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Section 1: Introduction
Over the past decade the cost of sequencing has decreased
dramatically, making the generation of sequence data more
accessible. This has led to increasingly ambitious sequencing
projects. For example, the completion of the 1,000 Genomes
project (1) led to the advent of the 100,000 Genomes (2),
which has since been completed. There are dozens of other
large-scale sequencing projects underway, including Geu-
vadis (3), GenomeTrakr (4), and MetaSub (5). There is now
an overwhelming amount of public data available at EBI’s
European Nucleotide Archive (ENA) (6) and NCBI’s Se-
quence Read Archive (SRA) (7). The possibility of analyzing
these collections of datasets, alone or in combination, cre-
ates vast opportunities for scientific discovery, exceeding the
capabilities of traditional laboratory experiments. For this
reason, there has been a substantial amount of work in de-
veloping methods to store and compress collections of high-
throughput sequencing datasets in a manner that supports var-
ious queries. These methods are now fundamental to several
bioinformatic applications, as we detail in Section 2.
In this paper, we use the term dataset to refer to a set of reads
resulting from sequencing an individual sample (e.g., DNA-
seq, or RNA-seq, or metagenome sequencing). Sequencing is
routinely performed not only on a single sample but on a col-
lection of samples, resulting in a collection of datasets. For
instance, 100,000 human genomes were sequenced for Hu-
man Genome Project and over 300,000 bacteria strains were
sequenced for GenomeTrakr. One basic query that is funda-
mental to many different types of analyses of such collections
of datasets can be formulated as follows: given a sequence,
identify all datasets in which this sequence is found. For
example, consider the problem of finding a RNA transcript
within a collection of RNA-seq datasets. Similarly, we can
ask to find which datasets contain a specific DNA sequence,
such as a gene or a non-coding element, in a collection of
bacterial strain genomes.
Given the size of many collections and datasets, several dif-
ferent paradigms for storing them in a manner that they can
be efficiently queried have been developed – many of which
continue to be extended and explored. One paradigm is

to store and index datasets as sets of k-length substrings,
which are referred to as k-mers. We will refer to collec-
tions of datasets as sets of k-mer sets. The methods that use
this paradigm first build an index of all k-mer sets, and sup-
port the basic query described above by splitting the query
sequence into k-mers and determining their presence or ab-
sence in the index.
As we will discuss in this survey, this paradigm proves to be
useful in several ways. First, sets of k-mers is a more con-
cise representation of the set of sequences of the samples,
as they abstract some of the redundancy inherent to the high
sequencing coverage. Second, genetic variation and sequenc-
ing errors can be dealt with in a more-efficient, albeit less ac-
curate, way than using sequence alignment. Inexact pattern
matching can be simply realized by examining the fraction of
matching k-mers within the query sequence. However, rep-
resenting and storing data using a k-mer index comes with
some loss of information since it only gives information for
each constituent k-mer of a sequence – rather than informa-
tion about the entire sequence. Hence, in most cases a k-mer
index does not provide exact answers for queries of longer
sequences (e.g., whole transcript or entire gene) but instead
provides an approximation.
One can view k-mer-based indexes as building blocks for the
topic of the present survey: the storage of k-mers coming
from multiple datasets, i.e., sets of k-mer sets. A key aspect
of storing sets of k-mer sets comes from the observation that
sequencing experiments that are collectively analyzed typ-
ically share a large fraction of k-mers. Therefore, signifi-
cant space savings can be achieved by the identification and
clever storage of this redundant information. Here, we focus
on the methods underlying the different building blocks (Fig-
ure 1) of sets of k-mer sets structures. We review the different
properties, the types of queries, and the computational perfor-
mance which they offer. We highlight similarities of methods
based on commonalities between building blocks where it is
appropriate.

Section 2: Biological applications
Several biological and biomedical questions can be addressed
by querying sequence databases. Transcriptomics was one
of the first specific applications to be described. Solomon
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Fig. 1. Overview of set of k-mer sets building blocks. We classified strategies in color-aggregative approaches, and k-mer aggregative approaches. The top row of the figure
indicates the general categories of components: a k-mer set, possibly combined with a de Bruijn graph representation; a way to combine multiple sets together; optional
compression. Each next row describes a general strategy adopted by one or more methods.

and Kingsford gathered more than 2,000 samples of human
RNA-seq, consisting of blood, brain, and breast tissue sam-
ples from SRA (8). Since its introduction, this database
kept growing, roughly doubling each year. This leads to the
possibility of identifying conditions which express isoforms
by associating transcripts to tissues. Similarly to tissue-
specific associations, one can envision the numerous benefits
of comparing patient cohorts in order to understand differ-
ences in pathologies or impact of medication. For instance,
using RNA-seq for functional alterations profiling has be-
come more frequent in cancer research (9). Thus, vast pro-
grams such as The Cancer Genome Atlas (TCGA) (10), pro-
vide RNA-seq samples from a variety of cancer types. Yu et
al. (11) showed how to investigate gene-fusion using a set
of k-mer sets by first creating an index of all tumor sam-
ples from the TCGA. Then they considered documented fu-
sion events and their corresponding k-mer signatures, and
screened the index to detect these signatures. They confirmed
some fusions and reported some novel ones. Fusion tran-
scripts provide interesting targets for cancer immunothera-
pies since they are susceptible to exhibit tumor-specific mark-
ers.

Several papers demonstrate how sets of k-mer sets could
help mine and analyze collections of microbial samples or
genomes, whether they be strains of the same genera (e.g.,

16,000 strain of Salmonella), microbiomes (e.g., 286,997
genomes from the human microbiome), or more extensive
microbial data (e.g., 469,654 bacterial, viral and parasitic
datasets from the ENA). For example, GenomeTrakr (4)
was developed to coordinate international efforts in sequenc-
ing whole genomes of food-borne pathogens. Indexing and
querying this and other databases could lead to improved
surveillance of pathogenic bacteria, and thus, elucidate the
effectiveness of interventions that attempt to control them.
Subsequently, k-mer indexes have been used to follow the
spread of antimicrobial resistance (AMR) genes and plas-
mids across bacterial populations. Bradley et al. (12) also
searched for plasmid sequences bearing AMR and initiated a
study in an index containing a variety of microbial genomes.
They identified some of these plasmids spread across differ-
ent genera. Lastly, an effort was proposed to build a compre-
hensive human gut microbiome resource with the help of a set
of k-mer set structure. Cultured genomes and metagenomics
assembled-genomes from metagenomics samples were com-
bined to create the Unified Human Gastrointestinal Genome
index (13). This resource aims at being explored and enables
looking for contigs sequences, genes, or genetic variants.

Beyond these applications, other topics start to be explored:
integrated variant calling across large-scale gene, plasmid
and transposon search (12, 14, 15), bacterial pan-genome in-
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3.1 k-mer set data structures.

dexation (16), gene fusion and pan-cancer analysis (11).

Section 3: Building blocks
We view the storage of a set of k-mer sets as having various
(optional) components, which we refer to as building blocks.
See Figure 1 for an illustration of this view. In light of this,
we cover the basic terminology and concepts that will be used
throughout this survey in this section.

3.1 k-mer set data structures. As previously described,
the main building blocks used in sets of k-mer sets represen-
tations are, unsurprisingly, schemes to represent k-mer sets.
The methods surveyed in this work represent k-mers from se-
quencing datasets as sets, i.e. k-mers are de-duplicated and
unordered. It will be enough to consider the data structures
presented in this section as black-boxes that support all or a
subset of the following operations:

• membership, i.e., testing whether an element is in the
set;

• insertion and/or deletion of an element.

Set representations that support insertion and/or deletion are
sometimes said to be dynamic, as opposed to static. However,
methods to represent k-mer sets are not all equivalent in terms
of features and performance. We briefly review their main
characteristics in the rest of this section but refer the reader
to the recent survey by Chikhi et al. (17) for further details.
Most methods rely on bit vectors to store the presence or ab-
sence of k-mers in datasets. A bit vector is an array of bits,
e.g., 00101 represents a bit vector of length 5. A 0 is used
to indicate that the k-mer is absent, and a 1 indicates that it
is present. A bit vector could be used to record the datasets
in which a given k-mer appears, or, alternatively, all the k-
mers that are contained in a given dataset. However, with a
growing number of datasets and k-mers, using plain binary
vectors is generally too simplistic, and often compression or
other tricks are also incorporated. One example is the Bloom
filter (18), which is a way to store a set as a bit vector using
many fewer bits than the naive approach.
Some methods view a k-mer set as a de Bruijn graph (DBG).
In a DBG, vertices are k-mers and there exists a directed
edge from vertex u to v if the the last k− 1 characters of
u are the same as the first k− 1 characters of v. See Sup-
plementary Box 2 for an example. In practice, these graphs
are bi-directed in order to capture the double-stranded nature
of DNA, but viewing them as directed usually simplifies the
description of many methods without sacrificing any impor-
tant aspects. These two views, k-mer sets and DBGs, are
(in some sense) equivalent as they intrinsically represent the
same information. Yet, in some applications it is more con-
venient to consider a graph representation, e.g. for genome
assembly (19) and variant detection (20).
Data structures for representing k-mer sets (DBG or not)
can further be divided into two categories: membership data
structures and associative data structures. The first category
only informs about the presence or absence of k-mers, e.g., as

