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Abstract: Adaptive observers are recursive algorithms for joint estimation of both state
variables and unknown parameters. Usually some persistent excitation (PE) condition is required
for the convergence of adaptive observers. However, in practice, it may happen that the
PE condition is not satisfied, because the available sensor signals do not contain sufficient
information for the considered recursive estimation problem, which is ill-posed. To remedy the
lack of PE condition, inspired by typical methods for solving ill-posed inverse problems, this
paper proposes a regularized adaptive observer for general linear time varying (LTV) systems.
Two regularization terms are introduced in both state and parameter estimation recursions, in
order to preserve the state-parameter decoupling transformation involved in the design of the
adaptive observer. Like in typical ill-posed inverse problems, regularization implies an estimation
bias, which can be reduced by using prior knowledge about the unknown parameters.

Keywords: Adaptive observer, regularization, persistent excitation, linear time varying (LTV)
systems, joint state-parameter estimation.

1. INTRODUCTION

Dynamic systems in various engineering fields are often
described in state-space form, with only part of the state
variables directly accessible through sensor instruments.
State estimation is a thus a common task for different
engineering purposes. Moreover, some model parameters
may be unknown a priori, due to variations in the produc-
tion of system components, or because of some evolution
reflecting aging or degradation of the underlying dynamic
system. Adaptive observers are recursive algorithms for
joint estimation of both state variables and unknown pa-
rameters, based on available sensor measurements. The
design of adaptive observers is, since a few decades, an
active research area. Early contributions about linear time
invariant (LTI) systems go back to the seventies (Kreis-
selmeier, 1977; Ioannou and Kokotovic, 1983), then some
classes of nonlinear systems are studied (see e.g. (Bastin
and Gevers, 1988; Marino and Tomei, 1995; Cho and
Rajamani, 1997; Besançon et al., 2006; Farza et al., 2009))
while the results about LTI and linear time varying (LTV)
systems continue to be completed (Zhang, 2018).

In most reported results about adaptive observer design,
including those recalled above, in addition to the tradi-
tional observability condition for state estimation, a per-
sistent excitation (PE) condition is required to ensure the
convergence of the algorithms. Roughly speaking, the PE
condition implies sufficiently rich information in sensor
signals guaranteeing the well-posedness of the joint state-
parameter recursive estimation problem. It is well known
in classical adaptive estimation problems that PE is essen-
tial for parameter estimation (Narendra and Annaswamy,

1987; Shimkin and Feuer, 1987; Narendra and Annaswamy,
1989; Astrom and Wittenmark, 1994).

However, in practice, it may happen that the PE condition
associated to an adaptive observer is not satisfied, and
this situation may persist for different adaptive observers,
because intrinsically the available sensor signals do not
contain sufficient information for the considered recursive
estimation problem. In other words, the considered recur-
sive estimation problem is ill-posed. What can be done in
this case? The easiest answer would be: it is not possible to
apply adaptive observers. However, it is well known that
the so-called inverse problems in various engineering fields
are often ill-posed (Chavent, 2010), yet practical solutions
are frequently implemented and applied. Is it possible to
do something similar for adaptive observers?

In this paper, like in typical solutions to ill-posed inverse
problems, regularization will be introduced into the adap-
tive observer initially presented in (Zhang, 2002) for gen-
eral multi-input multi-output (MIMO) LTV systems. The
regularization technique is also known in robust adaptive
control, mainly focused on LTI systems (Ioannou and Sun,
1996). Because the considered LTV system adaptive ob-
server is based on a state-parameter decoupling technique,
instead of explicitly minimizing some criterion, the pro-
posed regularization is not introduced as a penalty term
within a minimized criterion. Moreover, the introduced
regularization must preserve the decoupling transforma-
tion involved in the design of the adaptive observer.

