  ,

, otherwise.

x y x y

z

x y

i k k k k k k
k

k k k

    
 

  

 

 

(40) 

A rectangular rule can be used for the numerical computation of the integrals in Eqs. 

(37) and (38), and similar criteria to those in section 2.5 can be applied for the truncation 

and discretization in the wavenumber space  ,x yk k . Likewise, we have employed the 

Chase TBL model in the above formulas with the parameters described in the introduction 

of section 3.  



 

22 

 

An initial verification has been performed to check whether the theoretical model 

for the acceleration ASD in Eq. (37) provides reliable results. This is done through 

comparison with the ASD from the finite panel in [38], for which experimental data is 

available. That panel was made of Plexiglas with thickness of 3 mm. The following 

mechanical properties have been assumed for it: a mass density of 1190 kg/m3, a Young 

modulus of 2000 MPa, a Poisson coefficient of 0.37 and a damping loss factor of 0.01. 

The acceleration ASD from Eq. (37) has been found to decrease monotonically from 5

10-4 m2s-4Hz-1 at 100 Hz to 1.610-5 m2s-4Hz-1 at 1 kHz and to coincide with the general 

tendency and order of magnitude of the numerical and experimental data from Fig. 18 in 

[38]. It is to be noted, however, that the results in [38] were obtained for a finite size panel 

of 0.580.2 m2 so its modal behavior cannot be recovered with the infinite plate theory 

in Eq. (37).  

The next step has consisted in computing the ASD of the radiated pressure for both, 

the cylindrical shell introduced at the beginning of section 3 and an infinite panel  with the 

same material and thickness used for the shell. The pressure ASD for the shell has been 

obtained from Eq. (1) (following the procedure in section 2 but for an unstiffened shell) 

and that for the panel from Eq. (38). Predictions have been made at two distances from 

the shell and panel, namely at 0.1 m and 10 m, and presented in Fig. 4.  

Close to the structure, at 0.1 m, one can observe from Fig. 4 that the levels of the 

radiated pressure are almost identical for the shell and the panel. This is logical since near 

the shell that will look almost flat, its curvature hardly affecting the radiated noise. Only 

a very small difference (~ 1 dB) can be appreciated below 200 Hz, which could be 

attributed to a slight influence of the shell curvature (the ring frequency is 173 Hz). For 

the two structures, the radiated pressure decreases ~25 dB between 100 Hz and 1 kHz. A 

calculation of the ASD of the panel acceleration with Eq. (37) also indicates a strong 

reduction of 10.8 dB between these 2 frequencies (from 31.6 dB at 100 Hz to 20.8 dB at 

1 kHz, dBref = 10-12 m-2s-4Hz-1). This may be attributed (at least partly) to the decrease in 

the ASD of the TBL wall pressure, which can be obtained through integration of the CSD 

of Chase’s wall pressure model. That experiences a 16 dB drop from 116 dB at 100 Hz to 

110 dB at 1 kHz (dBref = 10-12 Pa2Hz-1). 

When we move away from the structure and set the observation point at 10 m, 

significant differences emerge between the shell and panel ASD radiated pressure (2 dB 

at 100 Hz and 6 dB at 1 kHz, see Fig. 4). The shell curvature now becomes critical. Note 

that once in the far field, the pressure radiated by the panel is not dependent on the distance 
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from the panel, this is because the panel was considered to be infinite. Conversely, the 

pressure radiated by the cylindrical shell will experience a 1/r decay law with distance. 

Further, it can be observed from Fig. 4 the radiated pressure increases between 100 Hz 

and 1 kHz when z=10 m, whereas it decreases when z=0.1 m. The reason for that behavior 

at the far field can be attributed to the radiation efficiency performance below the critical 

frequency, which is 7.6 kHz for the considered panel. In fact, it has already been shown 

that the radiation efficiency increases with frequency in that range for a point excited 

panel (see e.g., [39]). Although we are herein considering wall pressure fluctuations 

beneath a TBL, which cannot strictly be identified with point loads, it looks like a similar 

radiation mechanism operates in the far field. Despite of the acceleration ASD being lower 

at 1 kHz than at 100 Hz, the pressure radiated by the panel at 10 m is higher at 1 kHz than 

at 100 Hz because the radiation efficiency precisely increases between 100 Hz and 1 kHz. 

The same behavior is observed for the unstiffened cylindrical shell in Fig. 4.  

Once finished this brief overview on some characteristics of the radiated sound by 

infinite plates and cylinders, let us next focus on the influence of adding periodic supports 

or ring stiffeners to the latter.  

3.2 Case I: a submerged cylindrical shell with periodic simply supports  

3.2.1 Spectrum of the radiated pressure from the shell 

In Fig. 5 we show the ASD function of the radiated pressure at different distances z from 

the cylindrical shell taking a separation of 𝑑 = 1.35 m between the simple supports. The 

receiver point is located at an axial distance of 0.45 m from one of them. The radiated 

pressure does not obviously depend on   due to axisymmetry.   

As observed in this figure, the spectrum is rather smooth and shows little variation 

with frequency when the observation point is close to the shell (𝑧 = 0.01 m). As opposed, 

when we move away from the shell the spectra start exhibiting several bumps. 

Additionally, note that beyond a certain distance the difference between spectrum levels 

gets constant. For instance, there is an 8.5 dB offset between the spectrum at z=10 m and 

that for z=100 m. This is consistent with a 1/r (with r=R+z) decay law of the pressure ASD 

function, which is characteristic of cylindrically propagating acoustic waves. Beyond 

z=10 m, one could then consider that the receiving point lies in the acoustic far field. It 

should be stressed that, herein, the definition of far field is not related to the size of the 

radiating structure, which is infinite, but to the shape of the wave fronts propagating in 

the fluid domain. For points closer to the shell than z=10 m, the far field behavior is not 
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observed at any frequency. For instance, the difference between the spectra at z=1 m and 

z=10 m has an almost constant value of 5.5 dB between 300 Hz and 1 kHz, which does 

not match with the cylindrical wave dependence 1/r, because  1010log 15 6 4  . At 

frequencies lower than 300 Hz, the differences between the z=1 m and z=10 m spectra are 

no longer constant and clearly change with frequency. The evanescent waves radiated by 

the cylindrical shell play there a significant role. In what remains of this paper, however, 

we will mostly focus on the analysis of sound radiated to the far field.  

