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Digital in-line Holography (DIH) is used to measure size and concentration of small bubbles 

(6-100 µm) in hydrodynamic facilities. The forward diffraction pattern produced by small objects 

(bubbles, droplets, particles) illuminated by a laser diode is directly recorded by a camera without 

objective lens. From this pattern, each image plane can be reconstructed by applying back-

propagation formalism (Huygens-Fresnel Integral). Then, after having reconstructed the whole 

volume, the 3-D location and size of each particle can be measured. Here the wavelet transform is used 

for the implementation of Fresnel Integral.  

 In the present case, nuclei are measured by a sampling probe specially designed for DIH 

measurements and equipped with transparent sections. A diverging beam coming from a fiber coupled 

laser diode (=635 nm, P=12 mW) illuminates the sample volume and the hologram is recorded by a 

10241280  CMOS camera. From each hologram the volume can be reconstructed slice by slice. We 

present here the method used for obtaining the size nuclei distribution extracted from hologram 

analysis. Statistical results (5000 holograms are recorded and processed) obtained under different 

pressures (P= 567, 927 and 1287 mbars) are compared and discussed.  

 

 

1.  Introduction 

 

Digital in-line holography (DIH) can be efficiently used for particle diagnostics in small volumes. 

When a magnification is wanted, particles images can be imaged close to the camera by using a couple 

of lenses for obtaining a magnification higher than 1 during the reconstruction stage. Such systems are 

interesting when the 2D sensor (CCD or CMOS camera) cannot be placed near the sample to be studied 

[1]. In more convenient situations a magnification factor can also be directly obtained by illuminating 

the sample volume with a diverging beam coming from a pinhole or a laser coupled in an optical fiber. 

This enables to spread the diffraction pattern over a larger area. Furthermore, the image sensor can be 

brought closer to the objects to be recorded. Consequently, the numerical aperture (NA) of the 

recording system is increased and a significant magnification of the reconstructed images is observed. 

Numerous papers have been published under this configuration also called Digital In-line Holographic 

Microscopy (DIHM). For example, the authors of Ref. [2] have shown that a resolution of order of the 

wavelength can be reached. Two decades ago, Vikram et al. [3] studied the gain obtained by recording 

the holograms with a divergent beam. Under far-field condition (i.e. when the object size d verifies the 

inequality 1
2


ez

d




, where ez is the recording distance), the authors of Ref. [3] concluded that the 

problem can be exactly formulated as if the hologram were recorded with a plane wave. In other terms, 

the equation describing intensity distribution in the camera is nothing but the intensity distribution of 



an equivalent magnified object recorded at an equivalent magnified distance from the camera. As a 

result, digital holograms can be simply processed as a common in-line hologram that would have been 

recorded with a collimated plane wave. This configuration is used here to measure the size and position 

of small bubbles in a cavitation tunnel. Thus, the size distribution obtained from thousands of 

holograms can be estimated under different pressures. The objective of this communication is to 

describe the method used for choosing the best configuration of the diverging recording wave in the 

diameter range (5-140 µm) . In Section 2, the expression of the intensity recorded by holograms is 

recalled and the resulting magnification factor is expressed. Here the hologram pattern is sampled by a 

digital camera (CMOS). This means that the spatial sampling conditions must be checked. According 

to this sampling constraint, the discussions of Section 3 lead to the optimal curvature radius of the 

recording wave that is needed for obtaining the wanted spatial resolution in the reconstruction image 

plane. The digital hologram reconstruction principle is recalled in section 4. A transparent pipe has 

been specially designed for recording holograms of nuclei collected from the cavitation tunnel. The 

experimental setup and the diameter measurement method are described in sections 5 and 6. Here, 

statistical results are expected and thousands of holograms have been recorded leading to an enormous 

volume of data (100 Mbytes/hologram). The automatic processing of holograms and the measured size 

distributions are described in section 7 and a conclusion is given in section 8.  

