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ABSTRACT

Convection is thought to act as a turbulent viscosity in damping tidal flows and in driving spin

and orbital evolution in close convective binary systems. This turbulent viscosity should be reduced,

compared to mixing-length predictions, when the forcing (tidal) frequency |ωt| exceeds the turnover

frequency ωcv of the dominant convective eddies. However, two contradictory scaling laws have been

proposed and this issue remains highly disputed. To revisit this controversy, we conduct the first direct

numerical simulations (DNS) of convection interacting with the equilibrium tidal flow in an idealized

global model of a low-mass star. We present direct computations of the turbulent effective viscosity,

νE , acting on the equilibrium tidal flow. We unexpectedly report the coexistence of the two disputed

scaling laws, which reconciles previous theoretical (and numerical) findings. We recover the universal

quadratic scaling νE ∝ (|ωt|/ωcv)−2 in the high-frequency regime |ωt|/ωcv � 1. Our results also

support the linear scaling νE ∝ (|ωt|/ωcv)−1 in an intermediate regime with 1 ≤ |ωt|/ωcv . O(10).

Both regimes may be relevant to explain the observed properties of close binaries, including spin

synchronization of solar-type stars and the circularization of low-mass stars. The robustness of these

two regimes of tidal dissipation, and the transition between them, should be explored further in more

realistic models. A better understanding of the interaction between convection and tidal flows is indeed

essential to correctly interpret observations of close binary stars and short-period planetary orbits.

Keywords: binaries: close — convection — hydrodynamics — planet-star interactions — turbulence

1. INTRODUCTION

Tidal interactions determine the orbital and spin evo-

lution of short-period planets and low-mass binary stars

(e.g. Mazeh 2008; Zahn 2008; Ogilvie 2014). A major

weakness of tidal theory is in modeling how tidal flows

interact with convection. Turbulent convection is be-

lieved to act as an effective turbulent viscosity in damp-

ing large-scale tidal flows (e.g. Zahn 1966). This mecha-

nism is usually invoked to explain the circularization and

synchronization of binary systems containing low-mass

or solar-like main-sequence stars (e.g. Zahn 1989; Mei-

bom & Mathieu 2005; Meibom et al. 2006; Van Eylen

et al. 2016; Lurie et al. 2017; Triaud et al. 2017; von

Boetticher et al. 2019), and evolved stars (e.g. Verbunt &

Phinney 1995; Beck et al. 2018; Price-Whelan & Good-

man 2018).
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The turbulent viscosity, νE , is usually estimated by

neglecting the oscillatory nature of the tidal flow. This

leads to νE ' νcv, where νcv is predicted by mixing-

length theory (MLT; e.g. Spiegel 1971). However, when

the tidal frequency |ωt| is faster than the turnover fre-

quency ωcv of the dominant convective eddies, νE ought

to be reduced, as recognized initially by Zahn (1966).

The magnitude of this reduction remains highly dis-

puted. Two scaling laws that are based on phenomeno-

logical arguments have been proposed, with either a lin-

ear reduction νE ∝ νcv (|ωt|/ωcv)−1 (Zahn 1966, 1989),

or a quadratic suppression νE ∝ νcv (|ωt|/ωcv)−2 (Gol-

dreich & Keeley 1977; Goldreich & Nicholson 1977). Re-

visiting this controversy has been attempted recently by

using direct numerical simulations (DNS). The two laws

have only been recovered in separate studies, which sup-

port either the linear scaling (Penev et al. 2007, 2009b,a)

or the quadratic one (Ogilvie & Lesur 2012; Braviner

2016; Duguid et al. 2020). Thus, any application of

tidal theory to stars (or planets) with convection zones
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remains uncertain. Resolving this issue is essential be-

fore we can apply tidal theory to interpret observations

of close binaries (e.g. Kirk et al. 2016; Lurie et al. 2017;

Van Eylen et al. 2016; Triaud et al. 2017; Price-Whelan

& Goodman 2018) or short-period planetary orbits (e.g.

Rasio et al. 1996). For instance, circularization of sub-

giant stars with orbital periods of approximately one

day could occur in either ∼ 102 or 106 yr, depending on

which scaling is valid (Price-Whelan & Goodman 2018).

Owing to the importance of this problem to interpret

observations, we revisit this controversy using global nu-

merical simulations. So far, only numerical studies us-

ing local models and with simplified imposed shear flows

have been undertaken. Local DNSs may not capture the

full complexity of the tidal response existing in a global

model. They also could be affected by the adopted

boundary conditions. We therefore set out to gain inde-

pendent physical insight from global DNSs of convection

in the presence of more realistic tidal flows. This Letter

is organized as follows. We present our global model

in Section 2. Direct computations of the turbulent vis-

cosity are presented in Section 3. The implications and

astrophysical extrapolation of our results are presented

in Section 4, and we conclude the Letter in Section 5.

2. DESCRIPTION OF THE TIDAL PROBLEM

We study the interplay between tides and turbulent

convection in a global model of a low-mass star (or core-

less giant planet). The primary body is a full sphere of

radius R, filled with a fluid of uniform (laminar) kine-

matic viscosity ν and thermal diffusivity κ. This body is

subjected to tidal forcing from an orbiting companion.