Fig. 6 shows the radiated pressure spectra at a fixed distance z=10 m for different 

values of the support spacing d. For comparison, the pressure spectrum radiated from a 

cylindrical shell without supports is also plotted. As seen, the positions of the bumps and 

troughs in the spectra change with d. The larger the support spacing, the higher the number 

of bumps in the considered frequency range. Likewise, one notices that the regularly 

simply supported cylindrical shell radiates much more sound than the unsupported one. 

The differences are always higher than 12 dB and, at some frequencies, can even reach 32 

dB.  

The goal for the forthcoming sections is to better understand the physics behind the 

far field sound radiation of periodically simply supported shells, so as to provide an 

explanation for the results in Figs. 5 and 6. Three aspects will be investigated: (a) the 

contributions of the circumferential orders of the shell; (b) the role of the circumferential 

sensitivity functions; (c) the propagation of Bloch-Floquet waves in the shell.  

 

3.2.2 Circumferential order analysis 

Eq. (36) used to compute the far-field pressure radiation involves a summation over the 2

N +1 circumferential orders of the shell (from - N to N ). One can then separately study 

the individual contribution of the n-th order to the radiated pressure ASD. As the 

summation is over positive and negative values of n, we recognize the contribution of the 

n-th circumferential order, nC , as that arising from the summation of the two terms with 

indices –n and n in Eq. (36) (that is to say twice the term corresponding to n considering 

the symmetry about 0  ). The n-th circumferential order contribution is then provided 

by,  

   
2

2 , , , , , , ,
x

x

k

tbl

n n p x pp x x

k

C H x r k n k n dk    


  , (41) 
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with 
1 for 0

2 for 1,
n

n

n N



 


. 

Fig. 7 shows some of the contributions of Eq. (41) to the radiated pressure at z=10 

m for two situations: the regularly simply supported shell with d=1.35 m and the same 

cylindrical shell without supports. The contributions for n=0, n=1 and n=5 are respectively 

identified in the figure with full, dash-doted, and dashed lines, whereas additional results 

(for 2 ≤ 𝑛 ≤ 4 and 6 ≤ 𝑛 ≤ 10) are plotted with dotted lines without symbol distinction. 

For the unsupported cylindrical shell (see Fig. 7a), the orders n=0,1,2,3 contribute 

similarly and much more than the remaining ones (𝑛 ≥ 5), for the whole frequency range. 

As long as the circumferential order n increases, its low frequency contribution decreases, 

but recovers beyond a certain frequency value, which depends on n, reaching the 

contribution level of the first orders at high frequencies. The level of the radiated pressure 

by the cylindrical shell can then be roughly related to the number of orders achieving the 

levels of the first order contributions. For instance, at 100 Hz, only 4 circumferential 

orders have the top value contribution of 17 dB which results in an overall level of 22 dB. 

In contrast to that, at 600 Hz 11 orders have reached the top value of 14 dB giving an 

overall level of 24.8 dB. In summary, for the unsupported cylindrical shell the higher the 

frequency the larger the number of contributing circumferential orders, and the stronger 

becomes the radiated pressure at the far field.  

 The periodically simply supported shell exhibits some similitudes with the 

unsupported one: only the lowest orders (i.e. 1, 2) contribute to the radiated pressure for 

the whole frequency range (see Fig. 7b), yet most orders contribute to high frequencies. 

Nonetheless, a strong difference is observed. In the supported case, the circumferential 

order contributions present strong peaks and bumps depending on frequency. As observed 

in the figure, those peaks appear whatever the order n of nC   is, yet their amplitudes 

change from one order to the other. It is their cumulative effect what determines the overall 

radiated pressure level. Now, for better understanding the reason for the shape of the nC  

contributions we shall analyse in detail the frequency dependence of the circumferential 

sensitivity functions,  , , , , ,p xH x r k n  , in Eq. (41), given that, as said at the beginning 

of the section, the CSD,  , ,tbl

pp xk n  , for the TBL can be taken as almost constant for the 

considered wavenumber range.  
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3.2.3 Analysis of the circumferential sensitivity functions 

Circumferential sensitivity functions for the unsupported and simply supported cylindrical 

shells are respectively presented in Figs. 8 and 9 at two different frequencies. These were 

chosen to highlight how differently the periodically supported shell radiates depending on 

frequency. The first one, 229.6 Hz, corresponds to a trough of the radiated pressure 

spectrum (37 dB of 
ppS ), while the second one, 353.9 Hz, is on a bump of the spectrum 

(50 dB of 
ppS ) (see Fig. 6).    

The figures present the dependence of each circumferential sensitivity function on 

its order n and wave number 𝑘𝑥, for distances z=0.1, 1 and 10 m from the shell (Figs. 8a-

c and Figs. 9a-c). For the unsupported shell in Fig. 8a (i.e. z=0.1 m), the sensitivity 

functions exhibit the highest values for points located on a hemi-ellipse that corresponds 

to the quasi-flexural motions of the shell (when considering the fluid added mass). Indeed, 

if we compute the natural flexural wavenumber
,f waterk of an equivalent plate to the shell 

(i.e. a plate with the same thickness and material properties, see [25]) and plot the hemi-

ellipse   2 2

, , ,, , ,fl x f water x x f water f waterE k R k k k k k        in Fig.8a (white dashed line), 

we observe a very a good agreement between 𝐸𝑓𝑙 and the hemi-ellipse of the maximum 

values of the sensitivity functions. Therefore, one could attribute with confidence the 

highest values of the latter to the propagation of quasi-flexural waves in the shell. 

As the observation point moves away from the shell (Figs. 8b and c), the 

circumferential functions rapidly decrease, except for the lower circumferential orders. 

The ellipse of flexural motions is still visible for 229.6 Hz at z=1 m, but it completely 

disappears at z=10 m. It is neither perceptible at z=1 m nor at z=10 m for 353.9 Hz. The 

reason for that is the filtering effect of the acoustic medium. To check that, the spectral 

blocked pressure in Eq. (16) induced by the propagative waves generated by a monopole 

located at z=10 m has been plotted in Fig. 8d. There, we have also included the acoustic 

hemi-ellipse     2 2

0 0 0, , ,ac x x xE k R k k k k k    , where 0k  is the acoustic wavenumber. 

As observed, the spectral blocked pressure is only important for axial wavenumbers and 

circumferential orders inside, or close to, the acoustic ellipse. Comparing Fig. 8d with Fig. 

8c we may conclude that the same occurs for the circumferential sensitivity functions. 