in the case of a Bloom filters. The second category associates
pieces of information to k-mers, akin to how dictionaries link
words to their definitions. Some examples of such data struc-
tures include hash tables and counting quotient filters (CQF)
(21–23). See Supplementary Box 1 for an illustration.
Some data structures (e.g. CQF) can represent sets in an ex-
act way; whereas others (e.g. Bloom filters) represent them
in a probabilistic way, in that the structures can return false
positives (i.e., meaning that a k-mer is sometimes reported
as present in the set when in fact it is not present). These
false positives lead to an over-estimation in the number of
k-mers detected as present in a set. While this is an unde-
sirable effect, it can be partly mitigated – as we will see in
Section 4.2.1.
Finally, other methods for representing k-mer sets rely on
full-text indices (e.g. BOSS, FM-index (24, 25)). Such in-
dices store more information than just a set of k-mers, and
support queries of sequences up to the read length over the
sequences.
The main reason such advanced data structures are consid-
ered, instead of those provided in the standard libraries of
programming languages, is space efficiency. Bloom filters
and CQFs approximately require a byte for each element in
the set, i.e., less than the size of the element itself. Sim-
ilarly, succinct representations of DBGs (26–28), which are
also representations of k-mer sets, aim for near-optimal space
efficiency. The difference between the two approaches is the
trade-off that they offer between space and accuracy. This is
a crucial aspect as the volume of data typically exceeds what
can be processed using unoptimized data structures.

3.2 Compression. To further optimize space usage, differ-
ent compression techniques have been applied to sets of k-
mer sets. Bloom filters and bit vectors are typically objects
which are amenable to a number of compression techniques
because they are represented in bits. Such objects can be
sparse (i.e. when most of the bits are zero, such as when
many k-mers belong to only a few datasets from the whole
collection) and/or dense (i.e. when most of the bits are 1,
such as when many k-mers are present in the same set of
datasets). Compression methods exploit these properties.
Different compression strategies are shown in Box 2.

Bit vector compression. Bit vectors can be efficiently
stored using bit-encoding techniques that exploit their sparse-
ness or redundancy. The most prevalent of the methods in
this survey are RRR (29) or Elias-Fano (EF) (30–32) (see
Box 2 (1)). The principle behind these is to find run of 0’s
and to encode them in a more efficient manner, reducing the
size of the original vectors. Other techniques such as Roar-
ing bitmaps (33) adjust different strategies to sub-parts of the
vectors. Wavelet trees (34) generalized compression of vec-
tors on larger alphabets (i.e., not just 0’s and 1’s but e.g. a’s,
b’s, c’s, etc). More advanced techniques deriving from the
same concept were also proposed specifically for sets of k-
mer sets (35).

Delta-based encoding. When two sets share many ele-
ments, it may be more advantageous to store only the differ-
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ences between those datasets. For instance, rather than stor-
ing two (possibly compressed) bit vectors, one can only store
the first bit vector explicitly along with a list of positions of
differences for the second. This list of positions can itself be
encoded as a bit vector, with a bit set to one if and only if the
bit is at the location of a difference between the two vectors.
This bit vector is expected to be more sparse than the orig-
inal encoding, allowing better compression. Such a scheme
is usually called “delta-based encoding” in the literature. An
example is presented in Box 2 (2).

Hybrid techniques. In hybrid approaches, bit vectors are
first separated into different buckets, where each bucket will
contain bit vectors with similar features. Compression within
each bucket is performed using a suitable technique selected
from a pool of feature-specific ones (see Box 2 (3)).

Section 4: Aggregation techniques
As we illustrate in Figure 1 , some methods first index each
dataset separately, and then build structures that allow retriev-
ing the name of datasets in which a k-mer is present; whereas
others start by representing the set of all k-mers from all
datasets, and then attribute them to their datasets of origin
(colors). We refer to the former as k-mer aggregative meth-
ods and the latter as color-aggregative methods. We will dis-
cuss both aggregation methods. We present the few methods
that escape this categorization separately.

4.1 Color-aggregative methods. These methods start by
indexing all k-mers across all datasets, and then group to-
gether (aggregate) datasets into what will be referred to as
color sets. A practical advantage of color-aggregative meth-
ods is that a k-mer that appears in many samples will appear
only once in the k-mer set. This greatly reduces redundancy
in the representation. In this subsection, we give a brief back-
ground and history of the methods that fall into this category.

4.1.1 Representation of colors. A color of a given k-mer is
frequently used in the literature to identify a dataset con-
taining the k-mer, assuming each dataset is given a unique
color. A k-mer may often be contained in multiple datasets
and therefore, it is convenient to store the colors of a k-mer
using a bit vector. Here, given order of the datasets, a 1 at po-
sition i in the bit vector indicates the presence of the k-mer in
the i-th dataset, and 0 its absence. A color set is the set of col-
ors associated to a k-mer. Given n k-mers and c datasets, the
color matrix is a n×c matrix of bits which describe the pres-
ence or absence of each k-mer (in the rows) in each dataset
(in the columns). For an example, see Box 1.

4.1.2 Background and method intuition. Iqbal et al. (20) de-
fined the colored de Bruijn graph (cDBG) – which, moreover,
is also the first color-aggregative method. Given a set of in-
put datasets, each dataset is assigned a unique color, so that
there are as many colors as datasets. When considering the
union of all k-mers across all datasets, it is straightforward
to think of using an associative structure to map k-mers to
colors. cDBG are DBGs of the set of all pooled k-mers from

all the samples (union graph), with each vertex labelled with
the k-mer’s color set. Colored DBGs allow traversing oper-
ations to find paths that contain undirected cycles (bubbles),
and finding the individuals in the population that contain a
shared or divergent path in each bubble.
Cortex implemented those properties, and its bubble-finding
algorithm was one of the primary use cases of the cDBG, to
detect biological genetic variation in a population without the
use of a reference genome. Unfortunately, Cortex consumes
an inordinate amount of RAM when the total number of dis-
tinct k-mers exceeds tens of billions. This main drawback
motivated more recent works taking benefit from the cDBG.
We note that later in this survey, we will not restrain the term
cDBG to the original work from Iqbal et al., but to any ex-
plicit DBG implementation that associates color sets to k-
mers. Colored DBGs are only implemented in the class of
color-aggregative methods. Though, as we will see later,
some color-aggregative methods do not implement a cDBG.

4.1.3 Space-efficient color-aggregative methods. The first
methods that improved upon the memory- and time- ef-
ficiency of Cortex were Bloom filter trie (BFT) (36) and
Vari (24). These methods achieved a significant reduction
in representation size via different strategies.
After the introduction of these methods, subsequent im-
provements were made with the development of Rainbow-
fish (37), Multi BRWT (35), Mantis (38), SeqOthello (11),
Mantis+MST (23), and Vari-Merge (16). Most of these recent
techniques rely on a more careful encoding of the colors of
each k-mer, which commonly takes advantage of redundancy
in the data. In many applications, such as human RNA-seq
indexing (8), it is expected that many datasets share a large
number of k-mers. This redundancy can be exploited to re-
duce the color encoding size, notably through color classes.
When colors are seen as bit vectors, the color classes are sim-
ply de-duplicated bit vectors. Thus two k-mers having the
same color set are associated to a single color class instead
of two identical bit vectors (see Box 1). Compression may
be achieved by representing the color matrix as a compressed
bit-vector (see Box 2 (1)). The growing number of colors
(or classes) motivated works to further reduce space through
lossy compression, notably Metannot (39). The overall color-
ing strategies are also presented in Supplementary Box 5. We
now describe each of these methods in more detail. With the
exception of SeqOthello, all methods consider the underlying
k-mer set representation to be a DBG.

� Vari and Vari-Merge. The succinct representation of the
DBG used by Vari is referred to as BOSS (27), which is re-
lated to the Burrows Wheeler Transform (BWT). While we
will not go into the technical details here (see Appendix and
Supplementary Box 4 for more information), it is sufficient to
see BOSS as a rearrangement of the original data that enables
indexing and compression. In order to add color information
in Vari, a compressed binary matrix stores which edges ei of
the DBG are present in which sample sj . The matrix is con-
structed row-by-row, using the RRR bit vector representation
for compression.
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4.1 Color-aggregative methods.

Box 1. Color coding
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A color matrix represents the presence of n k-mers across c datasets (here n = 5, c = 3). Different schemes have
been introduced to encode such matrices. In particular, a color class is a set of colors (or equivalently, a bit vector,
or a line in the color matrix) that is common to one or more k-mers. Indeed, in the color matrix some k-mers (lines)
may correspond to the same color class. One may "de-duplicate" the n lines of the color matrix into only m< n color
classes (here, m = 4). Then, color class identifiers are introduced as intermediaries between k-mers and color classes.
(To go further, frequently used color classes can be represented using fewer bits by using small integers as identifiers).

Color-aggregative methods are generally composed of three parts. First, a set of all k-mers, built using either a succinct
DBG or an ad-hoc representation. Second, (a) a correspondence between k-mers and colors in the form of a color matrix,
color classes (b), or several color matrices (c). Finally, k-mer sets and/or colors may be further compressed (see Box 2).

