Rémy Belmonte

Tesshu Hanaka

Ioannis Katsikarelis

Michael Lampis

Hirotaka Ono

Yota Otachi

Parameterized Complexity of Safe Set

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Let G = (V, E) be a graph. For a vertex set S ⊆ V (G), we denote by G[S] the subgraph of G induced by S, and by G -S the subgraph induced by V \ S. If G[S] is connected, we also say that S is connected. A vertex set C ⊆ V is a component of G if C is an inclusion-wise maximal connected set. Two vertex sets A, B ⊆ V are adjacent if there is an edge {a, b} ∈ E such that a ∈ A and b ∈ B. Now, a non-empty vertex set S ⊆ V of a graph G = (V, E) is a safe set if no connected component C of G[S] has an adjacent connected component D of G -S with |C| < |D|. A safe set S of G is a connected safe set if G[S] is connected.

The safe number s(G) of G is the size of a minimum safe set of G, and the connected safe number cs(G) of G is the size of a minimum connected safe set of G. It is known [START_REF] Fujita | Safe set problem on graphs[END_REF] that s(G) cs(G) 2 • s(G) -1.

Fujita, MacGillivray, and Sakuma [START_REF] Fujita | Safe set problem on graphs[END_REF] introduced the concept of safe sets motivated by a facility location problem that can be used to design a safe evacuation plan. Subsequently, Bapat et al. [START_REF] Ravindra | Safe sets, network majority on weighted trees[END_REF] observed that a safe set can control the consensus of the underlying network with a majority of each part of the subnetwork induced by a component in the safe set and an adjacent component in the complement, thus the minimum size of a safe set can be used as a vulnerability measure of the network. That is, contrary to its name, having a small safe set could be unsafe for a network. Both the combinatorial and algorithmic aspects of the safe set problem have already been extensively studied [START_REF] Águeda | Safe sets in graphs: Graph classes and structural parameters[END_REF][START_REF] Fujita | Safe number and integrity of graphs[END_REF][START_REF] Ehard | Approximating connected safe sets in weighted trees[END_REF][START_REF] Fujita | On weighted safe set problem on paths and cycles[END_REF].

In this paper, we study the problem of finding a small safe set mainly from the parameterizedcomplexity point of view. We show a number of both tractability and intractability results, that highlight the difference in complexity that this parameter exhibits compared to similarly defined vulnerability parameters.

Our results

Our main results are the following (see also Figure 1).

1. Both problems are W [START_REF] Ravindra | Safe sets, network majority on weighted trees[END_REF]-hard parameterized by the pathwidth pw and cannot be solved in time n o(pw) unless the Exponential Time Hypothesis (ETH) fails, where n is the number of vertices.

2. They do not admit kernels of polynomial size when parameterized by vertex cover number even for connected graphs unless PH = Σ p 3 .

3. Both problems are fixed-parameter tractable (FPT) when parameterized by neighborhood diversity.

4. Both problems can be solved in XP-time when parameterized by clique-width.

5. Both problems can be solved in O * (k O(k)) time 1 when parameterized by the solution size k.

The W [START_REF] Ravindra | Safe sets, network majority on weighted trees[END_REF]-hardness parameterized by pathwidth complements the known FPT result when parameterized by the solution size [START_REF] Águeda | Safe sets in graphs: Graph classes and structural parameters[END_REF], since for every graph the size of the solution is at least half of the graph's pathwidth (see Section 2). The n o(pw) -time lower bound is tight since there is an n O(tw) -time algorithm [START_REF] Águeda | Safe sets in graphs: Graph classes and structural parameters[END_REF], where tw is the treewidth. The second result also implies that there is no polynomial kernel parameterized by solution size, as the vertex cover number is an upper bound on the size of the solution. The third result marks the first FPT algorithm by a parameter that is incomparable to the solution size. The fourth result implies XP-time solvability for all the parameters mentioned in this paper and extends the result for treewidth from [START_REF] Águeda | Safe sets in graphs: Graph classes and structural parameters[END_REF]. The fifth result improves the known algorithm [START_REF] Águeda | Safe sets in graphs: Graph classes and structural parameters[END_REF] that uses Courcelle's theorem.

Previous work

In the first paper on this topic, Fujita et al. [START_REF] Fujita | Safe set problem on graphs[END_REF] showed that the problems are NP-complete in general. Their hardness proof implies that the parameters are hard to approximate within a factor of 1.3606 ([START_REF] Águeda | Safe sets in graphs: Graph classes and structural parameters[END_REF]). They also showed that a minimum connected safe set in a tree can be found in linear time. Bapat et al. [START_REF] Ravindra | Safe sets, network majority on weighted trees[END_REF] considered the problems on vertex-weighted graphs, where the problems are naturally generalized. They showed that these are weakly NP-complete even for weighted stars (thus for all parameters generalizing vertex cover number and graph classes like interval and split graphs). On the other hand, they showed that the problems can be solved in O(n 3) time for weighted paths. Ehard and Rautenbach [START_REF] Ehard | Approximating connected safe sets in weighted trees[END_REF] presented a PTAS for the connected safe number of a weighted tree. Fujita et al. [START_REF] Fujita | On weighted safe set problem on paths and cycles[END_REF] showed among other results that the problems can be solved in linear time for weighted cycles.

Águeda et al. [START_REF] Águeda | Safe sets in graphs: Graph classes and structural parameters[END_REF] studied their unweighted versions. They presented an XP algorithm for graphs of bounded treewidth and showed that the problems can be solved in polynomial time for interval graphs, while they are NP-complete for split and bipartite planar graphs of maximum degree at most 7. Observing that the treewidth of a graph is bounded by a function of its safe number, they also showed that the problems are FPT parameterized by solution size.

Definitions and Preliminaries

The problems studied in this paper are formalized as follows:

Safe Set (SS) Input:

A graph G = (V, E) and an integer k. Question: Is there a safe set S ⊆ V of size at most k?

Connected Safe Set (CSS) Input:

A graph G = (V, E) and an integer k. Question: Is there a connected safe set S ⊆ V of size at most k?

In our positive results, we also study the optimization versions of both problems.

A set K ⊆ V is a dominating set of G = (V, E) if each vertex in G is either included in K or has a neighbor in K; that is, N [v] ∩ K = ∅. Dominating Set asks to for a dominating set of size at most k and is known to be W [START_REF] Ravindra | Safe sets, network majority on weighted trees[END_REF]-complete when parameterized by the solution size k [START_REF] Downey | Fixed-parameter tractability and completeness I: Basic results[END_REF]. A related problem is the following:

Red-Blue Dominating Set (RBDS) Input:

A bigraph G = (R, B; E) and an integer k. Question: Is there D ⊆ B of size at most k that dominates all vertices in R?

We assume that the reader is familiar with the concepts relating to fixed-parameter tractability. See [START_REF] Cygan | Parameterized Algorithms[END_REF] (and references therein) for the definitions of relevant notions in parameterized complexity theory. We let N [v] denote the closed neighborhood of vertex v, i.e. the set containing v and all vertices adjacent to it. Furthermore, for a positive integer k, we denote the set {1, . . . , k} by [k].

Graph parameters

We recall relationships among some graph parameters used in this paper, and give a map of the parameters with the results. The graph parameters we explicitly use in this paper are vertex cover number vc, pathwidth pw, neighborhood diversity nd, and clique-width cw. They are situated in the hierarchy of well-studied graph parameters, along with safe number s, as depicted in Figure 1.

The treewidth tw(G), pathwidth pw(G), treedepth td(G), and vertex cover number vc(G) of a graph G can be defined as the minimum of the maximum clique-size (-1 for tw(G), pw(G), and vc(G)) among all supergraphs of G that are of type chordal, interval, trivially perfect and threshold, respectively. This gives us tw(G) pw(G) td(G) -1 vc(G) for every graph G. One can easily see that s(G) vc(G) and td(G) 2s(G). (See also the discussion in [START_REF] Águeda | Safe sets in graphs: Graph classes and structural parameters[END_REF].) This justifies the hierarchical relationships among them in Figure 1.

