
HAL Id: hal-02414405
https://hal.science/hal-02414405

Submitted on 16 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vibroacoustic responses of a heavy fluid loaded
cylindrical shell excited by a turbulent boundary layer

Laurent Maxit, Mahmoud Karimi, Valentin Meyer, Nicole Kessissoglou

To cite this version:
Laurent Maxit, Mahmoud Karimi, Valentin Meyer, Nicole Kessissoglou. Vibroacoustic responses of
a heavy fluid loaded cylindrical shell excited by a turbulent boundary layer. Journal of Fluids and
Structures, 2020, 92, pp.102758. �10.1016/j.jfluidstructs.2019.102758�. �hal-02414405�

https://hal.science/hal-02414405
https://hal.archives-ouvertes.fr


 

   

Vibroacoustic Responses of a Heavy Fluid Loaded 

Cylindrical Shell Excited by a Turbulent Boundary Layer 

 

Laurent Maxit
1
, Mahmoud Karimi

2
, Valentin Meyer

3
, Nicole Kessissoglou

4
 

 

 

1. Univ Lyon, INSA–Lyon, Laboratoire Vibrations-Acoustique (LVA), 25 bis, av. Jean Capelle, F-69621, 

Villeurbanne Cedex, France  

e-mail: laurent.maxit@insa-lyon.fr 

2. Centre for Audio, Acoustics and Vibration, University of Technology Sydney, Sydney, Australia 

e-mail: mahmoud.karimi@uts.edu.au 

3. Naval Group Research, 199 avenue Pierre-Gilles, 83100 Ollioules, France 

e-mail: valentin.meyer@naval-group.com  

4. School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, 

NSW 2052, Australia 

e-mail: n.kessissoglou@unsw.edu.au  

ABSTRACT 

A fully coupled structural-acoustic model of a cylindrical shell under external turbulent 

boundary layer excitation is herein developed. The numerical process requires 

computation of the wall pressure cross spectral density function as well as sensitivity 

functions for the fluid-loaded cylindrical shell. A semi-empirical model from literature is 

used to describe the wall pressure field induced by the turbulent boundary layer in the 

wavenumber-frequency domain. An analytical expression of the wall pressure field for a 

flat surface is adapted to describe the wall pressure field for a cylindrical surface. 

Circumferential sensitivity functions are derived using a wavenumber-point reciprocity 

principle. Results for the near-field and far-field acoustic pressure spectra are presented. 

Contributions of individual circumferential modes to the acoustic pressure spectra are 

examined, showing distinct trends below and above the ring frequency. The proposed 
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method is computationally efficient and provides an effective approach to investigate 

vibroacoustic responses for maritime platforms.  

1. Introduction 

Modelling the vibroacoustic behaviour of structures excited by a random pressure field 

such as a turbulent boundary layer (TBL) has significant benefit for naval applications. 

For example, a submerged marine vessel such as an autonomous underwater vehicle or a 

submarine is excited by pressure fluctuations due to turbulent flow induced by the vessel’s 

movement through the water. Whilst interior and exterior noise from onboard machinery at 

low speeds and propeller noise at high speeds are dominant noise sources of an underwater 

vehicle, noise induced by a TBL is important in order to estimate the vessel self-noise. The 

self-noise radiated by a marine vessel can reduce the signal-to-noise ratio, leading to a 

reduction in performance of a passive sonar hull-mounted array. As such, understanding 

the vibroacoustic responses of a submerged vessel under TBL excitation can greatly assist 

in implementing mitigation strategies to minimize its radiated noise. The motivation of the 

current work is to develop a computationally efficient model of a fluid-loaded cylindrical 

shell under TBL excitation and to explore the physical mechanisms contributing to the 

near and far field structure-borne sound.  

Theoretical, numerical and experimental studies have been extensively carried out to 

predict the vibroacoustic behaviour of plates in air excited by a turbulent flow field (for 

example, see Ciappi et al., 2014, 2018 and references therein). Strawderman (1969) 

semi-analytically modelled both an infinite plate and a finite plate under turbulence 

excitation. The infinite plate model was found to provide a good estimation of the plate 

vibration power spectra whilst the cross spectral properties of the vibration response were 

more accurately predicted by the finite plate model. The effect of heavy fluid loading on 

the two plate models excited by turbulent flow was then examined (Strawderman and 

Christman, 1971). The propagation speed in the infinite plate as well as resonances of the 
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finite plate were shown to decrease compared with an equivalent plate in air. Davis (1971) 

compared the radiated sound power in air from a thin flexible panel excited by TBL wall 

pressure fluctuations using deterministic and statistical methods. In the deterministic 

method, the radiated sound power was estimated by directly summing over resonant 

modes from a modal analysis. The radiated power was also predicted using Statistical 

Energy Analysis assuming equipartition of energy between plate modes. At frequencies 

above the hydrodynamic coincidence frequency (which occurs when the plate flexural 

wavenumber is equal to the convective wavenumber), results from the two methods were 

shown to converge. Maury et al. (2002a, 2002b) proposed an analytical framework to 

predict the vibroacoustic responses of a panel excited by either a diffuse acoustic field or 

a fully developed turbulent flow. The structural displacement was represented by a 

Green’s function representation in the wavenumber domain.  An increase in flow velocity 

was observed to more rapidly increase the radiated sound pressure than the turbulent 

pressure. Hambric et al. (2004) used the finite element method (FEM) to examine the 

effect of different edge boundary conditions on the response of a flat plate under TBL 

excitation. They also proposed an approximate TBL model representing only the surface 

interaction, which was shown to work well for plates with clamped boundary conditions 

and at low wavenumber. De Rosa et al. (2008) analytically and numerically studied the 

structural response of a plate excited by a TBL using the modal expansion method and 