Later, Vari-Merge (16) was introduced to construct colored
DBGs for very large datasets. It first divides the data into
smaller subsets, then constructs a succinct DBG (using Vari)
for each, and lastly, succinctly merges then until a single one
remains. Because of the merge procedure, it allows for the
addition of new data.

� Bloom Filter Trie. BFT uses a different approach to stor-
ing the DBG than Vari but also aims at representing a DBG
((4) in Figure 1). BFT is built upon a trie: a particular tree
structure allowing to store a set of strings along with associ-
ated data. Rather than using BOSS to construct and store the
DBG, a trie is used to store the nodes and to associate labels.
Bloom filters are also added in the trie for efficiency. BFT in-
troduces the idea of color classes, i.e. non redundant sets of
samples in which a k-mer is present (see Box 1 (b)). A label
is assigned to each color class, and the color matrix becomes
a table that associates each k-mer to its corresponding label.

� Rainbowfish. Rainbowfish mixes ideas from Vari and
BFT. It uses a similar structure to Vari to store the k-mer
set structure but stores color classes in a similar manner as in
BFT. In addition, to obtain sparser bit vectors, it encodes the
most frequently used classes using more zeros. As for com-
pression, the color class and the label are represented as bit
vectors that can be compressed.

� Mantis and Mantis+MST. Mantis (38) introduces another
strategy for storing the DBG in a space-efficient manner. (see
strategy (3) in Figure 1). Mantis starts by building, for each
dataset, an associative data structure on k-mers (CQF, see
Supplementary Box 1). Initially, CQFs were introduced to
record counts associated to k-mers but in Mantis, the struc-

ture instead stores color sets. Mantis then merges all CQFs
in order to have the global information in a global filter.
An extension of Mantis takes advantage of the insight that
many color classes are frequently similar to each other, since
many k-mers occur in relatively similar sets of sequences.
Thus Mantis+MST proposes to encode colors using only the
differences between classes (delta-based encoding, see Box
2 (2)).

� SeqOthello. SeqOthello does not explicitly represent a
DBG but rather stores a probabilistic set of k-mers using Oth-
ello hashing (see See strategy (6) in Figure 1). Like in any
color-aggregative method, k-mers are associated with colors
using regular bit-vectors. As seen in Subsection 4.1.1, sim-
ilar presence or absence bit vectors are grouped in order to
apply hybrid compression (see Box 2 (3) and Box 1 (c)). Se-
qOthello proposes to group similar color profiles, then use a
suitable compression technique depending on the bit-sparsity
of each group. Othello hashing can yield false positives when
alien k-mers are queried (i.e., k-mers that are not present in
the indexed collection). In other words, Othello hashing may
wrongly associate a dataset to an alien k-mer, instead of cor-
rectly returning that such k-mer belongs to no dataset. For
a query that consists of many k-mers (such as genes or tran-
scripts) errors can be mitigated because false positives are
unlikely to all point to the same dataset(s). This property will
also be used in k-mer aggregative structures, and will be fur-
ther discussed in a dedicated section.

� Bifrost, Pufferfish, and BLight Recently, another con-
struction strategy for color-aggregation was proposed in
Bifrost (40), which relies on two techniques: 1) in-memory
construction of the DBG, 2) dynamic updates of the graph
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Box 2. Compression of bit arrays

Colors matrices (as shown in (a), along with an equivalent bit vector representation) and Bloom filters (b) can be
compressed. We present here some of the known techniques.
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Bit encoding techniques (1): If working with a color matrix, rows of the color matrix are first concatenated. The
resulting bit vector is then compressed losslessly into a shorter bit vector.
Delta-based encoding (2): Differences between rows in the matrix are encoded. One can e.g. encode the (column-wise)
differences between and current row and the first row as 1’s, and similarities with 0’s. This results in a sparser matrix
that can be further compressed using e.g. (1).
Hybrid compression technique (3) Nearly identical rows are grouped, and a representative is chosen for each group.
Then, depending on whether bit-vectors associated to the color classes are sparse (little amount of 1s) or dense (high
amount of 1s), different compression schemes are used.

and colors. It proposes an idea that is related to Mantis+MST:
k-mers that are close in the DBG are more likely to share the
same colors. Thus, several color matrices are built for distinct
sequences of the DBG, instead of one for the whole graph. In
each color matrix, the compression rate is expected to gain
from the similarity of each color vector to one another.
Pufferfish (41) and BLight (42) rely on similar concepts to
Bifrost. In particular, all three use a compacted DBG (intro-
duced in e.g. (43, 44), see Supplementary Box 2), to more
efficiently represent the sequences than a set of individual
k-mers. In addition, we note these methods are similar to
Mantis and SeqOthello in terms of the underlying hash-based
strategies, and the differences are detailed in Supplementary
Box 6.

� Other methods. Other methods have focused on specific
aspects of color-aggregative methods memory optimization.
Metannot (39) and Multi-BRWT (35) both construct the color
matrix in a manner that is both compressed and dynamic but
use a simple representation of the union graph where each
edge (k-mer) is stored in a hash table. This graph representa-
tion allows it to be updated along with the color information
– thus, the main contribution is not the data structure used
to store the graph, but the one used to store colors. Metan-
not explores two strategies for color compression. First, they
propose to use a wavelet trie. It allows to index the color ma-
trix rows in nearly optimal compressed space. This strategy
is combined with RRR on the rows ((1) in Box 2). Second,
they use a lossy color representation with Bloom filters. To
reduce false positives, color sets queries are corrected by tak-
ing the intersection with other color sets from neighboring

k-mers in the DBG. Multi-BRWT improves upon standard
bit-encoding representation (such as RRR, EF) by allowing
for compression of both dimensions of the matrix simultane-
ously instead of compressing each row (or column) once at a
time.

4.1.4 Queries. Given the current implementations work with
rather small k-mer sizes (∼ 20 to 63), the query time bot-
tleneck comes from the memory random accesses. Hash-
based methods perform very fast queries: retrieving a k-mer
requires only a constant number of accesses. The methods
whose underlying DBG is BOSS (e.g., Vari, Rainbowfish,
Vari-Merge) are expected to show a lower throughput. In-
deed, the retrieval of a k-mer requires roughly k memory ac-
cesses.

4.1.5 Additional properties. We observe that the features of-
fered by any given data structure are strongly dependent on
the choice of the data-structure for the underlying k-mer set.

� Insertion or deletion of data. Only a few methods fo-
cused on insertion and/or deletion of data. See Table S3. Fre-
quently, space-efficient methods require that the whole index
needs to be rebuilt when new data needs to be inserted into the
index. This applies to SeqOthello, Pufferfish, or BLight be-
cause their hashing technique is static. Although it is concep-
tually possible that new data can be added to Vari, Rainbow-
fish, and Mantis, this feature is currently not implemented.
One of the main advantages of Vari-Merge and Bifrost is that
they allow new data to be added via merging. However, while
Vari-Merge merges the entire index, Bifrost only dynamically
adds sequences to the DBG, while colors need to be rebuilt.
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4.2 k-mer aggregative methods.

As previously mentioned, Metannot and Multi-BRWT allow
for both the addition and deletion of new data but do not com-
press the union graph.

� Colored DBG implementation and traversal. Vari, Vari-
Merge, BFT, Bifrost and Rainbowfish explicitely implement
cDBGs. They consider graph navigation, as initially pro-
posed in Cortex. Features include retrieving paths (i.e., se-
quences of edges that connect distinct nodes), and bubble
calling. Yet, we note that this aspect should be technically
possible in all cDBG tools.

4.2 k-mer aggregative methods. We now turn to a com-
pletely different class of data structures. Unlike previously
mentioned methods, k-mer aggregative methods do not pool
k-mers from all datasets in order to build an index. Rather,
they first process datasets separately, and then aggregate them
in different ways to speed-up queries.

4.2.1 Background and method intuition. The design of these
methods is motivated by the following use case. Let Q be a
query set of k-mers to be searched in a collection of datasets
D, where each element of D represents a dataset. For exam-
ple, Q may be the set of k-mers contained in a single tran-
script. The collection D can be seen as a set of k-mer sets.
One seeks to find the setsDi ∈D such that |Di∩Q|/|Q| ≥ θ,
with θ being a given ratio of k-mers, seen as a stringency pa-
rameter for the search. The value of θ can be set to allow for
sequencing errors or mutations, e.g. between 0.7 and 0.9 (8).
Whereas in the methods of Section 4, a query is a single k-
mer whose color class we would like to know, in this context,
the query is a set of k-mers, and we would like to know the
datasets which contain at least a θ fraction of them. We will
refer to the query of a single k-mer as a k-mer query and the
query of a set of k-mers as a set query.
The methods in this section take explicit advantage of the
motivating use case by storing the k-mers of each dataset in
a Bloom filter (BF), i.e. one BF per dataset. Recall from Sec-
tion 3 that a BF is a probabilistic data structure that some-
times return false positives; i.e. the BF may report that a
k-mer belongs to a certain dataset when it really does not.
However, in the setting of the set query, the θ parameter al-
lows us to naturally absorb any potentially detrimental effect
of such false positives. For the values of θ used in practice,
the false positive rate of a BF for k-mer queries can be as high
as 50% without degradation of the set query performance (8).
Indeed, the false positive rate of a set query decreases expo-
nentially with the number of k-mers (8, 45).
Thus, contrary to color-aggregative methods, these methods
are pre-sized before the addition of k-mers. The size is cho-
sen according to the desired false positive rate and to the es-
timated set sizes to index.

