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Abstract: 

This paper describes the development of a numerical model to predict the vibro-acoustic 

behaviour of an externally fluid loaded shell with non-uniformly space stiffeners and transversal 

bulkheads. This model constitutes an extension of the existing semi-analytic capability in 

predicting the acoustics of axisymmetric structures. It is based on the Circumferential Admittance 

Approach (CAA) which consists in substructuring the problem so that the fluid loaded shell 

constitutes one subsystem and the frames constitute other independent subsystems. These 

subsystems are coupled together by assembling the circumferential admittances that characterise 

each uncoupled subsystem. Different numerical approaches can be used to estimate these 

admittances. The Standard Finite Element code is well adapted for evaluating the admittances of 

the internal frames whatever their cross-section geometries and material properties. Classical 

discretization methods such as Finite Elements and Boundary Elements are too time-consuming 

for the fluid loaded shell. To avoid this obstacle, three different approaches with different degrees 

of approximation are proposed to estimate the shell admittances. Comparisons with a reference 

case are proposed to evaluate the accuracy and the efficiency of each of these three approaches. 

With the optimal approach, CAA gives very good results in satisfactory computing time. It is 

well-adapted for analysing the behaviour of a submarine pressure hull in a wide frequency range 

of interest. 
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1 INTRODUCTION 

The acoustic performances of submarine hulls affect different operational capacities of 

submarines [1]: 

- the radiated noise in the far field influences the acoustic stealth of the submarine; 

- the radiated noise in the near field (self-noise) can reduce Sonar performances; 

- the acoustic wave reflection on the hull plays a role in the active Sonar threat (target strength). 

Modelling the vibro-acoustic behaviour of the submarine hull can help us to understand the 

physical phenomena involved in its acoustic performance, in order to quantify and to improve it. 

To achieve good representativeness of a submarine pressure hull, the model should at least take 

into account: (a) the cylindrical hull and its interaction with the external fluid (water); (b) the 

bulkheads between the different compartments and the ends of the pressure hull; and (c) the 

stiffeners whose spacing can vary along the shell. The frequency range of interest for submarine 

applications is wide, from one Hz to several KHz. The numerical model should be able to give 

results in this frequency range for a shell with the size of a submarine hull, which is the main 

challenge addressed in this paper. Indeed, numerical methods such as the Finite Element and 

Boundary Element methods generally used to analysis complex systems, are limited to low 

frequencies (below 100 Hz) by the number of degrees of freedom. This increases dramatically as 

the frequency increases (see [2-5]). The development of a dedicated model is an alternative for 

overcoming this obstacle. We propose in this paper to develop a model of a shell immerged in a 

fluid and stiffened by the ring stiffeners and the axisymmetric bulkheads of a submarine pressure 

hull. The circumferential admittance approach will be used to assemble a numerical model of a 

fluid loaded shell with the finite element models of its internal frames. 
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Up to now, numerous scientists have already developed models to analyse the vibro-acoustic 

behaviour of fluid loaded stiffened shells. Former works generally considered a plate instead of a 

shell, permitting the analysis of certain phenomenological links with the periodicity of the 

structure (e.g. stop band/pass band effect) [6,7] and the effect of stiffeners on acoustic radiation 

[8]. Concerning shell models, Langley [9] developed a dynamic stiffness method for the analysis 

of a simply supported stiffened shell. The stiffeners are considered as smeared over the surface of 

the structures and is presumed to be sufficient for describing the lower modes of vibration of the 

stiffened structures. It permits deriving appropriate modifications of the shell differential 

equations. These equations are then solved by considering the shell as simply supported, yielding 

the dynamic stiffness matrix. This approach is dedicated to analysing aircraft fuselages. The shell 

is in vacuo (i.e. not coupled with an internal or external fluid), making the approach interesting 

for analysing shell behaviour in a light fluid only. Previously, on an equivalent smeared 

approach, Hoppmann [10] developed and validated experimentally a technique to model the 

effect of stiffeners on the flexural vibrations of cylindrical shells. Its approach considers an 

orthotropic shell having the equivalent stiffness characteristic of a shell with closely spaced 

identical stiffeners. 

Laulagnet and Guyader [11] analysed the characteristics of the sound radiated by a finite ring-

stiffened cylindrical shell submerged in a fluid by using a modal approach. The approach is valid 

in a heavy fluid like water. The difficulty of estimating the modal radiation impedances 

numerically restricts this method to low frequencies. Yan et al. [12,13] applied the space 

harmonic approach to predict the sound radiation from a submerged periodic ring-stiffened shell. 

By using the Bloch-Floquet theorem, the response of the periodic structure to harmonic 

excitations has been obtained by expanding it in the terms of a series of space harmonics. The 

radiated sound power of the shell and the influence of different parameters have been studied by 
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this approach for low circumferential mode orders. Comparisons were performed with the power 

flow propagation in the equivalent unstiffened shell. Prior to this and with a similar approach, 

Hodges et al. [14] analysed in detail the dynamic behaviour of a periodic ribbed cylinder in vacuo 

in the low frequency range. Good agreement was obtained between their model and the 

measurements of a ribbed cylinder over a frequency range from zero to about three times the ring 

frequency. The edges of the pass bands as a function of circumferential wavenumber were 

especially well predicted. Zhang et al. [15] developed a hybrid method based on an energy finite 

element formulation to predict the high-frequency vibration response of fluid loaded cylindrical 

shells with periodic circumferential stiffeners. Added mass and radiation effects related to the 

surrounding exterior fluid medium were taken into account, but the radiated pressure in the fluid 

was not estimated. Photiadis et al. have published numerical and experimental results concerning 

scattering from a ribbed cylindrical shell [16-21]. The model of an infinite ribbed cylindrical shell 

is based on the Bloch-Floquet theorem in [16]. They also analysed the effect of an irregularly 

ribbed fluid loaded cylindrical shell using an axisymmetric finite element / infinite element model 

[20]. Calculations were achieved for a frequency range up to three times the ring frequency. Their 

numerical results were in good agreement with the experiments and localised the vibration related 

to the rib aperiodicity. However, this axisymmetric finite element / infinite element model is 

limited to low frequencies, as the higher the frequency the greater the number of degrees of 

freedom. 