FEM. A scaling procedure was applied to both methods, leading to a significant reduction 

in simulation run time. Errico et al. (2019) proposed a numerical approach to estimate the 

sound transmission loss of complex flat, curved and cylindrical periodic structures, under 

acoustic or aerodynamic loads. The structural domain was modelled using the wave finite 

element method. The fluid-structure interaction was simulated in analogy to the acoustic 

wave excitation, discriminating among the different forcing models, using weighted 

wavenumber integration. For planar structures, the finite-size effects were taken into 
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account using either the baffled window equivalence or asymptotic formulations. The 

approach was validated against experimental results. Ciappi et al. (2009) numerically and 

experimentally studied the response of a fluid-loaded plate under TBL excitation. The 

Corcos and Chase models were employed to predict the plate response. The Chase model 

was shown to provide good agreement between numerical and experimental results for the 

structure-borne acoustic responses. An approach based on sensitivity functions and 

reciprocity principles was employed by Marchetto et al. (2017, 2018) to model panels 

under diffuse acoustic field and TBL excitation. The vibroacoustic responses at any 

location either on the panel or in the acoustic medium was shown to depend on two 

quantities in the wavenumber domain; namely, the wall-pressure cross spectral density 

function of the excitation and the sensitivity function at that location. Mazzoni (2003) 

presented an analytical model based on wavenumber integration to approximate the 

vibroacoustic response of an elastic water-loaded plate excited by a TBL at low Mach 

number. Greater sensitivity of the plate modes in the subconvective region of the power 

spectrum of the turbulent excitation was observed.  

The vibroacoustic responses of curved and composite panels under TBL excitation have 

also received attention. A deterministic approach combining modal expansion and 

receptance methods was developed by Liu (2008) to predict the radiated sound from 

aircraft panels subject to TBL excitation. The response of aerospace composite plates 

under turbulence induced vibration was numerically and experimentally investigated by 

Ciappi et al. (2016). They showed that at high Mach number, the aeroelastic effect on the 

panel response cannot be neglected, especially when composite materials are considered.  

One of the earliest works on TBL excitation of cylindrical shells was presented by 

Norton and Bull (1984), to experimentally investigate the vibroacoustic responses of a 

thin cylindrical pipe excited by turbulent internal flow. At low frequencies where only 

acoustic plane waves can propagate in the pipe, peristaltic motion and resonant modes of 

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236



 

 

the pipe wall were shown to contribute to the structural response. At higher frequencies, 

acoustic coincidence effects led to strong excitation of supersonic pipe modes, resulting in 

increasing pipe wall vibration and external radiation. Durant et al. (2000) numerically 

computed the structural and acoustic responses of a thin cylindrical pipe excited by 

turbulent internal flow using a boundary integral formulation. The wall pressure excitation 

was described by a Corcos model with the input parameters obtained from measurement of 

the cross spectral density of the wall pressure fluctuations. Recently, Li et al. (2017) 

studied random vibration analysis of an axially compressed cylindrical shell in air excited 

by an external TBL. The governing differential equations of the axially compressed 

cylindrical shell were derived and the eigenproblem was formed using the separation of 

variables technique. The cross spectrum density of the TBL was expanded as a Fourier 

series. Results for the shell responses were compared with those obtained using the modal 

decomposition method, showing good agreement. 

Various studies have also been conducted to assess the acoustic performance of a 

double-walled cylindrical shell excited by external TBL pressure fluctuations. Tang et al. 

(1996) developed an analytical model for sound transmission in concentric cylindrical 

sandwich shells under TBL excitation of the outer shell surface. It was shown that the 

interior pressure was strongly affected by resonant modes above the hydrodynamic and 

acoustic coincidence frequencies at which noise can be transmitted efficiently. Zhou et al. 

(2015) analytically studied the effect of poroelastic material in the shell core on sound 

transmission in concentric cylindrical shells under external TBL excitation. The shell 

displacements and acoustic pressure in the interior, exterior and annular fluid domains 

were expressed by the modal expansion method. They showed that the shell responses due 

to TBL excitation formulated by the Corcos and Efimtsov models were similar at higher 

frequencies. In a similar study, Zhang et al. (2018) investigated the effect of 

microperforation at the inner wall on sound transmission in a double walled cylindrical 
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shell under external TBL excitation. 

In this paper, a numerical approach is presented to predict the vibroacoustic responses 

of a cylindrical shell immersed in a heavy fluid and excited by a TBL. The approach is 

computationally efficient, allowing the influence of individual circumferential modes on 

the structural and acoustic responses of the shell to be examined in detail. In the first step, 

the wall pressure field induced by the TBL in the wavenumber-frequency domain is 

described using a semi-empirical TBL model from literature. In the wavenumber domain, 

circumferential sensitivity functions which correspond to the structure-borne sound 

pressure from the cylindrical shell under unit wall plane waves are derived using a 

reciprocity relation between the acoustic pressure at a spatial location in the fluid and a 

radial force applied to the shell. The auto spectral density of the pressure in the acoustic 

near field and far field is then obtained. For insight into the physical mechanisms 

contributing to the near-field and far-field acoustic spectra, results are presented in terms 

of individual contributions of circumferential modes, in both the low and high frequency 

ranges below and above the ring frequency, and for increasing radial distance from the 

shell. The proposed method provides an effective tool to investigate noise and vibration of 

underwater vehicles. 