Although modular-width mw(G) and neighborhood diversity nd(G) are incomparable to most of the parameters mentioned above, all these parameters are generalized by clique-width, while the vertex cover number is their specialization.

More formally, a path decomposition of a graph G = (V, E) is a sequence (X 1 , . . . , X r) of subsets (called bags) of V such that:

1. 1 i r X i = V , 2.
for each e ∈ E, there exists X i such that e ⊆ X i , and 3. each v ∈ V appears in consecutive sets in the sequence.

The width of a path decomposition (X 1 , . . . , X r) is max 1 i r |X i |. The pathwidth pw(G) of G is the minimum width over all path decompositions of G.

Next, the clique-width of a graph measures the simplicity of the graph as the number of labels required to construct the graph [START_REF] Courcelle | Upper bounds to the clique width of graphs[END_REF]. In a vertex-labeled graph, an i-vertex is a vertex of label i . A c-expression is a rooted binary tree such that:

• each leaf has label • i for some i ∈ [c],
• each non-leaf node with two children has label ∪, and

• each non-leaf node with exactly one child has label ρ i,j or η i,j (i, j ∈ [c], i = j).

Each node in a c-expression represents a vertex-labeled graph as follows:

• a • i -node represents a single-vertex graph with one i-vertex;

• a ∪-node represents the disjoint union of the labeled graphs represented by its children;

• a ρ i,j -node represents the labeled graph obtained from the one represented by its child by replacing the labels of all i-vertices with j;

• an η i,j -node represents the labeled graph obtained from the one represented by its child by adding all possible edges between the i-vertices and the j-vertices.

A c-expression gives the graph represented by its root. The clique-width cw(G) of G is the minimum integer c such that some c-expression represents a graph isomorphic to G. It is known that for any constant c, one can compute a (2 c+1 -1)-expression of a graph of clique-width c in O(n 3) time [START_REF] Hlinený | Finding branch-decompositions and rank-decompositions[END_REF][START_REF] Oum | Approximating clique-width and branch-width[END_REF][START_REF] Oum | Approximating rank-width and clique-width quickly[END_REF].

A c-expression of a graph is irredundant if for each edge {u, v}, there is exactly one node η i,j that adds the edge between u and v. A c-expression of a graph can be transformed into an irredundant one with O(n) nodes in linear time [START_REF] Courcelle | Upper bounds to the clique width of graphs[END_REF]. In what follows, we assume that c-expressions are irredundant.

Some observations

Here we list some simple observations that are not directly related to our main results yet may still be of interest.

Observation 1. Given a graph G, the safe number and the connected safe number can be approximated in polynomial time within a factor of s(G) + 1.

Proof. If a graph is not connected, we can apply the following algorithm for each component and output a found set of the minimum size. Hence we assume that G is connected in what follows.

We guess the safe number s(G) and denote the hypothetical value by s |V (G)|. We start with an arbitrary connected set S such that |S| = s + 1. Assume that G -S has a component C of size more than s. Let C ⊆ C be a connected set of size s + 1 that has a neighbor in S. We put all the vertices of C into S. We repeat this process until every component of G -S becomes of size at most s.

Observe that the resulting set S is a safe set since G[S] is connected and G -S has no component of size larger than |S| s. Observe that each time we added some vertices to S (even at the initialization of S), we added a connected set X of size s + 1. Thus, for any safe set S of size s, it holds that S ∩ X = ∅. This means that we add at most s + 1 vertices to include each vertex in an optimal solution. Therefore the output is a connected safe set of size at most s(G) • (s(G) + 1) provided that the guess s is correct.

The following observation implies that when parameterized by the solution size and the maximum degree ∆(G), SS and CSS admit FPT algorithms for general graphs and polynomial kernels for connected graphs. Recall that the problems are NP-complete for graphs of bounded maximum degree [START_REF] Águeda | Safe sets in graphs: Graph classes and structural parameters[END_REF], and do not admit a polynomial kernel even for connected graphs when parameterized only by solution size (Corollary 6).

Observation 2. For every connected graph G, |V (G)| s(G) + s(G) 2 • ∆(G).
Proof. If S is a safe set, then there are at most |S| • ∆(G) components in G -S and each of them has size at most |S|.

A related observation is that both SS and CSS admit kernels of order roughly k O(k) . Here we need the (already mentioned) fact that td(G) 2s(G). The treedepth td(G) of a graph G is defined recursively as follows:

• if G has one vertex only, then td(G) = 1;

• if G has the components C 1 , . . . , C q with q 2, then td(G) = max 1 i q td(G[C i]);

• otherwise, td(G) = 1 + min v∈V (G) td(G) -{v}. Observation 3. td(G) 2s(G) for every graph G.

Proof. Let S be a safe set of G with size k := s(G). Observe that td(G) k + td(G -S). Now since S is a safe set, each component of G -S has size at most k. A graph of k vertices has treedepth at most k, and thus td(G -S) k. Observation 4. There exists a polynomial-time algorithm which, given a connected instance of SS, or CSS, produces an equivalent instance with at most s(G) + (2s(G)) 2s(G) vertices.

Proof. Let k := s(G). We first observe that if a vertex u has degree at least 2k then any safe set (connected or not) must contain u, because otherwise u together with the (at least k) of its neighbors which are not in the solution form a component of size k + 1 or more. Therefore, if G has k + 1 or more vertices of degree at least 2k we immediately produce a trivial No instance. Let H be the set of vertices of degree at least 2k.

If we have |H| k we need to show that |V \ H| (2k) 2k in any Yes instance. However, in a Yes instance, td(G) 2k by Observation 3. This implies that td(G -H) 2k. Furthermore, the maximum degree of G -H is at most 2k. It is now an easy observation that a graph with tree-depth 2k and maximum degree 2k cannot have more than (2k) 2k vertices. So, if V \ H is larger than that we reject, otherwise we have the promised bound. Observation 4 is interesting as a demonstration of the algorithmic difficulties posed by the fact that our problems are not closed under taking induced subgraphs (unlike most graph parameters). Since we succeed in bounding the number of vertices of high degree, one may be tempted to believe that Observation 2 would then allow us to obtain a polynomial kernel (as in the remainder of the graph ∆ = O(k)). This does not work, as a safe set of the original graph does not necessarily remain a safe set of the graph induced by low-degree vertices. As a result, we are forced to argue indirectly through a more well-behaved parameter (tree-depth). The results of Section 4 indicate that this is most likely to be inevitable, as the problem does not admit a polynomial kernel unless PH = Σ p 3 .

Similar graph parameters

While the safe number is a recently-introduced parameter, it bears some similarities with other graph parameters that are somewhat older and relatively well-studied. These are the vertex integrity and the -component order connectivity. Here we discuss some known results on these parameters and compare them to those on the safe number.

The vertex integrity vi(G) [START_REF] Barefoot | Vulnerability in graphs -a comparative survey[END_REF] of a graph G is the minimum integer k such that there is a vertex set S ⊆ V such that |S| plus the maximum size of the components of G -S is at most k. Fujita and Furuya [START_REF] Fujita | Safe number and integrity of graphs[END_REF] showed that it is 2 s(G) -2 + 1 vi(G) 2s(G) for every connected graph G (except stars) and that the bounds are tight. From this relation, one might speculate whether the concept of vertex integrity is essentially equivalent to that of safe number. This is not in fact true as their complexity differs for some cases:

• Interval graphs: For unweighted interval graphs, both the safe number and the vertex integrity can be determined in polynomial time [START_REF] Kratsch | Measuring the vulnerability for classes of intersection graphs[END_REF][START_REF] Águeda | Safe sets in graphs: Graph classes and structural parameters[END_REF]. However, for weighted interval graphs, determining the safe number is NP-hard as mentioned above, but it is still polynomial-time solvable for the vertex integrity [START_REF] Ray | The weighted integrity problem is polynomial for interval graphs[END_REF].