We model convection in the Boussinesq approximation,

studying slight departures from a motionless conduction

state sustained by homogeneous internal heating. Since

many low-mass stars are slow rotators (e.g. Nielsen et al.

2013; Newton et al. 2018), and for simplicity, we neglect

rotation in this study. We define the temperature per-

turbation Θ and the velocity field u + U0, where we

split the flow into a background large-scale tidal flow

U0 and a perturbation u. We use dimensionless units

for the simulations, adopting R as our length scale and

R2/ν as our timescale. Convection is then governed by

two dimensionless numbers, the Rayleigh number Ra

(which measures the strength of the convective driving)

and the Prandtl number Pr = ν/κ. We solve the sys-

tem of equations in their weak variational form by using

the spectral-element code Nek5000 (Fischer et al. 2007),

employed previously for tidal studies (e.g. Favier et al.

2014; Barker 2016; Reddy et al. 2018). Further details

of the model are given in Appendix A.
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Figure 1. Simulation of uniformly heated turbulent con-
vection without tides (Ra = 106, P r = 1). Top: three-
dimensional snapshot of the velocity field component ux.
Bottom: spectra of the instantaneous kinetic energy E(u),
as a function of the spherical harmonic degree l ≥ 1 and az-
imuthal number m ≥ 0 (using orthonormalized harmonics)
between radii r ∈ [0.05, 0.99]. Spectra have been computed
by interpolating the data to a spherical grid.

Previous numerical studies modeled the tidal flow

with either an (ad hoc) external forcing (Penev et al.

2009a) or with a background unidirectional shear flow

in a shearing box (Ogilvie & Lesur 2012; Braviner 2016;

Duguid et al. 2020). Here, we instead consider self-

consistently the large-scale (non-wavelike) equilibrium
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tidal flow (e.g. Remus et al. 2012). We assume that

the companion is a point mass, moving on a circular or-

bit around the star. Thus, the dominant component of

the tidal potential in the inertial frame has the spheri-

cal harmonic degree l = 2 and azimuthal order m = 2

(Ogilvie 2014). In the inertial frame, the resulting (di-

mensionless) flow is in the xy-plane and takes the form

U0 = −ωtβ
2

(
sin(ωtt) cos(ωtt)

cos(ωtt) − sin(ωtt)

)(
x

y

)
, (1)

where β � 1 is the dimensionless tidal amplitude

(roughly the ratio of tidal displacement to unperturbed

radius) and ωt is the tidal (angular) frequency (twice

the orbital frequency in the absence of rotation). The

forcing amplitude β must be large enough to obtain a

measurable tidal response in the presence of convection,

but large values could strongly modify the convection.

The global simulations that we present here are very

demanding, because they must be run for a sufficiently

long duration to reduce turbulent noise. This inevitably

restricts our survey of parameter space. We simu-

late highly supercritical convection with Ra = 106 and

Pr = 1, which can be compared with the value for lin-

ear onset Ra ≥ 4019 (computed with a dedicated solver;

Monville et al. 2019). The parameters and outputs for

each simulation are given in Appendix A. The convec-

tion in the saturated state without tides (i.e. β = 0)

is illustrated in Figure 1. The kinetic energy is char-

acterized by a nonnegligible axisymmetric component

(consistent with the flow in the top panel), and a short

inertial-like range illustrated by the Kolmogorov scaling

(∝ −5/3, bottom panel). We quantitatively estimate

the convective turnover frequency as ωcv = urms/lE ,

where urms is the time average of the volume-averaged

rms velocity and lE ' 1/3 is here the turbulent length

scale. We obtain a typical value ωcv ' 143.5 ± 3.2 for

the (dimensionless) convective angular frequency, and

the mean properties of the convection are not signif-

icantly affected in the presence of the tidal flow (see

Appendix B).

3. TURBULENT VISCOSITY

We determine numerically the effective viscosity coef-

ficient νE , which is the leading-order component of the

effective viscosity tensor at the forcing frequency (e.g.

Penev et al. 2009a). This is obtained numerically by

balancing the mean rate at which convection does work

on the tidal flow with the mean rate of viscous dissipa-

tion of this flow (e.g. Goodman & Oh 1997; Braviner

2016). This leads to

νE = − 1

(ωtβ)2∆T

∫ T

t0

〈u · [(u · ∇)U0]〉V dt, (2)
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Figure 2. Direct measurements of the effective viscosity νE
in turbulent convection (Ra = 106, P r = 1), as a function of
|ωt|/ωcv. Red squares: νE > 0. Blue circles: νE < 0. Error
bars are conservatively defined using two standard deviations
from the mean value. Top: β = 10−2. Bottom: β = 5×10−2.
Horizontal dashed lines: expected behavior from MLT νE '
lE urms in the low-frequency regime (|ωt| � ωcv).

with 〈 · 〉V = (1/V )
∫
V
· dV the volume average and 5 ≤

∆T = T − t0 ≤ 10, with t0 an appropriate initial time

in the saturated regime. We have verified in Appendix

B that the spatial average is not dominated by regions

near the boundary, and is instead due to interactions

with turbulent flows in the bulk.