2. Methodology 

2.1 Cylindrical shell under TBL excitation 

Let us consider an infinitely long thin cylindrical shell immersed in a fluid as shown in 

Fig. 1. A fully developed, stationary and homogeneous TBL excites the shell. It is assumed 

that the boundary layer is weakly coupled with the shell vibration and propagation of 

acoustic waves in the fluid is not affected by the flow. 
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Figure 1. Schematic diagram of an infinitely long cylindrical shell immersed in heavy fluid and excited by a 

turbulent boundary layer. 

 

The auto spectral density (ASD) of the radiated pressure from the cylindrical shell 

excited by the TBL is given by (Maury et al. 2002a) 

where ( )1 1, , , , ,p FH x r xq q w  is the frequency response function (FRF) of the radiated 

pressure at point M in the fluid with coordinate ( ), ,x rq  for radial point force excitation of 

the shell at 1M . ( )L

2 1 2

TB

1, ,ppS x x q q w- -  is the cross spectral density (CSD) function of 

the wall pressure field between two points on the shell surface and is formulated in the 

following section.  

2.2 Wall pressure field 

The wall pressure field (WPF) induced by the TBL can be described by one of several 

semi-empirical TBL models proposed in the literature (for example, see Corcos 1963, 

Chase 1987, Goody 2004). Whilst these models have been established for planar structures 

such as a flat plate, they are assumed to accurately describe the WPF at the surface of a 

( ) ( ) ( )
2 2

2
2

1 1 2 1 2 1 1 2 1 2

0

TB

0

L, , , , , , , , , , pp p F ppS x r H x r x S x x R d d dx dx

p p

q w q q w q q w q q
¥ ¥

-¥ -¥

= - -ò ò ò ò
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shell for low curvature (Lueptow 1988). For planar structures, the CSD function of the 

WPF in the wavenumber space, denoted by ( ), ,pp x yk kj w , is related to the CSD function 

of the WPF in the physical space, ( )TBL , ,ppS x y w , as follows 

( ) ( ) iiTBL, , , , yx
k yk x

pp x y ppk k S x y e e dxdyj w w
¥ ¥

--

-¥ -¥

= ò ò , (2) 

( )
( )

( ) iiTBL

2

1
, , , ,

2

yx
k yk x

pp pp x y x yS x y k k e e dk dkw j w
p

¥ ¥

-¥ -¥

= ò ò , (3) 

where w  is the angular frequency, and xk , yk  are wavenumber components in the x- and 

y-directions, respectively. The x-axis represents the streamwise direction and the y-axis 

represents the spanwise direction.  

For the cylindrical shell considered in this work, the spanwise direction y 

corresponds to the shell circumferential direction θ and the WPF is circumferentially 

periodic. The wavenumber-frequency domain of the cylindrical shell is denoted by ( )nkx , , 

where n is the circumferential mode number. The CSD function of the WPF in the 

wavenumber-frequency domain for a cylindrical shell, denoted by ( ), ,pp xk nf w  is related 

to ( ), ,pp x yk kj w  for a planar structure by 

( ) ( )1
, , , ,

2
pp x pp x yk n k k

R
f w j w

p
= , (4) 

where R is the shell radius. The CSD function of the WPF for the cylindrical shell in the 

spatial domain is then obtained as 

( ) ( ) iTBL i1
, , , , 

2
xk x n

pp x x

n

ppS x k n e dk e qq w f w
p

+¥+¥

=-¥ -¥

ì ü
= í ý

î þ
å ò . 

 

(5) 

2.3 Circumferential sensitivity function 

Substituting Eq. (5) into Eq. (1), the ASD function of the radiated pressure can be 

rewritten in the following form: 
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(6) 

where 

( ) ( ) 1 1

2

i i

1 1 1 1

0

1
, , , , , , , , , , .

2
xk x n

p x p FH x r k n H x r x e e Rd dx

p
qq w q q w q

p

¥
- -

-¥

= ò òp x p( , , ,(H x r(p x pp x p( , , ,,r, ,, ,, (7) 

 

( ), , , , ,p xH x r k nq wp x( , , ,(H x r( ,p xp x( , , ,,rr, ,, ,,, ,, ,,  corresponds to the radiated pressure at point M when the shell is 

excited by a unit WPF given by ( ) ( )i
, xk x n

p x e
qq - += , and is termed the circumferential 

sensitivity function. The circumferential sensitivity function can be derived using a 

wavenumber-point reciprocity technique (Maxit and Denis 2013). The Lyamshev 

reciprocity principle as illustrated in Figure 2 states that the ratio of the radiated pressure 

p at point M to a radial point force F located at point 1M  is equal to the ratio of the radial 

velocity v at point 1M  to the volume velocity vQ  at point M, that is, 

( ) ( )1 1 1 1, , , , , , , , , ,
vp F v QH x r x H x x rq q w q q w= . (8) 

Substituting Eq. (8) into Eq. (7) yields 

( ) ( ) 1 1

2

i i

1 1 1 1

0

1
, , , , , , , , , , .