Therefore, the latter axial wavenumber and circumferential order contributions can no 

longer be attributed to the propagation of quasi-flexural waves propagating on the shell. 
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Additionally, note that the values of the sensitivity functions inside the acoustic semi-

ellipse are nearly constant and that the size of the ellipse grows with frequency (the one 

for 353.9 Hz is bigger than that at 22.6 Hz, see Fig. 8c). This may explain why more 

circumferential modes contribute to the far-field radiated pressure as the frequency 

increases, as observed in Fig. 7a for the unsupported shell.  

The circumferential sensitivity functions for the periodically simply supported shell 

are very different from those of the unsupported one, see Fig. 9. For instance, in the near 

field, z=0.1 m (Fig. 9a), they exhibit the most significant values for the circumferential 

orders 14,20 28,29n  at 229.6 Hz and 0,13 27,30 36,37n    at 353.9 Hz. 

When the point of observation steps away from the shell, the sensitivity functions decrease, 

except for the lower circumferential orders, as it happened with the unsupported shell. 

Here again, the filtering effect of the acoustic medium comes into play. Nonetheless, some 

remarkable differences can be identified. In Fig. 9c one can observe how, for z=10 m, the 

contributions remain notable not only for the axial wavenumbers and the circumferential 

orders inside the acoustic ellipse, but also for the ones corresponding to periodic copies 

of it (those are obtained through translating vectors 
*2

,
xk

p
i p

d


 , where 

xki  is the unit 

vector of the xk axis). The acoustic ellipse and its periodic copies have been plotted as 

white solid lines in Fig. 9d. These copies can be clearly attributed to the periodicity of the 

supports. In fact, they result from the reacting forces at the supports, in response to the 

shell motions produced by acoustic wave excitation. Mathematically, the copies 

correspond to a discrete Fourier transform of the spatial field with the resolution of the 

support spacing, d. The transform yields a spectrum in the wavenumber space of period  

2

d


. 

At the far field z=10 m, the acoustic filtering effect turns to be very efficient for the 

229.6 Hz frequency but not so much for the 353.9 Hz one. Whereas the circumferential 

orders 14,20 28,29n    of the former are completely swept away by the acoustic 

medium, significant contributions are still observed at 353.9 Hz for the low 

circumferential orders 0,10n   (though the higher order ones, 

11,13 27,30 36,37n     get eliminated). Those low circumferential orders 

noticeably contribute to the noise radiated at the far field. We should then identify which 

type of waves in the shell are responsible for them. This is the goal of the next section.  
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3.2.4 Propagative Bloch-Floquet waves 

It is a well-known fact that waves in periodically stiffened structures can be propagative 

for some frequency bands, referred to as pass-bands, while evanescent at others, the so-

called frequency stop-bands [1, 3, 5]. These waves constitute a particular example of 

Bloch-Floquet’s waves [40]. In our problem, they result from the complex interaction 

between the cylindrical shell motions and the periodically spaced supports. The frequency 

pass-bands and stop-bands can be predicted finding the roots of the dispersion equation 

associated to the considered system [1]. In general, the roots can be complex which leads 

to a tricky problem [3]. However, one can skip such difficulty by analyzing an equivalent 

conservative system without damping.  

 The damping of the periodically supported shell is of two types: (a) that related to 

the energy dissipated by the shell steel itself and (b) that arising from the radiation of 

acoustic waves into the fluid. To suppress the first one, we simply need to consider a real 

Young modulus instead of a complex one in the equations of motion of the shell . As for 

the second one, it suffices to take the real part of the fluid loading impedance fZ  in Eq. 

(17). The free propagative waves of the Bloch-Floquet type in the supported shell read 

 
  4, ,

BF BF
xj k x n

x e





 W ξ ξ   and are expected to be solutions of the conservative 

equations of motion of the system without external excitation. From Eq. (32), it is apparent 

that non-null solutions can only exist for couples   2,BF BF

xk n  satisfying the dispersion 

equation    

     , , 0BF BF BF BF BF

x xk n n k n   
0

Y S . (42) 

The roots of Eq. (42) cannot be obtained explicitly and a numerical procedure is needed 

to find them. That is presented in Appendix D.  

Fig. 10 shows the pass-bands and stop-bands for the periodically simply supported 

shell with d=1.35 m. For a fixed frequency and circumferential order n, a black point is 

plotted in the figure, whenever a couple  ,BF BF

xk n   is found to correspond to a 

propagative Bloch-Floquet wave, according to the algorithm in Appendix D. Points being 

very close together appear like solid lines in the figure. These lines therefore identify the 

pass-bands of a given circumferential order. For instance, for n=12 one gets four 

frequency pass-bands, namely [182.2 Hz-217.9 Hz], [347.8 Hz-411.2 Hz], [591.5 Hz-
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675.4 Hz] and frequencies beyond 917.1 Hz.  

The algorithm in Appendix D is also capable of detecting the propagation of quasi-

longitudinal and quasi-shear waves of the cylindrical shell. In Fig. 10 we have indicated 

the upper limit for shear wave propagation with a dashed line. Below that limit the 

propagation zone is almost global and there are no stop-bands. In that region it becomes 

difficult to make a distinction between the Bloch-Floquet waves and the quasi-

longitudinal and quasi-shear ones (note that the latter cannot radiate significant noise). 

Nevertheless, one can extrapolate the behaviour of the Bloch-Floquet waves below the 

dashed line, from their behaviour above the line. At 229.6 Hz, one can appreciate two 

circumferential order pass-bands; the first one between orders 15 and 20 and the second 

for the order 29n  . As for 353.9 Hz, three circumferential order pass-bands exist. The 

first one ranges from 0 to 12, the second comprises the orders from 28 to 30 and the third 

corresponds to 36n   . These pass-bands match the circumferential orders with 

substantial contributions to the circumferential sensitivity functions for z=0.1 m, in Fig. 

9a (see the discussion in Section 3.2.3). Therefore, the important near field contributions 

of the circumferential sensitivity functions for the supported shell in Fig. 9a which were 

absent for the unsupported shell in Fig. 8a, can be credited to propagative Bloch-Floquet 

waves. 

It is to be noted that some Bloch-Floquet waves are not filtered by the acoustic 

medium and can also radiate in the far-field. To identify those which can radiate in the 

far-field, it suffices to consider the waves in the first Brillouin zone. In fact, those with 

coordinates  ,BF BF

xk n  inside the acoustic ellipse will be able to do so. Analogously, a 

wave in the pth Brillouin zone with axial wavenumber 
2BF

xk p
d


  will have coordinates 

2
,BF BF

xk p n
d

 
 

 
 inside a periodic copy of the acoustic ellipse and therefore, it will be 

also capable to radiate to the far field.  

