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ABSTRACT 

Objective 

SLC13A3 encodes the plasma membrane Na+/Dicarboxylate Cotransporter 3 (NaDC3), which 

imports inside the cell four to six carbon dicarboxylates as well as N-acetylaspartate (NAA). 

SLC13A3 is mainly expressed in kidney, in astrocytes and in the choroid plexus. We describe 

two unrelated patients presenting with acute, reversible (and recurrent in one) neurological 

deterioration during a febrile illness. Both patients exhibited a reversible 

leukoencephalopathy and a markedly increased and persisting over time urinary excretion of 

-ketoglutarate ( KG). In one patient, increased cerebrospinal fluid NAA and dicarboxylates 

(including KG) concentrations were observed. Extensive workup was unsuccessful and a 

genetic cause was suspected. 

Methods 

Whole exome sequencing (WES) was performed. Our teams were connected through 

GeneMatcher. 

Results 

WES analysis revealed variants in SLC13A3. A homozygous missense mutation 

(p.Ala254Asp) was found in the first patient. The second patient was heterozygous for 

another missense mutation (p.Gly548Ser) and an intronic mutation affecting splicing as 

demonstrated by RT-PCR performed in muscle tissue (c.1016+3A>G). Mutations and 

segregation were confirmed by Sanger sequencing. Functional studies performed on 

HEK293T cells transiently transfected with wild type and mutant SLC13A3 indicated that the 

missense mutations caused a marked reduction in the capacity to transport KG, succinate 

and NAA. 

Interpretation 

SLC13A3 deficiency causes acute and reversible leukoencephalopathy with marked 

accumulation of KG. Urine organic acids (especially KG and NAA) and SLC13A3 

mutations should be screened in patients presenting with unexplained reversible 

leukoencephalopathy for which SLC13A3 deficiency is a novel differential diagnosis. 



INTRODUCTION 

SLC13A3 encodes the plasma membrane Na+/Dicarboxylate Cotransporter 3 (NaDC3), which 

imports into the cytosol four to six carbon dicarboxylates together with three Na+ ions 1-3. Its 

main substrates are succinate 1, 4-7, fumarate 1, 5-7, malate 1, 5, 6, glutarate 1, 6, 7, -ketoglutarate 

( KG) 1, 5-7 and N-acetylaspartate (NAA) 8-10. 

SLC13A3 is mainly expressed in kidney, but also in brain, liver, placenta and eye 1, 4, 

5, 10. In the kidney, it is located at the basolateral membrane of proximal tubule cells 11, 12 

where it is indirectly involved in the secretion of endogenous or exogenous organic anions by 

organic anion transporters (OATs). These carriers import organic anions from the interstitial 

space in exchange with dicarboxylates 2, 7, 13-17. In principal cells of connecting and collecting 

ducts, SLC13A3 is also expressed in the luminal membrane 12. In the brain, this transporter is 

present in astrocytes and in the choroid plexus5, but absent in neurons 18. 

In this study, we report two individuals from two unrelated families presenting with 

acute, reversible (and recurrent in one) neurological deterioration in the context of febrile 

illness. Both patients exhibited a reversible leukoencephalopathy and a markedly increased 

and persisting over time urinary excretion of KG. 

 

METHODS 

Whole exome sequencing (WES) 

 All procedures conformed to ethical standards. Informed written consent was obtained from 

the parents of both patients. The ethics committee of Robert Debré University Hospital 

(APHP, Paris, France) and of the Faculty of Medicine of UCLouvain (Brussels, Belgium) 

approved the genetic and molecular studies on patient’s samples. 