2
x

v

k x n

p x v QH x r k n H x x r e e Rd dx

p
qq w q q w q

p

¥
- -

-¥

= ò òp x v( , , ,(H x r(p x vp x v( , , ,,r, ,, ,,  (9) 

The circumferential sensitivity function can now be interpreted as the product of the 

radius R with the Fourier transform of the shell radial velocity along the axial direction 

as well as a Fourier series decomposition in the circumferential direction, for the shell 

excited by an acoustic monopole located at point M with coordinate ( ), ,x rq  and 

strength of unit volume velocity. Calculation of the circumferential sensitivity function 

requires the spectral radial velocity of the fluid-loaded cylindrical shell which is derived 

in the proceeding section. 
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Figure 2. Illustration of the Lyamshev reciprocity principle between structural and fluid domains. 

 

2.4 Fluid-loaded cylindrical shell 

The cylindrical shell has radius R, thickness h, Young's modulus E, density sr  and 

Poisson's ratio n . U, V, and W are respectively the longitudinal, tangential and radial 

displacements of the shell. The shell is immersed in an infinite fluid domain of density fr  

and speed of sound fc . The system is excited by a monopole source at point M with 

coordinate ( ), ,x rq . The blocked wall pressure at r = R, corresponding to the induced WPF 

by the monopole when the shell is considered as rigid, is denoted by bp . The structure-borne 

radiated wall pressure in the exterior acoustic domain is denoted by rp .  

Assuming the following time harmonic dependency
i te w

, the Flügge equations of 

motion of the cylindrical shell are given by (Leissa 1973, Karczub 2006) 

( )
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( ) ( ) ( )
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ç ÷ê ú ê ú ê ú= +ç ÷ê ú ê ú ê ú
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ê
ê
ê
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where 
2 2(1 )R
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n
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listed in Appendix A. Applying both a Fourier series decomposition along the 

circumferential direction and a Fourier transform along the axial direction to Eq. (10) 

yields the shell equations of motion in the wavenumber domain as follows 

( )
( )
( )
( ) ( ) ( )

, 0

, , 0

, ,
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0

,
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x b x r x
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æ öé ù é ù é ù
ç ÷ê ú ê ú ê ú= +ç ÷ê ú ê ú ê ú
ç ÷ê ú ê ú ê úë û ë ûë û è ø-
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x b xx b x
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û( )x b xx b x)W k( x b xx b xx b x),,, )W k nnnn( )x b xx b xx b xx b xx b x)
ú( ),, )x x((x x ÷

÷
÷÷ú ê ú

( ) ( )k k( ) (
ú ê úú ê ú

)p k n p k nnnn( ) ( ø
÷÷

û ë û( ) ( )x b x r x( ) ( n,x b x r xx b x( ) (( ) ( úú)p k n p k nnnn( ) ( ,x b xx b x( ) (( ) ( )p k n p k nnnn( ) (
( ) ê

ê
êê( )x x), )k n), )x x,, ) êêx xx x  . 

(11) 

The elements of spectral Flügge matrix ( ),xk n( )( ),xk n,x  in the wavenumber domain are listed in 

Appendix B. 

Considering a monopole of unit volume velocity at point M in the acoustic domain, the 

spectral blocked pressure at the external surface of the cylinder can be derived in a similar 

manner described by James (1982) as follows:  

(2)
i( )

(2)

( )
( , )

2 ( )

i
xn k xn r

b x

r n r

f H k r
p k n e

k R H k R

q

p

wr - +=
¢b xp k n( , ),b x(  (12) 

where 
(2)

nH  is the Hankel function of the second kind of order n, ()′ denotes the 

derivative with respect to the argument, and rk  is given by  

2 2

2 2

  if ,

i  otherwise.

f x x f

r

x f

k k k k
k

k k

ì - £ï
= í

- -ïî

 (13) 

In the acoustic domain, the radiated pressure from the vibrating shell satisfies the 

homogeneous Helmholtz equation (Junger and Feit 1986) 

( ) ( )2, , , , 0r f rp x r k p x rq qD + = , (14) 

where D  is the Laplacian operator in the cylindrical coordinate system. The kinematic 

condition at the cylindrical interface between the shell and fluid medium is given by 

(Junger and Feit 1986) 

( ) ( )2, , ,r
f

p
x R W x

r
q r w q

¶
=

¶
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Applying Fourier transforms to Eqs. (14) and (15), the spectral radiated wall pressure 

denoted by rprp  can be expressed in terms of the spectral radial displacement of the shel l 

denoted by WW as well as the spectral fluid impedance, fZ fZ , as follows 

( , ) ( , ) ( , )r x f x xp k n Z k n W k n= ( , ) ( , )f x x( , ) ( ,( , ) ( ,f x x( , ) (( , ) (( , ) (r xp ( )( )r x( , )( ,( , ) ,  (16) 

( )
( )

2 (2)

(2)
( , )

f n r

f x

r n r

H k R
Z k n

k H k R

r w
=

¢
( , )f x((Z ( ,( ,f x((( = . (17) 

Substituting Eqs. (16) and (17) into Eq. (11) and inverting the matrix system yields the 

following expression for the spectral radial displacement: 

( )
( ) ( ) ( ) ( )( )( )
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2

, , , ,
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( ) ( ) ( )( )2

b x UU x VV x UV x( ) ( ) ((Z k n Z k n Z k n( ) ( ) (( ,b x UU x VV x UV xb x UU x VV x UV x( ) ( ) ((, ,, ,, ,( ) ( ) ((( )b x U( )p k n Z( )b x Ub x U( ),, )
( ),xW k n( ,x = , (18) 

where 
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(19) 

 

The spectral radial velocity of the fluid loaded cylindrical shell is )i ( ,xW k nw )( ,xW k n( ,( , . Using Eqs. 