In Fig. 11 we have plotted the values of  
2

2
BF

BF

x

n
k k

R

 
   

 
, the Bloch-Floquet 

waves with 0k k   being those radiating outwards. The acoustic wavenumber 0k   is 

represented with a solid line in the figure. In addition, a dashed line has been used for lk , 

the wavenumber of the quasi-longitudinal waves, and a dash-dotted line for the 
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wavenumber, sk , of the quasi-shear ones. Waves with wavenumbers close to lk  or sk  

are not of the Bloch-Floquet type and can be discarded for radiation into the far-field.  

To facilitate comprehension, suitable Bloch-Floquet waves with 0k k  have been 

highlighted in Fig. 11 with black circles in the frequency axis. For the circumferential 

order n=1 in Fig. 11a, one can identify four frequency bands: [168 Hz-171 Hz], [334 Hz 

– 425 Hz], [555 Hz – 711 Hz], and frequencies higher than 875 Hz. These bands correlate 

well with the bumps observed in Fig. 7b for n=1. The peak at the band [168 Hz-171 Hz] 

also appears in Fig. 7b for n=5 (yet it is 15 dB lower than that of n=1) though is not 

identified in Fig. 11b. However, the bands in black circles of Fig. 11b, namely [351 Hz – 

416 Hz], [561 Hz – 707 Hz] and frequencies beyond 880 Hz, are slightly higher in 

frequency and narrower than those for n=1, and remain totally consistent with those in 

Fig. 7b. For a general overview of the situation, in Fig. 11c we have plotted the results for 

all circumferential orders between 0 and 70. The frequency bands for which 0k k  is 

fulfilled can be easily identified and correlate well with the bumps observed in the radiated 

pressure spectra of Figs. 5 and 6.  

Having reached this point, the following may be concluded about the pressure 

radiated by a fluid loaded shell, with periodic supports, excited by a TBL. The acoustic 

spectrum at the far-field is clearly higher than that of an unsupported shell, and exhibits 

several bumps and troughs, whose position and number depend on the spacing between 

supports. These bumps can be attributed to propagative Bloch-Floquet waves that barely 

suffer from acoustic filtering and thus radiate to the far field. If the periodic simply support 

condition were to be substituted by deformable ring stiffeners, the underlying physics will 

essentially remain the same though the dynamics of the stiffeners will somewhat influence 

the radiated spectrum. This will be analyzed in the next section. 

3.3 Case II: a submerged cylindrical shell with periodic deformable ring stiffeners 

Let us next consider the same shell as for case I but periodically stiffened with steel rings. 

Two stiffeners typical from naval applications will be analyzed. These are (see Fig. 3), 

- I-shaped (i.e. rectangular) stiffeners with cross-section 200 25  mm2; 

- T-shaped stiffeners with cross-section 200 15 / 200 15   mm2. 

As explained in Section 2.4.2, the circumferential admittance matrix Y  in Eq. (22) 

for each stiffener is estimated using the finite element method (FEM). As axisymmetric 

shell elements are not available in every finite element code, we have employed 2D shell 
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elements (see e.g., [41,42]) to simulate each part of the stiffener (e.g., the web and the 

flange of the T-shaped stiffener). The mesh has been chosen fine enough to ensure at least 

six elements per flexural wavelength at the highest frequency of interest. A direct analysis 

for harmonic excitation has been performed with the SDTools FEM code [43]. To excite 

all the circumferential orders in a single FEM calculation, we have successively applied 

a unit single point force in every direction (i.e. longitudinal, tangential, radial, tangential 

rotation) to the foot of the stiffener, for 0  . Given that the stiffener is axisymmetric the 

circumferential orders are not coupled one to another. The circumferential admittances in 

every excited direction can then be deduced from a Fourier series decomposition of the 

FEM displacement response at the foot of the stiffener. The FEM computational cost 

remains small thanks to the geometry simplicity, and the Fourier factorization is easily 

achieved with a Matlab code.  

Fig. 12 presents some circumferential admittances for the two considered stiffeners. 

The highest values correspond to the stiffener modes. We observe how for a given modal 

shape, the resonance frequency increases with the circumferential order. The resonance 

trajectories look quite similar for the tangential and radial forces, whatever the stiffener 

shape (see Figs. 12b and c). Yet some slight variations can be perceived indicating that 

the dynamic stiffnesses are not exactly the same for both stiffeners. In contrast, the 

trajectories for the axial force and the tangential momentum are completely different, 

which reveals that very different modal shapes are being excited in the two stiffeners.  

To better illustrate these statements, in Fig. 13 we have sketched the shapes of the 

stiffeners’ cross-sections at 1kHz corresponding to the circumferential orders of highest 

admittance values under axial and radial excitations, in Figs 12a and b. For the 

longitudinal excitation, the trajectories in Fig. 12a correspond to the cross-section mode 

shapes shown in Figs. 13a to c for the T-shaped stiffener, and to the shapes in Figs. 13e 

and f for the I-shaped stiffener. On the one hand, and as observed, for the I-shaped stiffener 

the cross-section of the two modes remains almost undeformed. The mode for n=36 

corresponds to torsional motions of the beam-like stiffener whereas that for n=63 relates 

to flexural motions along the circumference. On the other hand, the cross-section and web 

of the three modes for the T-shaped stiffener becomes noticeably deformed, especially for 

n=24 and n=43.  

For the radial excitation, the trajectories in Fig. 12c correspond to the cross-section 

modal shapes in Fig. 13d for the T-shaped stiffener, and to those in Fig. 13g for the I-

shaped stiffener. The cross-section of the latter and the web from the former remain almost 
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undeformed and correspond to flexural motions along the shell circumference. This can 

explain why their trajectories are similar in Fig. 12c. Note that the flange of the T-shaped 

stiffener gets significantly distorted, but this part does not contribute meaningfully to the 

dynamic stiffness at this frequency.  

Finally, it should be remarked that only the diagonal terms of the circumferential 

admittance matrix have been plotted in Fig. 12. Nonetheless, several off-diagonal entries 

of Y  (e.g., ,  ,  ,  UM L VF WTY Y Y Y ) are non-null and shall be considered to predict the noise 

radiated by the stiffened shell.  