For patient 1 (P1), library preparation, exome capture, sequencing and data analysis 

were performed by IntegraGen SA (Evry, France) as previously described19. For patient 2 

(P2), exome sequencing and analysis with help of the Highlander software were performed 

essentially as in20. The retained variants: (i) passed GATK standard quality-control filters; (ii) 

co-segregated with the disease as expected for a recessive transmission; (iii) induced 

missense or nonsense mutations, or altered consensus splice-site; (iv) showed a <1% allele 



frequency in the ExAC database (http://exac.broadinstitute.org/); (v) were not detected in in-

house databases of 201 (P1) and 699 (P2) WES; (vi) (for missense variants) were predicted to 

affect protein function by  3 out of 6 tools: SIFT, LRT, Mutation Assessor, FATHMM 

Mutation Taster and Polyphen2.  

 

cDNA analysis 

RNA was extracted from muscle of P2 and three control muscles using TriPure isolation 

reagent (Roche). PCR-amplifications from cDNAs were carried out with GoTAQ DNA 

polymerase (Promega) using forward 5’-TGG CCA GCT CAA GAG TTT CT-3’ and reverse 

5’-TGT GTT GGG AGC TTT GAA GTC-3’ primers.  

 

Cloning and site-directed mutagenesis 

All PCR-amplifications were carried out with Q5 High-Fidelity DNA polymerase (New 

England Biolabs). SLC13A3 was amplified from human kidney cDNA with forward primer 

5’-AT CGA ATT CCC ACC ATG GCG GCG CTG GCA GCA GCG-3’ and reverse primer 

5’-CAG AAG CTT TCA GAG GGT CCG AAA TGT GTC ATT G-3’. The resulting 

amplified fragment was digested with EcoRI and HindIII and inserted between the 

corresponding restriction sites of plasmid pCMV5. The resulting construct was checked by 

sequencing and corresponded to GenBank accession AAH35966.1. Mutations were 

introduced by site-directed mutagenesis and checked by sequencing.  

 

Transfection of HEK-293T cells, deglycosylation assay and western blot analysis  

HEK293T cells were grown in high glucose DMEM supplemented with 10% heat-inactivated 

fetal bovine serum, 2 mM UltraGlutamine and antibiotics (100 units/ml penicillin and 100 

µg/ml streptomycin) at 37°C in 5% CO2. Twenty-four hours before transfection, cells were 

seeded in 12 well plates and 6 well plates at 1.5 or 4 x 105 cells/plate for uptake experiments 

and deglycosylation assays, respectively. SLC13A3 constructs or empty pCMV5 vector were 

transfected using the jetPEITM procedure (Polyplus transfection). After incubation for 48 h at 

37°C, cells were used for dicarboxylate uptake (see below) or deglycosylation assays. 

PNGaseF (NEB) and EndoH (Roche) treatments were performed on intact cells and on cell 



lysates essentially as described previously21. After the in vivo deglycosylation, cells were 

directly collected in 1 x concentrated reducing sample buffer. Cell lysates and western blots 

were performed as previously described22 using rabbit anti-SLC13A3 antibody (ab56017, 

Abcam) diluted 1:1000 in PBS containing 1 % bovine serum albumin. Detection was 

performed with ImageQuant LAS4000  (GE Healthcare). 

 

Dicarboxylic acids and N-acetylaspartate uptake assays 

[1,4-14C]Succinate was from Moravek. Radiolabeled NAA was prepared by acetylation of 

[U-14C]aspartate (Moravek) with acetic anhydride, and radiolabeled KG, from [U-
14C]glutamate (Perkin-Elmer) through an exchange reaction catalyzed by glutamate-

oxaloacetate transaminase in the presence of a 50-fold excess of unlabeled KG. Their 

radiochemica

chromatography. Our protocol for transport assays was adapted from23. Briefly, cells were 

washed once with a buffer containing 10 mM Hepes, pH 7.4, 140 mM NaCl, 2 mM KCl, 1 

mM MgCl2, 1 mM CaCl2 and 5 mM glucose. Then, 0.1 µCi [1,4-14C]succinate, [U-14C] KG 

or [1-4-14C]NAA were added together with the indicated concentrations of unlabeled 

substrate to initiate the assay. After 5 and 15 min at 37°C, the medium was removed and the 

cells rapidly washed twice with 2 ml ice-cold buffer; 0.2 ml 1 M NaOH was added to lyse the 

cells, followed by 0.25 ml 1 M HCl. The resulting extract was mixed with 5 ml Scintillation 

cocktail and its radioactivity counted. Accumulated radioactivity at 15 min was about 3 times 

higher than at 5 min, indicating that the uptake measurements were performed in the linear 

phase.  