Acoustic radiation from an infinite fluid-loaded, laminated composite shell, which is reinforced 

by doubly periodic rings, was investigated by Yin et. al. [22]. The rings interact with the shell 

only through normal forces. The solution for the radial displacement in the wave number domain 

is obtained by using the method developed by Mace [7] for an infinite flat plate.  
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The scattering of sound waves by a periodically ribbed shell was also studied by Tran-Van-Nhieu 

[23]. He considered a shell of finite length that differs from most publications dealing with 

infinite cylindrical shells. The theoretical formulation of his model is based on an adaptation of 

the space-harmonic series usually used for the infinite shell. The expansion of the solution near 

the shell is performed on the shape functions as defined by Miles [24] for finite periodic simply 

supported structures. In these developments, only the normal component of the reactive force 

applied by the ring to the shell is considered. The author emphasizes that this assumption is rather 

restrictive as the other components of the reactive forces might considerably change the result. 

Comparisons of this model with experiments are proposed by Liétard et al. [25]. The model 

allows highlighting the physical phenomena involved in scattering waves on the finite ribbed 

shell in monostatic configuration. 

Recently, Caresta et al. [26,27] studie the low frequency vibrational behaviour and radiated sound 

of a submarine hull under axial excitation. The submarine is modelled as a fluid-loaded 

cylindrical shell with internal bulkheads and ring-stiffeners and closed at each end by truncated 

conical shell. The stiffeners are modelled using 1D beam model and a smeared approach whereas 

the bulkheads are modelled as thin circular plates in bending and in-plane motion. The 

computational results were validated by comparing with finite element and boundary element 

results.  This model permits to study the influence of the various complicating effects such as the 

bulkheads, ring-stiffened and fluid loading on the structural and acoustic responses of the shell. 

In the context of the active control of low-frequency radiated pressure, a simplified model of a 

submarine hull under axial excitation was developed by Pan et al. [28]. A water-loaded finite 

stiffened cylindrical shell with rigid ends caps is considered. This model permits to examine the 

effects of control actions, both structurally and acoustically, for a control moment applied around 

the circumference of the hull in the low frequencies. 
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In the area of the discretization method, a finite-element structural-acoustic modelling technique 

has been presented [29] to analyse the axial symmetric geometries subject to nonsymmetric 

loading. Scattering or radiation of stiffened shells can be studied using this technique. The main 

feature of the model is the use of the Bérenger Perfectly Matched Layer (PML) to emulate the 

Sommerfeld radiation condition. The advantage of PML is that an FE mesh of minimal size is 

necessary to represent the fluid domain, taking the free field condition into account. The 

proposed technique is validated by comparison with analytical solutions and with other numerical 

models. However, it is difficult to appreciate the gain of this approach in term of computing times 

compared to classical infinite elements and boundary elements methods.    

 

Little attention has been devoted in the past to modelling stiffeners in the stiffened shell. It is 

generally assumed that the stiffeners behave like beams. This assumption is valid in the low 

frequency domain but finite element calculations for a typical submarine stiffener have shown 

than deformation of the cross section can be observed at about 10 Hz. The behaviour of the 

stiffeners can strongly influence the vibration of the shell and its acoustic radiation. Accurate 

modelling of the internal frames of the shell should be taken into account in the stiffened shell 

model. This point will be addressed in particular in this paper.  

 

The model developed here permits considering a shell immerged in a fluid and stiffened by the 

ring stiffeners and the axisymmetric bulkheads of a submarine pressure hull. The ring stiffeners 

can have different spacings and different cross-sections. The cylindrical shell has an infinite 

length although finite length can be simulated by introducing boundary conditions on dummy 

internal frames. In this case, the left-over shell outside the dummy internal frames (i.e. boundary 
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conditions) has a role of a non rigid cylindrical baffle. The approach will be described by 

considering the shell or the frames excited by a mechanical point force. It is not a restriction of 

the approach. It can be easily extended to other sorts of excitation such as external plane waves 

for scattering studies. 

 In the next section, the principle of the Circumferential Admittance Approach (CAA) is 

presented. This permits assembling a model of the fluid loaded shell with finite element models 

of the internal frames. The FE estimation of the circumferential admittances of the frames is 

given in Sec. 3, whereas three methods are proposed in Sec. 4 to estimate the circumferential 

admittances of the fluid loaded shell. An overview of the approach is then given in Sec. 5. The 

final results are the spatial distributions of the vibratory field and the radiated pressure field by 

the shell coupled with its internal frames. Sec. 6 is dedicated to comparing the present approach 

with other numerical results. In particular, the accuracy of the approach is studied as a function of 

the three methods described in Sec. 4 to estimate the shell admittances. It permits defining an 

optimal approach. An example of a submarine application is then proposed to illustrate the 

efficiency of the present approach. 

 

2 THE PRINCIPLE OF  THE CIRCUMFERENTIAL ADMITTANCE APPROACH 

A ring-stiffened cylindrical shell immersed in water shown on Fig. 1a is considered. It is 

characterized by constant thickness h, mean radius R, mass density ρ, Young modulus E, and 

Poisson ratio ν. The shell is assumed to have an infinite length but clamped boundary conditions 

could be introduced later to simulate the finite length of a submarine hull. We consider the 

cylindrical coordinates  xr ,,  where r is the radial coordinate,   the circumferential angular 

coordinate and x the axial coordinate, as shown on Fig 1a. The external fluid has mass density 0  
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and acoustic wave speed 0c . The   internal frames are composed of different types of stiffeners, 

bulkheads and hemispherical endcaps. Theses frames are assumed to be axially symmetric and 

the junctions with the shell are located at axial coordinate ix ,   ,1i . For example, the stiffeners 

could have different T-shaped cross sections, the bulkheads and the end caps could be curved 

circular plates. The materials of the shell and frames are linearly elastic, homogeneous and 

isotropic. Moreover, we assume that the motions of the shell and the frames are described by thin 

shell theories. Then, the displacements are expressed at points on the mid-surface of the shell 

models. The connections between the shell and the frames are rigid, so that, at each line of 

attachment, the shell and the frame have the same linear velocity and angular velocity. To shorten 

the presentation, the external load is assumed to be a mechanical point force acting in the 

plane =0. However, it is not a limitation of the technique which may be easily extended to more 

complicated excitations. This excitation is harmonic with time dependence tje  where   is the 

angular frequency. We are interested in the stationary response of the framed shell. Then, in the 

following, dependence  tje  for the excitation and the response will be omitted in the notation 

although it is always considered. 