    

3.3.1 Influence of the stiffeners in the radial direction 

To better understand the role played by the stiffeners, a first set of calculations have been carried 

out assuming that the coupling between the shell and the stiffeners only takes place in the radial 

direction. To that purpose, we have considered the radial circumferential admittances  WFY n  

computed with FEM in Fig. 12c but imposed     1UL VTY n Y n   m2/N,   1MY n   rad/N 

and set the remaining admittances to zero. Therefore, the sole difference with the simply 

supported case analyzed in Section 3.2 comes from the values of the radial circumferential 

admittances WFY , which were set to 
1510

m2/N in that case.  

Fig. 14 compares the ASD functions of the radiated pressure at z=10 m for the periodically 

simply supported shell in Section 3.2, with those of shells with periodic I-shaped and T-shaped 

stiffeners. It is evident from the figure that allowing the stiffeners to deform in the radial 

direction has remarkable consequences on the radiated sound. The pressure levels are generally 

much lower than those of the simply supported shell. The latter can be considered as an 

asymptotic case of infinite rigidity in the radial direction. Softening the radial stiffness lowers 

the shell resistance to flexural motions, which reduces the noise radiation. Moreover, the 

location and shapes of the bumps and troughs substantially differ from those of the simply 

supported case. In contrast, the radiated pressure is very similar for the two stiffeners, the T-

shaped stiffener producing slightly higher results than the I-shaped one. This is in accordance 

with the similarities found for the radial admittances of the two stiffeners in Fig. 12c. A closer 
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analysis of the first circumferential orders reveals that the radial admittances of the T-shaped 

stiffeners are, in general, slightly lower than those of the I-shaped stiffeners, which explains the 

differences in the radiated noise.  

To gain further insight on the influence of the stiffeners on the radiated noise, in Fig. 15a 

we have plotted the contributions of the first circumferential orders for the shell with I-shaped 

stiffeners; the corresponding values of the radial circumferential admittances are given in Fig. 

15b. One can compare the contributions in Fig. 15a with those for the simply supported case in 

Fig. 7b. As observed, the former are more complex and present stronger differences between 

orders than the latter. Likewise, note that the discrepancies between the figures are only due to 

the values assigned to the radial admittances. One can check how the latter influence the 

contributions to the pressure radiation by comparing Figs. 13a and b. Indeed, it is worthwhile 

noticing that: (a) for n=0, the lowest value of the contribution (12 dB) takes place at 169.1 Hz, 

which coincides with a maximum of the radial admittance magnitude; (b) for n=1 the 

contribution exhibits a local maximum at 169.1 Hz that corresponds to a minimum of the radial 

admittance; (c) for n=2 the contribution exhibits a local maximum at 339.9 Hz which again 

matches with a minimum of the radial admittance; (d), for n=3 we found a local maximum of 

the contribution at 512 Hz, pretty close to the minimum in the radial admittance at 509.1 Hz. 

Except for slight discrepancies at n=3, one can assert that for n=0, 1 and 2 local maxima in the 

contributions correlate well with peaks (or anti-peaks) in the radial admittances. When those 

reach their highest values (i.e. at resonances) the dynamic stiffness decreases and so does the 

radiated noise (n=0). As opposed, when the radial admittances achieve their lowest values (i.e. 

at anti-resonances) the stiffeners tend to block wave propagation, which strongly impacts the 

radiated noise (n=1, 2 and probably 3). One should recognize that the above analysis cannot 

give a full explanation for all observed variations in the circumferential order contributions. 

These are also instigated by the stiffness mismatch between the shell and the stiffeners, as well 

as by the separation distance between the latter, as discussed in Section 3.2.4.  
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3.3.2 Influence of the coupling degrees of freedom 

To finish the analysis of case II, a second set of calculations has been performed considering 

either two or four DoF at the junctions between shell and stiffeners, to complement the single 

DoF (radial) computation in the previous section. The radial displacement and angular rotation, 

which are related to flexural motions, are the ones selected for the two DoF simulations. The 

radial admittance WFY  and the rotational admittance 
MY  are computed from the FEM model 

whereas we set     1UL VTY n Y n   m2/N and null values for all other admittances. For the 

complete situation with four DoF, the full circumferential admittance matrix Y  in Eq. (22) is 

obtained from the FEM model and all diagonal and off-diagonal terms are taken into account.  

Figs. 16a and b respectively present the radiated pressure ASD at the far field, when 

considering the T-shaped and I-shaped stiffeners. Each figure contains the results accounting 

for one (radial), two (radial plus tangential rotation) and four (three displacements plus rotation) 

DoF. If we first compare the plots for one and two DoF in Fig. 16a, we observe that the influence 

of the tangential rotation coupling is almost negligible for the T-shaped stiffener. Nonetheless, 

it is meaningful above 500 Hz for the I-shaped one (see Fig. 16b). Also, the importance of 

including all four DoF is clear from both figures. The first bump gets particularly affected. This 

may be related to the ring frequency of the shell, namely 173 Hz. Below, but close to that 

frequency, the longitudinal, shear and flexural motions of the cylindrical shell are strongly 

coupled due to the shell curvature. It is then necessary to include them all for a proper 

computation of the radiated pressure. As opposed, the coupling between shell motions weakens 

well above the ring frequency.  

For an unstiffened cylindrical shell, its quasi-flexural motion is responsible for the 

radiated noise (under radial force excitations). At first sight, one would then expect that the two 

DoF coupling (related to the flexural motion) could suffice to describe the behavior of the 
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stiffened shell (as commonly assumed in literature). Yet, the results in Fig. 16 reveal that this is 

not the case, especially for the shell with I-shaped stiffeners. The off-diagonal terms of Y  

shall be therefore considered for a correct evaluation of the radiated pressure field.  

4. Conclusions 

A semi-analytical approach based on the wavenumber-point reciprocity principle to 

compute the vibroacoustic response of a periodically stiffened shell under a turbulent layer 

excitation has been proposed. The suggested method is efficient and easy to implement, 

and it requires the integration of the circumferential sensitivity functions over the 

wavenumber domain. An analytical expression of the circumferential sensitivity functions 

in the wavenumber space has been derived from the vibratory response of the shell excited 

by monopole source.  