 

The SLC13A3 homology model 

A previously published homology model of SLC13A3 was used 23. The model was based on 

the Na+-dependent dicarboxylate transporter from Vibrio cholerae (VcINDY) 24. The two 

proteins are members of the divalent anion: Na+ symporter (DASS) family, sharing sequence 

identity of 33% as well as key functional motifs (e.g., the SNT motifs). The coordinates of 

the Na+ ions and of succinate were derived from a higher resolution structure of a humanized 



variant of VcINDY 25 (PDB identifier 5UL7) by structurally aligning the SLC13A3 model 

and the new VcINDY structure with PyMOL. 

 

RESULTS 

Patient 1 (P1):  

This boy, second child out of three, born to consanguineous parents (Fig 1) had no medical 

history and exhibited normal growth and development. At 15 years and 5 months, 2 days 

after a febrile (39°C) respiratory tract infection (treatment: amoxi-clav and oxomemazin), he 

was admitted for acute neurological deterioration including drowsiness, dysarthria and ataxia. 

Clinical examination was normal apart from Glasgow coma scale of 8-10/15. Blood glucose, 

ammonia, electrolytes, liver function tests, CRP, blood cell count and bacterial cultures 

(blood and urines), toxic and drug screen were non-contributive. CSF analysis showed no 

increased cell count, slightly elevated protein concentration (50 mg/dL; normal: 15-45), and 

no oligoclonal band. Brain MRI showed bilateral and symmetric signal abnormalities of the 

white matter (WM) in the periventricular regions and in the centrum semiovale, and signal 

abnormalities in the corpus callosum (Fig 2). WM appeared hypointense in T1-weighted 

axial views (Fig 2A and 2D) and hyperintense in FLAIR axial views (Fig 2B and 2E). ADC 

(apparent diffusion coefficient) map through the lateral ventricles (Fig 2C) and the centrum 

semiovale (Fig 2F) showed restricted diffusion in the WM including the corpus callosum. 

Brain magnetic resonance spectroscopy (MRS) showed normal NAA and lactate peaks. 

Metabolic workup disclosed increased urinary excretion mainly of KG but also of NAA, 

succinate and fumarate. These organic acids were also found increased in the CSF (Table 

S1). Citrate and lactate were normal both in the CSF and urine.  

After 12 hours of intravenous glucose and electrolytes, the patient recovered a normal 

clinical status. Brain MRI performed 12 days later disclosed almost complete regression of 

the WM abnormalities (Fig 2 G-L). Later on, the patient never exhibited any relapse of 

similar symptoms. He was seen at the outpatient clinic one month, 7 years, and 10 years after 

the initial episode with normal clinical status and examination. There was persistent abnormal 

urinary excretion of the dicarboxylates (mainly KG, Table S1). Brain MRI performed 7 



years after the initial episode was deemed normal (not shown) and showed very mild FLAIR 

hyperintensities of the WM comparable with what had been observed 12 days after the initial 

acute event (Fig 2H and 2K). 

 

Patient 2 (P2):  

This first child of non-consanguineous parents (Fig 1) had normal growth and development. 

She exhibited febrile seizures at 2 and 4 years of age for which a brain CT scan and 

electroencephalogram were normal. At 5 years and 8 months, she presented with febrile 

tonsillitis and was treated with oral amoxicillin. Twenty-four hours later, fever persisted at 

39.5°C and she exhibited an acute neurological deterioration compatible with encephalitis. 