 

(a)                                                           (b) 
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FIG. 1. (a), Illustration of the framed shell immerged in water ; (b), Partitioning and coupling 

forces. 

As shown in Fig. 1b, the system considered is partitioned such that the fluid loaded shell 

constitutes one subsystem and the frames constitute other independent subsystems. The following 

is defined at the junction between the shell and the ith frame: 

- shellshellshellshell  and ,,, iiii UVW   (respectively frameframeframeframe  and ,, iiii UVW  ) the radial / tangential / 

axial displacements, and the angular rotation ( xW  ) of the shell (respectively the frame); 

- shellshellshellshell  and ,, iiii MLTF  (respectively frameframeframeframe  and ,, iiii MLTF ) the radial / tangential / 

axial forces, and the angular moment acting on the frame (respectively shell) by the shell  

(respectively  frame). 

The circumferential amplitudes of these quantities are defined by their Fourier transforms about 

coordinate  : 
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where f is the considered quantity and k  is the circumferential wave number. 
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contained in the plane 0 ). Taking periodicity 2 about the circumference into account, the 
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In accordance with these properties, the calculations are performed in the following for a 

circumferential wave number k  equal to a natural number called the circumferential order, n  

( nk  ). It should be noted that another possible approach is to expand the quantity  f  with a 

Fourier series. In the rest of this paper, this circumferential wave number will be omitted in the 

notation.  

In practice, the summation about n to obtain  f  from  kf
~

 is truncated at a maximal 

circumferential order N  (  Nn ,0 ). The criterion for defining N will be discussed later (Sec. 

5). 

 

We define: 

- the circumferential admittances of the shell (respectively frame) between the ith junction and the 

jth junction, shell~
ji

Y   (respectively frame~
ji

Y  ) by:  

shell

shell
shell

~

~
~

i

i

ji
Y




   (resp. 

frame

frame
frame

~

~
~

i

i

ji
Y
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(3) 

where   ,,, VUW  and  MTLF ,,, . 

- the free circumferential displacement of the shell, 
shell

~
i  (respectively frame, 

frame
~

i ) as the 

circumferential displacements of the uncoupled shell (respectively frame) excited by the external 

load.  

 

These circumferential admittances and free displacements are evaluated on each uncoupled 

subsystem. For example, if the shell is only excited on the Ith frame, all the free circumferential 

displacements are null except for the Ith frame:  
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Using the superposition principle for a linear passive system, displacement continuity and 

equilibrium conditions at the junctions between the shell and the frames, we obtain a linear 

equation system which can be written in matrix form: 
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(6) 

and, the -4 dimensional vectors  frame
F
~

, shellW
~

, frameW
~

 are: 
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(7) 

By solving this system having 4 unknowns, we deduce the forces and the moments exerted by 

the frames on the shell when they are coupled together. In the second step these reaction forces 

and moments are injected in a shell model to deduce the vibration and the radiated pressure of the 

shell coupled with its internal frames. Before doing this, we propose to describe the process to 
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estimate frameframe
WY
~

 ,
~

 in Sec. 3 and shellshell
WY
~

 ,
~

 in Sec. 4. These quantities are evaluated on 

each uncoupled subsystem, independently of each other, which is one of the main advantages of 

this approach.  

3 ESTIMATION OF FRAMES ADMITTANCES 

 

The shell theory is used to describe the dynamic behaviour of each type of frame: stiffeners, 

bulkheads and endcaps. Axisymmetric Finite Elements can be used to estimate the 

circumferential admittances and free displacements of these frames. In this paper, the calculations 

are performed with the MSC/NASTRAN code [30]. The conical shell elements CCONEAX with 

the PCONEAX properties permit describing the frame behaviour from a mesh of the cross 

section.  The classical criterion which consists in dividing by 6 the smallest natural wavelength is 

used to determine the length of the elements. The complex geometry of the cross section can be 

described and thickness variations can be taken into account easily. The calculations are 

performed for harmonic orders of Fourier series (AXIS entry in NASTRAN) that are equivalent 

to the circumferential orders of the present paper. Displacements at the junction are evaluated for 

the four harmonic loads (3 forces and 1 moment) using a direct frequency response analysis [30] 

(solution sequence SOL 108). For each harmonic order, NASTRAN solves numerically the 

matrix system of the axisymmetric finite element. The calculation times are reasonable due to the 

use of the axisymmetric property of the frames. 

Pre and post-processing are done using a MATLAB code. It should be noted that these 

calculations are necessary for each type of frame, but not for all the frames, thereby lightening 

the process. An example of Finite Elements results is proposed in the next two figures. The 

stiffener considered has the typical mechanical and geometrical characteristics of a submarine 

pressure hull stiffener. The mesh of the T cross section is made of 12 nodes (RINGAX) and 12 
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elements (CCONEAX). The simulation results in Fig. 2 illustrates the deformations of the cross-

section of this stiffener at 1000 Hz for the circumferential order n=0. These deformations 

contradict the classical 1D beam assumptions (i.e. Euler-Bernoulli assumptions) and explain the 

differences observed in Fig. 3 that compares the plots of the circumferential admittances MY
~

 

calculated with NASTRAN (i.e. FEM results) and with the analytical 1D beam model (see [7]). 

The 1D beam formulae do not permit  the correct estimation of the admittances of this stiffener, 

especially for the torsional motions (the differences for WFY
~

 are less significant). This is an 

example that led us to model the stiffener behaviour by using shell theory and the Finite Elements 

Method. 

 

FIG. 2. Deformation of a stiffener cross-section for a moment excitation. 1000 Hz, n=0.  

T section: 300 mm x 60 mm / 60 mm x 300 mm. R=5 m. Material: steel ( 005.0 ).  
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FIG. 3. Comparison of the circumferential admittances frame~
MY calculated with NASTRAN (full 

line) and with the 1D-beam model (dash line). 1000 Hz (dB ref. 1 N-1). 