Two test cases have been examined, including the fluid-loaded shells excited by a 

TBL with regularly spaced simply supports and deformable ring stiffeners. For the latter 

case, a finite element model was used to estimate the circumferential admittances that 

characterize the dynamic behavior of the stiffener along the four degrees of freedom. To 

better understand the physics behind the far field sound radiation, the contributions of the 

circumferential orders of the shell to the radiated noise, as well as the effects of the pass-

bands and stop-bands of Bloch-Floquet waves on the noise radiation have been studied. It 

has been observed that adding the stiffeners to the shell causes different behavior in the 

acoustic pressure response in the near field compared to the one in the far field. In 

particular, the inclusion of stiffeners increases noise radiation in the far field. The stiffener 

spacing as well as the dynamic stiffnesses of the ring stiffener along the different DOFs 

may influence the bumps in the noise spectrum at the far field. Moreover, the 

circumferential admittance approach [25, 41] makes it possible to extend the current work 

to study noise radiation of irregularly stiffened shells.  
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Appendix A: TBL periodic cross spectral density functions in the spanwise 

direction 

In order to make the spatial CSD of a TBL for flat surfaces,  , ,tbl

ppS x y  , periodic along 

the shell circumference, 2πR, we shall convolve it with a Dirac comb distribution to obtain,  
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  and   denotes the convolution operator. 

According to the Fourier transform properties of the convolution and of the Dirac 

comb (see e.g., [44], Eqs. (1.44)-(1.45)), the spatial Fourier transform of Eq. (1A) 

becomes, 
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(2A) 

To avoid using distributions (like the Dirac comb) in the forthcoming expressions, 

we favour considering a Fourier series decomposition of the involved fields along the 

circumferential position. To that purpose, first note that the CSD function of the WPF in 

terms of the circumferential angle,  ,  ,tbl

pp x   , is given by,   

   ˆ, , , , , ,tbl tbl

pp ppx S x R x          . 
 
 

(3A) 

Writing  ˆ , ,tbl

ppS x R   as the inverse Fourier transform of  ˆ , ,tbl

pp x yk k   and using (3A) 

provides 
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If we next introduce Eq. (2A) into Eq. (4A) we arrive at  
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which may be simplified evaluating the integral over 
yk , 
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On the other hand, the CSD of the WPF in the  nkx ,  space, namely  , ,tbl

pp xk n  , 

corresponds to the Fourier transform of  ,  ,tbl

pp x    in the x direction and to its Fourier 

series decomposition in θ, 
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so that, 
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which is nothing but Eq. (5) in the main text. Eq. (4) in text follows from direct 

comparison between Eq. (8A) and Eq. (6A).  

 

Appendix B: TBL and shell models  

The cross spectral density of the Chase TBL model is given by (see e.g., [28]), 
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 (1B) 

with    
2 22 2

* ,c xK U k hv K    2 2 2

x yK k k   and recommended parameters 0.75b  , 

0.1553MC  , 0.0047TC   and 3h   (see e.g., [34] ). Note that a factor  
3

2  has been 

added in Eq. (1B) if compared to Eq. (39) in [28], to account for the difference in the definition 
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of the Fourier transform used in Chase’s paper and in the present one (i.e., Eqs. (2)-(3)). 

On the other hand, the spectral Flügge matrix  ,xk n implemented in this work reads,  

  *

* *
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x
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, (2B) 

with 
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(1 3 ) ,

2
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



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2 2 23
1 ,

2
VW xZ jn R k




 
   

 
 2 4 4 2 2 2 4 2 21 2 ( 1) 1 ,WW x x lZ R k n R k n R k        

where 
12

h

R
    and 

2(1 )
lk

E

 



   is the wavenumber for compressional waves 

and the asterisk denotes the complex conjugate. Note that the Flügge equations in Eq. (10) 

have been written with a positive sign in front of the force terms L, T, F in the right hand 

side, to attain a Hermitian spectral Flügge matrix of the conservative system. 

 

Appendix C: Numerical validation  

To validate the semi-analytical approach proposed in Sec.2, we compared it with the 

circumferential admittance method (CAA) in [25, 41]. The latter relies on coupling the 

circumferential admittances of the fluid loaded cylindrical shell with the circumferential 

admittances of the ring stiffeners. The shell admittances were obtained using a spectral 

approach (see [25] for details), while those of the ring stiffeners were computed with the finite 

element method, as described at the beginning of Sec. 3.3. Once the admittance matrices were 

assembled, the circumferential coupling forces between the shell and the ring stiffeners were 

computed. Finally, the spectral velocity of the stiffened shell was calculated knowing these 

forces. 

Case II introduced in Sec. 3 will be used for the purpose of validation. In that example, 
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the shell ring stiffeners have a T-shaped cross section and a spacing of 1.35 m. The four DoFs 

in the connection between shell and stiffeners have been considered in all computations. It 

should be noted that in CAA calculations a finite number of ring stiffeners are used for the 

infinite shell, as opposed to our model in Sec. 2. To compensate this fact, and as illustrated in 

Fig. C.1, a large number of stiffeners (74) have been considered in the simulations. The 

observation point was chosen to be at x=0 m, which essentially corresponds to the middle of 

the stiffened section of the shell.  

The CAA method was fully validated for radial point forces [25,41]. The CAA permits 

calculating the spectral radial displacement CAA

FW   of the stiffened shell due to radial point 

force excitation at a given point  ,s sx  . Thanks to the wavenumber-reciprocity principle [21, 

22], one can derive the acceleration circumferential sensitivity functions, 
CAAH   at the 

observation point from 
2CA A

F

A CAH R    .  

On the other hand, the acceleration circumferential sensitivity functions can be also 

computed with the analytical model of Sec. 2.4. For a radial point force excitation at  ,s sx  , 

the spectral blocked pressure on the shell is given by  

 
( )1

( , )
2

s x sj n k x

e xF k n e




 
 , (C.2) 

instead of Eq. (16) which is valid for a monopole source. Considering this expression, Eq. (32) 

provides the spectral radial displacement of the shell, analytical

FW , due to the point force excitation. 

The analytical expression of the acceleration circumferential sensitivity functions is then 

obtained as 2analytica analyt ll ica

FH R W   .  

The comparison between the CAA (
CAAH  ) and analytical  analyticalH   sensitivity 

functions is plotted in Fig. C.2. The results are shown for two frequencies. The first one, 285.8 

Hz, corresponds to a frequency at which the shell strongly radiates to the far field, whereas for 
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the second one, 512.0 Hz, the shell radiates very poorly (see Fig. 16 and Sec. 3.3.2). As observed 

in the figure, there is a very good agreement between the analytical and CAA results both in the 

amplitude levels and in the shape patterns in the  ,xk n   space. The highest contributions 

observed in the figure can be attributed to the propagative Bloch-Floquet waves.  