• Split graphs: For unweighted split graphs, the vertex integrity is trivially determined [START_REF] Li | Vulnerability parameters of split graphs[END_REF], while the safe number is NP-hard to determine [START_REF] Águeda | Safe sets in graphs: Graph classes and structural parameters[END_REF]. Determining the vertex integrity is NP-hard for weighted split graphs [START_REF] Grønås Drange | On the computational complexity of vertex integrity and component order connectivity[END_REF].

• Parameterized complexity: The vertex integrity problem parameterized by the solution size k admits a kernel of k 3 vertices even for the weighted version [START_REF] Grønås Drange | On the computational complexity of vertex integrity and component order connectivity[END_REF]. On the other hand, our (unweighted) problem does not admit any polynomial kernel parameterized by the solutions size unless PH = Σ p 3 (see Corollary 6).

The -component order connectivity of a graph is the minimum integer k such that there is a vertex set S ⊆ V with |S| k and each component of G -S has size at most . Such an S is an -size separator. Because of the second parameter , this parameter cannot be directly compared to the safe number. We summarize their similarities and differences:

• Graph classes: For weighted interval graphs [START_REF] Ben-Ameur | The k-separator problem: polyhedra, complexity and approximation results[END_REF][START_REF] Grønås Drange | On the computational complexity of vertex integrity and component order connectivity[END_REF] and weighted circular-arc graphs [START_REF] Ben-Ameur | The k-separator problem: polyhedra, complexity and approximation results[END_REF] the problem can be solved in polynomial time even if is part of the input.

• Parameterized complexity: When parameterized only by or the solution size k, the problem is W[1]-hard even for (unweighted) split graphs [START_REF] Grønås Drange | On the computational complexity of vertex integrity and component order connectivity[END_REF]. There is a 2 O(k log) • n-time algorithm, which is tight in the sense that there is no 2 o(k log) • n O(1) -time algorithm unless the ETH fails [START_REF] Grønås Drange | On the computational complexity of vertex integrity and component order connectivity[END_REF]. It is known that the problem admits a kernel of O(k) vertices [START_REF] Xiao | Linear kernels for separating a graph into components of bounded size[END_REF] (see also [START_REF] Grønås Drange | On the computational complexity of vertex integrity and component order connectivity[END_REF][START_REF] Kumar | A 2 k kernel for -component order connectivity[END_REF] for previous results on polynomial kernels). When parameterized by both the treewidth tw and the solution size k, the problem is W[1]-hard, and the ETH implies that there is no f (tw + k) • n o((tw+k)/ log(tw+k)) -time algorithm [START_REF] Bonnet | Generalized feedback vertex set problems on bounded-treewidth graphs: Chordality is the key to single-exponential parameterized algorithms[END_REF].

• Approximation: An (+ 1)-approximation is obtained by the greedy algorithm [START_REF] Ben-Ameur | The k-separator problem: polyhedra, complexity and approximation results[END_REF]. There is a 2 O() n+n O(1) -time approximation algorithm of a factor O(log), but there is no approximation algorithm that runs in time polynomial both in n and and with an approximation factor n (1/ log log n) c unless the ETH fails [START_REF] Lee | Partitioning a graph into small pieces with applications to path transversal[END_REF].

There is another graph parameter, called the fracture number, introduced in [START_REF] Dvořák | Solving integer linear programs with a small number of global variables and constraints[END_REF] to provide a way to tackle integer linear programs with small "backdoors". Given a bipartite graph G, its fracture number is the minimum k such that there is a vertex set S of size at most k while each component of G -S has size at most k. Among other results, it is shown in [START_REF] Dvořák | Solving integer linear programs with a small number of global variables and constraints[END_REF] that the problem is NP-hard in general, but can be solved in time O((k + 1) k • m), and there is also an approximation algorithm with ratio k + 1.

Note that the property of having a constant vertex integrity or a constant -component order connectivity is minor closed. This is not true for the safe number and the connected safe number. For example, let C 8 be the graph obtained from C 8 , the cycle of eight vertices, by adding a vertex v adjacent to a diagonal pair of distance 4 in

C 8 . Since N [v] is a connected safe set, s(C 6) cs(C 6) 3.
On the other hand, it can be shown that s(C 8) = cs(C 8) = 4.

W[2]-hardness parameterized by pathwidth

In this section we show that Safe Set is W [START_REF] Ravindra | Safe sets, network majority on weighted trees[END_REF]-hard parameterized by pathwidth, via a reduction from Dominating Set.

Given an instance [G = (V, E), k] of Dominating Set, we will construct an instance [G = (V , E), pw(G)] of Safe Set parameterized by pathwidth. Let V = {v 1 , . . . , v n } and k = 1 + kn + v∈V k(δ(v) + 1) be the target size of the safe set in the new instance, where δ(v) is the degree of v in G.

Before proceeding, let us give a high-level description of some of the key ideas of our reduction (an overview is given in Figure 3. First, we note that our new instance will include a universal vertex. This simplifies things, as such a vertex must be included in any safe set (of reasonable size) and ensures that the safe set is connected. The problem then becomes: can we select k -1 additional vertices so that their deletion disconnects the graph into components of size at most k .

The main part of our construction consists of a collection of k cycles of length n 2 . By attaching an appropriate number of leaves to every n-th vertex of such a cycle we can ensure that any safe set that uses exactly n vertices from each cycle must space them evenly, that is, if it selects the i-th vertex of the cycle, it also selects the (n + i)-th vertex, the (2n + i)-th vertex, etc. As a result, we expect the solution to invest kn vertices in the cycles, in a way that encodes k choices from [n].

We must now check that these choices form a dominating set of the original graph G. For each vertex of G we construct a gadget and connect this gadget to a different length-n section of the cycles. This type of connection ensures that the construction will in the end have small pathwidth, as the different gadgets are only connected through the highly-structured "choice" part that consists of the k cycles. We then construct a gadget for each vertex v i that can be broken down into small enough components by deleting k(δ(v i) + 1) vertices, if and only if we have already selected from the cycles a vertex corresponding to a member of N [v] in the original graph.

Domination gadget: Before we go on to describe in detail the full construction, we describe a domination gadget Di . This gadget refers to the vertex v i ∈ V and its purpose is to model the domination of v i in G and determine the member of N [v i] that belongs to the dominating set. We construct Di as follows, while Figure 2 provides an illustration:

• We make a central vertex z i . We attach to this vertex kk(δ(v i) + 1) leaves. Call this set of leaves W i .

• We make k independent sets

X i 1 , . . . , X i k of size |N [v i]|. For each j ∈ [1, k] we associate each x ∈ X i j with a distinct member of N [v i]. We attach to each vertex x of each X i j , j ∈ [1, k] an independent set of k -1 vertices. Call this independent set Q x . • We then make another k independent sets Y i 1 , . . . , Y i k of size |N [v i]|. For each j ∈ [1, k] we construct a perfect matching from X i j to Y i j . We then connect z to all vertices of Y i j for all j ∈ [1, k]. z W Y k Y 1 X 1 X k Q Figure 2:
Our domination gadget Di . Superscripts i are omitted.

The intuition behind this construction is the following: we will connect the vertices of X i j to the j-th selection cycle, linking each vertex with the element of N [v i] it represents. In order to construct a safe set, we need to select at least one vertex y ∈ Y i j for some j ∈ [1, k], otherwise the component containing z will be too large. This gives us the opportunity to not place the neighbor x ∈ X i j of y in the safe set. This can only happen, however, if the neighbor of x in the main part is also in the safe set, i.e. if our selection dominates v i .

Construction: Graph G is constructed as follows:

• We first make n copies of V and serially connect them in a long cycle, conceptually divided into n blocks:

v 1 , v 2 , . . . , v n |v n+1 , . . . , v 2n |v 2n+1 , . . . | . . . , v n 2 |v 1 .
Each block corresponds to one vertex of V .