 

Concerning the frame admittances, it should underlined that a finite length of the shell could be 

emulated by introducing a fictive frame at the assumed ends of the shell and by attributing a null 

circumferential admittance at its frame. In this case, the fictive frame will introduce clamped 

boundary conditions.  

 

4 ESTIMATION OF SHELL ADMITTANCES 

 

In this section, we describe three methods of estimating the circumferential admittances of the 

fluid loaded shell. The first is a numeric approach based on the wave-number formulation of the 

problem and the use of an inverse discrete Fourier transform. The second consists of solving 
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analytically a simplified problem, whereas the last method consists in combining the two 

previous methods. The advantages and drawbacks of these methods will be discussed in Sec. 6. 

We emphasize that an infinite cylindrical shell is considered to estimate the shell admittance but 

the approach presented in this paper is not restricted for simulating the behaviour of infinite shell. 

Indeed, finite length of the shell can be simulated with CAA by introducing boundary conditions 

on dummy internal frames. For example, clamped boundary conditions at the ends of the shell 

could be introduced with dummy frames having null circumferential admittances. The left-over 

shell outside the two dummy frames has then a role of a non rigid cylindrical baffle. 

 

4.1 PRESENTATION OF THE FLUID LOADED SHELL PROBLEM 

 

Here we present the problem considered to estimate shell admittance. It is composed of a 

cylindrical shell of infinite length immerged in fluid. As shown in Fig. 4, the shell is excited by a 

line load  on the circumference at x=0. The direction of   will be defined later as a function of 

the definition of the admittances being estimated. The circumferential amplitudes of this load are 

assumed to be unitary ( 1
~
 ). The admittances between two junctions will be deduced by 

translating the circumferential displacement of this shell 
~

along x.  Indeed, the shell admittances 

between the ith junction and the jth junction shell~
ji

Y   could be deduced by using the relation: 

      2shell ,1,,,
~~

 jikxxY jiji   .

 

 

 

(8) 

It should be recalled that WVU  and, , ,  are respectively the axial, tangential and radial 

displacements of the shell whereas FTL  and, , , are respectively the axial, tangential and radial 

forces exerted on the shell by the external load. 
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FIG. 4. Infinite cylindrical shell immersed in water and excited by line excitations at x=0. 

 

The dynamic behaviour of this shell can be described by the Flugge equations of motions [31,32]. 

The external forces and the parietal pressure appear in the second member of these equations: 
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(9a) 
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(9c) 

where: -  x  and  x   are the Dirac delta distribution and its derivative, respectively; 

-
12R

h
 , and p is the parietal pressure exerted by the fluid on the shell.  

 

Structural damping of the shell can be introduced by assigning a complex value with a loss factor 

 to the elastic modules of the shell  material:  jEE  1* . 

 

In the fluid domain, pressure p respects the Helmholtz equation: 

0
2

0  pkp ,

 

 

 

(10) 
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rrrrx
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0

0
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k


 , the acoustic wavenumber. 

It is assumed that the Sommerfeld conditions and the normal velocity continuity at the interface 

shell/fluid are respected. 

We now describe the three methods for estimating the circumferential displacements of this shell. 

 

4.2 METHOD 1: RESOLUTION WITH A SPECTRAL APPROACH 

 

The problem described previously can be solved in the wave-number domain. This consists in 

applying a space-Fourier transform at the Flügge equations (9a-9c). This transform is defined by: 
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where: 

-  kkf x ,
~~

 denotes the space Fourier transform of  ,xf , and; 

- ,xk k  are respectively the axial wavenumber and the circumferential wavenumber. 

The Flügge equations become: 
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(14) 

The circumference periodicity of the shell requires that the spectral displacements WVU
~~

 ,
~~

 ,
~~

 differ 

from zero only for the circumferential wave-numbers equalling the circumferential orders 

( nk  ). 

The spectral pressure p
~~  can be evaluated by resolving the Helmholtz equation [33]: 
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where: - 
22

0 xr kkk  ; 

 - 0  is the fluid density, and; 

 - )2(

nH  and )2(

nH   are, respectively, the Hankel functions of the second kind and order n, 

and their derivatives respect to the argument. 

 

By introducing Eq. (16) in Eq. (14), we obtain a solvable linear equation system That provides 

the analytical expressions for the spectral displacements VUW
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The spectral rotation 
~~  is deduced from the Fourier transform of 

x

W
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Wjk x
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(19) 

To evaluate the admittance shell~
Y  with   ,,, VUW  and  MTLF ,,, , we calculate the 

circumferential displacements 
~

 when the shell is excited by force of unit circumferential 

amplitudes ( 1
~
 ). The spectral forces WWVVUU FFF

~~
 ,

~~
 ,

~~
 are then given by: 
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The circumferential displacements 
~

 can be deduced from the spectral displacement 
~~

 by 

using an inverse discrete Fourier Transform about kx: 

     kxkk TFDI

x ,
~

,
~~ ....  

 

 

 

 

(24) 

 

This transform requires truncating the wavenumber domain and sampling these wave-number 

fields with adequate criteria to avoid aliasing and loss of information.  

This approach and the criteria were developed in reference [34] for the analysis of a stiffened 

plate. In the present case, the sampling wavenumber xk (i.e. the truncating number about xk ) 
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should be greater than the natural wavenumbers of the different types of motions of the shell. An 

illustration of the spectral displacements is given in Fig. 5. The sampling wavenumber ensures 

that the area of the highest displacement amplitudes is correctly taken into account.  

However, for a fluid loaded cylindrical shell, the natural wavenumbers are not given by simple 

formulae. To overcome this obstacle, one proposes to use the same principle as the one used in 

FEM (finite element method) to define criteria like element lengths. The purpose of this principle 

is to consider each subsystem individually (i.e. part of the system), to estimate the criterion for 

each subsystem and then to apply the most restrictive of these criterions to the whole system. For 

example, to define the element length of the mesh of a structure composed of different 

subsystems, one generally refers to the natural wavelength of each type of motions for each 

uncoupled subsystem. Element length criterion for each subsystem consists then in dividing by 6 

or 10 their lower natural wavelengths. This reasoning permits to have an order of magnitude of 

the natural wavelength of the coupled subsystems. One uses here this principle to estimate an 

order of magnitude for the natural wavenumbers of the fluid loaded shell. Then, one considers 

independently the longitudinal motions, the shear motions and the flexural motions of the shell 

(i.e. curvature effect neglected).  
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FIG. 5. Example of the radial displacement level (dB, ref. 1 m2.N-1) in the wavenumber domain.  