It is widely acknowledged that the introduction of regu-
larization in estimation problems generally leads to biased
estimates. This is the price to pay to solve such ill-posed



problems. Nevertheless, prior knowledge about model pa-
rameters, if available, can be used to reduce the bias. These
aspects of regularization will be discussed in this paper
after the presentation of the proposed regularized adaptive
observer.

2. PROBLEM FORMULATION

Throughout this paper, for any vector v, its Euclidean
norm is denoted by ‖v‖. For any matrix M , its matrix
norm induced by the Euclidean vector norm is denoted by
‖M‖. For a symmetric matrix M , the inequality M > 0
(or M ≥ 0) means M is (semi)-positive definite.

This paper will consider continuous-time MIMO LTV
systems in the form of

ẋ(t) = A(t)x(t) +B(t)u(t) + Φ(t)θ + w(t) (1a)

y(t) = C(t)x(t) + v(t) (1b)

where x(t) ∈ Rn is the state, u(t) ∈ Rq the input (control),
y(t) ∈ Rm the output, ẋ(t) = dx(t)/dt, θ ∈ Rp the
unknown constant parameter vector, A(t), B(t), C(t),Φ(t)
are appropriate size matrix-valued functions of the time
t, w(t) ∈ Rn and v(t) ∈ Rm represent uncertainties in
the state and output equations. At the initial instant t0,
the initial state x(t0) is unknown. In order to keep the
problem formulation and analysis within the framework of
ordinary differential equations (ODE), without resorting
to the continuous time stochastic system theory, it is
assumed that the uncertainties w(t) and v(t) are unknown
arbitrary bounded functions of t.

The system matrices A(t), B(t), C(t) are typically constant
(case of LTI systems), periodic, or depending on some
known scheduling parameter (LPV systems), whereas the
matrix Φ(t) often has a different nature, typically filled
with exogenous signals (inputs), sometimes with injected
outputs.

In existing adaptive observer design methods, it is usu-
ally assumed that the signals contained in Φ(t) involve
sufficiently rich variations so that the parameter vector
θ can be estimated by a recursive algorithm. Such an
assumption is usually known as a persistent excitation
(PE) condition, as the one recalled in the next section (see
Assumption 3). The lack of excitation may imply that the
unknown parameter vector θ is not uniquely determined by
the available information assumed above. In other words,
the PE condition ensures that the recursive estimation of
the parameter vector θ is a well-posed problem.

In practice, it may happen that the PE condition is
not satisfied. The purpose of this paper is to jointly
estimate the state x(t) and the parameter θ from the
input u(t), the output y(t) and the time varying ma-
trices A(t), B(t), E(t), C(t),Φ(t), despite deficient excita-
tions. Like in the study of typical inverse problems, regu-
larization will be used to address the lack of PE condition.

Assumption 1. (boundedness and continuity). A(t), B(t),
C(t),Φ(t) are bounded matrix-valued piecewise contin-
uous functions of t, and u(t), w(t), v(t) are bounded
vector-valued piecewise continuous functions of t. While
A(t), B(t), C(t),Φ(t), u(t) are known or available from sen-
sor signals, w(t), v(t) are unknown. 2

Assumption 2. (observability). The pair [A(t), C(t)] is uni-
formly completely observable, in the sense of the uniform

positive definiteness of the observability Gramian, as de-
fined in (Kalman, 1963). 2

3. RECALLING A CONVENTIONAL ADAPTIVE
OBSERVER

This section recalls a general adaptive observer for MIMO
LTV systems, whose convergence has been established
under a PE condition. It will serve as the basis for the
results in the next section addressing deficient excitations
by means of regularization.