• We make k copies V 1 , . . . , V k of this cycle, where

V i = {v i 1 , . . . , v i n 2 }, ∀i ∈ [1, k]
and refer to each as a line. Each such line will correspond to one vertex of a dominating set in G.

• We add a set B i j of k -n + 1 neighbors to each vertex v i (j-1)n+1 , ∀j ∈ [1, n],
i.e. the first vertex of every block of every line. We refer to these sets collectively as the guards.

• Then, for each column of blocks (i.e. the i-th block of all k lines for i ∈ [1, n]), we make a domination gadget Di that refers to vertex v i ∈ V . As described above, the gadget contains

k copies X i 1 , . . . , X i k of N [v i] ⊆ V . • For i ∈ [1, n] and j ∈ [1, k],
we add an edge between each vertex in X i j and its corresponding vertex in the i-th block of V j , i.e. for the given i-th column, we connect a vertex from the j-th line (V j) to the vertex from the j-th copy of N [v i] (X i j) if they correspond to the same original vertex from V .

• We add a universal vertex u and connect it to every other vertex in the graph. This concludes our construction (see also Figure 3). Proof. Given a dominating set K in G of size |K| = k, we will construct a safe set S in G of size

|S| = k = 1 + kn + v∈V k(δ(v) + 1)
. First, we include in S the universal vertex u. We then arbitrarily order the vertices of K and will include in S the n copies (one from each block) of each vertex of K from the line that matches this ordering, i.e. if the i-th vertex of K is v j , then set S will include all vertices v i j , v i j+n , . . . , v i j+n 2 -n for each i ∈ [1, k]. Then, for each column and domination gadget Di , we consider the closed neighborhood

N [v i] of vertex v i in G: as K is a dominating set, K ∩ N [v i] = ∅, i.e.
there must be at least one vertex x from N [v i] included in K. If this is the j-th vertex in K according to our ordering, we then include all vertices from sets X i 1 , . . . , X i k in S, except for the copy of x in X i j and we also include in S the vertex y from set Y i j that is paired with x (and is adjacent to it). Note also that set S must already include a vertex corresponding to x from line V j . Thus k(δ(v i) + 1) vertices are selected from Di , one from the sets Y and all but one from the sets X, while these selections are complementary. Repeating this process for all gadgets Di (i.e. all columns) completes set S and we claim it is a safe set for G . Observe that the size of S is now |S| = k = 1 + kn + v∈V k(δ(v) + 1).

. . . V 1 V 2 . . . V k . . . v 1 n 2 v k n 2 v 1 1 B 1 1 v 1 n+1 B 1 n D1 Dn . . . v 2 1 v 2 n+1 v 2 n 2 v k 1 v 2 n+1 B k 1 B k n
Since S includes vertex u that is connected to all other vertices, then set S is connected and for it to be safe, the size of any remaining connected component in G -S must be no larger than k = 1 + kn + v∈V k(δ(v) + 1). First, from every line V i , the set S periodically includes every n-th vertex (all corresponding to some vertex of the dominating set solution K) and if some v i l ∈ V i with a neighbor in a dominating gadget Dj is not included in S, then the neighbor in the gadget must be included in S instead. Thus the size of any remaining component in

V i is at most |B i j | + n -1 = k -n + 1 + n -1 = k = |S|.
Within a domination gadget Di , there is only one vertex x from sets X i j that does not belong in S, while both its neighbors from V j and Y i j are in S. The size of any remaining component that includes x is equal to

|Q x | + 1 = k = |S|.
Finally, the size of any remaining component that contains the central vertex z i is equal to

1 + |W i | + k(δ(v i) + 1) -1 = 1 + k -k(δ(v i) + 1) + k(δ(v i) + 1) -1 = k = |S|, due to set S
containing only one vertex from sets Y i j (that is adjacent to the only vertex from X i j that is not in S). As there is no remaining component in G -S that is larger than S, our solution S is safe.

Lemma 2. If G has a safe set of size k = 1 + kn + v∈V k(δ(v) + 1), then G has a dominating set of size k.
Proof. Given a safe set S of size k in G , we will construct a dominating set K of size k in G. First, we may assume without loss of generality that set S includes the universal vertex u, as it being adjacent to every other vertex would imply that otherwise the size of S would have to be at least |V |/2.

We now make an easy observation that we may assume (without loss of generality) that the safe set we are given does not contain any leaves: if the safe set contains a leaf u and does not contain its neighbor, we can exchange u with its neighbor; if the safe set contains u and its neighbor, we can exchange u with some arbitrary non-leaf vertex, and this does not affect the feasibility of the solution thanks to the universal vertex.

Next, due to the guard vertices B i j connected to every first vertex of every block of every line, any safe set of size k must include at least one vertex per block per line and these must be periodical so as to allow only sub-paths of length n between consecutive selections: the size of every B i j being kn + 1, if there is such a sub-path between any pair of selections that is longer than n, then there would be a remaining component that is larger than k . Thus set S must include at least kn + 1 vertices outside the domination gadgets Di .

Next consider a gadget Di that corresponds to vertex v i ∈ V . The size of the set W i being kk(δ(v i) + 1) implies that there must be at least one vertex in S from the closed neighborhood of central vertex z i , as

|N [z i]| = |W i | + 1 + k(δ(v i) + 1) = k + 1.
Furthermore, for any vertex x in some X i j , set S must include either vertex x itself, or at least two vertices from the closed neighborhood of x as the size of each set Q x is k -1 and |N [x]| = k + 2. This means set S must include at least k(δ(v i) + 1) vertices from each gadget Di (completing the budget for S) and furthermore, that it is only possible for S to not include some vertex x ∈ X i j if both its neighbor y ∈ Y i j (its pair) and its neighbor v j l in the line V j (the pair's corresponding vertex) are included in S.

Having thus identified the necessary structure of S, we construct our dominating set K in G by considering the selections for S from every line V i : as explained above, these selections must be periodical for each line (every n-th vertex) and for each i ∈ [1, k] we include in K the vertex from V that corresponds to every copy from every block that is included in S. Note that these need not necessarily be distinct, i.e. the selections from a pair of lines might correspond to the same original vertex from G, meaning K may be of size less than k, yet if S is a safe set of size k in G , then the resulting set K must be a dominating set in G.

Consider each column i of blocks and each domination gadget Di . As explained above, the size of S ∩ Di is k(δ(v i) + 1), with at least one of these belonging in the closed neighborhood of central vertex z i , while for each x ∈ X i j it must be either x ∈ S, or y ∈ S and v j l ∈ S, where y is the pair of x in Y i j and v j l is the pair's corresponding vertex in the line V j . The budget for Di implies there must be at least one x not included in S, whose pair y must be included instead (for the remaining component containing central vertex z i to be of size k) and thus, the other neighbor of x in line V j must also have been included in S, i.e. set S must already include every copy of v j l from every block of line V j . This implies that for the vertex v i ∈ V in question (i.e. corresponding to column i and gadget Di), at least one vertex from its closed neighborhood N [v i] will be included in K and vertex v i will thus be dominated by K in G. As this must hold for all columns i/gadgets Di and vertices v i ∈ V , set K will be a dominating set in G. Lemma 3. The pathwidth pw(G) of G is at most 2k + 4.

Proof. We consider the graph G obtained from G by deleting the universal vertex as well as the edges connecting v j 1 to v j n 2 for each j ∈ [1, k]. We will show that this graph has pathwidth at most k + 3. This will imply the claim as we can obtain a path decomposition of G by adding to all bags the universal vertex and the vertices v j 1 for all j ∈ [1, k]. Consider now the i-th block of the construction, consisting of the gadget Di , the vertices {v j (i-1)n+1 , . . . , v j in } and B j i for j ∈ [1, k], and additionally the vertex v j in+1 , if i < n. We show that the graph induced by these vertices admits a path decomposition of width k + 3 with the additional property that the first bag of the decomposition is {v j (i-1)n+1 : 1 j k}, and the last bag of the decomposition is {v j in+1 : 1 j k}, if i < n. If we prove this claim we are done, since then we can take such a decomposition for each block and identify the last bag of the decomposition for the i-th block with the first bag of the decomposition for the (i + 1)-th block to obtain a decomposition for G of the same width.

