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Abstract—This paper presents dynamic models associated to an
experimental Diesel engine platform. Stability, controllability and
observability analysis of the models have been performed. While
the impact on human’s health of NOx emissions is addressed, a
state-feedback control procedure is presented in order to control
the air flow inside the intake manifold to the cylinders and
the pressure inside the combustion chamber of the experimental
Diesel engine. The proposed solution of optimal control of the
combustion regime brings important improvements of the Diesel
engine: NOx reduction and fuel saving.

Index Terms—Diesel engine, models, state-feedback control,
optimal control, genetic algorithms

I. INTRODUCTION

The Diesel engine has transformed the modern world. It
is a versatile engine, having been used in many applications
such as ships and trains, submarines and vans, tractors and
motorcycles. The vast majority of the world’s commercial,
industrial, agricultural, mining and military vehicles are pow-
ered by Diesel. A 19th century invention became the 21st
century’s most important engine. There have been performed
many analyses with respect to the pros and cons of Diesel
engines utilization with respect to human health. On one hand,
it is desired the NOx reduction with a direct impact on humans
health and environment pollution, and, on the other hand,
reduction of consumed fuel. As a NOx reduction technology,
we can point out the interest in urea-based selective catalytic
reduction (SCR) [1], [2], [3], [4], [5].

Blended bio fuel is a effective alternative fuel for fossil fuels
in requisites of pollution reduction in emission and efficiency
increased in engine; particulate matter (PM) and NOx emitted
from Diesel engines is simultaneously reduced by a barrier-
type catalyst packed nonthermal plasma (NTP) application [6].

Experimental results prove that it is possible to reduce
pollutant emissions in addition to fuel consumption, even
with a small hybridization level. In this case, transient torque
optimization is the key factor [7].

Technique of ozone injection to induce reactions leading
to NO conversion in a diesel engine exhaust and subsequent
adsorption by lignite ash, an industrial waste from lignite
coal red power plants [8]. Exhaust gas recirculation (EGR)
is an important feature targeted on NOx emission reduction
on marine Diesel engines. Recycled exhaust gas, at part load,
can be used to reduce diesel engine NOx emissions [9].

Section II presents the dynamic models associated to the
combustion regime of the experimental Diesel engine. The
data used related to the engine models was obtained from
the experimental platform present at the University Picardie
Amiens, France [13], [14].

Section III presents the theoretical aspects related to the
stability, controllability and observability of the associated
engine models, for which control laws are discussed in sections
IV and V [15], [16], [17].

The performance in simulation of the control laws and a
comparative analysis of the results can be observed in section
VI.

II. ENGINE MODELS

A. State-space model with linear parameter-varying
We consider the next state-space model with linear

parameter-varying [18]:
{

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)
y(t) = C(ρ(t))x(t) +D(ρ(t))u(t)

(1)

where the matrices A, B, C and D depend on an unknown
exogenous time-varying parameter, ρ(t). In this paper, we
consider this parameter as an internal one, thus it represents a
state of the mathematical model.

Given the fact that A, B, C and D have a non-linear form,
we want to obtain an approximate model of reduced order, but
whose simplification to be compensated by the control laws
further developed.

In order to obtain the mathematical model of the engine,
we start from the ideal gas law:

pV = νRT (2)

where ν is the quantity of ideal gas inside a sealed tube of
volume V , having the pressure p and the absolute temperature
T (i.e. Kelvin temperature scale). R is the ideal gas constant
having a value of R = 8.314 J

molK .
By deriving the equation (2) with respect to time and writing

one differential equation for intake and one for exhaust, we
obtain the following equations which describe the dynamic of
the system:

ṗi =
RTi

Vi
(Wci + Fie) +

Ṫi

Ti
pi (3)



ṗx =
RTx

Vx
(Fic + Ff − Fxi − Fxt) +

Ṫx

Tx
px (4)

Ṗc =
1

τ
(−Pc + Pt) (5)

where pi represents the intake manifold pressure, px rep-
resents the exhaust manifold pressure. (5) represents the tur-
bocharger's dynamic consisting in the power transfer with a
delay of τ .

The first approximation of the non-linear model given by
(3) - (5) consists in considering the temperatures in the intake
manifold and exhaust manifold at a constant value so that the
effect of the variables Ṫi, Ṫx, pi and px is not important.

The flow inside the EGR (i.e. Fxi) and the flow inside the
VGT turbocharger (i.e. Fxt) are designed using the equation of
flow through a pipe [19]. The variation of the air flow inside
the intake manifold to the cylinders (i.e. Fie) is determined
using the speed - density equation.

In [11] are presented the intake and exhaust differential
equations for a three-order state-space model, where a, b, c
and d are identified parameters of the flow inside the VGT
turbocharger (i.e. Fxt).