The adaptive observer for the LTV system (1) proposed
in (Zhang, 2002) is in the form of

˙̂x(t) = A(t)x̂(t) +B(t)u(t) + Φ(t)θ̂(t)

+K(t)[y(t)− C(t)x̂(t)]

+ Υ(t)ΓΥT (t)CT (t)[y(t)− C(t)x̂(t)] (2a)

˙̂
θ(t) = ΓΥT (t)CT (t)[y(t)− C(t)x̂(t)] (2b)

Υ̇(t) = [A(t)−K(t)C(t)]Υ(t) + Φ(t), (2c)

with the initialization

x̂(t0) = x̂0 (3a)

θ̂(t0) = θ̂0 (3b)

Υ(t0) = 0n×p, (3c)

where x̂(t) ∈ Rn is the state estimate, θ̂(t) ∈ Rp the
parameter estimate, Υ(t) ∈ Rn×p a matrix of auxiliary
variables, K(t) ∈ Rn×m the state estimation gain matrix,

Γ ∈ Rp×p the parameter gain matrix, x̂0 ∈ Rn and θ̂0 ∈ Rp
are initial values of the state and parameter estimates,
and 0n×p is the n× p zero matrix initializing the auxiliary
matrix Υ(t).

Remark 1. The last term in equation (2a) is equal to

Υ(t)
˙̂
θ(t). It compensates for the error due to the replace-

ment of the true θ by its estimate θ̂(t) in equation (2a).
This extra term plays an important role in the convergence
analysis of the adaptive observer. See (Zhang, 2002) for
more details. 2

In general, the state estimation gain K(t) is chosen such
that, if the term Φ(t)θ was omitted in the state equa-
tion (1a), K(t) would lead to a convergent state observer
in the form of

˙̂x(t) = A(t)x̂(t) +B(t)u(t) +K(t)[y(t)− C(t)x̂(t)]. (4)

In the time invariant (LTI) case, various methods for
designing such observer gains are available. General time
varying (LTV) systems are less well studied. In this case,
observer gain design can be based on the well-known
Kalman filter or on the Kalman-like observer (Besançon
et al., 2006). Despite the deterministic framework consid-
ered in this paper, the Kalman gain will be used for K(t),
as an general LTV observer gain ensuring the convergence
of the observer (4) (see Remark 2 below). This gain K(t)
is computed as

Ṗ (t) = A(t)P (t) + P (t)AT (t) +Q(t)

− P (t)CT (t)R−1(t)C(t)P (t) (5)

K(t) = P (t)CT (t)R−1(t) (6)

with a positive definite initial matrix P (t0). In the Kalman
filter literature, usually P (t) ∈ Rn×n is known as the
covariance matrix of the state estimate, Q(t) ∈ Rn×n and



R(t) ∈ Rm×m are respectively the state and output noise
covariance matrices. In this paper, the considered prob-
lem is formulated in a deterministic framework, therefore
Q(t), R(t) are treated as tuning parameters, typically cho-
sen as constant matrices, both symmetric positive definite.

Remark 2. It is known (Kalman, 1963; Jazwinski, 1970)
that, under Assumption 2 (uniform complete observabil-
ity), and under the uniform complete controllability as-
sumption (which is trivially satisfied when Q(t) is chosen
to be a positive definite matrix), the Kalman gain K(t) is
bounded and ensures the exponential stability of the error
dynamics of the state observer (4). More specifically, the
Kalman gain K(t) ensures that the homogenous ODE

ξ̇(t) = [A(t)−K(t)C(t)]ξ(t), (7)

with ξ(t) ∈ Rn, is exponentially stable. 2

Assumption 3. (PE, assumed in this section only). The
matrix Φ(t) contains sufficient variations such that the
matrix Υ(t), which is driven by Φ(t) through (2c), satisfies∫ t+T

t

ΥT (τ)CT (τ)C(τ)Υ(τ)dτ ≥ αIp, (8)

for some positive constants T and α, and for all t ≥ t0. 2

Remark 3. The auxiliary matrix Υ(t) contains signals ob-
tained by linearly filtering Φ(t) through the linear fil-
ter (2c). Therefore, Assumption 3 is indeed about the
properties of Φ(t), which is usually filled with exogenous
signals (inputs), sometimes with injected outputs. For LTI
systems (with constant matrices A,C,K), equation (2c)
becomes an LTI filter of Φ(t). In this case the PE assump-
tion can be expressed in terms of the frequency compo-
nents of Φ(t).