Let us now consider the i-th block. We will make use of the following standard pathwidth fact: for any graph H, if H is the graph obtained by deleting all leaves of H, then pw(H) pw(H) + 1. This can easily be seen by first considering a path decomposition of H and then, for each leaf u of H, finding a bag of the original decomposition that contains the neighbor of u and inserting immediately after it a copy of the same bag with u added. Furthermore, we can do this without changing the first and the last bags in the decomposition. We use this fact to bound the pathwidth of the i-th block as follows: we add the central vertex z to all bags, and therefore may delete it from the graph. Now, removing all leaves from the block eliminates all B, Y , Q, and W vertices. Removing again all leaves from this graph eliminates X. As a result, the new graph is a collection of k disjoint paths, for which we can easily construct the required decomposition. The results for CSS follow by the connectivity of the safe set in Lemmas 1 and 2.

4 No polynomial kernel parameterized by vertex cover number

A set X ⊆ V is a vertex cover of G = (V, E) if each edge e ∈ E has at least one endpoint in X.
The minimum size of a vertex cover in G is the vertex cover number of G, denoted by vc(G).

Parameterized by vertex cover number vc, both problems are FPT (see Figure 1) and in this section we show the following kernelization hardness of SS and CSS.

Theorem 5. Safe Set and Connected Safe Set parameterized by the vertex cover number do not admit polynomial kernels even for connected graphs unless PH = Σ p 3 .

Since for every graph G, it is cs(G)/2 s(G) vc(G) ([1]), the above theorem implies that SS and CSS parameterized by the natural parameters do not admit a polynomial kernel. Corollary 6. SS and CSS parameterized by solution size do not admit polynomial kernels even for connected graphs unless PH = Σ p 3 .

Let P and Q be parameterized problems. A polynomial-time computable function f : andk p(k). If such a function exits, then P is polynomial-parameter reducible to Q.

Σ * × N → Σ * × N is a polynomial parameter transformation from P to Q if there is a polynomial p such that for all (x, k) ∈ Σ * × N , it is: (x, k) ∈ P if and only if (x , k) = f (x, k) ∈ Q,

Proposition 7 ([5]

). Let P and Q be parameterized problems, and P and Q be unparameterized versions of P and Q, respectively. Suppose P is NP-hard, Q is in NP, and P is polynomialparameter reducible to Q. If Q has a polynomial kernel, then P also has a polynomial kernel. From an instance [G, k] of RBDS with G = (R, B; E), we construct an instance [H, s] of SS as follows (see Figure 4). Let s = k + |R| + 1. We add a vertex u to G and make it adjacent to all vertices in B. We then attach 2s pendant vertices to each vertex in R and to u. Finally, for each r ∈ R, we make a star K 1,s-1 and add an edge between r and the center of the star. We call the resultant graph H. Observe that vc(H) 2|R| + 1 since {u} ∪ R ∪ C is a vertex cover of H, where C is the set of centers of stars attached to R. This reduction is a polynomial-parameter transformation from RBDS parameterized by k + |R| to SS parameterized by vertex cover number.

If D ⊆ V (G) is a solution of RBDS of size k, then S := {u} ∪ R ∪ D is a connected safe set of size s. To see this, recall that B is an independent set and N H (B) = {u} ∪ R. Thus each component in H -S is either an isolated vertex in D \ B, or a star K 1,s-1 with s vertices.

Assume that (H, s) is a yes instance of SS and let S be a safe set of H with |S| s. Observe that {u} ∪ R ⊆ S since u and all vertices in R have degree at least 2s. Since |S \ ({u} ∪ R)| k < |R|, S cannot intersect all stars attached to the vertices in R. Hence H -S has a component of size at least |V (K 1,s-1)| = s. This implies that S is connected. Since R is an independent set and each path from u to a vertex in R passes through B, each vertex in R has to have a neighbor in B ∩ S.

Thus B ∩ S dominates R. Since B ∩ S ⊆ S \ ({u} ∪ R), it has size at most k. Therefore, [G, k]

FPT algorithm parameterized by neighborhood diversity

In this section, we present FPT algorithms for SS and CSS parameterized by neighborhood diversity.

That is, we prove the following theorem.

Theorem 8. Safe Set and Connected Safe Set are fixed-parameter tractable when parameterized by the neighborhood diversity.

In a graph G = (V, E), two vertices u, v ∈ V are twins if N (u) \ {v} = N (v) \ {u}. The neighborhood diversity nd(G) of G = (V, E)
is the minimum integer k such that V can be partitioned into k sets T 1 , . . . , T k of pairwise twin vertices. It is known that such a minimum partition can be found in linear time using fast modular decomposition algorithms [START_REF] Mcconnell | Modular decomposition and transitive orientation[END_REF][START_REF] Tedder | Simpler linear-time modular decomposition via recursive factorizing permutations[END_REF]. It is also known that nd(G) 2 vc(G) + vc(G) for every graph G [START_REF] Lampis | Algorithmic meta-theorems for restrictions of treewidth[END_REF].

Let G be a connected graph such that nd(G) = k. Let T 1 , . . . , T k be the partition of V (G) into sets of pairwise twin vertices. Note that each T i is either a clique or an independent set by definition. We assume that k 2 since otherwise the problem becomes trivial. Since each T i is a twin set, the sizes of intersections |S ∩ T i | completely characterize the sizes of the components in G[S] and G -S, and the adjacency among them.

Let S ⊆ V (G) and

s i = |S ∩ T i | for i ∈ [k].
We partition [k] into I f , I p , and I ∅ as follows:

i ∈      I ∅ if s i = 0, I p if 1 s i |T i | -1, I f otherwise (s i = |T i |). (1)
For i, i / ∈ I ∅ (not necessarily distinct), twin sets T i and T i are reachable in S if either

• T i = T i and T i is a clique, or
• there is a sequence i 0 , . . . , i of indices such that 1, i 0 = i, i = i , i j / ∈ I ∅ for all j, and T ij and T ij+1 are adjacent for 0 j < .

Lemma 9. If i / ∈ I ∅ and T i is not reachable to T i itself in S, then each vertex in T i ∩ S induces a component of size 1.
Proof. The assumption implies that T i is an independent set and i ∈ I ∅ for each T i adjacent to T i . Therefore, each vertex in T i ∩ S has no other vertex in S that belongs to the same component of G[S].

Lemma 10. Two vertices u, v ∈ S are in the same component of G[S] if and only if u ∈ T i and v ∈ T i for some i and i , and T i is reachable from T i in S.

Proof. If u, v ∈ T i for some i where T i is a clique, then {u, v} ∈ E(G) and thus they are in the same component of G[S]. Assume that u ∈ T i and v ∈ T i , and there is a sequence i 0 , . . . , i with 1 that shows the reachability. We show that u, v in the same component of Then there is a shortest u-v path (p 0 , . . . , p q) in G[S]. If T i = T i and T i is a clique, then p 0 , p q ∈ T i . Assume that this is not the case. Let T ij be the twin set including p j . Since the path is shortest, i j = i j+1 holds and T j is adjacent to T j+1 for each j < q. Also, because of p j , we have i j / ∈ I ∅ for each j. Therefore, T i and T i are reachable in S.