(12) and (18), the circumferential sensitivity function becomes 

( )
( ) ( ) ( )( )( )
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2
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( , , ,p xH q ,, ,r,  (20) 

Substituting the circumferential sensitivity function given by Eq.  (20) and the CSD 

function of the WPF given by Eq. (4) into Eq. (6) yields the ASD of the sound pressure 

from the cylindrical shell under TBL excitation. 

2.5 Wavenumber domain truncation  

The integral and summation of the ASD in Eq. (6) are with respect to infinite domains. In 

practice, these domains are truncated. The lowest frequency considered in this work is greater 
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than the hydrodynamic coincidence frequency, which corresponds to the case when the 

flexural wavenumber of a plate denoted by pk  with the same thickness and material 

properties of the cylindrical shell equals the convective wavenumber given by /c ck Uw= , 

where 
cU is the convective velocity. The contributions of convective peaks to the acoustic 

pressure are then generally negligible (Hambric et al. 2004, Maxit 2016). As such, in the 

definition of the cut-off axial wavenumber, the convective wavenumber was not included. 

One can then define a cut-off axial wavenumber ,coxk  from the characteristics of the shell and 

fluid as follows 

( ),co max ,x x p fk k kk= , (21) 

where /f fk cw=  is the acoustic wavenumber and xk  is a margin coefficient (typically 

2=xk ) (Maxit and Ginoux 2010). Similarly, the cut-off circumferential order coN   can 

be defined by 

( )co int max , 1N p fN R k kké ù= +ë û , (22) 

where Nk  is a second margin coefficient (typically 5.1=Nk ) (Maxit and Ginoux 2010).  

Applying the cut-off axial wavenumber and the cut-off circumferential order, the ASD of 

the acoustic pressure given by Eq. (6) now becomes  

( ) ( ) ( )
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» å òpp p (( k(pp p ( , , ,, ,(H k( , , ,, , ,, ,( , , ,, , ,, ,( , (23) 

where the integral may be estimated numerically using the rectangular rule. To study the 

individual contributions of the circumferential modes to the ASD, Eq. (23) can be written 

as ( )
co

0

, , ,
N

pp n

n

S x r Cq w
=

»å  with nC  the contribution of the n
th

 mode given by  
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3. Numerical results 

An infinite cylindrical shell submerged in water with a radius of R=5 m and thickness of 

h=0.05 m is studied here. The shell is made of steel with density 7800sr =  kg/m
3
, Young’s 

modulus 112.1 10E = ´  Pa, Poisson’s ratio 0.3u = , and structural loss factor 0.02h = . The 

density and speed of sound in the water are fr 1000=  kg/m
3
 and fc 1500=  m/s, 

respectively. A freestream velocity of U¥ = 6 m/s was assumed, which forms a 

homogeneous fully developed turbulent boundary layer on the surface of the shell. A 

friction velocity of 1vt =  m/s and boundary layer thickness of 0.15d = m was used in the 

numerical calculations. The Chase TBL model, valid for / 1Uwd ¥ >> , was employed to 

model the CSD function of the wall pressure field. The expression for the CSD of the 

Chase model can be found in Appendix C. Using the aforementioned TBL parameters, the 

Chase model can be confidently implemented for frequencies greater than 10 Hz. As the 

original spectrum given by the Chase model is a two-sided angular frequency spectrum, it 

was multiplied by 4p  to convert it to a one-sided frequency spectrum. In addition, due to 

the difference between the Fourier conventions used in Chase (1987) and the current work, 

the wall pressure spectrum was multiplied by 
3(2 )p  to have the same Fourier convention.  

The vibroacoustic responses of the shell were calculated for a frequency range between 

10 Hz to 1000 Hz. Three distinct frequencies relevant to the current analysis correspond to 

the hydrodynamic coincidence frequency, the ring frequency and the acoustic coincidence 

frequency, corresponding to the frequency at which the equivalent plate flexural 

wavenumber is equal to the acoustic wavenumber. For the parameters chosen here, the 
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hydrodynamic coincidence frequency is 0.036 Hz and the critical frequency is 4561 Hz. 

As such, only the ring frequency of the cylindrical shell, occurring at 173 Hz, lies in the 

frequency range of interest. At the ring frequency, the shell resonates as a ring due to the 

fact that longitudinal waves travel in the shell with a wavelength equal to the shell 

circumference. Below the ring frequency, the effect of the shell curvature is important and 

most of the shell vibrational energy is in stretching. Above the ring frequency, the shell 

vibrates in a similar way to a flat plate and most of the energy is in bending (Fahy and 

Gardonio, 2007). 

3.1 Spectral displacement of the fluid loaded shell  

 

The vibratory response of the fluid loaded shell in the wavenumber domain under point 

force excitation is initially examined. The radial point force ( ) ( ) ( ),Fp x xq d d q=  is 

applied at ( ),x q = (0,0), thereby exciting all axial wavenumber components and 

circumferential modes with the same magnitude. The Fourier transform of the pressure 

distribution due to the radial point force is ( ) 1
,

2
F xp k n

p
=( )F x(p k n( ,F xF x( = . The spectral displacement of 

the shell is then given by 

( )
( ) ( ) ( ) ( )( )( )
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2

, ,
,

, ,

,

F x VUU x V x UV x

F x

x

Z k n Z k n Z k n
W k n

k n

p k n g -
=

G

( ) ( ) ( )( )2

,VUU x V x UV x( ) ( ) ((, ) ( ) ((Z k n Z k n Z k n( ) ( ) (( ,VUU x V x UV xVUU x V x UV x( ) ( ) ((,, ) ( ) ((( )F x(p k n( ,F xF x( g
( ),F x(W k n( ,F xF x( =                  (25) 