Results for the effective viscosity νE are shown in Fig-

ure 2, for the tidal amplitudes β = 10−2 and β = 5 ×
10−2. The former value is similar to that for a solar-mass

binary in a one-day orbit. The effective viscosity de-
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creases as we increase |ωt|/ωcv. The striking feature here

is the coexistence of both heuristic scaling laws. First,

we obtain an intermediate regime 1 ≤ |ωt|/ωcv . O(10),

in which νE is consistent with the linear reduction (Zahn

1966, 1989). This trend is clearer in the simulations with

the largest tidal amplitude (β = 5× 10−2), because the

signal-to-noise ratio (S/N) is lower for weaker tides (as

shown by the error bars in Figure 2). Second, we clearly

obtain the quadratic law |νE | ∝ (|ωt|/ωcv)−2 in the high-

frequency regime |ωt| � ωcv (Goldreich & Nicholson

1977; Goodman & Oh 1997). The transition between

these two scalings is sharp, occurring when |ωt|/ωcv ' 6

for β = 5×10−2 (bottom panel), but appears to depend

weakly on the tidal amplitude. These results demon-

strate that both scaling laws are obtained in our global

model, which have only been found previously in sepa-

rate studies in Cartesian geometry.

In the low-frequency regime (|ωt| . ωcv), we have

been unable to accurately determine νE . The ampli-

tude of tidal flow (1) was too weak to give a suffi-

ciently strong S/N. A crude extrapolation of our results

is broadly consistent with MLT, which would predict

νE ∝ νcv ' lE urms when |ωt| → 0 (albeit with an un-

certain proportionality constant). This would be consis-

tent with local simulations (Duguid et al. 2020). How-

ever, the convective viscosity could be larger than the

MLT prediction in that range (e.g. Goldman 2008).

4. DISCUSSION

4.1. Non-Kolmogorov Turbulence?

Turbulent viscosity is often defined with a closure

model that relates the Reynolds stress to the rate of

strain. Ogilvie & Lesur (2012) and Duguid et al.

(2020) demonstrated the viscoelastic nature of the high-

frequency (|ωt|/ωcv � 1) tidal response, developing an

asymptotic theory for the Reynolds stress. This strongly

supports the quadratic reduction for νE . In our global

simulations, we have confirmed the viscoelastic charac-

ter of the response for high-frequency tidal forcing (see

Appendix B). However, this asymptotic theory does not

strictly apply for lower frequencies. Indeed, a linear re-

duction may result from the non-Kolmogorov nature of

the turbulence (Penev et al. 2007, 2009b,a).

We illustrate in Figure 3 the frequency spectrum of the

convection. The largely non-Kolmogorov nature of the

convection is revealed by the frequency spectrum of the

volume-averaged Reynolds stress component 〈uxuy〉V .

The latter quantity, which is directly related to the ef-

fective viscosity (see Appendix B), has a shallower decay

with frequency (in f−1) than expected from Kolmogorov

theory when |ωt|/ωcv ≤ O(10). This slope is largely

unaffected by the tidal flow, and so is a generic prop-

erty of the convection in this range. The slope of the

non-Kolmorogov spectrum is similar to that reported

in Penev et al. (2007, 2009a), despite the model dif-

ferences. For larger frequencies, a steeper decay is ob-

served, first behaving like f−2 in apparent agreement

with local simulations of Rayleigh-Benard convection

(Kumar & Verma 2018), and then rapidly decaying (cor-

responding with a dissipation range). The transition be-

tween the linear and quadratic reductions may broadly

coincide with where the shallow non-Kolmogorov scal-

ing in f−1 ceases to be valid. Then, even though our

spectrum is still non-Kolmogorov-like, a quadratic re-

duction is found for higher frequencies, in agreement

with prior asymptotic theory (Ogilvie & Lesur 2012;

Duguid et al. 2020). The frequency spectrum of the

thermal energy 〈Θ2〉V /2 exhibits the same scaling be-

havior as the Reynolds stress. Following Goodman &

Oh (1997), this quantity could also be relevant for the

frequency dependence1 of νE . However, our simulations

do not currently allow us to assess their arguments con-

clusively. In summary, our new global simulations sup-

port both the linear and quadratic reductions for the

eddy viscosity.

4.2. Astrophysical Implications

We extrapolate our findings to stellar interiors as fol-

lows. MLT predicts the rms convective velocity to scale

as urms ∝ (Ra/Pr)1/2 in the fully turbulent regime (e.g.

Spiegel 1971), such that νE/ν ' νcv/ν ∝ (Ra/Pr)1/2 is

independent of tidal frequency when |ωt|/ωcv � 1. Such

a frequency-independent νE is consistent with constant

tidal lag-time models (e.g. Hut 1981). Then, the effec-

tive viscosity is reduced in the presence of fast tides,

first with an approximately linear reduction and then a

quadratic one. The transition between these two regimes

occurs when |ωt|/ωcv ' O(10). Further work is required

to explore the robustness of the transition when Ra/Pr

is increased. We have also obtained statistically signifi-

cant negative values of νE for high frequencies in Figure

2, which is consistent with previous local results (Ogilvie

& Lesur 2012; Duguid et al. 2020). Negative values

probably result from (necessarily) adopting simulation

parameters that are far removed from their astrophys-

ical values. This phenomenon is always observed when

|νE | ≤ ν (here in the quadratic regime). As also found

in Duguid et al. (2020), the negative values occur when

when |ωt| lies in the dissipation range of the turbulence

(see Figure 3). MLT predicts that ωcv ∝ Ra1/2 in the

fully turbulent regime, and that the inertial-like range

1 As suggested by the referee, based on Phinney (1992).
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Figure 3. Frequency spectra of turbulent convection (Ra = 106, P r = 1). Spectrum of |F{〈uxuy〉V }| (top panel) and
|F{〈Θ2〉V /2}| (bottom panel), where F is the Fourier transform and f is the (ordinary) frequency. Gray area shows the
intermediate frequency range 1 ≤ |ωt|/ωcv ≤ 6 where the linear reduction is observed in Figure 2. Left : unperturbed convection.
Right : perturbed convection with β = 5× 10−2 and |ωt|/ωcv = 14.2.