By Lemmas 9 and 10, each component of G[S] is either a single vertex, or the intersection of S and the union of a maximal family of pairwise reachable twin sets in S. Observe that the maximal families of pairwise reachable twin sets in S is determined only by the set I ∅ . Also, if R is a maximal family of pairwise reachable twin sets in S, then the corresponding component of G[S] has size Ti∈R |T i ∩ S|. Now, just by interchanging the roles of S and V (G) \ S in Lemmas 9 and 10, we can show the following counterparts that imply that the maximal families of pairwise reachable twin sets in V (G) \ S are determined only by the set I f , while the size of the component of G -S corresponding to a maximal family R of pairwise reachable twin sets in

V (G) \ S is Ti∈R |T i \ S|. Lemma 11. If i / ∈ I f and T i is not reachable to T i itself in V (G) \ S, then each vertex in T i \ S induces a component of size 1.
Lemma 12. Two vertices u, v ∈ V (G) \ S are in the same component of G -S if and only if u ∈ T i and v ∈ T i for some i and i , and

T i is reachable from T i in V (G) \ S.

ILP formulation

Now we reduce the problem to an FPT number of integer linear programs with a bounded number of variables. We first divide [k] into the subsets I ∅ , I p , I f in Eq. [START_REF] Águeda | Safe sets in graphs: Graph classes and structural parameters[END_REF]. There are 3 k candidates for such a partition.

For each i ∈ [k], we use a variable x i to represent the size of T i ∩ S. To find a minimum safe set satisfying I ∅ , I p , I f , we set the objective function to be i∈ [k] x i and minimize it subject to the following linear constraints. The first set of constraints is to make S consistent with the guess of I ∅ , I p , I f :

x i = 0 for i ∈ I ∅ , 1 x i |T i | -1 for i ∈ I p , x i = |T i | for i ∈ I f .
As discussed above, the set of sizes x i completely characterizes the structure of components in G[S] and G -S. In particular, we can decide whether G[S] is connected or not at this point. We reject the disconnected case if we are looking for a connected safe set.

Let C and D be the sets of maximal families of pairwise reachable twin sets in S and V (G) \ S, respectively. Note that the twin sets that satisfy the conditions of Lemma 9 (Lemma 11) are not included in any member of C (D, respectively).

For each C j ∈ C, we use a variable y j to represent the size of the corresponding component of G[S]. Also, for each D h ∈ D, we use a variable z h to represent the size of the corresponding component of G -S. This can be stated as follows:

y j = Ti∈Cj x i for C j ∈ C, z h = Ti∈D h |T i | -x i for D h ∈ D.
We say that C j ∈ C and D h ∈ D are touching if there are T ∈ C j and T ∈ D h that are adjacent, or the same. We can see that C j and D h are touching if and only if the corresponding components are adjacent via an edge from T and T or an edge completely in T = T . We add the following constraint to guarantee the safeness of S: y j z h for each pair of touching C j ∈ C and D h ∈ D. Now we have to deal with the singleton components of G[S] (we can ignore the singleton components of G -S because the components of G[S] adjacent to them have size at least 1). Let T i be a twin set that satisfies the conditions of Lemma 9. That is, T i ∩ S = ∅, T i is an independent set, and no twin set adjacent to T i has a non-empty intersection with S. Hence a component of G -S is adjacent to the singleton components in T i ∩ S, if and only if the corresponding family D h ∈ D includes a twin set adjacent to T i . We say that such D h is adjacent to T i . Therefore, we add the following constraint:

z h 1 for each D h ∈ D adjacent to T i satisfying Lemma 9.

Solving the ILP

Lenstra [START_REF] Lenstra | Integer programming with a fixed number of variables[END_REF] showed that the feasibility of an ILP formula can be decided in FPT time when parameterized by the number of variables (see also [START_REF] Kannan | Minkowski's convex body theorem and integer programming[END_REF][START_REF] Frank | An application of simultaneous diophantine approximation in combinatorial optimization[END_REF]). Fellows et al. [START_REF] Michael | Graph layout problems parameterized by vertex cover[END_REF] extended it to the optimization version. More precisely, we define the problem as follows:

p-Opt-ILP Input:

A matrix A ∈ Z m×p , and vectors b ∈ Z m and c ∈ Z p . Question: Find a vector x ∈ Z p that minimizes c x and satisfies that Ax b.

They then showed the following: Theorem 13 (Fellows et al. [START_REF] Michael | Graph layout problems parameterized by vertex cover[END_REF]). p-Opt-ILP can be solved using O(p2.5p+o(p) • L • log(M N)) arithmetic operations and space polynomial in L, where L is the number of bits in the input, N is the maximum absolute values any variable can take, and M is an upper bound on the absolute value of the minimum taken by the objective function.

In the formulation for SS and CSS, we have at most O(k) variables: x i for i ∈ [k], y j for C j ∈ C, and z h for D h ∈ D. Observe that the elements of C (and of D as well) are pairwise disjoint. We have only O(k 2) constraints and the variables and coefficients can have values at most |V (G)|. Therefore, Theorem 8 holds.

XP algorithm parameterized by clique-width

This section presents an XP-time algorithm for SS and CSS parameterized by clique-width. The algorithm runs in time O(g(c) • n f (c)), where c is the clique-width. It is known that for any constant c, one can compute a (2 c+1 -1)-expression of a graph of clique-width c in O(n 3) time [START_REF] Hlinený | Finding branch-decompositions and rank-decompositions[END_REF][START_REF] Oum | Approximating clique-width and branch-width[END_REF][START_REF] Oum | Approximating rank-width and clique-width quickly[END_REF]. We omit g(c) in the running time and focus on the exponent f (c).

Theorem 14. Given an n-vertex graph G and an irredundant c-expression T of G, the values of s(G) and cs(G), along with their corresponding sets can be computed in O(n 28•2 c +1) time.

Corollary 15. Given an n-vertex graph G, the values of s(G) and cs(G), along with their corresponding sets can be computed in time n O(f (cw(G))) , where f (c) = 2 2 c+1 .

For each node t in the c-expression T of G, let G t be the vertex-labeled graph represented by t. We denote by V t the vertex set of G t . For each i, we denote the set of i-vertices in G t by V i t . For sets S ⊆ V t and L ⊆ [c], we denote by C(S, L) and D(S, L) the set of components of G t [S] and G t -S, respectively, that include exactly the labels in L.

For each node t in T , we construct a table dp t (n, n, s, l, s a , l a , d) ∈ {true, false} with indices n, n : 2 We can compute in a bottom-up manner all entries dp t (n, n, s, l, s a , l a , d). Note that there are O(n 10•2 c +1) such entries. Hence, to prove Theorem 14, it suffices to show that each entry can be computed in time O(n 18•2 c) assuming that the entries for the children of t are already computed. This is indeed the case for a ∪-node, while for ρ-and η-nodes O(n 10•2 c) will suffice.

Lemma 16. For a leaf node t with label • i , dp t (n, n, s, l, s a , l a , d) can be computed in O(1) time.

l(L) = max{l 1 (L), l 1 (L +i), l 1 (L +i-j)}; and for all L 1 , L 2 ⊆ [c]:

• if i ∈ L 1 ∪ L 2 , then s a (L 1 , L 2) = ∞, l a (L 1 , L 2) = -∞, and d(L 1 , L 2) = ∞; • if i, j / ∈ L 1 ∪ L 2 , then s a (L 1 , L 2) = s a 1 (L 1 , L 2), l a (L 1 , L 2) = l a 1 (L 1 , L 2), and d(L 1 , L 2) = d 1 (L 1 , L 2); • if i / ∈ L 1 ∪ L 2 and j ∈ L 1 ∪ L 2 , then s a (L 1 , L 2) = min{s a (L 1 , L 2) : L 1 ∈ L 1 , L 2 ∈ L 2 }, l a (L 1 , L 2) = max{l a (L 1 , L 2) : L 1 ∈ L 1 , L 2 ∈ L 2 }, d(L 1 , L 2) = min{d(L 1 , L 2) : L 1 ∈ L 1 , L 2 ∈ L 2 }, where, for h ∈ {1, 2}, L h = {L h } if j / ∈ L h , and L h = {L h , L +i h , L +i-j h } if j ∈ L h .
The claimed running time follows from the fact that there are O(n

i,j = {L ⊆ [c] : L ∩ {i, j} = ∅, n(L) > 0} and L i,j = {L ⊆ [c] : L ∩ {i, j} = ∅, n(L) > 0}.
By slightly abusing the notation, we denote by L i,j the union L∈Li,j L, and by L i,j the union L∈Li,j L. If V i t ∩ S = ∅ and V j t ∩ S = ∅, then all components in G t1 [S] containing an i-vertex or a j-vertex will be merged into one component with the color set L i,j in G t [S]. Otherwise, at most one color class i or j contains vertices of S. Hence no components of G t1 [S] will be merged in G t [S], while the edges added between V i t and V j t make each component in G t [S] with i-vertices (j-vertices), if any, adjacent to each component in G t -S with j-vertices (i-vertices, respectively). The analogous observations hold also for the components in G t1 -S and G t -S.