Steel shell of 5 m radius and 30 mm thick immerged in water ( 005.0 ). Case of an axial load. 

 

The natural wavenumber for the longitudinal motions lk  is given by expression (14) whereas the 

natural wavenumbers for the shear motions [35] and flexural motions are given respectively by: 




1

2
lt kk  and lf k

h
k

12
 . For the case of Fig. 5, one has -1m 16.1lk , -1m 95.1tk , 

and -1m 48.12fk . One observes that these values permit well to localize approximately the area 

of the higher displacement amplitudes in the wavenumber domain.  

 

As a thin shell is considered, we have generally: 

  fftl kkkk ,,max .

 

 

 

(25) 

The sampling wavenumber xk  is therefore: 
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 0,max kkk fxx  ,

 

 

 

(26) 

where 0k is the acoustic wavenumber and  x is a margin coefficient (by default, we use 2x ). 

 

The wavenumber resolution xk  is obtained by dividing the smallest half power bandwidths of 

the different natural waves by a number of K points: 

K
kx

min
  with  dB

f

dB

t

dB

l

333

min ,,min   ,

 

 

 

 

 

(27) 

where dB

f

dB

t

dB

l

333 ,,     are the half power bandwidths for the longitudinal, torsional and flexural 

motions, respectively. K is chosen as equal to 2 in the present paper.  

 

The discrete Fourier transform of 
~~

with this wavenumber resolution gives 
~

 about x-axis on the 

space  limlim, xx  with 
xk

x



lim . A poor estimation of 

~
 at the boundaries of this space can be 

observed due to the aliasing phenomenon. As proposed in [34], a space  xx,  where the effect 

of the aliasing can be assumed negligible can be estimated from the analysis of the energy decay 

of each type of wave. Equation (47) of [34] adapted to the present case gives: 

min

lim

)40ln(


 xx . 

 

 

 

 

(28) 

Then, the circumferential displacements   kx,
~

 may be used to estimate the admittances with 

Eq. (8). However, it is necessary to verify that the distance between the two furthermost junctions 

is less than the limit x : 

xxx  1 . 
 

(29) 

If this criterion is not respected, the wavenumber resolution xk can be decreased.  
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In order to limit the number of calculations, reciprocity relations can be used: 

shellshellshellshellshellshellshellshellshellshellshellshell  , , , , , VMTUMLWMFWTVFVLUTWLUF YYYYYYYYYYYY   .

 

 

 

(30) 

 

4.3 ANALYTICAL RESOLUTION WITH SIMPLIFYING ASSUMPTIONS 

 

We now propose to simplify the problem and analytically calculate the shell admittances 

associated with the radial direction and the angular rotation (i.e. shell

FW ji
Y
~

 , shell

F ji
Y
~

, shell

MW ji
Y
~

 , shell

M ji
Y
~

). We 

therefore assume that all the other shell admittances may be neglected. Above the ring frequency, 

this assumption is satisfactory if the internal frames do not introduce significant couplings 

between the axial/torsional waves and the flexural waves of the shell coupled with its frames. 

 

To calculate these admittances, we consider the shell excited at x=0 by a radial force F  and a 

moment M (only) for frequencies above the ring frequency of the shell. The effects of the 

curvature of the shell and the couplings between the axial/torsional waves and the flexural waves 

may be neglected. The third equation of the Flügge model is replaced by the Love-Kircchoff 

equation: 

    pxMxFhWW
RxRx
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(31) 

where *D  is the complex flexural rigidity given  by : 2

2

2*
*

1





hRE
D . 

Moreover, it can be assumed that the fluid may be represented by its added mass effect on the 

shell, which implies that the considered frequency is well below the critical frequency of the 

shell. The equivalent mass density of the shell ρe taking the added mass by the fluid into account 
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may be approximated by the equivalent mass density of a fluid loaded plate [35] having the same 

thickness and material as the shell: 
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(32) 

where waterfk , is the natural flexural wavenumber of the fluid loaded plate obtained numerically by 

solving its dispersion relation iteratively: 
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With this assumption, equation (31) becomes: 
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(34) 

 

We solve this problem by using the forced wave decomposition and by substructuring the shell in 

two parts: x<0 and x>0. For each part, it is necessary to solve the homogeneous equation: 
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(35) 

 where pW
~

 is the radial displacement of part p of the shell for the circumferential order n. 

For each part p, the solutions of (35) take the form: 

xr
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(36) 

where pppp DCBA  , , , are constants to be defined and   , , , /

4

/

321

 rrrr are the roots of the 

characteristic equation of (35): 
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(40) 

As the considered shell has an infinite length, there is no reflexion at the extremities of the shell, 

therefore: 

.0 ,0 ,0 ,0 2211  DBCA

 

 

(41) 

 

At the junction between the two parts, we obain: 
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(42) 

where pM
~

 and pT
~

 are, respectively, the flexural moment (about the  -axis) and the shear force 

(about the r-axis) of the part p of the shell for the circumferential order n.  
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With the Love- Kirchhoff assumptions, the flexural moment and the shear force from the radial 

displacement can be expressed as: 
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From Eq. (36) and Eq. (41-44), we obtain the matrix equation: 
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where: 
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(46) 

 

Analytical expressions of 1212  , , , DCBA  can be easily deduced from this system. Then, for each 

circumferential order n, it is possible to write the radial displacements of the shell: 
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and the angular rotation about θ-axis: 
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(48) 

 

Considering these results in the case 0
~

 and 1
~

 MF , we can finally calculate shell

FW ji
Y
~

 and 

shell

F ji
Y
~

using the relations: 
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(50)  

 

The same process may be used to calculate shell

MW ji
Y
~

 and shell

M ji
Y
~

 with the case 1
~

 and 0
~

 MF . 

