

Revisited Thermal and Plasma Enhanced Atomic Layer Deposition combined with Chemical Vapor Deposition processes of metal nitrides: challenges and opportunities

Elisabeth BLANQUET, Arnaud MANTOUX, Frédéric MERCIER, Raphaël BOICHOT, Ioana NUTA, Sabine LAY, Michel PONS, Carmen JIMENEZ

SIMaP, LMGP, Grenoble, France

ALL MEETING & EXHIBIT ecember 1–6, 2019 | Boston, Massachusetts

Fabrication of metal nitride films

- Applications
- **Challenges**
- □ Fabrication Strategies

ALD and Nitrides

E. Alvaro, A. Yanguas-Gil (2018) Characterizing the field of Atomic Layer Deposition: Authors, topics, and collaborations. PLoS ONE 13 (1): e0189137. https://doi.org/10.1371/journal. pone.0189137

Applications: TaN

High electrical conductivity	Structure @ RT	cubic
 High electrical conductivity High oxidation resistance High wear resistance High stability Biocompatibility 	Melting point	3090 °C
	Electrical resistivity@RT	<300 μΩ.cm (CVD)
	Vickers hardness	20-30 (Gpa)

Applications: NbN

High hardness Melting point 3090 °C
Tc (K) 17.8 (9 Nb)

Applications: AIN

	Properties	
 High oxidation resistance High thermal conductivity High electrical isolation (SC) High stability Large Band gap Piezoelectric 	Structure @ RT	Hexagonal, hcp
	Melting point	3000 °C
	Resistivity	10 ⁸ to 10 ¹³ Ω .cm
	Thermal conductivity @RT	3,3 Wcm ⁻¹ K ⁻¹ (80% Cu)
	Vickers hardness (25N)	1225

Objective :deposition of a metal nitride type MN

□ Stability nitrides vs oxides

□ Stability nitrides vs oxides

Oxides much more stable than nitrides

Objective: deposition of a metal nitride type MN

Stability nitrides vs oxides

Deposition of a metal nitride type MN where M oxidation state (o.s.) = +III

Metallic Precursors: halides, non halide molecular precursors with C-M or N-M bonds (where M o.s. \geq +III)

 \Box Reactive gases (Reducing gases): H₂, NH₃, hydrazine N₂H₄, Zn +++ use of additional plasma assistance

TaN: litterature

```
1. TaCl_5 and NH_3 T> 400°C
TaCl_5 + NH_3 + Zn
TaCl_5 + H_2 / N_2 plasma T=300°C
```



```
Formation of Ta_3N_5 (Ta<sup>+V</sup>)
```

M. Ritala et al, Chem. Mat., 1999 P. Alen et al, J. Electrochem. Soc., 2001 H. Kim et al, J. Appl. Phys. , 2004

2. PDMAT and NH_3

PDMAT + NH_3 PDMAT + NH_3 plasma PDMAT + H_2 / N_2 plasma

A. Furuya et al, J. Vac. Sci. Technol. B, 2005
H. Kim et al, J. Appl. Phys., 2005
Z. Fang et al, J. Cryst. Growth, 2011
V. Brize et al, Chem. Vap. Depos., 2011
F. Volpi et al, Thin Solid Films, 2018

Oxygen contamination in the films

Knowledge of nature and thermodynamics of the gaseous compounds from Knudsen Cell - type mass spectrometry

Looking for Oxygen origin: developed device

Knudsen Cell Mass Spectrometry adapted to Molecular precursor

Looking for Oxygen origin: developed device

Looking for Oxygen origin

Target ions: O- containing ions; metallic impurities (Al, Li, Na...) 21 observed but only 5 with concentration > 1%

PDMAT vaporisation

Gaseous phase = $Ta[NMe_2]_4$; $Ta[NMe_2]_5$; $OTa[NMe_2]_4$ $Me = CH_3$

S. A. Rushworth et al., Microelectronics and Reliability, 2005

PDMAT Thermal behaviour

Vaporisation

Cracking Target Molecules:

Ta[NMe₂]₄

 $Ta[NMe_2]_5$

 $OTa[NMe_2]_4$

 $Ta[NMe_2]_4$, $Ta[NMe_2]_5$, $OTa[NMe_2]_4$ $Ta[NMe_2]_3$, $\cdot NTa[NMe_2]_4$, $MeN \cdot Ta[NMe_2]_3$,

Ta[NMe₂]₂, Ta[NMe₂]..... HNMe₂, Me, H₂O, C₂H₄.....