should extend to higher frequencies. Typical values for

the Rayleigh and Prandtl numbers in solar-like stars are

Ra = 1019 − 1024 and Pr = 10−6 − 10−4 (Hanasoge &

Sreenivasan 2014), such that we expect νcv � ν. Thus,

unrealistically large values of |ωt| may be required to get

negative values νE ≤ 0.

Our results are directly relevant for interpreting obser-

vational evidence for synchronization and circularization

of solar-type and low-mass close binaries (e.g. Meibom

& Mathieu 2005; Meibom et al. 2006; Van Eylen et al.

2016; Lurie et al. 2017; Triaud et al. 2017). We can es-

timate the convective turnover timescale τcv = 2π/ωcv
(e.g. Terquem et al. 1998), using an estimate based on

the stellar luminosity (e.g. Price-Whelan & Goodman

2018)

τcv ≈ 0.37 yr (Mcv/M�)1/3 (Te/5600)−4/3, (3)

with Mcv the mass of the convective zone, M� the so-

lar mass and Te the effective temperature (in Kelvin).

Assuming a transition between the two regimes when
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Figure 4. Different regimes for the frequency reduction of
turbulent viscosity for solar-type binaries, with an assumed
transition at |ωt|/ωcv = 5. Red hashed zone: νE ' νcv. Gray
zone: linear reduction. Green zone: quadratic reduction.
Binaries, sorted by eccentricity e, extracted from Figure 7
in Lurie et al. (2017). Top: solar-like star (1M�) at 1 Gyr
with τcv ' 0.1 yr and Mcv ≈ 0.02M�. Bottom: low-mass
star (0.5M�) at 1 Gyr with τcv ' 0.25 yr and Mcv ≈ 0.3M�.

|ωt|/ωcv ' 5 (see Figure 2), the quadratic scaling

should be used when Pt = 2π/|ωt| . 7.3 − 18.1 days

for a convective timescale τcv ∼ 0.1 − 0.25 yr, where

Pt = |1/Ps − 1/Porb|−1/2 is the forcing period, Ps the

rotation period and Porb the orbital period (in nonsyn-

chronized systems). Since low-mass stars typically have

longer timescales τcv, the transition occurs for larger or-

bital periods for these objects (see Figure 4).

The range of validity of the various turbulent vis-

cosity prescriptions is shown in Figure 4, for binaries

given in Lurie et al. (2017). Both scalings are shown

to be relevant for this sample. Therefore, equilibrium

tide theory must be carefully applied to interpret the

observational data. Convective damping of the equi-

librium tide could potentially explain the main fea-

tures of this distribution. The timescale for tidal spin-

synchronization, for a solar-mass binary in a circular or-

bit with Porb = 10 days and Ps = 15 days, is estimated

to be approximately 1 Gyr if we adopt a continuous pro-

file for νE(|ωt|) to fit Figure 2 (see Appendix C). This

seems to be an efficient mechanism for Porb . 10 d.

We have also superimposed our theoretical predictions

for spin-synchronization timescales (due to convective

damping of the equilibrium tide), using two different

stellar models (see Appendix C) that span the majority

of the sample in Lurie et al. (2017). They suggest that

the quadratic reduction could explain, for larger values

of |ωt|, why some short-period binaries in Figure 4 have

not yet synchronized. Finally, the mechanism seems too

efficient to explain why some systems with Porb < 10

days and Porb < Ps are not synchronized. This may be

due to the young ages or high masses of these stars, or

perhaps because they are affected by differential rota-

tion (Lurie et al. 2017). The dynamical tide may also

be important for some of these systems (e.g. Ogilvie &

Lin 2007; Ogilvie 2014).

5. CONCLUDING REMARKS

In this Letter, we have revisited the long-standing

problem of the interaction between tidal flows and tur-

bulent convection. We have conducted the first numeri-

cal simulations of turbulent convection within an ideal-

ized global model of low-mass fully convective stars (or

core-less giant planets), to measure the turbulent viscos-

ity acting on the large-scale equilibrium tidal flow. We

have reconciled, for the first time and within a single

consistent physical model, the two contradictory scaling

laws that have been proposed to describe the frequency

reduction of the effective viscosity when the tidal fre-

quency exceeds the dominant convective turnover fre-

quency (i.e. fast tides, Zahn 1966; Goldreich & Nichol-

son 1977). Our results have confirmed the universality
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of the quadratic reduction in the high-frequency regime,

that is νE ∝ |ωt|−2 when |ωt|/ωcv � 1 (in local models,

see Ogilvie & Lesur 2012; Duguid et al. 2020). Moreover,

we find evidence for a linear reduction (νE ∝ |ωt|−1), in

an intermediate regime 1 . |ωt|/ωcv . O(10). This

likely results from the non-Kolmogorov nature of the

turbulence in that frequency range (e.g. Penev et al.