 

 

4.4 RESOLUTION WITH AN ACCELERATED SPECTRAL APPROACH 

 

In Sec. 4.2, we described a spectral approach using a sampling wavenumber xk  ensuring us that 

the high displacement amplitudes are taken into account in the inverse Fourier transform. 

However, the decrease of the spectral displacements about variable kx varies as a function of the 

displacement variable and the direction of the excitation. In particular, the decrease is slower for 

the spectral rotation for a moment excitation, M
~~  than the spectral radial displacement for a 

radial force excitation, FW
~~

. This fact can be illustrated if we neglect the effects of the curvature 
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of the shell and the couplings between the axial/torsional waves and the flexural waves (i.e. 

Love-Kircchoff assumptions). In this case, we can write: 
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These expressions result in 
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1~~

x
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k

OW . The decrease of FW
~~

 about
4

1

xk
 is 

sufficiently high to obtain an accurate result by truncating the wavenumber space by the sampling 

wavenumber xk  whereas the decrease of M
~~  about

2

1

xk
 is not always sufficient. 

 

In order to improve convergence about xk , we propose using the analytic result of the Sec. 4.3 to 

represent the components in the “high” wavenumber domain. To do this, we consider the quantity 

M  defined by: 

      ,,, xxx MMM  ,

 

 

 

(53) 

where M  and M  are both the angular rotations when the shell is excited by a moment. For the 

first variable, M , the fluid loading is fully taken into account and the shell is modelled by the 

Flügge equations (i.e. the model of Sec. 4.2), whereas for the second variable, M , the fluid 

loading is approximated by its added mass effect and the shell is modelled by the Love-Kircchoff 

assumptions (i.e. the model of Sec. 4.3).  
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Thus M
~ is given by: 

MMM  ~~~  ,

 

 

 

(54) 

where M~  is obtained by the analytic Fourier transform of M (result of Sec. 4.3), and, M
~

may 

be obtained numerically by a discrete inverse Fourier transform of M
~~

using the sampling 

wavenumber xk . The decrease of M
~~

 about kx is greater than the decrease of M
~~ , as illustrated 

in Fig. 6. Therefore the difficulty observed when calculating M
~  from M

~~  does not occur when 

M
~

 is calculated from M
~~

 which is the advantage of the approach presented in this section. It 

can be seen that M
~

can be considered as the error when estimating M
~  from M~ (i.e. from the 

simplified model of Sec. 4.3).  

 

An illustration of the acceleration of convergence in the wavenumber space is shown in Fig. 7 

where we plotted the admittances of a shell calculated with and without acceleration for different 

values of xk . Without the acceleration (i.e. method 1), the results converge slowly and the 

calculation requires 1m 200 xk to converge correctly, whereas the calculation with the 

acceleration (i.e. method 3) converges with xk = 1m 25   only.  

This technique can be applied to estimate WMFWF YYY
~

 and ,
~

,
~

  although the convergence in the 

wavenumber is not a matter for these quantities.  
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FIG. 6: Example of spectrum for  0,
~~

xM k (solid line) and  0,
~~

xM k  (dashed line). Results at 

1000Hz  (dB, ref. 1 m.N-1). Steel shell of 5 m radius and 30 mm thick immerged in water 

( 05.0 ). 
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FIG. 7: Comparison of the amplitudes of the input admittance MY
~

for different values of the 

sampling wavenumber xk  and with/without the acceleration of convergence: method 1 

with 1m 25 xk , dashed line; method  1 with 1m 50 xk , dashed-dotted line; method  1 with 

1m 100 xk , dotted line; method  1 with 1m 200 xk , circle markers; method 3 

with 1m 25 xk , solid line. Results at 1000 Hz (dB, ref. 1 N-1). Steel shell of 5 m radius and 30 

mm thick immerged in water ( 05.0 ). 

 

5 VIBRATION AND SOUND RADIATION FROM THE FLUID LOADED SHELL 

COUPLED WITH ITS INTERNAL FRAMES 

 

Approaches were presented in Sec. 3 and 4 to estimate the circumferential admittances and the 

free displacements for the internal frames and for the shell, respectively. These calculations 

should be performed for circumferential orders lower than a maximal circumferential order N . 

The criterion for defining N  can be based on the same principle used to define the sampling 
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wavenumber criterion in Sec. 4.2. (see [34] for more details) Indeed, N  may be seen as the 

sampling wavenumber about the circumference of the shell ( kN  ) and may defined from the 

natural wavenumbers of the shell, the frames and the acoustic fluid. However, the natural 

wavenumbers of the internal frames cannot be calculated easily due to their complex geometries. 

Therefore we analyse the curves of the circumferential admittances of the internal frames 

numerically to determine a maximal circumferential order in  associated with the ith internal 

frame.  A numerical process allows us to determine the position of the peaks (i.e. resonances) of 

the admittances. These positions are defined on the circumferential order axis. Taking in  as an 

upper bound of these positions ensures that the resonant behaviour of the frame will be taken into 

account correctly in the model.   

Thus it is possible to define the maximal circumferential order N  by: 

   1,,,,maxint ,10 




 iftly nRkRkRkRkN  ,

 

 

 

 

(55) 

where  y is a margin coefficient (by default, therefore 5.1y ). 

 

The forces/moments exerted by the frames on the shell can be calculated by using Eq. (5) for 

each circumferential order  Nn ,0 . These forces are then injected in the model of the 

cylindrical shell of the Sec. 4.2. In this case, the spectral forces are given by: 
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If the external load is directly applied on the cylindrical shell, the spectral forces due to this load 

should be added to the previous equation. 

 

The spectral displacements of the shell coupled with its frames are calculated by using Eq. (17) 

and the spectral forces of Eq. (56). We deduce the displacement field in the physical space with a 

2-D inverse discrete Fourier transform: 

     ,,
~~ ....  2 xkk TFDID

x  

 

 

 

 

(57) 

The radiated pressure in the near field can be estimated with the same approach with Eq. (15) 

whereas the radiated pressure in the far field can be estimated with the stationary phase theorem 

[33]. 