It is shown in (Zhang, 2002) that, under Assumptions 1,
2 and 3, if K(t) is chosen such that the homogenous
system (7) is exponentially stable, then, with any initial

state estimate x̂0 and any initial parameter estimate θ̂0,
the state and parameter estimation errors of the adaptive
observer (2) both converge exponentially to zero, if the un-
certainties w(t), v(t) are omitted (w(t) = 0 and v(t) = 0).
Without omitting w(t), v(t), which are assumed bounded
(Assumption 1), the state and parameter estimation errors
remain bounded.

4. REGULARIZED ADAPTIVE OBSERVER

In what follows, no PE condition will be assumed. In
particular, let us forget Assumption 3.

In order to overcome the lack of PE condition, the adaptive
observer (2) is modified as

˙̂x(t) = A(t)x̂(t) +B(t)u(t) + Φ(t)θ̂(t)

+K(t)[y(t)− C(t)x̂(t)]

+ Υ(t)ΓΥT (t)CT (t)[y(t)− C(t)x̂(t)]

−Υ(t)ΓΛ[θ̂(t)− θ̄] (9a)

˙̂
θ(t) = ΓΥT (t)CT (t)[y(t)− C(t)x̂(t)]

−ΓΛ[θ̂(t)− θ̄] (9b)

Υ̇(t) = [A(t)−K(t)C(t)]Υ(t) + Φ(t), (9c)

with the same initial conditions as in (3) and the Kalman
gain K(t) as in (6). The only modifications w.r.t. the adap-

tive observer (2) are the extra (blue) terms −Υ(t)ΓΛ[θ̂(t)−

θ̄] in (9a) and −ΓΛ[θ̂(t) − θ̄] in (9b), with a symmetric
positive definite matrix Λ ∈ Rp×p and a vector θ̄ ∈ Rp.
The positive definite matrix Λ controls the degree of
regularization added in the algorithm. The vector θ̄ is a
guess of the true value of θ. Naturally, θ̄ can be set to

θ̂0, the initial parameter estimate used in (3b), but this
choice is not necessary. It is possible to take θ̄ = 0 if no
prior knowledge about θ is available.

Usually, to regularize an estimation algorithm designed
by minimizing some criterion, a chosen penalty term is
added to the minimized criterion. In contrast, in the
proposed algorithm (9), two regularization terms have
been added in (9a) and in (9b), in order to preserve the
state-parameter decoupling effect of the transformation
defined later in (12), as initially introduced in (Zhang,
2002). This transformation will be used in Proposition 2.

Before analyzing the error dynamics of this regularized
adaptive observer, let us first ensure the boundedness of
the auxiliary variable Υ(t) ∈ Rn×p.
Proposition 1. Under Assumptions 1 and 2, the auxiliary
variable Υ(t) driven by Φ(t) through (9c) is bounded. 2

Proof. The Kalman gain K(t) is bounded and ensures
the exponential stability of the homogenous system (7),
according to Remark 2. Then, based on Lemma 1 (in the
appendix at the end of this paper), the auxiliary variable
Υ(t) driven by bounded Φ(t) through (9c) is bounded. 2

The behavior of the state and parameter estimation errors,
namely

x̃(t) , x(t)− x̂(t) (10)

θ̃(t) , θ − θ̂(t), (11)

will be analyzed in this paper. As an intermediate step,
let us define the decoupling transformation, as originally
introduced in (Zhang, 2002),

η(t) , x̃(t)−Υ(t)θ̃(t), (12)

and analyze the behavior of this transformed error variable
η(t).