2007, 2009b,a). This has important consequences for

interpreting astrophysical observations. Our findings

should guide future data-driven studies to discriminate

between these two scaling laws, for instance, when in-

terpreting observations of the synchronization and cir-

cularization of main-sequence binaries (Lurie et al. 2017;

Triaud et al. 2017) or the circularization of evolved stars

(Price-Whelan & Goodman 2018).

Much further work is required before we can accu-

rately model the tidal evolution of astrophysical systems

due to this mechanism. The robustness and coexistence

of these two scaling regimes, and the transition between

them, should be explored further. Moreover, we have

neglected dynamical tides (e.g. Ogilvie & Lin 2007) and

considered only circular orbits. Different tidal compo-

nents could, however, be damped at different rates (e.g.

Lai 2012). Simulations in spherical shells would be also

worth exploring (e.g. Gastine et al. 2016) to model the

convective envelopes of solar-like stars. Given the im-

portance of this problem, understanding the interaction

between turbulent convection and tidal flows appears

urgent. This is necessary to correctly interpret obser-

vations of close binaries (e.g. Lurie et al. 2017; Triaud

et al. 2017; Price-Whelan & Goodman 2018).

The validity of MLT should be also assessed using

turbulent simulations of convection. MLT predictions

could underestimate the turbulent viscosity νcv in the

low-frequency regime (Goldman 2008). Indeed, depar-

tures from MLT have been found in recent simulations of

compressible convection (e.g. Anders et al. 2019). More-

over, convection-driven turbulence is strongly affected

by rapid rotation (e.g. Gastine et al. 2016; Kaplan et al.

2017), such as in giant planets or young stars. The

prescription for the turbulent viscosity from MLT (e.g.

Barker et al. 2014) then ought to be modified (see Mathis

et al. 2016, in the low-frequency regime). More realis-

tic convection models should be considered as a long-

term endeavor. Finally, by neglecting rotation, we have

also filtered out nonlinear tidal flows such as the ellip-

tical (tidal) instability (e.g. Barker et al. 2016; Vidal &

Cébron 2017). They could enhance tidal dissipation for

the shortest orbital periods (Barker 2016; Vidal et al.

2018, 2019), and might even modify properties of tur-

bulent convection (Cébron et al. 2010). Understanding

their interplay with convection deserves future work.
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APPENDIX

A. CONVECTION MODEL

We study Boussinesq thermal convection (e.g. Spiegel

1971), driven by homogeneous internal heating QT in a

full sphere. We use the notation introduced in Section

2. The gravitational field is g = −g0 r, where r is the

position vector and g0 is a constant. This is the leading-

order component for a low-mass body that is not very

centrally condensed (e.g. Lai et al. 1993). We employ di-

mensionless quantities for the simulations, adopting R

as the length scale, the viscous timescale R2/ν as the

timescale, and (νQTR2)/(6κ2) as the unit of temper-

ature (as in Monville et al. 2019). The dimensionless

equations for u and the temperature perturbation Θ, in

the inertial frame, are

∂u

∂t
+ (u · ∇)u = −∇p+∇2u +RaΘ r − f , (A1a)

∂Θ

∂t
+ (u ·∇) Θ =

1

Pr

[
2u · r +∇2Θ

]
−Q, (A1b)

where p is a dimensionless (reduced) pressure, f =

(u · ∇)U0 + (U0 · ∇)u a forcing term with U0 given

by (1) and Q = (U0 · ∇) Θ. We have defined the

Rayleigh number Ra = αT g0QTR6/(6νκ2), where αT is

https://nek5000.mcs.anl.gov/
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the thermal expansion coefficient, and the Prandtl num-

ber Pr = ν/κ. The nonlinear term (U0 ·∇)U0 reduces

here to a pressure gradient, and thus plays no dynami-

cal role within the Boussinesq approximation. We have

also neglected in Q the term (U0 · ∇)T0 that should

vanish in the limit β � 1 (e.g. Lai et al. 1993, in the

ellipsoidal geometry), where T0 is the background tem-

perature. Equations (A1) are complemented with the

incompressibility condition∇·u = 0, and boundary con-

ditions at the (dimensionless) spherical boundary r = 1.

For the temperature, we employ the isothermal condi-

tion Θ = 0. To avoid spurious numerical issues asso-

ciated with angular momentum conservation in global

simulations of tidal flows (as explained in Guermond

et al. 2013; Favier et al. 2014), we enforce the mechanical

boundary condition u = 0. This is unlikely to affect the

(small-scale) turbulent flows driven in the bulk without

rotation (compared to stress-free boundary conditions).

We have solved nonlinear Equations (A1) in their

weak variational form by using the spectral-element code

Nek5000 (e.g. Fischer et al. 2007). The computational

domain is decomposed into E = 3584 non-overlapping

hexahedral elements. Within each element, the veloc-

ity (and pressure) is represented as Lagrange polyno-

mials of order N (respectively, N − 2) on the Gauss-

Lobatto-Legendre (Gauss-Legendre) points. Temporal

discretization is accomplished by a third-order method,

based on an adaptive and semi-implicit scheme in which

the nonlinear and Coriolis terms are treated explicitly,

and the remaining linear terms are treated implicitly.