 

 

2.  Digital holography with a spherical recording wave  

 

The optical configuration of in-line holography is given by figure 1. A single laser beam coming from a 

point source S illuminates the particle and a 2D detector records the interferences produced by the 

superposition of the direct beam and the wave scattered by the bubble. The point source and the object 

are located respectively at the distances zs and ze from the camera. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I – Optical configuration of recording in-line holograms of bubbles  

with a divergent beam. S : Laser source,   ,  : object plane (x,y) : 2D detector plane 
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Consider that the input function in the   ,  plane is : 
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Under Fresnel approximation, the amplitude distribution in the (x,y) plane is [4] : 
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Assuming that the far-field conditions are checked
 












1

z
.e.i

e

22




, a spherical object can 

be approximated by an opaque disk of diameter d. By introducing 22 yxr  , and by omitting the 

constant phase term ez
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, the calculus of integral (2) gives [4] :  
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The intensity distribution in the camera plane is deduced from (3) by the relation 
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  where . denotes the complex conjugate :  

 

     rFKzrF
Kz

r
KzrI

ee

ez

z

de

z

d

e

e

22
2

sin21)(






 










    (6) 

 

By defining the equivalent variables eeq Kzz  , and Kddeq  , )(rI
ez

 can be simply rewritten as 

follows : 
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As a result, a single equation is sufficient to describe the intensity distribution of a particle hologram 

whatever the divergence of the recording beam. K can be seen as a magnification factor and is a 

function of the distance object camera ze.  

 

In other words, equation (7) shows that the diffraction pattern produced by an object of diameter 

d illuminated by a spherical wave with a curvature radius zs and recorded at a distance ze can be simply 

expressed as the intensity distribution produced by an object of diameter Kd illuminated by a plane 

wave and located at a distance Kze from the camera.  

 

 This result is very convenient because it lead to a very simple way for the processing of digital 

holograms. It means that the diffraction pattern of a given object can be processed exactly as if the 

hologram were recorded with a plane wave and all the conditions (spatial sampling, recording distance, 

spatial resolution) can be expressed in the equivalent magnified space. This point will be developed in 

sections 3 and 4. 

 

Note that the magnification factor K can also be written as a function of eqz  by replacing ez  by 

K/zeq  in equation (5): 
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3.  Hologram recording conditions 

 

3.1.  Spatial sampling 

 

Classically, in digital holography the sampling conditions need at least 2 pixels of size p  per fringe 

period. When this condition is not checked, it may give rise to moiré effects and an optical low-pass 

filter should be applied before spatial sampling the diffraction pattern [5]. In order to avoid such 

unwanted effects, the angle between the recording wave and the object wave must be lower than 


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4p

λ
2arcsin [6]. Considering the case where a centred particle is recorded with a plane wave, the 

above condition can be approximated by 
p


 max

 
where max

 
is the maximum collecting angle by the 

camera (i.e. angle viewed from the object). For a digital camera composed of NN   pixels, this 

condition is easily checked when the recording distance ez  is higher than an optimal distance equal to 



2Np
[7,8].   



In the present work, a diverging beam is used. Thus, the above condition must not applied to the 

working distance
ez  but to the equivalent distance eeq Kzz  . It follows that the sampling condition 

leads to 


2Np
Kze   . By using the definition of K (equation (5)), the recording distance ez  should 

respect the following inequality: 
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Eq. (9) shows the conditions needed for a convenient spatial sampling of the interference fringes by the 

camera when an object is illuminated by a spherical wave. 

This result also means that by using a diverging beam (i.e. by decreasing the value of sz ), the camera 

can be moved closer to the studied objects without braking in the spatial sampling conditions. As a 

result, the numerical aperture (NA) can be increased and smaller objects can be studied. This point is 

detailed in the next subsection. 

 

 

3.2.  Spatial resolution  

 

From authors of ref [2], the spatial resolution is   related to the numerical aperture (NA) of the 

hologram. It can be given by the ratio  NA2/   where      2/1
22

2/2/ ezNpNpNA  . The highest 

NA is obtained for the optimal recording optimal distance 


21 Np

K
zopt  . Then, we deduce the best 

spatial resolution that can be expected for a given magnification factor  K
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The sampling step is generally much greater than the product K . Consequently, equation (10) shows 

that the spatial resolution is roughly improved by a 1/K factor with a divergent beam.  

 

Note also that in the optimal case as regards to the sampling condition (i.e. opte zz  ), equation (5) gives 

the optimal distance source-camera sz  that should be used for a given magnification K : 
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For example, if a 10241024  camera with µmp 7.6  illuminated by a laser of wavelength 

nm635  is used, equation (11) indicates that the distance source-sensor must be lower to a limit 

distance mmzs 4.72  for safely recording holograms with a magnification K  higher than 2 . 