which differs from Eq. (18) with the term FpFp  instead of bpbp . Figure 3 presents the 

spectral shell displacement at three discrete circumferential modes corresponding to n=0, 

n=1 and n=7. In each figure, the acoustic wavenumber fk , denoted by a black dashed line, 

as well as the flexural wavenumber of an equivalent fluid loaded plate denoted by a white 

dashed line, are also shown. The flexural wavenumber of a fluid loaded plate was 

calculated using ( )
1/4

4 2 2 2

, / ( )p FL p f p fk k D k kw r= + - , where ( )1/4
2 /p sk h Dw r=  is the 
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flexural wavenumber of the in vacuo plate and the second term in brackets is the added 

mass to take into account the fluid loading effects. Figure 3(a) shows that at low 

frequencies, the axisymmetric n=0 mode is a subsonic wave (with axial wavenumber 

components greater than the acoustic wavenumber), whereby the axial wavenumber is 

exponentially close to the acoustic wavenumber. As frequency increases, the wavenumber 

increases and asymptotes to that of the plate flexural wavenumber above the ring 

frequency. This finding has been previously reported by Photiadis (1990). For the n=1 

bending mode in Figure 3(b), the strong effect of the shell curvature at low frequencies can 

be observed. Similar to the n =0 mode, the axial wavenumber components of the n =1 

mode are subsonic and above the ring frequency, asymptote to the plate flexural 

wavenumber. The cut-on frequencies of the quasi-compressional and shear waves can also 

be observed at around 100 Hz and 170 Hz, respectively. The first circumferential mode to 

cut on in the frequency range from 10 Hz to 1 kHz corresponds to the n=7 mode at a cut-on 

frequency of 14 Hz (Figure 3(c)). Here it is observed that the spectral displacement is close 

the plate flexural wavenumber. Similar findings for subsonic waves of a fluid-loaded 

cylindrical shell to those presented here have been previously observed in the dispersion 

graphs reported by Scott (1988).  
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(a) 

 
(b) 

 
(c) 

 

Figure 3. Spectral displacement of the shell under radial point force excitation for (a) 

n=0, (b) n=1 and (c) n=7. The black dashed line denotes the acoustic wavenumber and 

the white dashed line corresponds to the flexural wavenumber of an equivalent fluid 

loaded plate. 
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3.2 Near field acoustic spectra 

 

Figure 4 presents the ASD function of the acoustic pressure in the near field as a 

function of frequency. Contributions by individual circumferential modes to the acoustic 

spectrum are also shown. The n=0 and n=1 modes do not cut on at specific frequencies in 

the frequency range of interest, as shown previously in Figures 3(a) and 3(b), respectively. 

Below the ring frequency, the subsonic waves associated with these modes have negligible 

contribution to the near-field acoustic response. The distinct peaks in the acoustic spectra 

correspond to n≥2 shell circumferential modes that cut on at specific frequencies. The first 

peak in Figure 4 corresponds to the n=7 mode at a cut on frequency of 14 Hz, as shown 

previously in Figure 3(c) (whereby the n=2-6 modes cut on below 10 Hz). Below their 

respective cut-on frequency, the n≥2 modes have very little contribution to the near-field 

acoustic spectrum. In contrast, at respective cut on frequencies that occur below the ring 

frequency, these modes have a significant effect on the near-field acoustic response. 

Above the ring frequency, all modes have similar contribution to the total acoustic 

spectrum. The n=0 mode asymptotes to a lower value by a constant amount of around 3 dB, 

associated with the fact that nC  in Eq. (24) is defined as the sum of the contribution 

corresponding to [– n, n] for all n≥1 modes and as such, is twice the value of 0C .  

Circumferential sensitivity functions for the cylindrical shell in the near field (z=0.1 

m) are presented in Figure 5 at three distinct frequencies, corresponding to 10 Hz, 100 Hz 

and 1000 Hz. Two semi-ellipse curves are also depicted in Figure 5 whereby similar to 

Figure 3, the black dashed line is associated with the acoustic wavenumber represented by 

{ }2 2,x f xk R k k-  where ,x f fk k ké ùÎ -ë û , and similarly, the white dashed line is associated 

with the flexural wavenumber of an equivalent fluid-loaded plate represented by 

{ }2 2

,,x p FL xk R k k-  where , ,,x p FL p FLk k ké ùÎ -ë û . Figure 5 shows that in the acoustic near 
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field, the maxima of the sensitivity function are located on the semi-ellipse that 

corresponds to flexural vibration of an equivalent fluid loaded plate. These values are 

essentially the roots of the characteristic equation given by Eq. (19). Figure 5(a) shows 

that a maximum of 6 circumferential modes contribute to the acoustic spectrum at 10 Hz 

(the n=7 mode cuts on at 14 Hz as shown previously in Figure 4). At 100 Hz in Figure 5(b), 

it can be observed that around 15 circumferential modes contribute to the acoustic pressure 

whilst at 1000 Hz (Figure 5(c)), around 50 circumferential modes contribute to the 

pressure spectrum. The subsonic waves associated with the wavenumber region outside 

the acoustic semi-ellipse correspond to evanescent waves that propagate close to the 

cylinder and only contribute to the near field pressure spectrum. These results are 

consistent with the cut on modes discussed previously in Figure 4. Figure 5(c) also shows 

that as frequency increases, the contribution by nC  for the lowest order circumferential 

modes increases attributed to the acoustic filtering effect, which will be discussed 

subsequently. 