4.2.2 K-mer aggregative methods summary

� Sequence Bloom trees SBTs are a family of related tech-
niques detailed across multiple publications (8, 46–48). They
are an adaptation of a hierarchical index structure of BFs
that was initially developed outside of bioinformatics (49).

At a high level, an SBT method builds a binary search tree
(see Box 3 (a) for more details), whose leaves correspond to
datasets in D and each internal node u represents the sub-
set of D which appears as descendants of u (lets call these
desc(u) ⊆ D). A set query Q starts at the root and prop-
agates down the whole tree. At any node, the information
stored at that node is used to determine which k-mers of Q
have identical presence and/or absence status in all desc(u).
These k-mers are then said to be determined and removed
from Q as it propagates down the tree (see Box 3). When
enough k-mers become determined, the search can be pruned
(i.e. not propagated further down the tree).
Where the SBT methods differ is, to a large extent, in how
the information at each node is stored. The initial SBT ap-
proach stored the BF of the corresponding dataset at each leaf
and, at an internal node u, a BF of the union of desc(u)’s
k-mers (8). Three later works brought optimizations to the
original SBT concept. The first (simultaneously discovered
in (46, 47)) was for each node to store two BFs, one contain-
ing the k-mers present in all desc(u), and the other contain-
ing k-mers absent from all desc(u). Split-Sequence Bloom
trees (SSBT) (46) authors also noticed that once a k-mer is
stored in a BF of an internal node u, it can be removed from
the BFs of u’s subtree to reduce space. AllSome SBTs (47)
also showed that improving the tree topology through hierar-
chical clustering results in earlier pruning/faster queries, and
lower space usage. HowDe SBTs (48) extend the last two
works by further optimizing the way the information is stored
at the two nodes, allowing a non-binary tree topology, and
providing the first analytical analysis of the running time and
memory usage of the various SBT approaches. All these im-
provements (46–48) greatly reduced the space and query time
compared to the original SBT approach. (see Supplementary
Box 9 for a comparison of the three SBT improvements).

� BIGSI/COBS/DREAM-Yara. A radically different ap-
proach was proposed in BIGSI (12) (Box 3 (b) ). The BFs
are stored in a matrix, with each column corresponding to
dataset. It is useful to imagine this as the color matrix from
previous sections, with the rows corresponding to the k-mers
in D1. Importantly, the matrix is stored in row-major order,
i.e. row-by-row, so that each row appears as a consecutive
block. Thus, a k-mer query extracts that k-mers presence or
absence bit vector in D (see Box 3). The set query Q is then
answered by extracting the bit vector for each k-mer inQ and
performing bitwise operations on these vectors to answer the
set query. A closely related work is presented as a part of
DREAM-Yara (50), where BFs are interleaved, in order to
efficiently retrieve the same position of several BFs (see Ap-
pendix Box 9).
The false positive rate of a BF is monotonically increasing in
m/n, where m is the number of k-mers in the dataset and n
is the number of bits in the BF. BIGSI uses the same size n
for all the BFs, thus the false positive rates of the BFs dif-
fer depending on how many k-mers are in the corresponding
dataset. The idea behind COBS (45) is that the size of each

1This is not technically true, since BFs are not exactly presence or absence
bit vectors, but it captures the intuition.
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BF (i.e. n) can be customized to its corresponding dataset,
optimizing space usage while maintaining a constant false
positive rate across datasets. COBS bins the datasets accord-
ing to their estimated cardinality, and then uses a different BF
size for each bin. COBS also improves the implementation
of BIGSI and adds support for parallelization. Another ad-
vantage of COBS is that the index does not need to be fully
loaded into RAM to perform queries, a feature that is also
present in SBTs. Indeed, each bin can be loaded from disk
and queried separately. Detailed examples can be found in
Supplementary Box 7.

� RAMBO Similarly to BIGSI and COBS, RAMBO stores
k-mers presence or absence using several BFs in a matrix. As
in SBTs, the goal is to reduce the query complexity to be sub-
linear in the number of datasets. But the approach radically
differs from SBTs as RAMBO does not create a hierarchy
of union BFs in a tree. Also, instead of simply concatenat-
ing BFs as columns of the matrix, RAMBO defines each col-
umn to be a combination (in fact, a union) of multiple BFs,
corresponding to multiple k-mer sets. Since each cell now
represents information from different k-mer sets (i.e., here,
the union of their BFs), some redundancy is necessary in the
structure so that the original k-mer sets can be recovered.
More details on the algorithm are provided in Appendix and
Supplementary Box 9.

4.2.3 Additional aspects.

4.2.4 Compression. The different flavors of SBTs optionally
compress BFs in the intermediate and leaf nodes of the tree
using bit vector compression (typically RRR). To our knowl-
edge BIGSI, COBS and RAMBO make no use of compres-
sion.

� Insertion of new datasets. In SBTs, the insertion of a
new dataset requires computing a new BF for the sample and
adding this BF as a leaf to the tree. Then all the BFs on the
path from that leaf to the root are updated. In BIGSI, the
BF is stacked into the matrix. The COBS implementation
currently does not support insertion without rebuilding the
complete index.

� DBG traversal. Unlike color-aggregative methods, we
note here that k-mer-aggregative methods do not support
DBG traversal.

4.3 Other schemes. Other unpublished tools have consid-
ered different techniques for storings and indexing sets of k-
mer sets. kamix2 uses samtools’s BGZF compression library
to store and index a k-mer matrix. From the same author,
kad3 uses a RocksDB database to store a list of k-mer and
counts.

� Schemes based on BWT. BEETL (51) is a technique that
stores inside a BWT all sequences (i.e., not k-mers, but the
original data) from a sequencing dataset. BEETL was able to

2https://github.com/jaudoux/kamix
3https://github.com/jaudoux/kad

compress and index 135 GB of raw sequencing data into a 8.2
GB space (on disk for storage, or in memory for queries). A
variant, BEETL-fastq (52), also enabled to perform efficient
queries and was also applied to the representation of multiple
datasets.
Population BWT (53) is also a scheme based on BWT
geared towards the indexing of thousands of raw sequenc-
ing datasets. The BWT allows to query k-mers of any length
and additionally gives access to the position of each k-mer
occurrence within the original reads (note however that the
raw reads have been error-corrected).

Section 5: Performance overview

5.1 Index construction on human RNA-seq samples
Indexing datasets of a similar type, such as RNA-seq sam-
ples from a given species, was one of the first applications
proposed in the literature of sets of k-mer sets, and remains
one of the main benchmarks for these tools. Table S4 reports
the performance of most of the recent tools on a collection
of human RNA-seq datasets (2,652 RNA-seqs from the orig-
inal SBT article4). This table was extrapolated by gathering
results from three recent articles (11, 12, 48). As the articles
use different hardware and slightly different parameters, a di-
rect comparison of the tools is challenging. Instead, Table 1
presents a summary of the best possible performance that can
be currently achieved on the given datasets.
The data processing phase, where the k-mer sets are con-
structed and initialized, often takes significant time across all
methods. It is usually not presented as a bottleneck since it
is viewed that this step can be computed while downloading
the samples. Regarding query times, each method had used
different experimental setups, making comparisons difficult,
e.g., using transcript batches of different sizes (100-10,000).
We refer the reader to the experimental benchmark in (48),
which compares the average query times for randomly se-
lected batches, effects of warming the cache, maximum peak
memory for queries. Finally, we note that the information
output by a query can vary from one implementation to an-
other (see Table S2) and that the maximum supported value
for k-mer size is also implementation-dependent.

5.2 Indexing bacterial genomes We now turn to the
indexing of large collections of bacterial datasets. Ta-
ble S5 summarizes benchmarks published in the article
of COBS (45) and Vari-Merge (16). The evaluated tools
are SBT, SSBT, AllSomeSBT, HowDeSBT, BIGSI, COBS,
Vari, Vari-Merge, Rainbowfish, BFT, Multi-BRWT and Man-
tis+MST. Again we report here the best performing tool for
each metric. We note that the datasets used to evaluate COBS
and Vari-merge are different microbial collections, and thus,
the presented results were extrapolated from different publi-
cations (see Table S5 caption for details). Again, the more
recent methods tend to perform better at all levels. BIGSI,
AllSomeSBT, and COBS queries are notably fast. SSBT

4https://www.cs.cmu.edu/~ckingsf/software/
bloomtree/srr-list.txt
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5.3 Indexing human genome sequencing data

Box 3. Techniques for k-mer aggregation.

Indices
In k-mer aggregative strategies, Bloom filters representing each of the initial datasets are organized in either a tree or a
matrix structure. In the example below, there are four datasets (red, blue, green, and yellow), and the grey rectangles
represent Bloom filters. Black bars in the BF represent the presence of k-mers.

(a) Tree strategy A search tree is constructed, where each leaf is a dataset and internal nodes represent groups of
datasets. Datasets with similar BFs can be clustered to reside in the same subtree. In the original SBT approach (8),
each node stores exactly one BF, containing all the k-mers present in the datasets of its subtree. For a leaf, this is simply
the k-mers in the corresponding dataset. Later versions of SBTs (46–48) store more sophisticated data at each node,
though they still rely on BFs.