   

6 INFLUENCE OF THE SHELL ADMITTANCE CALCULATION ON THE 

RESULTS OF THE CIRCUMFERENTIAL ADMITTANCE APPROACH 

We propose to compare the results of the present approach when the shell admittances are 

obtained with the three different methods described in Sec. 4. To compare the results with 

another model, we consider only flexural motions of the shell (Love-Kircchoff assumptions) and 

the stiffeners are uniformly spaced. The reference result is then obtained by adapting for the shell 

the wavenumber approach described in [34] for the plate. We emphasize that the couplings of 

admittances are not used in this approach; the calculations are based on the use of the Poisson 

formula and the periodicity properties of the model. 

For this comparison, the 5 m radius and 30 mm thick shell is assumed to be made of steel 

(  =7800 kg/m3; E=2.1.1011 Pa;  =0.3, 005.0 ) and immerged in water. The ring stiffeners 
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are regularly spaced at 1.5 m along the axis of the shell and have a T-cross section 300 mm x 60 

mm/ 60 mm x 300 mm. For CAA calculations, 80 stiffeners are considered whereas the reference 

model takes into account an infinite number of stiffeners. A harmonic point force is located at 

x=0.4m (i.e. between two stiffeners) and  0 . 

Fig. 8 shows the displacement levels on the generating line of the cylinder 180  (i.e. opposite 

side of the excitation). The CAA result obtained with the shell admittances of Sec. 4.2 (dotted 

line) is a poor approximation of the reference result (solid line). Only the displacement levels 

between the two stiffeners near the excitation position are approximately predicted by this 

calculation. This can be explained by the fact that the calculations of certain admittances ( shell

MY
~

 

in particular) are not accurate enough. The shell admittances calculated analytically in Sec. 4.3 

(dash-dotted line) give a better result but only the shell admittances obtained in Sec. 4.4 make it 

possible for CAA to give a very good result (dash line). Fig. 9 shows the values of shell

WFY
~

and shell

MY
~

 

obtained with the three different methods. The differences observed in this figure explain the 

differences of the CAA results in Fig. 8. Indeed, it can be seen that the first method gives the 

same values as the third method for shell

WFY
~

 but underestimates the values of shell

MY
~

 (as in Fig. 7). 

The rotational stiffness of the shell is therefore overestimated. Consequently, the reaction 

moments exerted by the frames on the shell are overestimated by CAA. On the other hand, the 

second method gives the same values as the third method for shell

MY
~

  but overestimates the values 

of shell

WFY
~

 for the non resonant circumferential order. Although the calculation frequency is below 

the critical frequency, the fluid added mass assumption of the method 2 does not permit 

estimating the shell admittances with enough accuracy for CAA convergence.  
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FIG. 8: Shell displacement level on the axis 180 . Results at 1000 Hz (stiffeners’ position: 

vertical dash lines, dB ref. 1 m.N-1). Comparison of different calculations.  

Upper part: Solid line, reference; dotted line, CAA with shellY
~

of Sec. 4.2; dash-dotted line, CAA 

with shellY
~

of Sec. 4.3; Lower part: Solid line, reference; dash line, CAA with shellY
~

of Sec. 4.4. 
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FIG. 9. Comparison of WFY
~

 (upper, dB ref. 1 m2.N-1) and MY

~
 (lower, dB ref. 1 N-1) obtained by 

the three methods: solid line, Sec. 4.4; dashed line, Sec. 4.2; dashed-dotted line, Sec. 4.3. 
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7 EXAMPLE OF SUBMARINE APPLICATION 

In this section, we illustrate the present approach for a submarine test case. The case considered 

is shown in Fig. 10 and is composed of a 5 m radius 42.3 m length and a 30 mm thick cylindrical 

shell stiffened with 65 stiffeners and 2 spherical bulkheads (10 mm thick, 30 m curvature radius). 

The stiffeners have different sections (three types of stiffeners) and their spacing varies from 0.5 

m to 0.75 m (see Fig. 10). The shell is made of steel ( 005.0 ), immerged in water and excited 

by a radial point force on the web of the 24th frame. Clamped boundary conditions are assumed at 

the ends of the shell (2 m before the first stiffener and the 2 m after the last stiffener). They are 

taken into account in the CAA calculation by introducing fictive frames with null circumferential 

admittances.  

 

FIG. 10. Submarine hull application: Cylindrical shell: 5 m radius, 42.3 m length, 30 mm thick. 

Stiffeners : (a), spacing 0.75 m, T-cross-section (mm): 300x60/60x300; (b), spacing 0.5 m, T-

cross-section (mm): 200x15/15x200; (c), spacing: 0.6 m, T-cross-section (mm): 200x25/15x200. 

 

An example of the radial displacements in the wavenumber space W
~~

 is given in Fig. 11. It is 

obtained directly from the coupling forces 
frame

F
~

 and the expression (17) of the spectral 
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displacement, as described in Sec. 5. This kind of result facilitates understanding the behaviour of 

the shell, as proposed in reference [36], on the basis of the measurements. For example, it permits 

analysing the displacements that radiate in the far field: these displacements are contained in the 

supersonic region. It can also be used to predict the dominant directions of wave propagation. 

These directions [36] are given by identifying the regions of large displacement amplitudes 

having large curvature radii and drawing the normal to the curve in these regions. At 500 Hz, we 

can predict multiple directions of propagation whereas at 2000 Hz, two dominant directions exist.  

 

The inverse space Fourier transform of the spectral displacements gives the displacements in 

physical space. Examples of results are given in Fig 12 in which the bulkhead positions are 

plotted in black. The same process can be used to estimate the radiated pressure in the near field 

whereas the stationary phase theorem permits deducing the radiated pressure in the far field. 

In Fig. 12, it can be seen that at 500 Hz the vibratory field is almost homogenous in the excited 

compartment (i.e. part of the shell between two bulkheads). This is the result of the multiple 

directions of wave propagations as predicted previously from Fig. 11. The bulkheads lead to the 

attenuation of strong vibrations due to their considerable stiffness. At 2000 Hz, the two directions 

of the dominant waves can be seen once again. They are due to the interaction between the 

cylindrical shell and the stiffeners that rigidify the shell along the circumference. 