On admission, she presented with drowsiness, dysarthria, poor contact, global hypotonia and 

abnormal peripheral movements. Laboratory parameters (including toxic screen, glucose, 

ammonia, CRP, urine and blood cultures) were non-contributive. CSF analysis showed 

increased cell count (84/mm3 [normal range: 0-5], mainly neutrophils), protein of 40 mg/dL 

and moderate elevation of lactate (3.5 mM [normal: 1.1-2.2 mM]) but no oligoclonal band. 

Extensive bacterial and viral workup excluded a known cause of infectious meningo-

encephalitis. Semi-quantitative ketones testing in urine was positive (4+). Brain MRI showed 

bilateral, symmetric signal abnormalities of the WM in the periventricular regions and the 

centrum semiovale, and signal abnormalities in the corpus callosum (Fig 3). WM appeared 

hypointense in T1-weighted axial views (Fig 3A and 3D) and hyperintense in FLAIR axial 

views (Fig 3B and 3E). ADC map through the lateral ventricles (Fig 3C) and the centrum 

semiovale (Fig 3F) showed restricted diffusion in the WM including the corpus callosum. 

Brain MRS showed normal NAA and lactate peaks. At variance with P1, there were also 

cerebellar abnormalities with FLAIR hyperintensities in the middle cerebellar peduncles (Fig 

3H) with restricted diffusion (Fig 3I). Spine MRI was normal (not shown). Metabolic workup 

showed a markedly increased urinary excretion of KG on repeated samples (Table S1). 

The patient was initially treated with intravenous acyclovir, ceftriaxone and 

methylprednisolone bolus (1 g/ 1.73 m2/day on 3 consecutive days). After a few days, there 

was an almost complete recovery apart from cerebellar ataxia. Brain MRI performed 15 days 



after the initial episode disclosed almost complete regression of the WM abnormalities (Fig 

3J-M) including those of the middle cerebellar peduncles (Fig 3O). Brain MRI performed one 

year later confirmed the almost complete regression of the supra-tentorial WM abnormalities 

but disclosed cerebellar atrophy (Fig 3P and 3Q), consistent with persistence of mild 

cerebellar ataxia and dysmetria. Six years later, after a 2-day history of fever (39.6°C), the 

patient exhibited acute onset ataxia and agitation with cerebellar signs. She was started on i.v. 

ceftriaxone and acyclovir. Brain CT scan was normal (not shown) and MRI was not 

performed. CSF analysis showed normal results (cell count, protein, glucose, oligoclonal 

band). Urine organic acids were not performed. She recovered over a few days. Nine years 

after the first acute event, clinical follow-up was satisfactory apart from mild cerebellar signs 

as sole persisting clinical abnormalities. The high excretion of KG in urine was persistent 

(Table S1). 

 

Whole exome sequencing and impact of the potential splicing mutation 

Analysis of WES data from the patients and their families led to the identification of variants 

in SLC13A3. P1 was homozygous for c.761C>A (p.Ala254Asp) and P2 was compound 

heterozygous for c.1642G>A (p.Gly548Ser) and c.1016+3A>G. Variants and segregations 

were verified by sequencing. Our teams were connected through GeneMatcher 26. To verify 

that the mutation c.1016+3A>G (at the border of exon 7 and intron 7) affected splicing, we 

PCR-amplified cDNA derived from skeletal muscle, the only available tissue from P2. Using 

primers located in exon 5 and 9, we obtained one PCR product of expected size (450 bp) in 

muscle cDNA from 3 controls, but 3 bands of  450,  350 and  250 bp from P2’s cDNA. 

Sequencing indicated that these products corresponded to normally spliced sequence for the 

largest product; to an exon-7 missing cDNA for the intermediate-size product; and to an 

exon-7- and exon-8-missing sequence for the smallest product (Fig 4). These findings 

indicated that the identified mutation significantly affected splicing.  