Considering these parameters at a constant value, also the
temperatures inside the intake and exhaust manifolds, Ti and
Tx, respectively, we can say that (3) – (5) have constant
parameters. This new model approximation does not affect
the engine's dynamics at low variations, at least not in the
domain of low and medium engine speed. But in reality, these
parameters vary based on the operating point.

B. Invariant model

Based on (3) – (5), we obtain the following state-space
model:
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(6)

where the inputs are given by Ar (i.e. the position of the
VGT valve), xv (i.e. the position of the EGR valve), N (i.e.
the engine speed) and Wf (i.e. the fuel flow), the outputs
are given by Wci (i.e. the mass air flow) and pi (i.e. the
manifold absolute pressure) and the states are pi, px and PC .
The matrices A, B, C and D have appropriate dimensions,
and the elements of D are considered zero. Therefore, we
consider a three-order model.

C. Reduced invariant model

To reduce the model given by (6), the following approxi-
mation was made, by redefining the inputs given by EGR and
VGT:

{
Ar = Ar + 8.9 ∗ 10−5[m2]

xv = xv + 0.5
(7)

The dynamic of the engine is evaluated at a constant fuel flow
Wf and a constant engine speed N .

A new state-space representation is obtained, the number of
inputs being reduced from four to two:
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(8)

where A, B and C have the following form, each element
being identified from (3) – (5):






A =




a11 a12 a13
a21 a22 a23
a31 a32 a33





B =




b11 b12
b21 b22
b31 b32





C =

[
0 0 c13
1 0 0

]

(9)

III. STABILITY, CONTROLLABILITY AND OBSERVABILITY
ANALYSIS

A. Stability

The first thing we want to do is analyze whether the open-
loop system is stable.

The system is stable if the system matrix, A, from (8) has
all eigenvalues in the left half plane.

B. Controllability

For a system whose state-space representation is given by
(1), in [10] there is defined the controllability matrix as:

Co =
[
B AB . . .An−1B

]
(10)

If the rank of the controllability matrix Co is the same as
the one of the A matrix, then the system is controllable, i.e.
there is a command acting on the output of the system.

C. Observability

The observability matrix is defined as follows:

O =
[
C CA . . .CAn−1

]T (11)

If the rank of the observability matrix O is the same as
the one of the A matrix, then the system is observable, i.e.
the ability of the dynamic system to determine the state by
working on the measured output y.

This analysis is important for the control design algorithms.



IV. STATE-FEEDBACK CONTROL

For the system (8), whose schematic representation can be
seen in Fig. 1, the state-feedback control law has the following
general form:

u = −Kx+Pr (12)

where r is the set-point of the closed-loop system, K is the
state-feedback matrix, and P is the pre-compensation matrix.

Fig. 1. State-feedback closed-loop system

The state-feedback closed-loop system from Fig. 1 has the
following model:
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With the notions presented in the section III, we can test
the stability, controllability and observability properties of the
system.

The state-feedback control can be improved with a LQR
control law where the Q matrix can be obtained by means of
genetic algorithms.

V. GENETICALLY ENHANCED OPTIMAL CONTROL

A. LQR Control

LQR control consists in finding the command matrix KLQR

so that the command:

u = −KLQRx (14)

can minimize the integral performance index:

J =

∫ ∞

t=0
(xTQx+ uTRu+ xTNu)dt (15)

The control matrix Q whose form is:

Q =





q1 0 . . . 0
0 q2 . . . 0
...

...
. . .

...
0 0 . . . qn




(16)

is ought to be found by means of genetic algorithms.

B. Genetic algorithms

Genetic algorithms were invented by John Holland in the
60s and represent an optimization technique inspired by nature.

In [12] is presented the functioning principle of the genetic
algorithms: given an initial population of individuals (chromo-
somes) - which represent possible solutions of the optimization
problem, they are set to compete one with another for survival.
After each individual’s evaluation (through the objective func-
tion or the fitness associated to each individual), the strongest
are allocated with a greater chance of participating in the
reproduction process than the weakest, the latter might as well
not contribute at all in the reproduction process.

The first step of the reproduction process is represented by
crossover and mutation. Next, the newly obtained children
will compete with each other and, possibly, with their par-
ents. Therefore, selecting the best parents and eliminating the
weakest, the solution of the problem converges to the optimal
solution.

In order to obtain the optimal solution by means of genetic
algorithms, two directions of research are proposed: in the first
case, the matrix defined in (16) to have the same element on
the main diagonal and, in the second case, the main diagonal
of the matrix having different elements.