 

These results will be analyzed in greater detail in a future paper. They are presented here to 

illustrate the numerical approach. The computing times are reasonable (around 100 seconds at 

500 Hz and around 250 seconds at 2000 Hz on a PC Pentium IV 3GHz monoprocessor). They 

increase with frequency as the maximal circumferential order N  and the sampling wavenumber 
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xk  increase with frequency. However the approach presented is able to predict the behaviour of a 

submarine hull up to several KHz. This has been made possible by assembling a dedicated model 

of the cylindrical shell immerged in water with the finite element models of its internal frames 

 

FIG. 11. Radial displacements of the shell (dB, ref. 1 m2/N) in the wavenumber space:  

upper, 500 Hz; lower, 2000 Hz. 
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FIG. 12. Radial displacements levels of the shell (dB, ref. 1 m.N-1): 

 upper, 500 Hz; lower, 2000 Hz. 

 

8 CONCLUSIONS 

The circumferential admittance approach (CAA) presented in this paper is a powerful tool for 

assembling a numerical model of a fluid loaded shell with the finite element models of its internal 

frames. This approach consists in partitioning the problem so that the fluid loaded shell 

constitutes one subsystem and the frames constitute other subsystems. These subsystems are 
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coupled together by assembling the circumferential admittances that characterised each 

subsystem independently. The Finite Element method can be used to evaluate the admittances of 

each type of internal frame. Three different approaches have been presented in this paper to 

estimate the shell admittances. It can be seen that the quality of the results of CAA strongly 

depends on the accuracy of the calculation of the shell admittances. The best results are obtained 

by an approach that combines the analytical result of a simplified shell problem and the 

numerical result that quantifies the difference between the simplified problem and the full 

problem. One has shown that the comparison of CAA results with a reference result on a fluid 

loaded uniformly stiffened shell is then quite good.  

The intermediate results of this approach are the displacements and the pressures expressed in the 

wavenumber space. They are useful for understanding the physical characteristics involved in the 

acoustic radiation of the shell. This approach permits evaluating the vibratory field of a 

submarine pressure hull and its radiated pressure field, both in the near and far fields, within 

reasonable computing times. It will permit improving knowledge regarding acoustic stealth, 

target strength and self-noise problems in the submarines. It will be used to study the influence of 

the bulkheads, the ring-stiffeners, their spacing on the vibrations of the shell and its radiated 

pressure.  

 In the future, to validate definitely this approach, one should compare their results with reference 

ones which could be obtained in the low frequencies with finite element and boundary element 

methods ([5]). Comparisons with finite element calculations (NASTRAN code) had already been 

performed by the present authors on in vacuo stiffened shells (see some comparisons in [37]). 

Test cases were composed of shells with non uniformly spaced stiffeners and with axisymmetric 

bulkheads. Comparisons with CAA for radial or longitudinal excitations show good agreement 

between the two methods, as well as for radial, tangential and longitudinal displacements. 
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Comparisons on cases of shells immersed in water (i.e. fluid loaded shell) are however necessary 

to validate definitely this approach. 
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Figure captions 

 

 

FIG. 1. (a), Illustration of the framed shell immerged in water ; (b), Partitioning and coupling 

forces. 

 

FIG. 2. Deformation of a stiffener cross-section for a moment excitation. 1000 Hz, n=0.  

T section: 300 mm x 60 mm / 60 mm x 300 mm. R=5 m. Material: steel ( 005.0 ).  

 

FIG. 3. Comparison of the circumferential admittances frame~
MY calculated with NASTRAN (full 

line) and with the 1D-beam model (dash line). 1000 Hz (dB ref. 1 N-1). 

 

FIG. 4. Infinite cylindrical shell immersed in water and excited by line excitations at x=0. 

 

FIG. 5. Example of the radial displacement level (dB, ref. 1 m2.N-1) in the wavenumber domain.  

Steel shell of 5 m radius and 30 mm thick immerged in water ( 005.0 ). Case of an axial load. 

 

FIG. 6: Example of spectrum for  0,
~~

xM k (solid line) and  0,
~~

xM k  (dashed line). Results at 

1000Hz  (dB, ref. 1 m.N-1). Steel shell of 5 m radius and 30 mm thick immerged in water 

( 05.0 ). 
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FIG. 7: Comparison of the amplitudes of the input admittance MY
~

for different values of the 

sampling wavenumber xk  and with/without the acceleration of convergence: method 1 

with 1m 25 xk , dashed line; method  1 with 1m 50 xk , dashed-dotted line; method  1 with 

1m 100 xk , dotted line; method  1 with 1m 200 xk , circle markers; method 3 

with 1m 25 xk , solid line. Results at 1000 Hz (dB, ref. 1 N-1). Steel shell of 5 m radius and 30 

mm thick immerged in water ( 05.0 ). 

 

FIG. 8: Shell displacement level on the axis 180 . Results at 1000 Hz (stiffeners’ position: 

vertical dash lines, dB ref. 1 m.N-1). Comparison of different calculations.  

Upper part: Solid line, reference; dotted line, CAA with shellY
~

of Sec. 4.2; dash-dotted line, CAA 

with shellY
~

of Sec. 4.3; Lower part: Solid line, reference; dash line, CAA with shellY
~

of Sec. 4.4. 

 

FIG. 9. Comparison of WFY
~

 (upper, dB ref. 1 m2.N-1) and MY

~
 (lower, dB ref. 1 N-1) obtained by 

the three methods: solid line, Sec. 4.4; dashed line, Sec. 4.2; dashed-dotted line, Sec. 4.3. 

 

FIG. 10. Submarine hull application: Cylindrical shell: 5 m radius, 42.3 m length, 30 mm thick. 

Stiffeners : (a), spacing 0.75 m, T-cross-section (mm): 300x60/60x300; (b), spacing 0.5 m, T-

cross-section (mm): 200x15/15x200; (c), spacing: 0.6 m, T-cross section (mm): 200x25/15x200. 

 

FIG. 11. Radial displacements of the shell (dB, ref. 1 m2/N) in the wavenumber space:  

upper, 500 Hz; lower, 2000 Hz. 
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FIG. 12. Radial displacements levels of the shell (dB, ref. 1 m.N-1): 

 upper, 500 Hz; lower, 2000 Hz. 

 

 