 



3.3.  Case of DIH with a relay lens 

 

Another way for magnifying holographic particle images is to use a relay lens. Let us describe the case 

where an object is illuminated by a plane wave and imaged near the CCD sensor by using an objective 

lens with a focal length f. This configuration, not used in the present case, is shown in figure II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. II – Optical configuration of recording in-line holograms with an imaging lens 

 

With this configuration, assuming that well-known geometrical optics laws can be used, a given object 

is imaged in the   ,  plane with the magnification: 

  

f
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This geometric image can be considered as an object placed in a diverging beam coming from the  

focal point. As a result, using the conclusions of section 2, the intensity distribution recorded on the

 y,x  plane can be seen as the diffraction pattern produced by a magnified object (of factor K ) 

illuminated by a plane wave.  The resulting magnification is simply given by the product K . By using 

(5) and (12), the total magnification is rewritten: 
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Consequently, if we assume that the far-field conditions are fulfilled, the holographic magnification 

given by the curvature radius counterbalances exactly the geometrical magnification given by an 

imaging lens. Therefore, the total magnification is not dependent on the axial location of the objects ez

but depends only on the ratio 
f

zs . The 3D particle volume can be reconstructed and analyzed without 

introducing any correction factor. This result is in good accordance with the formulation given in Ref 

[9] for Digital holographic microscopy. Although this configuration offers the advantage of invariance 

of the magnification, we have preferred to directly illuminate the objects by a diverging beam (see Fig. 
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I). In this way, the number of optical elements is reduced and geometrical aberrations, often observed 

when a microscope objective is used, are avoided.   

 

 

4. Reconstruction of magnified particle images 

 

As said in section 2, the holograms are processed as if they were recorded by a plane wave. Let us 

recall the principle of the recording and reconstruction of digital holograms. Consider a particle located 

at a distance 
ez  from the recording plane. Under far-field approximation, the intensity distribution 

recorded by the camera can also be described by the following convolution: 
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where )y,x(O1  is the object transmission function (here a bubble) and 
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As for the recording step, the intensity distribution in a reconstructed image located at a distance zr 

from the camera is also calculated by a convolution operation: 
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It is easy to show that when the best focus plane is reached (i.e. when zr=ze=z), we obtain :  
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A shown by eq (16), the reconstructed image )y,x(O1  is surrounded by the unwanted fringes 

  )y,x(hh**)y,x(O
2

1
z2z2  . In our case (far-field conditions), this fringes due to the « twin image » 

located at a distance 2z  does not disturb the particle image. The wavelet method described in Ref.10 

has been used for implementing the calculation of ),( yxR  (see subsection 6.1).  

 

 

5.  Experimental setup 

 

The system used for recording holograms is shown on figure III. The sample volume is illuminated by 

a diverging beam coming from a single mode optical fiber with a 5 µm core. The source is a modulated 

laser diode emitting at nm635 . The image sensor is a 10241280  CMOS camera with 6.7 µm 

pixels.  The curvature radius (taking into account that the wave passes through media of different 

indices) is set to mmzs 7.79 , leading from eq. (11) to an optimal magnification K = 1.9. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III – Hologram recording for size nuclei measurement. CCD : Camera, LD :modulated laser 

diode, F : single mode optical fiber, SV : Sample volume. 

 

Note that a direct measurement in the hydrodynamic test section (cross section of 2mx1,35m) would 

have been difficult. Then, an optical probe has been specially designed for these tests. The flow 

sampling hydraulic loop includes an optical pipe which has an internal square section in order to have 

two planar optical perpex windows (see fig. IV). A cylindrical pipe, which would have been easier to 

manufacture, could have been used for these tests. However, the processing of digital holograms is not 

straightforward even if we have shown that the Fractional Fourier Transform has to be used in this case 

to reconstruct images [11]. 

 

 

 
 

 

Fig. IV – Optical pipe used for digital holography 

 

With this experimental setup, more than 5000 holograms have been recorded with 3 different flow 

pressures (P=567 mb, P=927 mb and P=1287 mb). The recording conditions are summarized in tab. I 
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Tab. I – Hologram recording conditions 

Power of the laser source 12 mW 

Beam divergence 250 mrad 

Wavelength 635 nm 

Curvature radius zs 79.7 mm 

Image size to be processed 1024x1024 pixels 

Image recording rate 5 Hz 

Pulse duration 10 µs 

Depth of the sample volume, range [5-25 µm] 6 mm 

Depth of the sample volume, range [12-140 µm] 30 mm 

Total measurement volume 59 mm
3
 

Magnification range through the sample volume 5.413.2  K  

 
 

6. Holograms processing  

 