(b) Matrix strategy The BFs from all the datasets are concatenated column-wise to obtain a matrix. A row in the matrix
roughly corresponds to a k-mer (more precisely, to the position indicated by the hash value of a k-mer). In the original
BIGSI approach (12), all BFs have exactly the same size. In COBS (45), datasets of comparable cardinality are grouped
into bins, leading to a collection of matrices of different sizes.

(b)(a)

2 , 1 , 0 , 1

Queries

(a) Tree strategy A query is one or more k-mers. Conceptually, one starts at the root node and then explores down
the tree, always checking all the children of a node before moving to another node (breadth-first strategy). A counter of
absent k-mers is maintained for each node. If it exceeds a certain threshold, the search does not propagate further down
the subtree of that node.

(b) Matrix Strategy In BIGSI, each k-mer corresponds to a single BF location. The corresponding rows in the matrix
are then extracted, and summed column by column to obtain a vector where each element contains the number of k-mers
occurring in the corresponding dataset.

and COBS also have low RAM consumption. An advantage
of HowDeSBT is the small size of the index on disk. This
demonstrates that highly-diverse datasets, in terms of k-mer
contents, can also be efficiently stored in variants of SBTs.

5.3 Indexing human genome sequencing data To the
best of our knowledge, only two methods (BEETL-Fastq and
Population BWT) have been applied to the representation of
full read information from cohorts of whole human genomes.
BEETL-Fastq represented 6.6 TB of human reads in FASTQ
format in 1.7 TB of indexed files. Population BWT man-
aged to index (in a lossy way) 87 Tbp of data, corresponding
to 922 billion reads from the 1,000 genome project. After
read correction and trimming, the authors obtained a set of
53 billion distinct reads (4.9 Tbp) and indexed it with a BWT
stored with 464 GB on disk (requiring 561 GB of main mem-
ory for query). Metadata (e.g., sample information for each
read) was stored in a 4.75 TB database.
Given the apparent difficulty to perform large-scale experi-
ments on human datasets, we conclude that this is not yet a
mature operation. Therefore did not provide a detailed com-

parison with RNA-seq and bacterial indexing techniques.

Section 6: Discussion
General observations can be derived from the comparison we
have presented in this survey.
SBT approaches were designed for collections with high k-
mer redundancy, such as human RNA-seq. In contrast, BIGSI
and COBS focused on indexing heterogenous k-mer sets,
such as k-mers originating from various bacteria. However,
HowDeSBT demonstrated that SBTs could also perform well
on this type of data. A trade-off exists between the con-
struction time – in favor of BIGSI – and index size – in fa-
vor of the SBT. As shown in COBS paper, the BF resizing
allows to gain memory, but the latest SBT techniques also
have a lightweight memory footprint. Moreover, smaller BFs
increased the false positive rate of COBS in comparison to
other BF-based techniques (45).
It is also important to note that, across a number of meth-
ods, queries are approximate, although a number of color-
aggregative methods support exact queries. Some cDBG im-
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Data set Data Processing Time (days) Max Ext. Memory (GB) Time (h, wallclock) Peak RAM (GB) Index Size (GB)
human RNA-seq 2.5 (48) 30 (48) 2 (11) 5 (11) 15 (48)
(2,652 datasets) (HowDeSBT) (HowDeSBT) (SeqOthello) (SSBT) (HowDeSBT)
bacterial genomes Not reported 12 (45) 0.05 (45) 6.1 (45) 7.6 (45)
(4,000 datasets) (COBS) (COBS) (SSBT) (HowDeSBT)

Table 1. Overview of best-performing tools in terms of space and time requirements to build indices. These results are extrapolated from several publications. BIGSI and
VARI-Merge results were also included during evaluations. The data processing time column refers to the time necessary to convert the original sequence files to the k-mer
set indices (Bloom filters / CQF / Othello). The maximum external memory column corresponds to the peak disk usage when building the index. The time column is the time
required to build the set of k-mer sets index (on one processor). The index size column is the final index size.

plementations (Vari and Vari-Merge) support additional fea-
tures such as bubble-calling and graph traversal. New query
types should also be considered. For instance, the possibil-
ity to obtain the k-mer counts instead of presence or absence
would greatly assist in gene expression studies.
Color-aggregative methods and BIGSI/COBS seem better
suited to query large sequences. Indeed, in these methods,
the bottleneck for a single query is loading the index into
memory. Then, the rest consists of k-mer hashing, roughly in
constant time per each k-mer. Henceforward, once the index
is loaded in memory, batches of queries or large queries can
be answered very rapidly. Query speed can be improved de-
pending on the implementation. For instance, in some data-
structures such as the CQF in Mantis, consecutive k-mers are
likely to appear nearby in memory, thus reducing the num-
ber of cache misses during a query. A drawback is that
these structures are usually more memory consuming than
SBTs. Moreover, in the case of SBTs, BIGSI and COBS,
large queries allow mitigating the underlying BF false posi-
tive rate. SBTs and COBS do not need to load the entirety
of the index into memory at query time since the query it-
eratively prunes irrelevant datasets. That is why SBTs are
more suitable for short queries, while for large queries, k-
mer look-ups become a bottleneck. For very large queries
(e.g. the k-mers from a whole sequencing experiment), only
AllSomeSBT (47) has an efficient specialized algorithm.
Moreover, the fraction of k-mers matching a set query,
which is mainly used as a similarity proxy in those works,
could be further explored from a biological point of view.
For instance, a single substitution in a base is covered by k
different k-mers. If the indexed sequences differ from the
query on that substitution, these k-mer will not be found in
the structure, and the match could be missed. The effect of
changing the size of k has not been sufficiently assessed,
nor has the biological impact on the results been evaluated
when tuning the θ parameter (with the exception of RNA-seq
quantification (8)).

While there have been extensive empirical benchmarks to
compare the performance of the different methods, analytical
comparisons of their performance has been limited (see (48)
for an example, though it is limited to only intra-SBT com-
parisons). The difficulty in using worst-case analysis to an-
alyze performance in this case is that the methods are re-
ally designed to exploit the properties of real collections, and
worst-case analysis is therefore not helpful. Progress can be
made by coming up with appropriate models to capture the
essential properties of real data and analyzing the methods

using those models.
The data structures surveyed in this paper should be seen as
initial attempts from the community toward being able to rou-
tinely query the hundreds of thousands of samples deposited
in public repositories (e.g., SRA) or private ones. An es-
sential next step would be to have user-friendly tools. User
friendliness can be seen from different perspectives. First,
one may try to cast more concrete biological questions into
simplified k-mer queries that can then be asked to the indices.
Second, the results of queries could be presented in a man-
ner that is more suitable to biologists rather than their cur-
rent form, consisting mainly of the output of k-mer queries.
For instance, a list of reads contained in the indexed datasets
could be output for further investigation. However, index-
ing reads is more challenging, and this direction would re-
quire new developments for the structures to scale. Third,
special attention given to user interfaces could help broaden
the usage of these methods. Web interfaces5 are challenging
to maintain in the long run; thus another solution could be to
provide offline pre-computed indices. This way, users would
only download some chunks of interest from the index for
further investigation.
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Section 8: Appendix.
Appendix outline The Appendix is divided in two parts, namely, details on methods and details on the benchmark. Explana-
tions are given in the main text, and we provide concrete examples in Supplementary Boxes. In the Methods Section, first, some
useful definitions of a few computer science objects useful to this study are recalled. Then, details on relevant k-mer struc-
tures (hash-based, BWT-based) and compression are given. Finally, we give more insight about some of the set of k-mer sets
approaches. In particular, we provide a lower-level description of structure/features that did not appear in the main document.
E.g., an example BFT and RAMBO structures are given, as well as comparisons between specific approaches. Complexities
are outlined in Table S1.

8.1 Method details.

8.1.1 k-mer index data structures.

Hash-based methods Bloom filters (See Supp. Box 1) Bloom filters are used to perform approximate membership on sets.
They can be defined as a binary vector of size n bits and a set of l hash functions h0, . . . ,hl−1. An element is inserted in the
filter by hashing it using the l hash functions and by setting the corresponding bits to 1. The query follows straightforwardly,
requiring only to check if all bits corresponding to the query are 1 values, even in case of collision. BFs can lead to return false
positives but never false negative (i.e. they are always able to retrieve a member of the indexed set). Depending on the filter
size n and the number of hash functions l, a trade-off on the false positive rate can be found.

Counting Quotient filter intuition (See Supp Box 1) A CQF is another kind of filter that uses a different hashing strategy. It
is based on the quotient filter notions. The quotient filter uses two hashes of the element (remainder and quotient) to identify
elements in a table. The quotient indicates the position where the element information is stored, and the remainder is written at
this position. Collisions are managed by using linear probing, and the filter can be exact if revertible hash functions are used.
This QF can be modified to store a count information associated to each element.