The following claims are almost direct consequences of the discussion above.

Claim 1. If n(L) > 0, then one of the following cases hold:

• i, j / ∈ L;

• |{i, j} ∩ L| = 1 and n(τ, i) • n(τ, j) = 0; or • i, j ∈ L = L i,j and n(τ, i) • n(τ, j) > 0.

Proof. If none of the cases above holds, then we have either 1. {i, j} ∩ L = ∅, L = L i,j , and n(τ, i) • n(τ, j) > 0; or 2. i, j ∈ L and n(τ, i) • n(τ, j) = 0.

In the first case, n(τ, i) • n(τ, j) > 0 implies that there is a unique component with color class L such that L ∩ {i, j} = ∅. Furthermore, we know that L = L i,j . In the second case, n(τ, i) = 0 or n(τ, j) = 0 holds, and thus no component can contain both i-vertices and j-vertices.

We can prove the next claim in the same way.

Claim 2. If n(L) > 0, then one of the following cases hold:

The above search-tree process produces O(k 2k) branches, since we have at most (k + 1)k choices in each branch, and the branching depth is at most k (since in each branch we add a vertex to S). The branching procedure terminates either because |S i | > k i for some i (in which case we reject), or because there are no more problematic vertices in the graph. Let us now explain how to complete the solution in this case.

At this point we have sets S 1 , . . . , S with the property that for all i ∈ [], every component of G -S that is adjacent to S i has size at most k i . However, we do not have a feasible solution yet because G[S i] is not necessarily connected for all i. We therefore construct instances of Steiner Tree: for each i ∈ [], we construct an instance where the set of terminals that must be connected is S i and we solve Steiner Tree on the graph G -(∪ j =i S j) (in other words, for each set S i we find a Steiner Tree that connects S i without using any of the vertices of S \ S i). We execute the algorithm of [START_REF] Nederlof | Fast polynomial-space algorithms using inclusion-exclusion[END_REF], which runs in time O * (2 t), where t is the number of terminals. The algorithm returns sets S 1 , S 2 , . . . , S , such that for all i ∈ [] we have S i ⊆ S i and G[S i] is connected. If for some i we have |S i | > k i or there is no solution (because deleting S \ S i disconnects S i) we reject this branch. Otherwise, for each i such that |S i | < k, we augment S i by adding to it arbitrary neighbors so that it remains connected and we have in the end |S i | = k i . We return S := ∪ i=1 S i as our solution.

To see that the above algorithm is correct, we first argue that if we return a solution S , then S clearly has size k, so we only need to explain why S is a safe set. Suppose for contradiction that S is not a safe set, therefore there exists a component of G[S] which is adjacent to a component C of G -S of larger size. In other words, there exists an i ∈ [] such that G[S i] has a neighbor in a component C of G -S with |C| > |S i | = k i . Let S i be the set of terminals on which we ran the i-th Steiner Tree procedure, and S the set of vertices we had when the branching procedure stopped. We will show that the graph contained a problematic vertex (with respect to S i), and therefore the branching procedure could not have stopped. Take a vertex u 1 ∈ C that has a neighbor in S i and consider a shortest path in G -S from u 1 to a vertex that has a neighbor in S i . Such a path exists, because in G -(S \ S i) all vertices of S i are in the same component (otherwise there would be no Steiner Tree connecting them), which is the same component that contains all vertices of S i , and u 1 has a neighbor in S i . Let u 2 be the last vertex of this path from u 1 to S 1 . Then u 2 is problematic: we have N (u 2) ∩ S i = ∅, and the component that u 2 belongs to in G -S is at least as large as C.

For the other direction, if O exists and we have guessed the k i values correctly and S i ⊆ O i for all i, then the Steiner Tree instances will all return a solution that we accept, as O i itself is a valid solution of the proper size. Therefore, if we reject in this phase it implies that no solution exists with the guessed properties.

Finally, for the running time, we repeat the algorithm O * (k k) times (for each value of , and values of k i), each repetition has a branching step with O * (k 2k) leaves, and in each leaf we run times the Steiner Tree algorithm, each with at most k terminals, therefore taking at most O * (2 k). Thus, the total running time is at most O * (2 k k 3k).

When we set = 1, the algorithm above will find a connected safe set of size at most k (if one exists). In that case, we have a single execution of the branching algorithm with the search tree size O(k k) in which we execute the O * (2 k)-time Steiner Tree algorithm for each leaf. Thus we have the following corollary.

Figure 1 :

 1 Figure 1: Graph parameters and an overview of the parameterized complexity landscape for SS and CSS. Connections between two parameters imply the existence of a function in the one above (being in this sense more general) that lower bounds the one below.

Lemma 1 .

 1 If G has a dominating set of size k, then G has a safe set of size k = 1 + kn + v∈V k(δ(v) + 1).

Figure 3 :

 3 Figure 3: A simplified picture of our construction. Note sets Q are only shown for two vertices per gadget, exemplary connections between corresponding vertices in sets X and lines V are only shown for the first gadget, while the universal vertex u is omitted.

Theorem 4 .

 4 Safe Set and Connected Safe Set are W[START_REF] Ravindra | Safe sets, network majority on weighted trees[END_REF]-hard parameterized by the pathwidth of the input graph. Furthermore, both problems cannot be solved in time n o(pw) unless the ETH is false.Proof. Given an instance [G = (V, E), k] of Dominating Set, we use the above construction to create an instance [G = (V , E), pw(G)] of Safe Set parameterized by pathwidth. Lemmas 1 and 2 show the correctness of our reduction, while Lemma 3 provides the bound on the pathwidth of the constructed graph, showing that our new parameter pw(G) is linearly bounded by the original parameter k. The running time bound follows from the fact that, under the ETH, Dominating Set does not admit an n o(k) algorithm.

To prove Theorem 5 ,

 5 we present a polynomial-parameter transformation from the well-known Red-Blue Dominating Set problem (RDBS) to SS (and CSS) parameterized by vertex cover number. RDBS becomes trivial when k |R| and thus we assume that k < |R| in what follows. It is known that RBDS parameterized simultaneously by k and |R| does not admit a polynomial kernel unless PH = Σ p

Figure 4 :

 4 Figure 4: The graph H in our reduction from RBDS to SS for the proof of Theorem 5.

 G[S] by induction on . If = 1, then T i and T i are adjacent and we are done. Let > 1. Since i -1 / ∈ I ∅ , there is a vertex w ∈ T ∩ S. By the induction hypothesis, u and w are in the same component of G[S]. Furthermore, since T -1 and T = T i are adjacent, there is an edge between w and v. Hence u and v are in the same component of G[S]. Now assume that u ∈ T i and v ∈ T i are in the same connected connected of G[S].