Solutions are de-aliased following the 3/2 rule, such that

3N/2 grid points are used in each dimension for the non-

linear terms, whereas only N points are used for the lin-

ear terms. We have checked the numerical accuracy in

targeted simulations to ensure convergence by varying

the polynomial order from N = 7 to N = 9. We adopt

a time step 10−6 ≤ dt ≤ 5 × 10−6 (in dimensionless

units, depending on the forcing frequency).

For most of the simulations, we initiated the convec-

tion with random noise to the temperature field and let

it saturate without tides (i.e. β = 0), before switch-

ing on the equilibrium tidal flow. We have checked that

initiating the convection together with the equilibrium

tidal flow does not lead to noticeably different results.

We have integrated each simulation for several viscous

timescales (5 ≤ ∆T ≤ 10 in dimensionless units), corre-

sponding with more than a hundred tidal periods, to ob-

tain converged statistics for the effective viscosity. The

time average in expression (2) is obtained by fitting a

linear slope to the cumulative time integral (e.g. see

Figure 13 in Duguid et al. 2020), to reduce the turbu-

lent noise.

B. COMPLEMENTARY RESULTS

The parameters and results of the simulations behind

Figure 2 are given in Table 1. We define the rms veloc-

ity urms as the time average of (2 〈E(u)〉V /3)1/2 with

E(u) = (u2
x + u2

y + u2
z)/2 the kinetic energy, noting that

there is no preferred Cartesian direction for the flow

without rotation. The turbulent length scale is esti-

mated (by eye) as lE ' 1/3, which agrees with Figure 1.

The latter figure indeed shows that multiple eddies span

the radius of the body. Then, we define the turnover fre-

quency as ωcv = urms/lE . Small differences in the rms

properties of the convection are found when the ampli-

tude of the tidal flow was larger than the convective

flow (i.e. when β|ωt| ≥ urms). Typically, these differ-

ences are smaller than 5% for the kinetic energy and the

rms velocity when β ≤ 5×10−2. However, in the strong

tides regime the convection can be modified more signif-

icantly, which we have observed when β ≥ 10−1, or for

very high frequencies (i.e. |ωt|/ωcv � 100 at Ra = 106

with β = 5×10−2). Similar findings have been reported

in local simulations (e.g. Duguid et al. 2020).

We illustrate in Figure 5 spatial spectra of the term

u · [u · ∇U0] that appears in equation (2) for the effec-

tive viscosity. We have computed it in the entire fluid

domain (i.e. 0.05 ≤ r ≤ 0.99) and omitting the bound-

ary regions (i.e. 0.94 ≤ r ≤ 0.99). We find that the

eddy viscosity (i.e. the l = 0 component in the physi-

cal space) is never dominated by interactions near the

boundary, but is instead due to flows in the bulk.

For an alternative approach to directly using equa-

tion (2), we can estimate νE by considering the Fourier

transform of the volume-averaged component 〈uxuy〉V ,

as long as we account for the oscillatory nature of the

tidal flow (Ogilvie & Lesur 2012). Thus, we can define

the effective viscosity ν̂E in the Fourier domain as

F{〈uxuy〉V } = ν̂E ωtβ F{cos(ωtt)}, (B2)

where F denotes the Fourier transform and ν̂E is a

complex-valued quantity. The Reynolds stress and the

rate of strain are generally out of phase. The real part

<e(ν̂E) ' νE is the turbulent viscosity (that is in phase

with the equilibrium tidal flow), whereas the imaginary

part =m(ν̂E) (that is out of phase with the tidal flow) is

related to an effective elasticity. In the regime of high-

frequency tidal forcing (|ωt| � ωcv), Ogilvie & Lesur

(2012) and Duguid et al. (2020) demonstrated the vis-

coelastic nature of the tidal response. They predict

the turbulent viscosity <e(ν̂E) should scale as |ωt|−2,

whereas =m(ν̂E) should obey a linear reduction |ωt|−1.

We compute ν̂E from expression (B2) in Figure 6.

The results confirm the universal nature of the vis-

coelastic response, with a dominant elastic component
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Table 1. Table of Simulation Results for Ra = 106 and Pr = 1.