Othello hashing Othello hashing allows to store (approximately) the association between elements and the set they belong to
((8) in Othello Hashing Figure of Supp. Box 1). For instance with two initial sets S1 and S2, the key idea is that any element
from S1 will be associated to two different values stored at positions defined using two hash functions, while any element from
S2 will be associated to two identical values. When querying, an element is hashed twice and we simply verify whether values
of the associated pair are identical or not (alien keys can yield false positives). Othello hashing can be generalized to more than
two input sets in our application case. Hash collisions when inserting new keys imply cascading modifications to other pairs
of values (see (4) and (5) in Othello Hashing Figure of Supp. Box 1). In practice, the method uses a graph representation to
propagate modifications (sometimes insertions yield cyclic patterns, in this case, elements are stored apart in another secondary
structure).

Graphs and trees A graph is a pair of two sets V and E ((a) in Figure S1). Elements of V are nodes and pairs of related
nodes are called edges, which are elements of E.
A path in a graph is a sequence of edges that joints a sequence of distinct nodes.
A tree is a particular graph in which any two nodes are connected by exactly one path ((b) in Figure S1). SBT relies on trees.
A forest is a disjoint union of trees. HowDeSBT’s tree simplifications can lead to a forest. A subtree is a subset G′ and E′ of a
tree T = (G ,E). Queries in SBT are performed by descending in subtrees.
A trie is a tree that allows to efficiently save and query a set of words. Wavelet tries and Bloom filter tries (BFT) are particular
kind of tries. Wavelet tries (54), used in Metannot, are designed to store compressed sequences. Details on BFT are given in
Supp. Box 3.

(a)

1

2

3 4

(b) (c)

Fig. S1. (a) A graph. Nodes pictured in blue, edges in orange and red. A path is drawn between nodes 1,2,3,4 through red edges. (b)
A tree, and one of its subtrees is circle in grey. (c) A forest.

De Bruijn graphs were defined in the main document. Compacted De Bruijn graphs derive from their definition. Let p be a path
in the DBG, i.e., p is a set of n connected vertices p = {x1,x2, . . . ,xn}. If p is not a cycle, if x1 has more than one ingoing
edges and only one outgoing edge, if xn has more than one outgoing edges and only one ingoing edge, and if all other edges
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have one and only one outgoing and ingoing edges, then the path p can be compacted. This means that the set of vertices can
be fused in an single vertex, containing the sequence of all k-mers assembled, following the order of the directed path. These
paths represent consecutive k-mers with no ambiguity. A DBG in which all possible paths have been compacted is called a
compacted DBG. Compacted DBGs have the advantage to use generally less space to represent the same amount of nucleotides,
than a regular DBG (see Supp. Box 2).

BOSS: BWT-based De Bruijn Graphs The Burrows Wheeler Transform (BWT) is a text transformation algorithm. It receives
a sequence as input, and rearranges its characters in a way that enhances further compression. The transformation is reversible,
thus the original sequence can be decoded. BOSS rearranges k-mers in the De Bruijn graph in a similar way.
Here, we briefly show how the BOSS scheme works. To begin we describe the following simple — but not space-efficient —
representation of a DBG: take each unique (k+1)-mer, consisting of a vertex concatenated to the label of an outgoing edge, and
sort those (k+1)-mers according to their first k symbols taken in reverse order. The resulting sorted list contains all nodes and
their adjacent edges sorted such that all outgoing and incoming nodes of a given node can be identified. Thus, it is a working
representation, in that all graph operations can be performed, but is far from space efficient since (k+ 1) symbols need to be
stored for each edge. Next, we show that we can essentially ignore the first k symbols, which will lead to a substantial reduction
in the total size of the data structure.
First, we make a small alteration to this simple representation by padding the graph to ensure every vertex has an incoming path
made of at least k vertices, as well as an outgoing edge. This maintains the fact that a vertex is defined by its previous k edges.
For example, say k-mer CCATA has no incoming edge; then we add a vertex $CCAT and an edge between $CCAT and CCATA,
then between $$CCA and $CCAT, and so forth. We let W be the last column of the sorted list of (k+ 1)-mers. Next, we flag
some of the edges in the representation with a minus symbols to disambiguate edges incoming into the same vertex – which
we accomplish by adding a minus symbol to the corresponding symbols in W . Hence, W is a vector of symbols from {A, C,
G, T, $, -A, -C, -G, -T, -$}. Next, we add a bit vector L which represents whether an edge is the last edge, inW ,
exiting a given vertex. This means that each node will have a sequence of zero-or-more 0-bits followed by a single 1-bit, e.g., if
there is only a single edge outgoing from a node then there is a single 1-bit for that edge. Overall the representation consists of
a vector of symbols (W ), a bit vector (L) implemented using a rank/select (29) data structure, and finally an array that records
the counts of each character. It may seem surprising but these three vectors provide enough information for representing the
DBG and supporting traversal operations. We refer the reader to the original paper for a detailed discussion. Lastly, we note
that this representation, which is referred to as BOSS, is due to Bowe et al. (26) and was extended for storing colors (24) (see
Supplementary Box 4 for an example).

8.1.2 Details on compression To efficiently represent a n× c color matrix, over n k-mers across c datasets, different schemes
have been proposed. A color class is a set of colors. It can also be seen as a bit vector, and a line in the color matrix. Supp.
Box 5 presents examples of the different techniques: the delta-based encoding used in Mantis+MST (c), the RRR/Elias-Fano
coding (e) used e.g. in Mantis and VARI, the lossy compression using BF from Metannot (d), the BRWT principle (f), and the
three strategies used in SeqOthello (g).

8.1.3 Set of k-mer sets details

Color aggregative methods. We first show how the different color aggregative methods combine k-mer sets and color strate-
gies in Supp. Box 6. Then, we report the various hashing strategies used by methods that do not rely on BOSS in Supp Box
7.
BFT significantly differs from other methods: an example is shown in Supp. Box 3. In a BFT, k-mers are divided into a prefix
and a suffix part that are recorded in tree (actually, a variant called a burst trie). Prefixes are further divided in chunks, which are
inserted into the root and inner nodes of the tree. Suffixes are in the leaves. Queries start at the tree root and progress through
the path that spell the query string. In practice, k-mer suffixes are stored as tuples with their corresponding color class. Bloom
filters are also used in the inner nodes, to increase query speed by quickly checking the presence of a chunk. Note that the
above description of BFT does not capture the full complexity of the data structure, and should only be used to build an initial
intuition.

k-mer aggregative methods In Supp. Box 8, we present indexing and query details, in a similar fashion than Boxes 4 and 5
in the main text, but more in depth. We show the index construction and query steps in SBT, BIGSI, and shows how COBS
improves on BIGSI’s representation while keeping the core idea.
Then we illustrate current contrasts between k-mer-aggregative methods in Supp. Box 8. For the different SBTs works, different
strategies are used to store information in each node. Supp. Box 8 shows the improvements in bit-vector representation first
brought by SSBT/AllSomeSBT, then by HowDeSBT. In a second Figure, BIGSI, Dream Yara and RAMBO strategies for
indexing Bloom filters are compared. In the following, we outline the very recent RAMBO’s method.
An example of RAMBO structure is shown in Supp. Box 8, bottom right Figure. RAMBO builds a matrix of C columns and T
rows. Cells of the matrix are BFs. At construction, a given dataset is assigned to one cell per column, and the corresponding
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Supplementary Box 1. Hashing techniques

Bloom filters The example filter has a set of two functions f and g. In (1) a is inserted by putting 1s at positions 2
and 4 indicated by both functions. (2) b is inserted similarly. (3) x is queried, g(x) giving a 0 we are certain that it is not
present in the filter.

a
0

1

1
0

0 b
1

1
0

0 x
1

1
0

0

1 1

 f

 g

 f

 g
 f

 g

(1)                   (2)                 (3)  

f(x) AND g(x)=0 

⇒ x not in S1

S1={a,b}, x∉S1

BF

Counting Quotient filter intuition Element a and b are decomposed into a1a2 and b1b2. a1, b1 are quotients in the
example, and a2, b2 are remainders. (1) During a’s insertion, the quotient is used to find the position of the element in
the filter, and a2 is stored. The count is associated (second column). (2) similar operation for b. (3) a is re-inserted,
leading to a count of 2.

a=a1a2
0

a2

0
0

0

 f(a1)

(1)                   (2)                   (3)  
0

1

0
0

0
b=b1b2

0

a2

0
b2

0

 f(b1)

0

1

0
1

0
a=a1a2

0

a2

0
b2

0
0

2

0
1

0

 f(a1)
CQF

Othello Hashing intuition In the example below (figure), two sets S1 and S2 are hashed, but a larger number of sets
can be dealt with. Othello hashing uses two hash functions, denoted here by f and h. The method maintains two bit
arrays B1 and B2 (1). In (2), the element a from S1 is hashed with f in B1 and with h in B2. A different value will be
stored in B1 and in B2 (0 and 1). The lines between those two values visually represent their association to a. (3) b is
hashed the same way than a, ensuring again that two different values are associated to b. (4) Element c is inserted, here
we cannot ensure two different values are associated to c without having a contradiction. Thus b’s 0 in B2 is modified
(in red). (5) The values associated to b must differ, so in B1 we modify the 1 associated with b to a 0. (6) x,y,z are
inserted, this time they must be associated to pairs of identical elements as they belong to S2. (7) y is queried by hashing
it with f and h and by checking if the associated values are identical (y in S2) or different (y in S1).