Proposition 2. The transformed error variable η(t) defined
in (12) is governed by the ODE

η̇(t) = [A(t)−K(t)C(t)]η(t) + w(t)−K(t)v(t). (13)

Moreover, under Assumptions 1 and 2, the homogeneous
part of this ODE is exponentially stable, and there exists
a positive constant a such that, for sufficiently large t so
that the effect of the initial value η(t0) is negligible,

‖η(t)‖ ≤ a (w̌ + Ǩv̌), (14)

where w̌, v̌ and Ǩ are respectively upper bounds of
‖w(t)‖, ‖v(t)‖ and ‖K(t)‖. 2

Proof. Rewrite (9a) as

˙̂x(t) = A(t)x̂(t) +B(t)u(t) + Φ(t)θ̂(t)

+K(t)[y(t)− C(t)x̂(t)]

+ Υ(t)
˙̂
θ(t). (15)

Then it is straightforward to derive from (1) and (15) that

˙̃x(t) = [A(t)−K(t)C(t)]x̃(t) + Φ(t)θ̃(t)−Υ(t)
˙̂
θ(t)

+ w(t)−K(t)v(t). (16)

Some simple computations with the variable η(t) defined
in (12) then lead to



η̇(t) = [A(t)−K(t)C(t)]η(t)

+
{

[A(t)−K(t)C(t)]Υ(t) + Φ(t)− Υ̇(t)
}
θ̃(t)

−Υ(t)
˙̂
θ(t)−Υ(t)

˙̃
θ(t) + w(t)−K(t)v(t) (17)

= [A(t)−K(t)C(t)]η(t)

−Υ(t)
˙̂
θ(t)−Υ(t)

˙̃
θ(t) + w(t)−K(t)v(t). (18)

where the important simplification {· · · } = 0 was based
on (9c).

The true parameter vector θ is assumed constant, therefore

θ̇ = 0, and
˙̃
θ(t) = θ̇ − ˙̂

θ(t) = − ˙̂
θ(t). Then,

−Υ(t)
˙̂
θ(t)−Υ(t)

˙̃
θ(t) = −Υ(t)[

˙̂
θ(t)− ˙̂

θ(t)] = 0, (19)

and equation (18) becomes (13), which is now proved.

It then follows from Remark 2 that, under Assumptions 1
and 2, the homogenous part of (13), which is identical
to (7), is exponentially stable.

Now apply Lemma 1 (in the appendix of this paper)
to (13), whose homogenous part is already shown to be
exponentially stable with some α and β. The terms w(t)−
K(t)v(t) correspond to U(t), and therefore w̌ + Ǩv̌ to γ.

For sufficiently large t, the exponentially vanishing last
term in (42) is negligible, and the remaining term αγ/β
corresponds to the right hand side of (14), which is then
proved with a = α/β. 2

Proposition 3. The parameter estimation error θ̃(t) satis-
fies the ODE

˙̃
θ(t) = −Γ[ΥT (t)CT (t)C(t)Υ(t) + Λ]θ̃(t)

− ΓΥT (t)CT (t)C(t)η(t)

− ΓΥT (t)CT (t)v(t)

+ ΓΛ(θ − θ̄). (20)

2

Proof.

˙̃
θ(t) = θ̇ − ˙̂

θ(t) = 0− ˙̂
θ(t) (21)

= −ΓΥT (t)CT (t)[y(t)− C(t)x̂(t)]

+ ΓΛ[θ̂(t)− θ̄] (22)

Notice that, notably following (12),

y(t)− C(t)x̂(t) = C(t)x̃(t) + v(t) (23)

= C(t)[Υ(t)θ̃(t) + η(t)] + v(t), (24)

then
˙̃
θ(t) = −ΓΥT (t)CT (t)C(t)Υ(t)θ̃(t)

− ΓΥT (t)CT (t)C(t)η(t)

− ΓΥT (t)CT (t)v(t)

+ ΓΛ[θ̂(t)− θ̄]. (25)

Rewrite the last term as

ΓΛ[θ̂(t)− θ̄] = −ΓΛ[θ − θ̂(t)− θ + θ̄] (26)

= −ΓΛθ̃(t) + ΓΛ(θ − θ̄), (27)

and combine −ΓΛθ̃(t) with the other homogeneous term,
then (20) is proved. 2

Now let us study the stability of the homogeneous part of
the ODE (20).