 

Effect of the mutations on SLC13A3 expression, glycosylation and function 



No expression of SLC13A3 could be detected in fibroblasts from P1 by cDNA amplification 

and western blot. The effect of the missense mutations on the expression and the function of 

SLC13A3 were therefore evaluated in transiently transfected HEK-293T. western blot 

analysis with anti-SLC13A3 antibody showed two bands with apparent molecular masses of 

50 and 45 kDa and a fainter doublet Da with the wild type and the mutated proteins, 

and no signal in cells transfected with an empty plasmid (Fig 5, upper panel). Treatment of 

cell extracts with PNGaseF and EndoH (which remove mature and immature N-glycans, 

respectively), indicated that the 50 kDa band was sensitive to both enzymes, while the 60 

kDa doublet was only digested with PNGaseF. This indicated that the doublet corresponded 

to mature forms of SLC13A3, while the 50 kDa band contained immature forms of N-glycans 

and the 45 kDa band was not glycosylated. Remarkably, neither of the two mutations affected 

the expression of the three main forms of SLC13A3. Treatment of intact transfected cells 

with PNGaseF showed that the 60 kDa doublet was digested (Fig. 5, lower panel), which 

indicated that the mature form of SLC13A3 was reachable by the glycosidase without cell 

disruption and was therefore located in the plasma membrane21. Logically, this doublet was 

not affected by EndoH treatment. 

Functional assays with radiolabeled substrates showed that expression of wild type 

SLC13A3 allowed the cells to take up radiolabeled succinate, KG and NAA, while this was 

not the case in cells transfected with an empty plasmid (Fig. 6). Transfection with the 

mutated plasmids indicated that the proteins bearing the mutations A254D and G548S had a 

reduced transport capacity. Kinetic analysis indicated that mutation G548S markedly reduced 

the transport Vmax but decreased the Km value for all three substrates, while mutation 

A254D almost abolished the transport activity (Fig.6 and Table S2). It was therefore not 

possible to calculate kinetic parameters for this mutant.  

 

Mutation effects on SLC13A3 structure and function 

In an attempt to explain the effect of the mutations on the function of SLC13A3, we used the 

published dimer model of SLC13A3 28 and derived the coordinates of the sodium atoms and 

the substrate succinate from a new VcINDY structure 25. The model contains eleven 



transmembrane helices (TM1-TM11), two helix-turn-helix hairpins (HPin and HPout), a 

substrate molecule (succinate), and two of the three predicted sodium ions (Na1 and Na2) 

(Fig 7). Notably, the SLC13 family members are thought to transport via an “elevator” 

mechanism, where the domain containing the substrate (transport domain) moves along the 

axis perpendicular to the membrane, and oligomerization domain is static 27.  

  Molecular modeling of the variants suggested that Ala254 is located in TM5b making 

up part of the substrate-binding site. Mutation of Ala254 to the acidic aspartate is expected to 

significantly affect the shape and electrostatic potential of the binding site, thereby likely 

preventing SLC13A3 interaction with anionic substrates. Ala254 is also located in the 

interface between the transport and the oligomerization domains; thus, newly introduced 

aspartate may hinder helix-helix packing and proper movement of transport domain, which is 

required for substrate translocation. Modeling of the Gly548 variant suggested that it is 

located in TM11, within the alpha-helix bundle of the transport domain. Mutation of this 

glycine residue to serine might therefore impact SLC13A3 structure and dynamics. Glycine 

has been found to play a role in helix-helix interactions and a mutation of this residue would 

most likely decrease the flexibility of the helix, disrupt helix-helix packing, and disrupt 

ligand transport 28. This would be consistent with the markedly reduced Vmax observed with 

this mutant. Regarding the variant affecting the splicing in P2, exon 7 skipping should result 

in the deletion of the loop between TM6 and TM7, while exon 8 skipping should result in the 

deletion of TM7 and the majority of the loop between TM7 and TM8. It is likely that the 

removal of such considerable part of the transmembrane region of the protein may affect 

overall folding, stability, and dynamics.   