6.1. Influence of the wavelet aperture 

 

Each hologram is reconstructed plane by plane by applying by a Gaussian shape wavelet formalism 

described in ref. [10]. This enables to adapt the working aperture   for hologram reconstruction and 

leads to an extended the depth of diameter measurement. Indeed, when a collimated beam is used 

(K=1), the authors of reference [12], have shown that the point-spread function is invariant in the 3D 

space and its width is theoretically equal to 


3.2
thL . Here, the aperture has been reduced to 

mrad55  leading to µmLth 27  over the whole depth of the sample volume. This signifies that the 

object diameter is related to the image diameter by a single theoretical curve. The simulations of Figure 

V(a) show the correspondence between the object and the measured image size for small particles 

when the working aperture mrad55  is selected.  

 

 (a) (b) 

 

Fig. V– Influence of the wavelet aperture   on diameter measurement in the equivalent space (plane 

wave configuration) (a) Simulated reconstructed image diameter versus equivalent object diameter, 

mrad55 , (b) sensitivity of diameter measurement for different working apertures 
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Note here that for smallest objects, the image diameter becomes invariant and tends toward a limit 

image diameter (slightly higher than thL ).  

This observation is confirmed by Fig. V(b) where the predicted sensitivity (image size evolution for a 

increasing of 1 µm of the object size) is plotted versus the object diameter for different wavelet 

apertures. This graph shows that by selecting mrad55  it is would be possible to build a histogram 

of particle diameter by step of 4 µm, provided that the image size can be estimated with an accuracy of 

0.08 pixel.  

Here, it must be recalled that the graphs of Figure V have been plotted in the equivalent space (plane 

wave configuration) mentioned in section 2. Moreover, we have shown that a particle image can be 

measured with accuracy better than 0.1 pixel. Thus, knowing that the magnification K is higher than 2 

(see tab I), a classification of nuclei by intervals of 2 µm in the diameter range [5-25 µm] can be 

expected. 

 

6.2.  Focusing 

 

The method used for searching the best focus plane depends on the diameter range that is investigated.  

For the range (5-25 µm), the z-coordinate of a particle image ( eqz ), has been estimated by searching 

the reconstructed plane that leads to a maximum image contrast. However, as described in [13], this 

criterion is not valid for big particles and the Bexon method has been used for the focusing the biggest 

particles of the upper range (12-140 µm) [14]. It must be noted that the density of small bubbles is two 

orders of magnitude higher than the density of bigger bubbles. This is the reason why the size of the 

interrogation volume has been adapted for each diameter range (see tab. I). 

Figure VI gives an example of bubbles reconstructed under this configuration. As described in section 

2, equation (8) gives the correction factor K that must be applied to zeq for recovering the right axial 

coordinate ze in the sample volume. Note also the background disturbance surrounding the image of 

small bubble. It is commonly admitted that a particle image have to be reconstructed with a signal-to-

noise ratio (SNR) higher 5 [15,16]. Here we have removed particle images under 8dB (SNR=6.3). This 

fixes the lower limit of detection.  

   

 (a)  (b) 

 

Fig. VI – Example of image bubble reconstructed at different depth.  

(a) ze = 44 mm (d=10 µm) , (b) ze = 50 mm (d=85 µm) 

 

For the configuration presented in this paper, the depth location of each bubble is known with an 

accuracy better than 0.1 mm. For this study, all the particles have been located within a measurement 

volume Vmeas = 59 mm
3
  

 



6.3.  Diameter measurement and calibration of the technique 

 

From the best focus reconstructed plane, the particle size is simply determined by counting the pixels 

whose grey-level are below a 50% threshold [13]. After having estimated the diameter eqd , the 

magnification factor K  (that depends on the depth coordinate eqz ) is applied to estimate the actual 

particle diameter. The curvature radius of the recording wave is 
sz  evaluated by using the known 

distance separating the input and output planar optical window. The estimation of this distance by 

holography leads to a satisfactory knowledge of the axial magnification ratio. The sizing method has 

been calibrated on particle images reconstructed by simulated holograms in the range of [5-140 µm]. 

Then, this method has been validated by using a particle size standard composed of 27 opaque disks 

deposited by a microlithography technique on a quartz substrate in the range [2 µm, 1000 µm]. Fig. Va 

shows that the experimental measured diameters are in good accordance with the simulations for 

diameters deq of 20 and 30 µm. For higher diameters, we have shown that the particle diameter deq can 

be measured with an accuracy better than 10% in the range [40-200 µm].  