Following the same procedure that lead us to Eq. (36), one can get an expression for the 

ASD of the shell radial acceleration excited by the TBL, in terms of the acceleration 

circumferential sensitivity functions, namely, 

     
2

, , 2 , , , , , ,
x

x

kn N
tbl

s s s s x pp x x

n N k

S x H x k n k n dk 

       


 

   . (C.2) 

with  CAA, analytical . 

The ASD radial acceleration dependence on frequency is plotted for both methods in Fig. 

C.3. Here again, one observes a very good agreement between the results from the proposed 

method in Sec. 2 and those of CAA. The small discrepancies in the figure may be attributed to 

the fact that only a finite part of the infinite shell in the CAA model gets stiffened, while this is 

not the case for the analytical model.  

  

Appendix D: Finding the roots of the dispersion relation for the Bloch-Floquet 

waves  

A numerical procedure to find the roots of the dispersion relation Eq. (42) in text is as 

follows. First, however, let us notice two properties of the determinant function 

 ,BF BF

xk n  which are useful to restrict the computation interval of 
BF

xk . These are, 

(i) The function    is 
2

d


 periodic in xk  , so the interval to find 

BF

xk   can be 

delimited to the so-called first Brillouin zone, ,
d d

  
 
 

, 

(ii) The function    is even in xk  , which allows one to further limit the 
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computation interval to 0,
d

 
 
 

. 

Denote by 
BF

xk  the axial wavenumber of the Bloch-Floquet waves in the first positive 

Brillouin zone 0,
d

 
 
 

. An infinite number of axial Bloch-Floquet wavenumbers 
BF

xk can 

be deduced from 
BF

xk  and the properties of   described above.    

In practice, the numerical procedure to find the couples  ,BF BF

xk n   consists in 

searching, for each circumferential number 0,n N  , the values of xk   that make 

 ,xk n  vanish. The xk  values can be computed with a two-step algorithm. In the first 

step, the interval 0,
d

 
 
 

 is discretized with a very fine resolution (
410
 m-1 in our case)  

to detect those xk  values at which   changes sign. These values are identified as 
/

xk  
. 

In the second step we check whether the sign change at 
/

xk  
 corresponds to a local 

minimum or maximum of   , using a threshold criterion. Namely, if 

 / 3, 10 ,xk n N
d

    
   

 
 then 

/BF

x xk k   and 
BFn n . 
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Figure captions 

 

Figure 1. Periodically stiffened cylindrical shell immersed in a fluid and excited by a 

homogeneous stationary turbulent boundary layer. 

Figure 2. Illustration of the Lyamshev reciprocity principle between structural and fluid 

domains. 

Figure 3. Cross-sections of the two stiffeners considered in case II. 

Figure 4. Comparison of the ASD function of the radiated pressure by the panel and the 

(unstiffened) cylindrical shell for two distances from the radiating structure: z=0.1 m and z=10  

Figure 5. Case I: ASD function of the radiated pressure depending on the distance z to the shell 

for an observation point at an axial coordinate of 0.45 m. Separation between supports: 𝑑 =

1.35 m.  

Figure 6. Case I: ASD function of the radiated pressure at 10 m for various support spacing 

values, d. Comparison with the pressure radiated from non-supported shell.  

Figure 7. Contributions of various n-th circumferential orders to the radiated pressure spectrum 

at z=10 m. (a) unsupported shell; (b) periodically simply supported shell with d=1.35 m. 

Figure 8. (a)-(c), circumferential sensitivity functions of the unsupported shell in the (kx,n) 

space for two frequencies: 229.6 Hz (left) and 353.9 Hz (right) and for three different distances 

to the shell: (a), z=0.1m. Hemi-ellipse associated to the flexural motion symbolized with a white 

dashed line (i.e. set of points   2 2

, , ,, , ,fl x f water x x f water f waterE k R k k k k k      ); (b), z=1 m; 

(c), z=10 m. (d), blocked pressure induced by a monopole source located at a distance z=10 m 
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from the shell. Hemi-ellipse associated to the acoustic propagation symbolized with a white 

solid line (i.e. set of points     2 2

0 0 0, , ,ac x x xE k R k k k k k    ). 

Figure 9. (a)-(c), circumferential sensitivity functions of the periodically simply supported shell 

with d=1.35 m in the (kx,n) space for two frequencies: 229.6 Hz (left) and 353.9 Hz (right) and 

for three different distances to the shell: (a), z=0.1m; (b), z=1 m; (c), z=10 m. (d), acoustic 

ellipse and the periodic copies symbolized with white lines. 

Figure 10. Pass-bands (lined) and stop-bands for each circumferential order depending on 

frequency. Periodically simply supported shell with d=1.35 m. The dashed line indicates 

the circumferential order bound of the propagative shear waves (i.e.  t tn R c where tc  

is the shear wave speed). 

Figure 11. Values of the Bloch-Floquet wavenumbers of the first Brillouin zone depending 

on frequency for different circumferential orders. (a), n=1; (b), n=5; (c),  0,70n  . 

Periodically simply supported shell with d=1.35 m. Solid line: 0k   (acoustic 

wavenumber); dashed line: lk   (longitudinal wavenumber); dash-dotted line: sk  (shear 

wavenumber).   

Figure 12. Circumferential admittances of the stiffener with T-shaped cross section (left) 

and with I-shaped cross-section (right): (a), 
1010log ULY  ; (b), 

1010log VTY  ; (c), 

1010log WFY ; (d), 
1010log MY . 

Figure 13. Shape (full line) of the stiffener cross-section at 1kHz for different circumferential 

orders N. Stiffener cross-sections: blue dashed lines; Deflection shape: continuous red lines. (a-

d), T-shaped stiffener; (e-g), I-shaped stiffener; (a-c,e,f), axial excitation; (d,g), radial excitation.  

Figure 14. ASD function of the radiated pressure at z=10 m for radial coupling between shell 

and stiffeners. Black solid line: periodic I-shaped stiffeners; dashed line: periodic T-shaped 
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stiffeners; dotted line: simply supported conditions; Grey solid line: unstiffened shell. Results 

for d=1.35 m. 

Figure 15. First fourth order contributions for the shell with I-shaped stiffeners (d=1.35 m). The 

shell and stiffeners are only assumed to be coupled in the radial direction (a) Radiated pressure 

contributions at z=10 m; (b) 
1010log WFY .  