 

DISCUSSION 

The two patients with biallelic SLC13A3 mutations exhibited a similar phenotype of 

reversible abnormalities both at the clinical and neuroimaging level. One of them (P1) 

exhibited a single acute episode while the other had a relapse 6 years after a first acute 

episode and subsequently showed a persisting mild cerebellar syndrome.  



Metabolic analyses pointed to a permanent increase of urinary KG concentration in 

both patients. Different causes of KG accumulation could be excluded. Dihydrolipoamide 

dehydrogenase and KG oxidation assays were performed on fibroblasts of P1 and all exons 

of DLD, OGDH, DLST and OGDHL (encoding subunits of KG dehydrogenase) were 

sequenced for P2. These tests were normal. Defects in thiamine transport or metabolism 29, 30 

were also ruled out by analyzing WES data. High urinary associated with 

D-2- and L-2-hydroxyglutaric aciduria in mitochondrial citrate transporter deficiency31, but 

no abnormal excretion of 2-hydroxyglutaric acid was noted in either of the patients.  

Functional analysis indicated that the SLC13A3 mutations found in the patients 

markedly reduced the capacity of this protein to transport the three tested substrates and the 

effects on the kinetic properties of the transporter were consistent with the location and the 

putative function of the mutated residues as suggested by a homology model. Tests with 

glycosidases indicated that the mutations did not grossly affect the glycosylation status and 

suggested that the decrease in transport induced by the mutations was not due to a decreased 

localization in the plasma membrane (at least with the overexpression system that we used), 

but to a change in the intrinsic transport capacity of the carrier. We may not exclude that 

trafficking defects may also contribute to decreased functionality of the mutants under more 

physiological conditions. Surprisingly, the missense mutation found in P2 (p.Gly548Ser) 

affected less the activity of the transporter than the missense mutation found in P1 

(p.Ala254Asp), despite the fact that P2 was clinically more severely affected than P1. 

Nonetheless, P2 is not homozygous for this missense mutation and therefore the comparison 

is difficult to interpret.  

SLC13A3 is mainly present at the basolateral membrane of cells in the proximal 

tubule and its described function is to import dicarboxylates from the interstitial space12. It 

was therefore rather unexpected to find high amounts of KG in urine of patients deficient in 

this transporter. However, a moderate staining with the SLC13A3 antibody has also been 

described at the basolateral and apical membranes in principal cells of connecting segments 

and collecting ducts12. The main organic anion transporters (OAT1 and OAT3) were not 

detected in these locations 11, 12. Thus, in the distal nephron, SLC13A3 might be involved in 



the reabsorption of dicarboxylates from the glomerular filtrate and its inactivation might 

therefore explain increased excretion of dicarboxylic acids in the two patients.  

KG was the most abundant dicarboxylate found in urine of both patients and was 

permanently elevated. Urinary succinate, fumarate, glutarate and NAA were also found to be 

abnormally high and persisting over time in P1. For P2, glutarate was inconsistently found 

above the normal limit and an abnormal peak of NAA was also found. The finding that the 

predominant dicarboxylate found in urine is KG and not succinate is possibly due to the fact 

that succinate is also well transported by NaDC1 (SLC13A2), another transporter present in 

the kidney, which is much less efficient to transport KG 2, 32, 33. Thus, SLC13A3 may be the 

major transporter involved in the reuptake of KG, while there would be redundancy of 

transporters for succinate. 