S1={a,b,c}    S2={x,y,z}

a  

a

0

1

a  

a

0

1

0 0 b  

1b

 ca  

a

0

1

0 1 bc  

1b

 ca  

a

0

1

0 1 bc  

0b

 xca  

a

00 1 bc  

0yb
0 x

0 y

    z  1 1    z  

(1)  (2)  (3)  

(4)  (5)   (6)  

(7) query y   

B1[f(y)] = B2[h(y)] ⇒ y∊S2

1

 
Othello
hashing

S1

 
 S2

 
 
S3

 
 

0

1

0 1

0
0

0

1 1

0

0
B1 B2

B1 B2 B1 B2

 f

 h
 f

 h
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Supplementary Box 2. Compacted De Bruijn graph

In the example below, the first graph is a regular De Bruijn graph from the 5-mers CCTGA, ACTGA, CTGAG, TGAGA,
GAGAA, AGAAC, GAACC, AACCT, AACG. CTGAG has two ingoing edges and only one outgoing, GAACC has two
outgoing edges and only one in-going, any other vertex in-between connecting CTGAG and GAACC has only one in-
going and outgoing edge. Thus this red path can be compacted.
The second graph is the resultant compacted De Bruijn graph. The red path becomes a single red node, by concatenating
CTGAG, A, A, C and C. It keeps the same connections than the two flanking nodes. Each resultant node is referred to
as a unitig.

ACTGA
CTGAG TGAGA GAGAA AGAAC GAACC

AACCG

CTGAGAACC

De Bruijn graph

CCTGA AACCT

compacted De Bruijn graph

ACTGA

CCTGA

AACCG

AACCT

It is noticeable than instead of needing 5×9 nucleotides, this second representation only requires 5×4+9.
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Supplementary Box 3. Bloom filter trie

A Bloom filter trie is a tree that stores sequences. Either a sequence of length k is stored in a leaf (which can store at
most t sequences), or a node is "burst" (i.e. transformed) into a sub-tree. The new sub-tree consists of a node v and two
or more children of v. All prefixes of length p from the sequences in the original leaf are stored in v. All suffixes of
length k−p that follow the i-th prefix in v are stored in the i-th child of v.
We now show how to store the following k-mers in a BFT: AGGCTAGCTAA, AGGCAAACTAT, AGGCTAGGATG,
CTTATCCGACT, AGGTTCAGAAT, AGGCTACCCCC, with t= 4 and p= 3. (1) the first four k-mers can be inserted
in a single leaf, since t= 4. (2) The fifth k-mer AGGTTCAGAAT (red) cannot be inserted in the leaf, requiring a burst
operation. (3) To perform the burst, the prefixes of size p of the five k-mers are stored in the root. Each prefix has a
pointer to its corresponding subtree. Suffixes of length k− p are stored in the leaves. (4) AGGCTACCCCC (green)
insertion should be made in the left leaf as its prefix is AGG. This requires a burst as the left leaf is full. (5) The burst
operation is performed on this leaf and AGGCTACCCCC can be inserted. (6) Binary representation based on Bloom
filters is used for the leaves. Note: k-mers are stored as tuples with their color class.

AGGCTAGCTAA,AGGCAAACTAT,AGGCTAGGATG,CTTATCCGACT,AGGTTCAGAAT,AGGCTACCCCC

AGGCAAACTAT
AGGCTAGCTAA
AGGCTAGGATG
CTTATCCGACT

AGGCAAACTAT
AGGCTAGCTAA
AGGCTAGGATG
CTTATCCGACT

AGGTTCAGAAT

AGG CTT

CAA CTA TTC ATC

CCCCC
GCTAA
GGATG

ACTAT CGACT

AGG CTT 

CAAACTAT
CTAGCTAA
CTAGGATG
TTCAGAAT

ATCCGACT

AGG CTT 

CAAACTAT
CTAGCTAA
CTAGGATG
TTCAGAAT

ATCCGACT

CTACCCCC

AGAAT

(1) (2) (3)

(4) (5)

(6) binary representation
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Supplementary Box 4. BOSS graph structure

In this Box we describe the BOSS data structure, as per its original flavor ((26)). Let’s assume we want to build the
BOSS from the two sequences CAGCCGA and CAGTCGA with k = 3 in the figure below, part (1). Part (2) is the De
Bruijn graph from these sequences (no reverse-complements are considered here). In this representation, each vertex
contains a 3-mer, and an edge represents a 4-mer existing in the original sequences, the label of the edge being the last
nucleotide of this 4-mer. (3) represents the same information, but with the constraint that any nodes not containing $
must be preceded by k vertices (3 vertices) and must have at least an outgoing edge. Thus supplementary nodes are
added. (4) is the list of (k+1)-mers in the (3) graph.

cagccga
cagtcga

cag agc gcc ccg cga

agt gtc tcg

  c   c  g a

  t   c  g a

$$$ $$c $ca

  c   a   g  $

$$$c, $$ca, $cag, 
cagt, cagc, agtc, 
gtcg, agcc, tcga, 
gccg, ccga, cag$

$$$ 
$ca 
cga 
$$c 
gcc 
agc 
gtc 
cag 
cag 
ccg 
tcg 
agt 

cag agc gcc ccg cga

agt gtc tcg

  c   c  g a

  t   c  g a

nodes

edges

labels

c
g
$
a
g
c
g
c
t
a
a
c

1
1
1
1
1
1
1
0
1
1
1
1

$$$
$ca
cga 
$$c
gcc 
agc 
gtc 
cag
cag 
ccg 
tcg 
agt

c
g
$
a
g
c
g
c
t
a
a-
c

1
1
1
1
1
1
1
0
1
1
1
1

0
1
2
3
4
5
6
7
8
9
10
11

0
1
2
3
4
5
6
7
8
9
10
11

0
1
2
3
4
5
6
7
8
9
10
11

$ 0
a 1
c 3
g 7
t 11

c
g
$
a
g
c
g
c
t
a
a-
c

1
1
1
1
1
1
1
0
1
1
1
1

0
1
2
3
4
5
6
7
8
9
10
11

$$$ 
$ca 
cga 
$$c 
gcc 
agc 
gtc 
cag 
cag 
ccg 
tcg 
agt 

c
g
$
a
g
c
g
c
t
a
a-
c

(1) (2)

(3)

(5) (6) (7) (8)

(4)

(5) These (k+ 1)-mers are listed by lexicographic order by reading them in reverse from the kth nucleotide. This gives
a matrix of nucleotides, the last nucleotide of each (k+ 1)-mer being in a separate red column. Each line of the matrix
represents a node label in the graph, and the red vector represents the edge labels. (6) In order to denote nodes that have
several outgoing edges, a new vector (blue) is used. 0s are put until the last edge of a node in the last, represented by
a 1. Here node CAG has two edges labeled by C (green, marked 0) and T (orange, marked 1). When two nodes enter
the same node, they have the same label, one is disambiguated using a −, as for yellow/blue labels. (7) Only the last
column of the matrix will be kept in the BOSS. We retain the rank of each first symbol (in red): $ appears at rank 0, A
at rank 1, C at rank 3, . . . . (8) The final information in the BOSS structure. From these tables, DBG operations such as
going forward, backward from a given node are shown to be possible in (26), but we do not describe them here.
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Supplementary Box 5. Details on building blocks in color aggregative methods.

01100101

00010001
10000111

01111101

0
1
2
3

(c) 1 color matrix

01101001
10001101
00010001
00010001
01101001

(d) 1 set of 

color classes

10000111
...

...

<0,5,2,.>

<1,4..>

...

...

0

i

n

01111011
01111011
00111011
01111011

01000010
01000011
11000011
01000011

01100100
01000010
01100010
01100010

Supp. Box  5

a / b / c / d

Supp. Box  5 e

 

color representation compressionk-mer set

(a) DBG

(b) Othello

VARI(-Merge)

Metannot

Multi-BRWT

BLight

(e) several color classes matrices 

(one per graph region)

(f) several color matrices 

(one per bucket)

BFT

Mantis(+MST)

Rainbowfish

Pufferfish

BiFrost

SeqOthello

BF is updated with the presence of its k-mers. This creates the necessary redundancy in the structure. Since several datasets
can be assigned to a same cell, BF become union BF by informing for the presence/absence of k-mers in more than one dataset.
Query is performed on the rows, each union BF giving a row-wise union of sets where the query could be present. The final
sets containing the query are deduced by intersection of the different set unions.

construction query
SBT O(n× b)∗ O(Q×h)
VARI O(N × log(N)) O(Q×n)
Mantis O(N ×n) O(Q×n)
SeqOthello O(N ×n) O(Q×n)
BFT O(N ×n) O(Q×n)
BIGSI O(n× b) O(Q×n)
RAMBO unreported O(Q×

√
n× log(n))

Table S1. Time complexities for the construction and query of the main approaches. N is the total number of distinct k-mers, n is
the number of datasets, Q the query size (number of k-mers). We denote by b the number of bits in a Bloom filter, and h the number
of datasets that contain at least θ% of Q k-mers. We consider k as a relatively small constant (21-63). ∗ This time is derived from
Theorem 1 in (48) with the assumption that the size of the Bloom filter b is roughly O(N/n). Note that there may be an additional
complexity cost for building the topology of the tree through clustering. We note that in the worst case (majority of k-mers present in all
datasets), the query complexities of SBTs would be O(Q×n).