VI. SIMULATION RESULTS

A. Invariant model

For the simulation of the invariant model with 4 inputs and
2 outputs from (6), we consider the following numerical values
for the matrices A, B and C:

A =




−3.625 0 373.0841
35.3698 −93.4776 0

0 0.0260 −9.0909





B = 105 ∗




0.5714 0 −0.000003 0
−5.5755 0.1020 0.00003 1.4608

0 −0.0002 0 0





C =

[
0 0 0.0249
1 0 0

]

(17)
According to (10), the corresponding controllability matrix

is:

Co
T =





57140 −557550 0
0 10200 −20

−0.3 3 0
0 146080 0

−207132 54139466 −14496.3
−7461.682 −953471.5 447.018
1.0875 −291.04374 0.078

0 −13655207 3798.08
−4657483 −5068153605 1539410
193823.9 88864311 −28854.05
25.1583723 27244.53 −8.27
1417003 1276456053 −389563





(18)



The rank of the controllability matrix (18) is 3, equal to the
rank of the matrix A from (17), therefore the invariant system
is controllable.

According to (11), the corresponding observability matrix
is:

O =





0 0 0.0249
1 0 0
0 0.0006474 −0.226

−3.625 0 373.0841
0.0229 −0.0664 2.058
13.14 9.7 −4744.1




(19)

The rank of the observability matrix (19) is 3, equal to the
rank of the matrix A from (17), therefore the invariant system
is observable.

The dynamic of the invariant model (6) can be observed in
Fig. 2.

Fig. 2. Invariant model’s dynamics

B. Reduced invariant model

For the simulation of the invariant model reduced to 2 inputs
and 2 outputs from (7), we consider the following numerical
values for the matrices A, B and C:

Ar =




−3.625 0 373.0841
35.3698 −93.4776 0

0 0.0260 −9.0909





Br =




57140 0

−557550 10200
0 −20





Cr =

[
0 0 0.0249
1 0 0

]

(20)

According to (10), the corresponding controllability matrix
is:

Cor
T =





57140 −557550 0
0 10200 −20

−207133 54139466 −14496.3
−7461.682 −953472 447
−4657484 −5068153606 1539411
193824 88864311 −28854




(21)

The rank of the controllability matrix (21) is 3, equal to
the rank of the matrix Ar from (20), therefore the invariant
system is controllable.

According to (11), the corresponding observability matrix
is:

Or =





0 0 0.0249
1 0 0
0 0.00065 −0.2264

−3.625 0 373.08
0.0229 −0.0664 2.05785
13.141 9.7 −4744.1




(22)

The rank of the observability matrix (22) is 3, equal to the
rank of the matrix Ar from (20), therefore the invariant system
is observable.

The dynamic of the reduced invariant model (7) can be
observed in Fig. 3.

Fig. 3. Reduced invariant model’s dynamics

We can observe from Fig. 2 and Fig. 3 that the dynamics
of the reduced invariant model is similar to the one of the
invariant model.

C. State-feedback step response
The state-feedback matrix K from (12) has the following

numerical form:

K =





−5.119 ∗ 10−5 −1.419 ∗ 10−15 0.00653
7.905 ∗ 10−18 −0.0013 0.4295
2.92 ∗ 10−10 −2.7045 ∗ 10−10 −3.6805 ∗ 10−8

4.67468 ∗ 10−5 −0.00054 −0.00507





(23)
The state-feedback control step response of (6) can be

observed in Fig. 4.

Fig. 4. State-feedback control step response of the invariant model

The state-feedback control step response of (8) can be
observed in Fig. 5.



Fig. 5. State-feedback control step response of the reduced model

D. Optimal control

The matrices Q and R from (15) have the following form:

Q =




0.0001 0 0

0 0.01 0
0 0 10



 (24)

R =





100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100



 (25)

The corresponding matrix of the LQR control, KLQR, from
(14) is:

KLQR = 10−5∗





25.61 −948.68 −836.25
4.058 17.74 −9834

−8.72 ∗ 10−5 5.11 ∗ 10−3 5.45 ∗ 10−3

94.88 258.28 2140.7





(26)
The LQR control step response of (6) can be observed in

Fig. 6.

Fig. 6. LQR control step response of the invariant model

The LQR control step response of (8) can be observed in
Fig. 7.

From Fig. 4 and Fig. 6 we can observe that the LQR control
offers superior performances. The same observation applies for
the reduced invariant model (Fig. 5 versus Fig. 7).

Fig. 7. LQR control step response of the reduced model

VII. CONCLUSIONS AND PERSPECTIVES

The paper presents the dynamic models associated to the
combustion regime of an experimental Diesel engine. Stability,
controllability and observability analyses of the corresponding
engine models have been performed. State-feedback control
and LQR control procedures have been presented in order
to control the air flow inside the intake manifold to the
cylinders and the pressure inside the combustion chamber of
an experimental Diesel engine platform.

The LQR control of the Diesel engine combustion regime
can be improved by tuning its quadratic matrices by means of
genetic algorithms. Also, the LQR control can be improved
with a multi-model control in the following research studies.
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