Analysis performed in P1 (but not in P2) indicated that the concentration of NAA, 

KG and other dicarboxylic acids were elevated in the CSF. This is likely the consequence of 

lack of functioning of SLC13A3 in its two localizations in the CNS: the epithelial cells of the 

choroid plexus and the astrocytes. Data obtained on apical membrane vesicles derived from 

the epithelium of the bovine choroid plexus indicate that the Na/dicarboxylate carrier 

(presumably SLC13A3) pumps dicarboxylates from the CSF to the cytosol and creates a 

transmembrane gradient that can be used by OATs to extract organic acids from the CSF and 

secrete them in the blood5, 34-36. This role is analogous to that exerted in the epithelial cells of 

the kidney primary tubule, except that SLC13A3 and OAT1 are expressed at the basolateral 

membrane, and serve therefore for the transfer of organic anions from blood to urine2. 

Though we have no data to support this, we speculate that decreased functionality of 

SLC13A3 may obliterate the urinary excretion and the elimination from the CSF of organic 

anions, possibly xenobiotics, and that this may have played a role in the crises observed in 

the two patients.   

The physiological function of SLC13A3 in astrocytes is unclear. A major potential 

substrate is NAA, which is made in neurons from aspartate and acetyl-CoA by NAT8L37 and 

destroyed by aspartoacylase, an enzyme, which according to studies in rodents, is mainly 

present in oligodendrocytes, but not in astrocytes38. Due to its location, there is therefore no 



obvious role for SLC13A3 in NAA metabolism. Loss of function of ASPA leads to Canavan 

disease39, a severe spongiform leukodystrophy with accumulation of NAA in brain tissue and 

body fluids, detectable as an increased NAA peak on MRS 40. Absence of increase in NAA 

peak in SLC13A3 deficiency reflects the much lower accumulation of NAA, which is 

consistent with the idea that SLC13A3 is not on the main pathway leading from NAA 

synthesis in the neurons to NAA degradation in oligodendrocytes.  

Like in other inborn errors of metabolism affecting the CNS, and particularly glutaric 

aciduria type I, a triggering event seems to be necessary to cause decompensation and the 

appearance of lesions41. In the present case, the triggering event may have been a fever 

episode, which indeed preceded the three acute neurological episodes experienced by the two 

patients. How fever eventually leads to decompensation is unknown. Yet it is probably wise 

to recommend controlling temperature by appropriate measures and avoiding catabolic states 

in SLC13A3 defective patients.  

In conclusion, SLC13A3 deficiency causes a marked hyperexcretion of KG in urine 

and favors the development of an acute, reversible leukoencephalopathy. Urine organic acids 

(especially KG and NAA) and SLC13A3 mutations should be screened in patients with 

unexplained leukoencephalopathies. This will most likely lead to the identification of 

additional patients and to a better definition of the clinical picture of this novel disease.  
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Figure and table legends 
 
Figure 1: Pedigrees of the families and identified mutations 

P1 is homozygous for mutation c.761C>A (p.Ala254Asp) and P2 is compound heterozygous 

for mutation c.1642G>A (p.Gly548Ser) and the splicing mutation c.1016+3A>G. 

 

Figure 2: Brain magnetic resonance imaging of P1 

(A-F) MRI during the acute phase. T1-weighted axial view through the lateral ventricles 

(A) and the centrum semiovale (D) showing white matter (WM) hypointensity, including the 

corpus callosum. FLAIR axial view through the lateral ventricles (B) and the centrum 

semiovale (E) showing WM hyperintensity, including the corpus callosum. ADC (apparent 

diffusion coefficient) map through the lateral ventricles (C) and the centrum semiovale (F) 

showing restricted diffusion in the WM, including the corpus callosum. 

(G-L) MR imaging at the recovery phase (12 days later). Axial views at the same 

location: T1 (G, J) showing clear regression of the WM hypointensity with near-normal 

signal apart from mild hypointensity in the posterior periventricular regions. FLAIR (H, K) 

showing clear regression of the WM hyperintensity, which has almost disappeared. Normal 

ADC map (I, L). 