Proposition 4. Under Assumptions 1 and 2, The homoge-
neous part of the ODE (20), namely

ϑ̇(t) = −Γ[ΥT (t)CT (t)C(t)Υ(t) + Λ]ϑ(t), (28)

with ϑ(t) ∈ Rp, is exponentially stable. More specifically,
let Ξ(t, t0) ∈ Rp×p be the associated state transition
matrix such that ϑ(t2) = Ξ(t2, t1)ϑ(t1) for all time instants
t1, t2 ≥ t0, then

‖Ξ(t, t0)‖ ≤
√
γmax

γmin
e−λminγmin(t−t0) (29)

for all t ≥ t0, with γmax and γmin denoting respectively
the largest and the smallest singular values of Γ, and λmin

the smallest singular value of Λ. 2

Proof. The matrix ΥT (t)CT (t)C(t)Υ(t) is always positive
semidefinite, then

ΥT (t)CT (t)C(t)Υ(t) + Λ ≥ Λ ≥ λminIp, (30)

where λmin > 0 is the smallest singular value of the
positive definite matrix Λ. Then, according to Lemma 2
in the appendix of this paper, the homogeneous ODE (28)
is exponentially stable, and the associated state transition
matrix satisfies (29). 2

Proposition 5. Under Assumptions 1 and 2, for sufficiently
large t so that the effect of the initial θ̃(t0) is negligible,
there exist positive constants c1, c2, c3 such that the pa-
rameter estimation error ‖θ̃(t)‖ is upper bounded as

‖θ̃(t)‖ ≤ c1w̌ + c2v̌ + c3‖θ − θ̄‖, (31)

with w̌ and v̌ denoting respectively upper bounds of ‖w(t)‖
and ‖v(t)‖. 2

Proof. The homogeneous part of the ODE (20), namely
(28), is exponentially stable, with its state transition
matrix satisfying (29).

Apply Lemma 1 to (20) with

α =

√
γmax

γmin
, β = λminγmin, (32)

U(t) = −ΓΥT (t)CT (t)C(t)η(t)

− ΓΥT (t)CT (t)v(t) + ΓΛ(θ − θ̄), (33)

then, for sufficiently large t, so that the effect of the initial
θ̃(t0) is negligible,

‖θ̃(t)‖ ≤

√
γmax

γmin

λminγmin
Ǔ , (34)

where Ǔ is an upper bound of U(t) expressed in (33). Basic
properties of the Euclidean vector norm and of the induced
matrix norm lead to

‖U(t)‖ ≤ ‖Γ‖‖Υ(t)‖‖C(t)‖2‖η(t)‖
+ ‖Γ‖‖Υ(t)‖‖C(t)‖‖v(t)‖+ ‖Γ‖‖Λ‖‖θ − θ̄‖
≤ γmaxΥ̌Č2η̌ + γmaxΥ̌Čv̌ + γmaxλmax‖θ − θ̄‖

where γmax and λmax are respectively the larges singular
values of Γ and Λ, Υ̌, Č, η̌, v̌ are respectively upper bounds
of ‖Υ(t)‖, ‖C(t)‖, ‖η(t)‖, ‖v(t)‖ .