PDMAT Thermal behaviour

Looking for Oxygen origin: PDMAT for TaN deposition

PDMAT Vaporisation:

 \Box Gaseous phase: Ta[N(CH₃)₂]₄, Ta[N(CH₃)₂]₅ and OTa[N(CH₃)₂]₄

 \Box Not congruent vaporization: Ta[N(CH₃)₂]₅ is not the major molecule originated from the vaporization

PDMAT Thermal behavior:

□ Ta[N(CH₃)₂]₄ (g) (=Ta^{+IV}) is present till 250°C but decomposes at low temperature, 150°C

□ Many gaseous decomposition products from 150 °C

Presence of oxygen in the gas phase

Objective: deposition of a metal nitride type MN

Stability nitrides vs oxides

Deposition of a metal nitride type MN where M oxidation state (o.s.) = +III

Metallic Precursors: halides, non halide molecular precursors with C-M or N-M bonds (where M o.s. \geq +III)

 \Box Reactive gases (Reducing gases): H₂, NH₃, hydrazine N₂H₄, Zn +++ use of additional plasma assistance

Conclusions

Fabrication strategies: example of NbN

Metallic precursors: non halides molecular precursors with **C-M ou N-M** bonds (Oxidation state $M \ge +III$)

+V NEt ₂
t-Bu-N=Nb-NEt ₂
NEt ₂

NIOBIUM	(Compounds)	
41-0450 New HAZ	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1g 5g
93-4104 amp HAZ	Niobium(V) ethoxide (99.9+%-Nb) <i>(3236-82-6)</i> Nb(OC ₂ H ₅) ₅ ; FW: 318.22; yellow to orange liq.; m.p. 6°; b.p. 142°/0.1mm; d. 1.32 <i>moisture sensitive</i>	5g 25g
41-5300 HAZ	Pentakis(dimethylamino)niobium(V), 99% <i>(19824-58-9)</i> Nb[N(CH ₃) ₂] ₅ ; FW: 313.29; purple-black xtl. <i>moisture sensitive</i>	1g 5g
41-7000	Tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)niobium(IV), 99% [Nb(TMHD),] (<i>41706-15-4)</i> Nb(C ₁₁ H ₁₉ O ₂),; FW: 826.00; black xtl.; m.p. 219-220°; b.p. dec. 325°	1g 5g 25g
41-0510 HAZ	Trihydridobis(pentamethylcyclopentadienyl)niobium(V) (93558-77-1) [(CH ₃) ₅ C ₅] ₂ NbH ₃ ; FW: 366.38; light-brown pwdr. air sensitive Me H-Nb H Me Me	100mg 500mg

Metallic precursor Nb^{+V} : TBTDEN

Мe

Introduction	Precursors (TaN as e	x.) Fa	brication strategies	(NbN , AlN as ex.)	Conclusions
NbN: litterature					
1. NbCl ₅ and N	IH ₃ CI Nb ⁺	l Cl		Goal $T_c > 9 K$	
NbCl ₅ + NH ₃ NbCl ₅ +Zn+ NH ₃	improved T _c fror	1c = 10 m 3 to 5) K K	T. Proslier et al, ECS Trans., 2011	, 1988
2. TBTDEN and	+v H ₂ plasma t-Bu—N=	NEt_2 Nb-NEt_2 NEt_2			
TBTDEN + H ₂ pla	asma	10 K	O: 11 at. %	M. Ziegler et al, Supercond. Sci.	Technol., 2013
TBTDEN + H ₂ pla	asma	13.8 K	O: 11 at. %	M. Ziegler et al, IEEE Trans. Appl	lied Superconductivity, 2017
TBTDEN+ H ₂ / N	2 plasma	13.7 K	O: 15 at. %	M. J. Sowa et al, J. Vac. Soc., 201	.7