|ωt| 〈E(u)〉V urms |ωt|/ωcv νE UpEb LwEb

2.0× 10+2 3.6× 10+3 4.9× 10+1 1.4× 10+0 +1.2× 10+1 1.1× 10+1 6.9× 10+0

2.2× 10+2 3.6× 10+3 4.9× 10+1 1.5× 10+0 +1.5× 10+1 1.1× 10+1 8.0× 10+0

2.5× 10+2 3.6× 10+3 4.9× 10+1 1.7× 10+0 +1.2× 10+1 8.3× 10+0 5.4× 10+0

2.9× 10+2 3.5× 10+3 4.8× 10+1 2.0× 10+0 +1.4× 10+1 3.8× 10+0 3.8× 10+0

3.3× 10+2 3.6× 10+3 4.9× 10+1 2.3× 10+0 +1.1× 10+1 6.4× 10+0 4.8× 10+0

4.0× 10+2 3.6× 10+3 4.9× 10+1 2.7× 10+0 +7.8× 10+0 2.1× 10+0 2.1× 10+0

5.0× 10+2 3.6× 10+3 4.9× 10+1 3.4× 10+0 +3.5× 10+0 1.1× 10+0 1.1× 10+0

5.7× 10+2 3.6× 10+3 4.9× 10+1 3.9× 10+0 +2.4× 10+0 9.6× 10−1 9.6× 10−1

6.7× 10+2 3.6× 10+3 4.9× 10+1 4.6× 10+0 +1.8× 10+0 1.2× 10+0 9.1× 10−1

8.0× 10+2 3.6× 10+3 4.9× 10+1 5.5× 10+0 +9.7× 10−1 8.1× 10−1 6.1× 10−1

1.0× 10+3 3.6× 10+3 4.9× 10+1 6.8× 10+0 +4.0× 10−1 3.2× 10−1 2.4× 10−1

1.3× 10+3 3.7× 10+3 4.9× 10+1 9.0× 10+0 −1.4× 10−1 7.8× 10−2 7.8× 10−2

2.0× 10+3 3.6× 10+3 4.9× 10+1 1.4× 10+1 −1.2× 10−1 7.3× 10−2 5.5× 10−2

3.3× 10+3 3.6× 10+3 4.9× 10+1 2.3× 10+1 −3.8× 10−2 2.5× 10−2 1.9× 10−2

6.7× 10+3 3.6× 10+3 4.9× 10+1 4.5× 10+1 −1.8× 10−2 1.4× 10−2 1.1× 10−2

1.0× 10+4 3.6× 10+3 4.9× 10+1 6.8× 10+1 −1.1× 10−2 1.7× 10−3 4.4× 10−3

2.0× 10+4 3.6× 10+3 4.9× 10+1 1.4× 10+2 −3.7× 10−3 1.2× 10−3 1.2× 10−3

|ωt| 〈E(u)〉V urms |ωt|/ωcv νE UpEb LwEb

2.0× 10+2 3.3× 10+3 4.7× 10+1 1.4× 10+0 +1.0× 10+1 4.0× 10+0 2.7× 10+0

2.2× 10+2 3.3× 10+3 4.7× 10+1 1.6× 10+0 +1.2× 10+1 1.8× 10+0 2.7× 10+0

2.5× 10+2 3.3× 10+3 4.7× 10+1 1.8× 10+0 +1.2× 10+1 1.3× 10+0 1.9× 10+0

2.9× 10+2 3.2× 10+3 4.6× 10+1 2.0× 10+0 +1.0× 10+1 1.7× 10+0 2.6× 10+0

3.3× 10+2 3.1× 10+3 4.6× 10+1 2.3× 10+0 +8.7× 10+0 1.2× 10+0 8.0× 10−1

4.0× 10+2 3.1× 10+3 4.6× 10+1 2.7× 10+0 +7.3× 10+0 5.4× 10−1 1.1× 10+0

5.0× 10+2 3.2× 10+3 4.6× 10+1 3.8× 10+0 +6.8× 10+0 6.9× 10−1 1.0× 10+0

6.7× 10+2 3.4× 10+3 4.7× 10+1 4.3× 10+0 +4.8× 10+0 1.4× 10+0 1.4× 10+0

8.0× 10+2 3.5× 10+3 4.8× 10+1 5.9× 10+0 +3.8× 10+0 1.8× 10+0 1.5× 10+0

9.1× 10+2 3.5× 10+3 4.8× 10+1 6.8× 10+0 +3.2× 10+0 3.1× 10−1 6.1× 10−1

1.0× 10+3 3.5× 10+3 4.9× 10+1 7.1× 10+0 +5.4× 10−1 3.2× 10−1 3.2× 10−1

1.1× 10+3 3.5× 10+3 4.8× 10+1 7.7× 10+0 +2.3× 10−1 1.1× 10−1 1.4× 10−1

1.3× 10+3 3.5× 10+3 4.9× 10+1 9.1× 10+0 −1.3× 10−1 3.5× 10−2 5.2× 10−2

2.0× 10+3 3.5× 10+3 4.8× 10+1 1.3× 10+1 −9.0× 10−2 3.4× 10−2 3.4× 10−2

3.3× 10+3 3.5× 10+3 4.8× 10+1 2.3× 10+1 −5.1× 10−2 2.6× 10−2 1.7× 10−2

6.7× 10+3 3.4× 10+3 4.8× 10+1 4.4× 10+1 −1.2× 10−2 3.9× 10−3 5.8× 10−3

2.0× 10+4 3.4× 10+3 4.8× 10+1 1.4× 10+2 −2.1× 10−3 5.1× 10−4 7.6× 10−4

Note—〈E(u)〉V is the volume-averaged kinetic energy and urms the rms velocity. UpEb: Upper Error bar. LwEb: Lower
Error bar. Top: β = 10−2. Bottom: β = 5× 10−2.

at high frequencies. Indeed, we broadly obtain a lin-

ear reduction |=m(ν̂E)| ∝ |ωt|−1 in the high-frequency

regime. Moreover, we recover the expected scaling in

|ωt|−2 for the turbulent viscosity |<e(ν̂)E | in the high-

frequency regime (in addition to a linear reduction factor

in an intermediate regime), which is always smaller than

|=m(ν̂E)|. The effective viscosity has approximately the

same amplitude when it is calculated using (B2) or equa-

tion (2), so this cross-validates our computations for the

turbulent viscosity. We have checked that quantitatively

similar results are obtained by considering the other

components 〈u2
x〉V and 〈u2

y〉V of the Reynolds stress ten-

sor. This agrees with Penev et al. (2009a), who showed

that the effects of convective turbulence on a large-scale

oscillatory shear flow is well represented by an effective

viscosity coefficient.
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Figure 5. Power spectrum of the time-averaged and radially
integrated quantity −1/(∆T (ωtβ)2)