 

Figure 3: Brain magnetic resonance imaging of P2 

(A-F) MRI during the acute phase. T1-weighted axial view through the lateral ventricles 

(A) and the centrum semiovale (D) showing periventricular WM hypointensity, including the 

corpus callosum. FLAIR axial view through the lateral ventricles (B) and the centrum 

semiovale (E) showing WM hyperintensity, including the corpus callosum. ADC map 

through the lateral ventricles (C) and the centrum semiovale (F) showing restricted diffusion, 

including the corpus callosum. 

(J-M) MR imaging at the recovery phase (15 days later). Axial views at the same 

location: T1 (J, L) showing clear regression of the WM hypointensity with near-normal 



signal. FLAIR (K, M) showing clear regression of the WM hyperintensity. Diffusion 

weighted sequence with ADC mapping was not performed. 

(G-I, N-Q) Cerebellar involvement in P2. T1-weighted axial view through the cerebellum 

during the acute phase (G) and 15 days later (N) showing normal aspect; FLAIR axial view 

through the cerebellum during the acute phase showing hyperintensity of the proximal 

middle cerebellar peduncles (MCP) (H), which has almost disappeared 15 days later (O). 

ADC map through the cerebellum at the acute phase showing restricted diffusion in the 

proximal MCP (I). One year later, development of a cerebellar atrophy both on T1-weighted 

sagittal view (P) and FLAIR axial view (Q). 

 

Figure 4: Splicing defect in patient 2 cDNA. 

cDNA prepared from skeletal muscle of P2 and 3 controls was PCR-amplified and the 

amplification products analyzed by agarose gel electrophoresis (upper panel). 

450 bp was amplified in the controls (first 3 lanes: C1 to C3) and 3 bands of size  450 bp 

(A),  350 bp (B) and  250 bp (C) were found in the case of P2 (last lane). Sequencing 

indicated that band A corresponds to the normally spliced sequence while bands B and C lack 

exon 7 and exon 7 and 8, respectively (see lower panel). The positions of the forward and 

reverse primers are indicated. MW: Molecular weight. 

 

Figure 5: Expression of SLC13A3 in transfected HEK293T cells.  

HEK293T cells were transfected with empty pCMV5 vector (Empty), or pCMV5 vectors 

encoding wild type (WT) or mutated (A254D; G548S) SLC13A3. Upper panel: cell lysates 

were prepared, incubated for 1h with PNGaseF or EndoH and analyzed by western blotting 

with anti-SLC13A3 antibodies. Lower panel: intact cells were incubated for 1 h with 

PNGaseF or EndoH. Cell extracts were prepared and analyzed by western blotting. Arrows 

indicate forms of SLC13A3 with mature N-glycans (doublet), mixed type N-glycans and non-

glycosylated forms. Each lane was loaded with 50 µg protein. The blots are representative of 

at least three blots performed on independent experiments. 

 



Figure 6: -Ketoglutarate, succinate and N-acetylaspartate uptake in HEK293T cells 

transfected with wild type or mutated SLC13A3.  

Cells transfected with the indicated plasmids (see Fig. 5) were incubated for 15 min at 37°C 

with the radiolabeled substrates and the indicated concentrations of unlabeled substrates. 

Substrate uptake is computed as the amount for 1.5 x 105 seeded cells. KM and Vmax (table 

S2) were computed from the data after subtraction of a blank corresponding to the 

radioactivity accumulated in the control condition (empty vector). Results shown are means ± 

SD for 3 independent experiment.    

 

 

Figure 7: Homology model of SLC13A3.   

Side (A) and cytosolic (B) views of the predicted SLC13A3 dimeric structure with a close 

view of the binding site and mutated residues (C). The substrate (succinate; orange) and the 

mutated residues (A254 and G548; yellow and blue, respectively) are shown as sticks, where 

oxygen and nitrogen atoms are displayed in red and blue, respectively. Sodium ions (Na1 and 

Na2) are displayed as purple spheres. The transmembrane helices are colored based on the 

respective domains, including the transport domain (pink), the static domain (teal), and the 

oligomerization domain (blue); loop regions are colored in gray. 

 

 



    
 