 

Figure 4. Auto spectral density of the acoustic pressure at z=0.1 m (dB ref. 1 µPa/ Hz ). 
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(a) 

 
(b) 

 
(c) 

Fig 5. Circumferential sensitivity function in the acoustic near field (z=0.1m) at (a) 10 Hz, 

(b) 100 Hz and (c) 1000 Hz. 
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3.3 Far field acoustic spectra 

 

The ASD function of the acoustic pressure and the corresponding circumferential 

sensitivity function are herein examined at increasing radial distances from the shell. 

Figure 6(a)-(c) presents the acoustic pressure as a function of frequency and including 

contributions by individual circumferential modes, at radial distances of z=10 m, z=100 m 

and z=1000 m, respectively. It can be observed that with increasing radial distance from 

the shell, the lowest order circumferential modes and in particular the n=0 mode, play an 

increasingly dominant role in the radiated pressure at low frequencies. This is attributed to 

the acoustic filtering effect associated with the blocked pressure bpbp given by Eq. (12),

and can be more clearly observed in the sensitivity function in Figure 7 (see also Williams 

et al. 1990). At very low frequencies, Figure 7 shows that only the lowest order modes 

occur within the supersonic wavenumber region with increasing distance from the shell, 

whereby all other wavenumber components are completely attenuated by the acoustic 

medium. Figure 8 shows that at a higher frequency (above the ring frequency), the same 

number of modes contribute to the acoustic spectrum for all three radial distances. 

Figure 9 presents the ASD function of the radiated pressure at different radial distances 

from the shell surface. When the observation point is located in the near field (z=0.1 m and 

z=1 m), the pressure spectra exhibits a large number of fluctuations at low frequencies 

corresponding to the n≥7 modes for the frequency range considered here. When the receiver 

point is moved further away from the shell, the pressure spectrum becomes smoother and 

beyond a certain distance, remains almost constant with only slight variation within the 

frequency range of interest, associated with a similar number of modes contributing to the 

total spectrum as shown in Figure 8. In addition, the difference between spectrum levels 

becomes constant. An offset of approximately 10 dB between the spectrum levels at z=10m, 

z=100 m and z=1000 m at higher frequencies can be observed, consistent with the 1/r decay 

law associated with cylindrical spreading (noting r=R+z). 
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(a) 

 

(b) 

 

(c) 

Figure 6. Auto spectral density of the acoustic pressure at (a) z=10 m, (b) z=100 m and (c) 

z=1000m (dB ref. 1 µPa/ Hz ). 
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(a) 

 

(b) 

 

(c) 

Figure 7. Circumferential sensitivity functions at a low frequency of 10 Hz at radial distances 

of (a) z=10 m, (b) z=100 m and (c) z=1000 m 
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(a) z=10 m 

 

(b) z=100 m 

 

(c) z=1000 m 

Figure 8. Circumferential sensitivity functions at a high frequency of 1000 Hz at radial 

distances of (a) z=10 m, (b) z=100 m and (c) z=1000 m 
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Figure 9. Auto spectral density of the acoustic pressure at different radial distances from the 

shell surface (dB ref. 1 µPa/ Hz ) 

 

3.4 Influence of the shell radius and flow speed 

 

Figure 10 presents the radiated pressure spectra in the far-field (z=1000 m) for different 

shell radii, showing a decrease in radiated pressure with an increase in shell radius. Figure 

11 presents the pressure spectra at the three shell radii considered here and the 

corresponding contributions by individual circumferential modes. In Figure 10, the first 

two peaks for R=0.5m occurring at 109 Hz and 321 Hz correspond to the n=2 and n=3 

modes and the hump occurring approximately at 600 Hz corresponds to the n=1 

circumferential mode, as shown in Figure 11(a). Similarly, the two visible peaks for R=1m 

occurring at 24 Hz and 71 Hz correspond to the n=2 and n=3 modes, as shown in Figure 

11(b). Figure 11 shows that the cut-on frequency of the shell circumferential modes for 

n≥2 decreases with increasing shell radius. The n=0,1 modes do not exhibit this cut-on 

effect (as discussed previously in Figure 4).  

Figure 12 shows the effect of flow speed on the radiated sound in the far-field (z=1000 

m) for a cylindrical shell with a radius of R=5 m. As shown in Table 1, three flow speeds 

were considered. The boundary layer thickness and friction velocity were assumed for 

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475



 

 

flow speed of 6 m/s and a corresponding equivalent distance for TBL development on a 

flat surface was estimated based on theoretical formula for a planar structure given by 

Cengel and Cimbala (2006). The equivalent distance was then used for estimation of the 

boundary layer thickness and friction velocity for flow speeds of 12 m/s and 24 m/s. These 

TBL parameters were used in the Chase model to evaluate the CSD function of the WPF. 

As expected, the radiated sound increases with an increase in the flow speed. Above 20 

Hz, the radiated pressure increases by around 15 dB when the flow speed doubles from 6 

m/s to 12 m/s, whereas it only increases by around 7 dB when the flow speed doubles from 

12 m/s to 24 m/s. This is attributed to the significant increase in the friction velocity for a 

flow speed from 6 m/s to 12 m/s, compared to its increase from 12 m/s to 24 m/s (see Table 

1). The increase of the friction velocity leads to an increase of the ASD of the wall pressure 

field induced by the TBL, which in turn leads to an increase of the radiated pressure.  