 

 

7. Automatic processing of holograms and experimental results  

 

After having recorded holograms in-situ (Facilities of Techniques Hydrodynamiques, formerly Bassin 

d’Essai des Carènes), the post-processing is realized at CORIA laboratory. Here, 5000 holograms have 

been processed by a fully automatic process developed at CORIA. The computational time needed for 

extracting the 3D location and size of nuclei is about 2 min/hologram with a 8 processors computer.  

The results for each pressure condition in the tunnel and for both nuclei diameter range are presented in 

tab. II. 

 

Tab. II – Particle detected in the lower and upper range 

Pressure P=567 mb P=927 mb P=1287 mb TOTAL 

Number of holograms 1000 2000 2000 5000 

Number of particles in 

the range [5-25 µm] 

1175 2245 2257 5677 

Number of particles in 

the range [12-140 µm] 

37 70 71 178 

 

The processing method and the results are summarized in the following subsections. 

 

  

7.1.  Range 6-25 µm 

 

The reliability of diameter measurement is strongly dependent on the capability of depth-coordinate 

estimation. As described in [12], the 3D invariance of the PSF is only applicable when the particle 

image is well-focused. However, it has been shown in ref. 13, that the focusing problem is easy to solve 

in the range [5-25 µm]. In that case, the depth coordinate is estimated with accuracy better than 100 

µm. The size distribution over this range is presented on fig. VII. Note that the results are quite similar 

for the three pressures conditions. 

 



 
 

Fig. VII – Size distribution of nuclei measured by DIH in the range 5-25 µm 

 

It must be pointed out that these distributions have been obtained by assuming the bubbles to be 

spherical. In fact, due to the circular shape of the point spread function (PSF) [13] and keeping in mind 

that the width of the PSF is roughly about 2 pixels, both non-spherical and spherical particles are seen 

as circular shape images. So, it is highly probable that other particles such as solid particles could 

wrongly have been identified as bubbles. This may lead to an overestimation of the concentration of 

small bubbles. This is good accordance with the conclusions of reference [17]. 

 

 

7.2. Range 12-140 µm 

 

As mentioned in subsection 5.2, larger particles have been detected and measured individually. The 

montages of Fig. VIII show all the particle images that have been reconstructed, localized and 

measured in the range [12-140 µm] for three different pressures in the tunnel. For this representation, 

each image has been cropped by a square of 100x100 pixels around the particle image.  

 

(a) (b) (c) 

 

Fig. VIII – Images of bubbles reconstructed automatically from holograms in the range [12-140 µm] 

(a) P = 567 mb, 1000 holograms (b), P = 927 mb, 2000 holograms  

and (c) P = 1287 mb, 2000 holograms 
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Here the image size is greater than the width of the PSF. As a result, it has been possible to reject non-

spherical particles (fibers, solid particles ...) from the series of images. Fig. IX shows three examples of 

detected non-spherical particles that have been removed. 

 

         
 

Fig. IX – Examples of non-spherical particles automatically extracted from the series 

 

 

7.3.  Synthesis 5-140 µm 

 

Knowing the interrogation volume for each range, the concentration (bubble density in the optical pipe) 

has been evaluated. The results from both ranges are grouped together on figure X. We have checked 

that a given particle image were not twice counted on this diagram.  

 

 

 
 

Fig X – Size nuclei distribution in the optical pipe for different flow pressures  

 

It must be said that, due to the low concentration of bubbles in the upper range, the results obtained in 

the range 40-160 µm represent no more than 10 detected particles for a given condition. However, the 
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measured concentrations are in good accordance with the results obtained by other techniques (see ref. 

17). 

 

 

8.  Conclusion 

 

Digital in-line holography is applied to the measurement of bubble size in a cavitation tunnel. The 

optical magnification has been adapted to the size-range to be investigated (5-140 µm). A specific 

transparent pipe has been designed for this experiment. With this equipment, more than 5000 of 

holograms have been recorded and automatically processed by home-made software. Note that the 

focusing process differs as small or big particles are observed. This is why the ranges [5-25 µm] and 

[12-140 µm] have been studied separately. Concerning the upper range, non-spherical particles (like 

solid particles or fibers) can be detected and removed from the results. This work is to our knowledge 

the first study concerning statistical results of size measurement of bubbles by digital holography and 

processed by a fully automatic process. This makes possible a comparison with others (optical and non 

optical) measurement techniques.  
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