Note that Υ(t) is bounded according to Proposition 1. For
large t, η(t) satisfies (14). Then

‖U(t)‖ ≤ γmaxΥ̌Č2 a

b
(w̌ + Ǩv̌) + γmaxΥ̌Čv̌

+ γmaxλmax‖θ − θ̄‖. (35)



The right hand side of this inequality is an upper bound of
‖U(t)‖, which is a linear combination of w̌, v̌ and ‖θ− θ̄‖.
This result, combined with (34) then proves (31). 2

Remark 4. Proposition 5 indicates that the regularization
term implies a bias of the parameter estimate proportional
to ‖(θ−θ̄)‖. Therefore, whenever possible, prior knowledge
should be used for choosing θ̄ as close as possible to the
unknown true parameter value θ, in order to reduce the
bias. Proposition 4 shows that the convergence rate of the
error dynamics depends on Λ and Γ. In general, a faster
convergence is related to a higher sensitivity to uncertain-
ties (or noises). The choice of the regularization parameter
Λ could be made following the Bayesian approach, if a
stochastic model was established. This approach will be
studied in future works. 2

5. NUMERICAL SIMULATION EXAMPLE

Consider the system[
ẋ1
ẋ2
ẋ3

]
=

[−1 1 0
−1 0 0
0 −1 −1

][
x1
x2
x3

]
+

[−1
0
0

]
u+

[
θ1
θ2
θ3

]
+

[
w1

w2

w3

]
[
y1
y2

]
=

[
1 0 0
0 0 1

][x1
x2
x3

]
+

[
v1
v2

]
.

Intuitively, the corresponding constant matrix Φ(t) = I3
may not be sufficiently exciting. This fact is confirmed as
follows.

Let σ ∈ R be any constant value. Make a state variable
change with z2 = x2 + σ replacing x2, whereas x1 and x2
remain unchanged. After this variable change, the state
and output equations are exactly as before, except that θ1
and θ3 are replaced respectively by (θ1−σ) and (θ3+σ). This
result implies that all parameter pairs θ1, θ3 corresponding
to the same sum value θ1+θ3 lead to the same input-output
relationship! It is thus impossible to uniquely determine θ1
and θ3 from input-output data.

For the simulation example presented below, the input u(t)

u(t) = sin(t) + cos(
√

7t), (36)

the parameter vector θ = [1; 0.7; 0.5], and the initial state
x(0) = [1; 1; 1]. The uncertainty terms are simulated as

w(t) = 0.1[∆(t); ∆(t/2); ∆(t/3)] (37)

v(t) = 0.01[∆(t); ∆(t/2)] (38)

with the triangular wave function

∆(t) , 4 |t− bt+ 0.5c| − 1,

and the notation bxc denoting the largest integer less than
or equal to x ∈ R.

For the regularized adaptive observer, the state estimation
gain K(t) is computed with P (0) = I3, Q(t) = 0.1I3,
R(t) = 0.01I2, the parameter estimation gain Γ = 20I3,
and the regularization parameter matrix Λ = 0.0001I3.

The initial state estimate x̂0 and parameter estimate θ̂0
are set to zero values, as well as the prior parameter guess
θ̄.

As shown in Figures 1 and 2, despite the deficient ex-
citation and the simulated uncertainties, the state and
parameter estimates are close to their simulated (true)
values, after a transient period of about 2 seconds. The

two parameter estimates θ̂1(t) and θ̂3(t) have similar bias
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Fig. 1. Simulated states (in blue) and their estimates (in
red).
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Fig. 2. Simulated parameter values (in blue) and their
estimates (in red).

values, but of opposite signs. This fact is due to the
indetermination of the two parameters: all parameter pairs
θ1, θ3 corresponding to the same sum value θ1+ θ3 lead to
the same input-output relationship.

6. CONCLUSION

The convergence of adaptive observers is usually ensured
by some persistent excitation condition. In order to apply
such algorithms when this condition is not satisfied, a
regularized adaptive observer has been proposed in this
paper, inspired by the usual practice for solving ill-posed
inverse problems. In future studies, regularization will be
studied in a stochastic framework in order to guide the
tuning of the regularization parameter. The regularization
method proposed in this paper is not the only possible
choice. Other possibilities will also be investigated in
future studies.