Best value of Tc for TBTDEN PEALD deposited films

Fabrication strategie #1: Thermal ALD

No deposition

Fabrication strategies #2 and 3: plasma ALD w/o & w supercycle

Fabrication strategies #2 and 3: plasma ALD w/o & w supercycle

Add best annealing step: annealing in Ar at 1000 °C for 30 min

Films superconducting properties

Tc up to 13.8 K for S4 conditions after annealing

Films chemical properties

AIN: litterature

N containing species plasma?

Fabrication strategies: AIN

NH₃ reacts with TMA at T> 350°C TMA decomposes at T>375°C Deposition around 375 °C

Fabrication strategies: AIN

Temperature : 350°C

NH₃ is too much reactive and AIN surface is etched

Fabrication strategies: AIN

Plasma H_2 : breaks the metal ligand bond in TMA and favors surface reactions NH_3 : nitriding agent at temperatures below 400°C

Process optimisation : T

PEALD: ALD window between 325 °C – 350 °C Thermal ALD : No ALD window

Films chemical properties

Process optimisation : TMA pulse duration

Saturation above 100 ms

Films structural properties

Application - Infiltration porous SiC : pores size 14 µm, 5 mm thickness, 43 % porosity

SiC Substrate

Thermal ALD

PEALD

Thermal ALD : infiltration length= 3000 μ m – 60% PEALD infiltration length = 500 μ m – 10 %

5 cm

Application-piezoelectric « smart coatings »

Reaction with substrate

Application-piezoelectric « smart coatings »: coupling ALD/CVD

Alternative Piezoelectric material with promising properties

Precursors (TaN as ex.) Fabrication strategies (NbN , AlN as ex.)

Conclusions

Application: Surface modification of EBM-made 3D Ti-6Al-4V architectures

Possibility to cover surface defects acting as crack initiators Decrease of roughness with thick films

Fabrication strategies (NbN , AlN as ex.)

Conclusions

Application: Surface modification of EBM-made 3D Ti-6Al-4V architectures

Strategy

Chemical Vapor Deposition (CVD)

Precursors (TaN as ex.) Fabrication strategies (NbN , AlN as ex.)

Conclusions

Applications : deposition on of EBM-made 3D Ti-6Al-4V architectures

Strategy

with a 300 nm ALD film

and few microns CVD film

Conclusions

Applications : deposition on of EBM-made 3D Ti-6Al-4V architectures

Deposition of dense and nearly conformal coating by ALD/CVD despite high roughness of Ti-6AI-4V

Applications : deposition on of EBM-made 3D Ti-6Al-4V architectures

Protective ALD AIN Piezoelectric response?

Applications : deposition on of EBM-made 3D Ti-6Al-4V architectures – protection against oxidation

Corrosion protection effect of a 140 nm thin film deposited by ALD and 7µm AlN deposited by CVD on a EBM made Ti-6Al-4V (TA6V) sample under cyclic oxidation, Air, 650°C

AlN coating by CVD and ALD on complex architectures made by EBM: Extension of the temperature range of use Expected modification of mechanical and thermal behavior

Conclusions

Conclusions

Growth of a variety of metal nitrides

• Special attention to the precursor selection, handling, ...

• Evaluation of its thermal behavior –thermodynamics

Control of the film properties with ALD/PEALD sequences

Combine ALD/CVD to explore wider range of properties

L. Tian

A. Moll

Thank you for your attention

UNIVERSITÉ Grenoble Alpes

2019 MRS[®] FALL MEETING & EXHIBIT December 1–6, 2019 | Boston, Massachusetts