 [c] → {0, . . . , n}, s : 2[c] → {0, . . . , n} ∪ {∞}, l : 2[c] → {0, . . . , n} ∪ {-∞}, s a : 2[c] × 2 [c] → {0, . . . , n} ∪ {∞}, l a : 2 [c] × 2 [c] → {0, . . . , n} ∪ {-∞},and d : 2 [c] × 2 [c] → {-n, . . . , n} ∪ {∞}. We set dp t (n, n, s, l, s a , l a , d) = true if and only if there exists a set S ⊆ V t such that, for all L ⊆ [c]: 2 • n = C∈C(S,L) |C|, n = D∈D(S,L) |D|, • s = min C∈C(S,L) |C|, l = max D∈D(S,L) |D|, and for all L 1 , L 2 ⊆ [c]: • s a = min{|C| : C ∈ C(S, L 1), D ∈ D(S, L 2), C and D are adjacent}, • l a = max{|D| : C ∈ C(S, L 1), D ∈ D(S, L 2), C and D are adjacent}, • d = min{|C| -|D| : C ∈ C(S, L 1), D ∈ D(S, L 2), C and D are adjacent}. Let r be the root node of T . Observe that s(G) is the minimum integer s such that there exist n, n, s, l, s a , l a , and d satisfying that dp r (n, n, s, l, s a , l a , d) = true, s = L⊆[c] n, and d(L 1 , L 2) 0 for all L 1 , L 2 ⊆ [c]. For cs(G), we additionally ask that n(L) is nonzero with exactly one L ⊆ [c].

Corollary 21 .

 21 Connected Safe Set can be solved in O * (2 k k k) time,where k is the size of the solution.

 10•2 c) candidates for (n 1 , n 1 , s 1 , l 1 , s a 1 , l a 1 , d 1) and that each candidate can be checked in O(1) time.Lemma 19. For an η i,j -node t, dp t (n, n, s, l, s a , l a , d) can be computed in O(n 10•2 c) time.Proof. Let t 1 be the child of t in T . If there is a set S ⊆ V (G t) corresponding to the tuple τ = (n, n, s, l, s a , l a , d), then V h Given a tuple, these conditions can be checked in linear time. Hence we assume that we know which cases apply to the tuple.Let L

t ∩S is non-empty if and only if n(τ, h) := C∈C(S,L), h∈L⊆[c] |C| > 0. Also, V h t -S is non-empty if and only if n(τ, h) := D∈D(S,L), h∈L⊆[c] |D| > 0.

The O * (•) notation omits the polynomial dependency on the input size.

[START_REF] Dom | Kernelization lower bounds through colors and ids[END_REF]. Since RBDS is NP-hard and SS and CSS are in NP, it suffices to present a polynomial-parameter transformation from RBDS parameterized by k + |R| to SS and CSS parameterized by the vertex cover number.

We assume that min and max return ∞ and -∞, respectively, when applied to the empty set.

* Partially supported by JSPS and MAEDI under the Japan-France Integrated Action Program (SAKURA) Project GRAPA 38593YJ, and by JSPS/MEXT KAKENHI Grant Numbers JP24106004, JP17H01698, JP18K11157, JP18K11168, JP18K11169, JP18H04091, 18H06469.

Proof. Observe that dp t (n, n, s, l, s a , l a , d) = true if and only if:

• n(L) = n(L) = 0, s(L) = ∞, and l(L) = -∞ for all L = {i},

and either:

• n({i}) = 0, n({i}) = 1, s({i}) = ∞, l({i}) = 1, or

where the first case corresponds to S = ∅ and the second one to S = V i t = V t . These conditions can be checked in O(1) time.

Lemma 17. For a ∪-node t, dp t (n, n, s, l, s a , l a , d) can be computed in O(n 18•2 c) time.

Proof. Let t 1 and t 2 be the children of t in T . Now, dp t (n, n, s, l, s a , l a , d) = true if and only if there exist tuples (n 1 , n 1 , s 1 , l 1 , s a 1 , l a 1 , d 1) and (n 2 , n 2 , s 2 , l 2 , s a 2 , l a 2 , d 2) such that:

and

There are at most n 2 c possible pairs for (n 1 , n 2) as n 2 is uniquely determined by n 1 . Similarly, there are at most n 2 c possible pairs for (n 1 , n 2). There are at most n 2•2 c candidates each for (s 1 , s 2) and (l 1 , l 2), and at most n 4•2 c candidates each for (s a 1 , s a 2), (l a 1 , l a 2), and (d 1 , d 2). In total, there are at most n 18•2 c candidates for the tuples (n 1 , n 1 , s 1 , l 1 , s a 1 , l a 1 , d 1) and (n 2 , n 2 , s 2 , l 2 , s a 2 , l a 2 , d 2). Each candidate can be checked in O(1) time, and thus the lemma holds.

Lemma 18. For a ρ i,j -node t, dp t (n, n, s, l, s a , l a , d) can be computed in O(n 10•2 c) time.

Proof. Let t 1 be the child of t in T . Observe that a component with label set L in G t has label set either L, L +i , or L +i-j in G t1 , where L +i = L ∪ {i} and L +i-j = L ∪ {i} \ {j}. Thus dp t (n, n, s, l, s a , l a , d) = true if and only if there exists a tuple (n

where for all L ⊆ [c]:

, and l(L) = l 1 (L);

s(L) = min{s 1 (L), s 1 (L +i), s 1 (L +i-j)}, and

In the following, we only explain the case where each color set satisfies the condition in Claim 1 or Claim 2 (depending on which function we are talking about), since otherwise the values of functions can be trivially determined. Now we can see that dp t (n, n, s, l, s a , l a , d) = true if and only if there exists a tuple (n

where for all L ⊆ [c], the following holds:

and for all L 1 , L 2 ⊆ [c], the following holds:

The number of candidate tuples (n

) and each of them can be checked in O(1) time.

Faster algorithms parameterized by solution size

We know that both SS and CSS admit FPT algorithms [START_REF] Águeda | Safe sets in graphs: Graph classes and structural parameters[END_REF] when parameterized by the solution size. The algorithms in [START_REF] Águeda | Safe sets in graphs: Graph classes and structural parameters[END_REF] use Courcelle's theorem [START_REF] Courcelle | The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues[END_REF], however, and thus their dependency on the parameter may be gigantic. The natural question would be whether they admit O * (k k)-time algorithms as is the case for vertex integrity [START_REF] Grønås Drange | On the computational complexity of vertex integrity and component order connectivity[END_REF].

We answer this question with the following theorems. The first step of our algorithm for SS is a branching procedure to first guess the correct number of components (k choices) and then guess their sizes (at most k k choices). We complete our solutions (ensuring they are connected) by constructing and solving appropriate Steiner Tree sub-instances. With a simple modification our algorithm also works for CSS. In the remainder we assume that the algorithm guessed these values correctly, as we will repeat it for all possible values.

The first phase of our algorithm is a branching process. We maintain sets of vertices S 1 , . . . , S with the intuitive meaning that S i ⊆ O i for all i ∈ []. We denote S := ∪ i=1 S i . Initially S := ∅. If at any point we have |S i | > k i for some i, the algorithm rejects this branch.

We will say that a vertex u ∈ V \ S is problematic if it fulfills one of the following two properties: (i) the component of G -S that contains u has size at least k + 1, or (ii) there exists an i ∈ [] such that N (u) ∩ S i = ∅ and the component of G -S that contains u has size at least k i + 1. It is not hard to see from this description that finding a problematic vertex can be done in polynomial time.

The main branching step of our algorithm is now the following: we check if there exists a problematic vertex u. If it does, then we find a set of vertices C such that u ∈ C, C is connected in G -S, and C fulfills the following properties: (i) if the component of u in G -S has size at least k + 1, then |C| = k + 1 or, (ii) if the component of u in G -S has size at least k i + 1 for some i ∈ [] with N (u) ∩ S i = ∅, then |C| = k i + 1. It is not hard to see that this can be done in polynomial time. Now we produce |C| (k + 1)k branches: for each vertex w ∈ |C| we consider the case where we place w in S i for i ∈ []. We then call the same algorithm recursively.

To see the correctness of this branching procedure, we observe that if the branching is correct thus far, that is, if S i ⊆ O i and k i = |O i | for all i, then O ∩ C = ∅. In case (i) this is clear as we have a connected set of size k + 1. In case (ii) this is a consequence of the fact that C is adjacent to S i (therefore, to O i), but has size strictly larger than the size we guessed (correctly) for O i .