APPENDIX

Lemma 1. Assume that the homogeneous LTV ODE

ξ̇(t) = A(t)ξ(t), (39)



with ξ(t) ∈ Rn and A(t) ∈ Rn×n, is exponentially stable,
such that its state transition matrix Φ(t, t0) ∈ Rn satisfies

‖Φ(t, t0)‖ ≤ αe−β(t−t0) (40)

for some positive constants α, β and for all t ≥ t0. Then,
the solution of the non homogeneous LTV matrix ODE

Ẋ(t) = A(t)X(t) + U(t), (41)

with X(t) ∈ Rn×m, which is driven by the bounded input
U(t) ∈ Rn×m satisfying ‖U(t)‖ ≤ γ for all t ≥ 0, satisfies

‖X(t)‖ ≤ αγ

β
+ α

(
‖X(t0)‖ − γ

β

)
e−β(t−t0). (42)

2

Remark that this result holds also for m = 1, when X(t)
and U(t) are column vectors.

Proof.

X(t) = Φ(t, t0)X(t0) +

∫ t

t0

Φ(t, s)U(s)ds, (43)

then

‖X(t)‖ ≤ ‖Φ(t, t0)‖‖X(t0)‖+

∫ t

t0

‖Φ(t, s)‖‖U(s)‖ds

≤ αe−β(t−t0)‖X(t0)‖+

∫ t

t0

αe−β(t−s)γds

= α‖X(t0)‖e−β(t−t0) +
αγ

β

(
1− e−β(t−t0)

)
.

Inequality (42) is then proved. 2

Lemma 2. Consider the homogeneous LTV state equation

ζ̇(t) = −ΓΩ(t)ζ(t) (44)

where ζ(t) ∈ Rp is the state vector, Ω(t) ∈ Rp×p is a
bounded symmetric positive definite matrix-valued piece-
wise continuous function of t, and Γ is a symmetric positive
definite matrix. If Ω(t) ≥ βIp for all t ≥ t0, then ζ(t)
converges exponentially to zero with a convergence rate
proportional to β. More specifically, let Φ(t, t0) ∈ Rp×p be
the state transition matrix of (44) such that

ζ(t2) = Φ(t2, t1)ζ(t1) (45)

for any time instants t1, t2 ≥ t0, then

‖Φ(t, t0)‖ ≤
√
γmax

γmin
e−βγmin(t−t0) (46)

for all t ≥ t0, with γmax and γmin denoting respectively
the largest and the smallest singular values of Γ. 2

Proof. Consider the Lyapunov function candidate

V (ζ(t)) = ζT (t)Γ−1ζ(t), (47)

then
d

dt
V (ζ(t)) = −2ζT (t)Ω(t)ζ(t) (48)

≤ −2βζT (t)ζ(t) (49)

≤ −2βγminζ
T (t)Γ−1ζ(t) (50)

where γmin is the smallest singular value of Γ. Then

d

dt
V (ζ(t)) ≤ −2βγminV (ζ(t)). (51)

By Grönwall’s inequality, for all t ≥ t0,

V (ζ(t)) ≤ V (ζ(t0))e−2βγmin(t−t0). (52)

Let γmax denote the largest singular value of Γ, then

ζT (t)γ−1
maxζ(t) ≤ V (ζ(t)) ≤ V (ζ(t0))e−2βγmin(t−t0) (53)

≤ ζT (t0)γ−1
minζ(t0)e−2βγmin(t−t0). (54)

Therefore,

‖ζ(t)‖2 ≤ γmax

γmin
‖ζ(t0)‖2e−2βγmin(t−t0) (55)

and

‖ζ(t)‖ ≤
√
γmax

γmin
‖ζ(t0)‖e−βγmin(t−t0), (56)

which holds for any ζ(t0) ∈ Rp, implying (46). 2
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