Type of query output Method
Datasets containing at least θ% of the queried k-mers SBT, BIGSI, SeqOthello, Mantis, BFT
Fraction of query k-mers present in each experiment SeqOthello
Bubble calling from query k-mers VARI
Given a color, list of k-mers having that color VARI-Merge

Table S2. Comparison of the different methods outputs.
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Graph Color Properties
Mantis S s,d
Mantis+MST S S
Metannot S Lossy
Multi-BRWT S
Rainbowfish S s
VARI S
VARI-Merge S D
BFT S s
SeqOthello N/A S Lossy
Bifrost D S,d
Pufferfish S
BLight S

Table S3. Summary of color-aggregative methods’s focus on scalability of their components. A capital ’S’ indicates that the corre-
sponding method claims to have focused on a highly scalable component for either its graph representation or its color representation.
An ’s’ indicates moderately scalable, and “N/A” stands for non-applicable. Similarly, capital and regular ’D’ and ’d’ indicate a particular
focus on the structure dynamicity. The tradeoff with lossy data-structures is indicated in the last column.

Tool Data Processing Time (days) Max Ext. Memory (GB) Time (h, wallclock) Peak RAM (GB) Index Size (GB)
SBT 3.5b 300a 55b 25b 200a

AllSomeSBT 3.5a 600a 25a 35b 140a

SSBT 3.5a 600a 55a 5b 20a

HowDeSBT 2.5a 30a 10a N/A 15a

Mantis 130a 3,500 20a N/A 30a

SeqOthello 3.5b 190b 2b 15b 20b

BIGSI N/A N/A N/A N/A 145c

Table S4. Space and time requirements to build indices. The best result for each column is shown in green. a refer to HowDeSBT
results, b refer to SeqOthello results, c refer to BIGSI results. The benchmark dataset has approximately 4 billion k-mers, within 66 files,
where reads shorter than 20 bases are discarded. Despite using the same dataset, the studies vary slightly: they filter low frequency
k-mers slightly differently (11, 38), and hardware used in experiments also differs. The data processing time column refers to the time
necessary to convert the original sequence files to the k-mer set indices (computation of Bloom filters, CQF (Squeakr), Othello). The
maximum external memory column corresponds to the peak disk usage when building the index. The time column is the time required
to build the set of k-mer sets index (on one processor). The index size column is the final index size. BIGSI is not a compressed index,
but the authors had explored the possibility to compress using snappy (https://google.github.io/snappy/). Parameters
used for the different methods were θ = 0.9 and BF size of 2.109 for the SBT methods, k = 20 as the k-mer size for all methods, and
34 "log slots" for Mantis from the estimation of their paper.
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Supplementary Box 6. Details on the hash-based strategies in color aggregative methods

Here we give details on the set of k-mer sets implementations in the different hash-based strategies.
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In the Figure above, the terms compacted DBG and unitigs are defined in Supplementary Box 2. Minimal Perfect
Hash functions (MPHFs) are functions that map a fixed set of keys to the range of consecutive integers from 0 to the
number of keys. They allow to implement memory efficient hash tables (55). For example in Pufferfish, MPHFs are
used to associate a k-mer to its position in the graph unitigs. In BLight (42), they associate a k-mer to its position in a
bucket.

Some of the techniques use minimizers. While there exist multiple definitions in the literature, here we will say that a
minimizer is the smallest l-mer that appears within a k-mer, with l < k. "Smallest" should be understood in terms of
lexicographical order. For example in the k-mer GAACT, the minimizer of size 3 is AAC, as all other l-mers (GAA,
ACT) are higher in the lexicographical order than AAC. Minimizers are used here to create partitions of k-mers, which
roughly have the same size. Such partitioning techniques reduce the footprint of position encoding.
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Supplementary Box 7. k-mer aggregative methods

Index construction In SBT ((a) in Figure below), all BFs in leaves are initialized to the same uncompressed size,
which means that the structure is initialized according to the estimated total number of distinct k-mers to index (which
is, in practice, estimated by k-mer counting techniques applied on a random sample of datasets). As it can be seen in
the example Figure, union BFs in parent nodes can thus be simply deduced by applying a logical OR on the children BF
pair.
In BIGSI ((b) in Figure below), all initial BFs must have the same size, so this parameter is usually adjusted according to
the sample with the highest k-mer cardinality. It is also required that the same hash functions would be used during the
construction (in practice 2-5 functions, which allows rapid query). COBS (c) uses the same principle but Bloom filters
do not all have the same size.
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Queries in tree structures (SBT, etc.) The query of a set of k-mers Q starts at the root node and is propagated through
the tree ((a) in Figure below shows the query for 3 k-mers). At each node, the corresponding BF locations are checked
to contain 1s or not. If a relative proportion of at least θ of k-mers are returned as present by the BF of the current node
(in the example, θ = 2/3), the query proceeds to the children nodes. Otherwise, the children of the current node are not
explored. In the Figure below, the query continues after the root node, stops at the subtree of the node which k-mer
presence is only at 1/3, and continues in the subtree of the other node. Finally, the procedure stops when tree leaves are
reached. The corresponding samples are then returned as containing similar k-mer content with the query (red dataset
in the Figure).

Queries in matrix structures (BIGSI) We present the query step for one k-mer. A given k-mer is hashed, leading to one
or several rows to lookup. In Figure (b) below, the query is performed on the green rows. Each queried row informs on
the datasets that may contain the query k-mer. All the returned bit vectors are then summarized vertically into a single
vector, using a logical AND operation. Positions yielding 1s after this operation correspond to datasets that contain the
k-mer (in the Figure example, the k-mer is present only in dataset 1). (c) The same principle is used when matrices of
several sizes contain the BFs. Hashes are simply adapted to the different sizes using a modulo.
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Supplementary Box 8. Contrasts between the different k-mer aggregative approaches

SBT approaches For SBTs, different strategies are used to store information in each node. In the example below,
the first level of each node is a plain Bloom filter, as used in the original SBT approach. The second level is the
how+ det representation used in HowDeSBT. The third is the equivalent all+ some or sim+ rem representations
used by AllSomeSBT and SSBT. The three approaches are shown in four nodes.
Starting at the root node, some bits are already fixed as they keep the same value in all the nodes of the subtree (green
bits). Those bits are marked as det, and when they are, how records their values. In the sim+ rem or all+ some
system, fixed bits with value set to 1 are marked by all and sim. The some or rem vector stores values such that
all∪some=BF or sim∪ rem=BF .
At the second level, new bits are fixed (orange in the left subtree and blue in the right subtree). The same rules apply.
Moreover, bits that were marked in the upper levels are non informative (red stroke). They can be removed from the
structure with a maintained rank information.
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Bloom filter arrays Left: the DREAM-Yara index is built by interleaving the bits of each Bloom filters. Bits of
the same rank are grouped together in bins of size n. These groups are concatenated to obtain a large vector of size
n× (t+ 1). Middle: BIGSI matrix built for each dataset (color dots), gray boxes represent BFs. Right: RAMBO is
represented as columns of merged BFs.
A query corresponds to a set of rows (in BIGSI) or a set of bins (in DREAM-Yara), which are then combined to obtain
the result.
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Tool Max Ext. Memory (GB) Time (h, wall clock) Peak RAM (GB) Index Size (GB)
SBT N/A 7.7a 44a 79a

SSBT N/A 32a 6.1a 13a

AllsomeSBT N/A 4.0a 29a 85a

HowDeSBT N/A 82a 430a 7.6a

BIGSI 110a 5.0a 1,000a -
COBS 12a 0.05a 11a -
Vari 1,000b 11b 136b 51b

Vari-Merge 1,000b 12b 52b 51b

Rainbowfish 1,000b 11b 136b 51b

BFT 900b 52b 120b 99b

Multi-BRWT 1,300b 42b 156b 1,300b

Mantis+MST 36b 12b 52b 51b

Table S5. Space and time required to build indices on bacterial datasets (extrapolated to 4,000 datasets). The table combines results
from a benchmark done in the COBS article (45) (denoted by a in the table) and one from the Vari-Merge article (16) (denoted by b in
the table). The COBS benchmark contains 1,000 microbial DNA files , consisting of various bacterial, viral and parasitic WGS datasets
(in the ENA as of December 2016) with an average of 3.4 million distinct k-mers per file. No cutoff on k-mer abundances was used
before constructing the data structures. The Vari-Merge benchmark contains 4,000 datasets totalling 1.1 billion distinct k-mers from
16,000 Salmonella strains (NCBI BioProject PRJNA18384). Note that the Vari-Merge benchmark has more genomes than the COBS
benchmark, but it possibly contains a lower variability in k-mer content. In the Vari-Merge benchmark, methods were run with k = 32,
with the exception of BFT that was run with k = 27. In the COBS benchmark, k was set to 31. When applicable, other parameters were
set by default. In the table, COBS denotes for the COBS compact index that allows more than one batches of BF. BIGSI stands for the
original implementation of BIGSI. A dash stands for a non-applicable measure (for instance, BIGSI has no compressed size since its
not a compressed index). Note also that COBS index is not needed to be fully loaded in RAM even if all results present fully loaded
indices.
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