∫
u · [u · ∇U0] dt, as

a function of the spherical harmonic degree l ≥ 0 (using
orthonormalized harmonics). Simulations at Ra = 106, P r =
1 and β = 5 × 10−2. Eddy viscosity (2) is given by the
square root of the l = 0 component (in the physical space),
when ∆T is large enough to reduce the turbulent noise. Top:
|ωt|/ωcv = 2.3 with an integration time ∆T ' 0.59. Bottom:
|ωt|/ωcv = 13 with an integration time ∆T ' 0.39. Spectra
have been computed by interpolating the data to a spherical
grid.

C. ESTIMATES FOR TIDAL SYNCHRONIZATION

We provide details here to compute the tidal dissi-

pation timescales shown in Figure 4. For a circular and

aligned orbit, the turbulent dissipation is estimated from

a spherical stellar model as (e.g. see Equation (85) in

Remus et al. 2012)

Dν = 4π
2088

35

R4

GM
|ωt|

∫ 1

αR

x8
R ρ∗νE dxR, (C3)

where xR = r/R is the normalized radius, M is the

stellar mass, αR is the ratio of the radius of the base

of the convective envelope to the stellar radius R, and

ρ∗ is the density. To obtain leading-order estimates,

we use the stellar models from EZ-Web (http://www.

astro.wisc.edu/∼townsend/static.php?ref=ez-web) for a

1 solar-mass star at 1 Gyr (assuming the metallicity Z =

0.02). The modified tidal quality factor Q′ is related to

Dν by Q′ = 3/(2Dν). The resulting timescale for tidal

synchronization of the stellar spin is then

τΩ =
1

3πr2
g

(
M +M2

M2

)2
P 4
orb

P 2
dyn Ps

1

Dν
, (C4)

where M2 is the mass of the companion, Porb is the

orbital period, Ps is the stellar rotation period, Pdyn =

2π/
√
GM/R3 is the dynamical timescale, and r2

g ≈ 0.1

is the dimensionless squared radius of gyration.

Our simulations support the coexistence of the two

frequency-reduction laws. To evaluate equation (C4),

we first estimate (from the stellar model) the convective

velocity ucv(xR), the mixing length lE(xR) = 2Hp(xR)

with Hp(xR) the pressure scale height, and the convec-

tive frequency ωcv(xR) = ucv(xR)/lE(xR). Then, we

assume that the frequency reduction of the turbulent

viscosity νE(xR) obeys the continuous profile (Figure 7)

νE = ucv`E





1 (|ωt|/ωcv < 1),

ωcv/|ωt| (|ωt|/ωcv ∈ [1, 5]),

5 (ωcv/|ωt|)2
(|ωt|/ωcv > 5),

(C5)

where the proportionality constant is arbitrary but is

chosen here to be consistent with Figure 2. The ap-

parent discontinuity, reported in Figure 2, apparently

coincides with the rapid passage through zero of νE in

the simulations. Since negative values of νE may not be

relevant in reality in the frequency range |ωt|/ωcv ≤ 100,

we adopt here a continuous frequency-reduction profile.

Taking a solar-mass binary with Porb = 10 days and

Ps ∼ 15 days (for example), we would obtain τΩ ≈ 1.14

Gyr. This timescale should be compared with τΩ ≈ 100

Myr from neglecting the frequency reduction of νE . The

http://www.astro.wisc.edu/~townsend/static.php?ref=ez-web
http://www.astro.wisc.edu/~townsend/static.php?ref=ez-web
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Figure 6. Real and imaginary parts of the effective viscosity |<e(ν̂E)| and |=m(ν̂E)|, measured from the Reynolds stress tensor,
as a function of |ωt|/ωcv in supercritical simulations of convection (Ra = 106, P r = 1). Error bars are computed by evaluating
the noise level in the vicinity of the spike at the forcing frequency. The turbulent viscosity (relevant for tidal dissipation) is
measured by |<e(ν̂E)|, whereas |=m(ν̂E)|measures the elastic component of the response. Top: β = 10−2. Bottom: β = 5×10−2.

resulting synchronization timescales for profile (C5) ob-

tained using Equation (C4) are superimposed in Figure

4. Our extrapolation indicates that convective damping

of the equilibrium tide can be important in driving spin

synchronization in the sample presented in Lurie et al.

(2017).

REFERENCES

Anders, E. H., Lecoanet, D., & Brown, B. P. 2019, ApJ,

884, 65

Barker, A. J. 2016, MNRAS, 459, 939

Barker, A. J., Braviner, H. J., & Ogilvie, G. I. 2016,

MNRAS, 459, 924

Barker, A. J., Dempsey, A. M., & Lithwick, Y. 2014, ApJ,

791, 13

Beck, P. G., Mathis, S., Gallet, F., et al. 2018, MNRAS,

479, L123

Braviner, H. J. 2016, PhD thesis, University of Cambridge
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