Figure 16. ASD function of the radiated pressure at z=10 m for the stiffened shell with d =1.35 

m: (a) shell with T-shaped stiffeners; (b) shell with I-shaped stiffeners. Consideration of 

different coupling DoF. Dotted line: only radial coupling; dashed line: radial coupling force 

plus tangential coupling moment; Solid line: full coupling with four DoF. (i.e. three forces plus 

the tangential moment).  

Figure C.1. Schematic representation of a mid-cut of the stiffened shell considered for the CAA 

model. The observation point M is located at x=0 m. 

Figure C.2. Comparison of the acceleration circumferential sensitivity functions computed 

with the proposed analytical approach (a,c) and the CAA method (b,d). Results for 

frequencies: (a,b) 285.8 Hz; (c,d) 512.0 Hz.   

Figure C.3. Comparison of the ASD function of the shell radial acceleration for the proposed 

semi-analytical method and the CAA simulation. Observation point M at x=0. 
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Figure 1. Periodically stiffened cylindrical shell immersed in a fluid and excited by a 

homogeneous stationary turbulent boundary layer. 
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Figure 2. Illustration of the Lyamshev reciprocity principle between structural and fluid 

domains.
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Figure 3. Cross-sections of the two stiffeners considered in case II. 

Neutral surface of the 

cylindrical shell 

Web 
Flange 
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Figure 4. Comparison of the ASD function of the radiated pressure by the panel and the 

(unstiffened) cylindrical shell for two distances from the radiating structure: z=0.1 m and z=10 

m.  
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Figure 5. Case I: ASD function of the radiated pressure depending on the distance z to the 

shell for an observation point at an axial coordinate of 0.45 m. Separation between supports: 

𝑑 = 1.35 m.  
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Figure 6. Case I: ASD function of the radiated pressure at 10 m for various support spacing 

values, d. Comparison with the pressure radiated from non-supported shell.  
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(a) 

  

(b) 

Figure 7. Contributions of various n-th circumferential orders to the radiated pressure 

spectrum at z=10 m. (a) unsupported shell; (b) periodically simply supported shell with 

d=1.35 m. 
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(a) 

  

 

(b) 

  

 

(c) 

  

 

(d) 

 

Figure 8. (a)-(c), circumferential sensitivity functions of the unsupported shell in the (kx,n) 

space for two frequencies: 229.6 Hz (left) and 353.9 Hz (right) and for three different 

distances to the shell: (a), z=0.1m. Hemi-ellipse associated to the flexural motion symbolized 

with a white dashed line (i.e. set of points 

  2 2

, , ,, , ,fl x f water x x f water f waterE k R k k k k k      ); (b), z=1 m; (c), z=10 m. (d), blocked 

pressure induced by a monopole source located at a distance z=10 m from the shell. Hemi-

ellipse associated to the acoustic propagation symbolized with a white solid line (i.e. set of 

points     2 2

0 0 0, , ,ac x x xE k R k k k k k    ).  

 

 

 

 

 

 

  



 

56 

 

 

  

 

 

(a) 

  

 

 

(b) 

  

 

 

(c) 

  

 

(d) 

 

Figure 9. (a)-(c), circumferential sensitivity functions of the periodically simply supported 

shell with d=1.35 m in the (kx,n) space for two frequencies: 229.6 Hz (left) and 353.9 Hz 

(right) and for three different distances to the shell: (a), z=0.1m; (b), z=1 m; (c), z=10 m. (d), 

acoustic ellipse and the periodic copies symbolized with white lines. 
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Figure 10. Pass-bands (lined) and stop-bands for each circumferential order depending on 

frequency. Periodically simply supported shell with d=1.35 m. The dashed line indicates 

the circumferential order bound of the propagative shear waves (i.e. t tn R c where tc  

is the shear wave speed). 
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(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

(c) 

Figure 11. Values of the Bloch-Floquet wavenumbers of the first Brillouin zone 

depending on frequency for different circumferential orders. (a), n=1; (b), n=5; (c), 

 0,70n . Periodically simply supported shell with d=1.35 m. Solid line: 0k  (acoustic 

wavenumber); dashed line: lk   (longitudinal wavenumber); dash-dotted line: sk  (shear 

wavenumber).   
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T-shaped I-shaped  
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(d) 

 

Figure 12. Circumferential admittances of the stiffener with T-shaped cross section 

(left) and with I-shaped cross-section (right): (a), 
1010log ULY ; (b), 

1010log VTY ; (c), 

1010log WFY ; (d), 
1010log MY . 

  



 

60 

 

 

 

 

 

(a) 

  

 

 

 

 

(b) 

 

 

 

 

(c) 

  

 

 

 

 

(d) 

                          

                  (e)                 (f)                (g) 

 

Figure 13. Shape (full line) of the stiffener cross-section at 1kHz for different circumferential 

orders N. Stiffener cross-sections: blue dashed lines; Deflection shape: continuous red lines. (a-

d), T-shaped stiffener; (e-g), I-shaped stiffener; (a-c,e,f), axial excitation; (d,g), radial excitation.  

 

 

 



 

61 

 

 

Figure 14. ASD function of the radiated pressure at z=10 m for radial coupling between shell 

and stiffeners. Black solid line: periodic I-shaped stiffeners; dashed line: periodic T-shaped 

stiffeners; dotted line: simply supported conditions; Grey solid line: unstiffened shell. Results 

for d=1.35 m. 
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(a) 

 

(b) 

Figure 15. First fourth order contributions for the shell with I-shaped stiffeners (d=1.35 m). 

The shell and stiffeners are only assumed to be coupled in the radial direction (a) Radiated 

pressure contributions at z=10 m; (b) 
1010log WFY .  
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(a) 

 

(b) 

Figure 16. ASD function of the radiated pressure at z=10 m for the stiffened shell with d 

=1.35 m: (a) shell with T-shaped stiffeners; (b) shell with I-shaped stiffeners. Consideration 

of different coupling DoF. Dotted line: only radial coupling; dashed line: radial coupling 

force plus tangential coupling moment; Solid line: full coupling with four DoF. (i.e. three 

forces plus the tangential moment).  
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Figure C.1. Schematic representation of a mid-cut of the stiffened shell considered for the 

CAA model. The observation point M is located at x=0 m.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure C.2. Comparison of the acceleration circumferential sensitivity functions computed 

with the proposed analytical approach (a,c) and the CAA method (b,d). Results for 

frequencies: (a,b) 285.8 Hz; (c,d) 512.0 Hz.   
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Figure C.3. Comparison of the ASD function of the shell radial acceleration for the proposed 

semi-analytical method and the CAA simulation. Observation point M at x=0. 

 

 