 

Figure 10. Auto spectral density of the acoustic pressure for different shell radii in the far field (z=1000 m) 
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(a) 

 

(b) 

 

(c) 

Figure 11. Auto spectral density of the acoustic pressure for different shell radii in the far field (z=1000 m); (a) 

R=0.5m, (b) R =1m, (c) R =2m, (dB ref. 1 µPa/ Hz ). 
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Table 1. Boundary layer parameters used to compute the ASD in Figure 12 

Free stream velocity 

U¥ (m/s) 

Boundary layer thickness 

d (m) 

Friction velocity 

vt (m/s) 

6 0.15 1 

12 0.13 1.87 

24 0.11 2.26 

 

Figure 13 presents the simulation run time to compute the radiated sound using the present 

approach as a function of frequency for the cylinder with a radius of R=5 m. Simulations were 

conducted using MATLAB on a desktop personal computer with 32 GB of random access 

memory (RAM) and a total of four physical cores running at 3.2 GHz. It can be seen from 

Figure 13 that as the frequency increases, the computational time increases dramatically. This 

is attributed to the fact that more wavenumbers and circumferential modes need to be 

considered in the computation at high frequencies. A linear function corresponding to 

0.0039 0.0324f -  was curve fitted to the simulation run time data and is also shown in 

Figure 13, clearly highlighting that the run time varies linearly with frequency. For the 

cylindrical shell model considered here, the maximum run time for the highest frequency of 

interest at 1 kHz is less than 4 seconds.  
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Figure 12. Auto spectral density of the acoustic pressure in the far field (z=1000 m) for different flow speeds.  

 

 

 

Figure 13. Computational run time to compute the radiated acoustic pressure 
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4. Summary 

 

An analytical model of a fluid loaded cylindrical shell excited by a turbulent flow field 

has been presented. A wavenumber-point reciprocity principle was implemented to 

identify circumferential sensitivity functions. The Chase model was used to describe the wall 

pressure field induced by the turbulent boundary layer in the wavenumber-frequency 

domain. Our proposed method provides the ability to investigate the physical mechanisms 

associated with the noise radiated by a cylindrical shell excited by a TBL, by examining the 

contributions by individual circumferential modes to the acoustic spectra. The pressure 

spectra in both in the near field and far field were presented for frequencies below and above 

the ring frequency, as well as for different shell radii and flow speeds. The proposed method is 

also an efficient computational tool for evaluation of the vibroacoustic responses of a 

cylindrical shell under flow excitation, typically found in maritime applications. In the near 

future, we will implement our numerical approach to study more realistic designs of a 

submerged marine vessel that incorporate the effects of ring stiffeners and other internal 

structures of the hull.    
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Appendix A 

The elements of the spectral Flügge operator ( , )x q( , )( ,( , ))  are given by (Karczub, 2006) 

 

( , )

UU UV UW

UV VV VW

UW VW WW

Z Z Z

Z Z Z

Z Z Z

x q
ì ü
ï ï

= í ý
ï ï
î þ

( , ),, )) = í , 

 

(A1) 

2 2 2 2
2 2 2

2 2 2

1 1
(1 )

2
UU sZ R R

x E t

u u
r b

q
¶ - ¶ - ¶

= - + +
¶ ¶ ¶

, (A2) 

21
,

2
UVZ R

x

u
q

+ ¶
=

¶ ¶
 (A3) 

3 3
2 3 2

3 2

1
,

2
UWZ R R R

x x x

u
u b b

q
¶ ¶ - ¶

= - +
¶ ¶ ¶ ¶

 (A4) 

2 2 2 2
2 2 2

2 2 2

1 1
(1 3 ) ,

2
VV sZ R R

x E t

u u
b r

q
- ¶ ¶ - ¶

= + + -
¶ ¶ ¶

 (A5) 

3
2 2

2

3
,

2
VWZ R

x

u
b

q q
¶ - ¶

= -
¶ ¶ ¶

 (A6) 

4 4 4 2 2 2
2 4 2 2 2

4 2 2 4 2 2

1
1 2 1 2 ,WW sZ R R R

x x E t

u
b r b

q q q
æ ö æ ö¶ ¶ ¶ - ¶ ¶

= + + + + + +ç ÷ ç ÷¶ ¶ ¶ ¶ ¶ ¶è ø è ø
 (A7) 

where 
12

h

R
b =  is the shell thickness parameter. 

 

 

 

 

 

 

 

 

 

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829



 

 

Appendix B 

The elements of the spectral Flügge operator ( ),xk n( )( ),xk n,x
 in the wavenumber domain are given 

by 
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= is the wavenumber for longitudinal waves propagating in the 

cylindrical shell. 
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Appendix C 

The cross spectral density of the Chase TBL model for a planar structure is given by (Chase, 

1987) 

 

( ) ( )

( )( )
( )
( )

3 22 3 2

2 2

5 2 2222

2
, ,

f

pp x y M x T

v K b
k k C k C K

K bK b

tp r d
j w

dd

-

+
--

+

æ öæ ö+
ç ÷= + ç ÷

ç ÷ç ÷++ è øè ø
 

 

(C1) 

with ( ) ( )2 22 2

c xK U k qv Ktw+ = - +  and 
2 2 2

x yK k k= + . Recommended parameters for b, q, 

MC , TC are given as b=0.75, q=3, 0.1553MC »  and 0.0047TC »  (Howe, 1998). 
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