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Abstract. Here we present a scanning Hall probe microscope operated using tuning fork-based force detection technique.
A unique feature of the microscope is the use of the same stepper motors for both sample positioning as well as scanning,
which allows for a scan range of a few mm, with a scan resolution of 0.1 um. Scanning at different heights from the
sample surface is possible, in a z range of 35 mm. A combination of micro-structured Hall probes (of size 1-5 pm) and
the tuning fork-based force detection has enabled achieving a minimum probe-sample distance < 2 pm. We discuss the
salient features of the microscope and its application for the study of micro-magnet arrays and larger magnetic structures.

INTRODUCTION

Scanning Hall probe microscopy (SHPM) [1-3] stands out among common non-invasive magnetic imaging
techniques due to its unique advantages, notably, the possibility of direct quantitative magnetic characterization over
large field and temperature ranges. There have been continuous efforts to improve the spatial resolution and scan
range [4-7], temperature range [8], and magnetic field resolution [9] of SHPM.

We summarize here the development of a SHPM system built for characterization of arrays of micro-magnets in
ambient conditions [10]. In comparison to microscopes presented before [4-9,11], the present system features a
combination of several concepts, such as stepper motors for scanning, tuning fork-based contact regulation, and
compact electronic circuitry, which contributes to overall system performance. The microscope features a scan range
of a few mm, limited by sample topography. The stepper motors offer a minimum step resolution of 0.1 um (spatial
resolution of the magnetic field distribution is limited by the size of the Hall probes as the detected magnetic field is
the average field over the active area of the probe) and large z range, allowing sample-probe distances from <2 pum
to 35 mm. Micro-structured Hall probes with an active area of 1-5 pm enable large magnetic field detection (fields
up to 1 T have been measured) with high field resolution (100 uT, limited by system noise during scanning). In the
following sections, firstly the microscope is described and then results showcasing the high resolution and large area
scanning capabilities of the microscope are presented.

THE SHPM SYSTEM

The Microscope

Figure 1(a) shows a schematic of the microscope. It consists of two parts. The mobile sample stage consists of a
sample holder placed on Micos stepper motors XYZ stage, which allows movement of the sample in all three
directions. The travel range of the motors is 50 mm. The minimum step size is 0.1 um in the X/Y directions, and 0.2
pm in the Z-direction, which are precise enough for the primary purpose our microscope is built for. Hence,
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scanning is performed by the stepper motors themselves, which results in a maximum possible scan range equal to
the travel range of the motors. In practice, the range is limited by the sample topography, which restricts the distance
over which the desired probe-sample distance regulation (discussed later) can be maintained. With the samples
investigated, we have been able to achieve a maximum scan range of 2.5 mm.

The fixed probe stage includes the Hall probe mounted on a commercial quartz tuning fork (resonance frequency
fr~ 32.768 kHz), as shown in Fig. 1(b). This stage also hosts piezoelectric elements for tuning fork excitation and z-
regulation, as well as all electrical connections. The tuning fork is mechanically excited via a piezoceramic element
(labelled “Excitation piezo” in Fig. 1(a)). The “z-piezo stack” extension piezoelectric element is used for probe-
sample distance control (within its extension range of ~ 32 pm) [12,13].

The primary electronics component is a fast lock-in amplifier, Zurich Instruments HF2LI, which provides the
excitation signal, and measures the current of the tuning fork. It also provides the Hall excitation current and
measures the Hall voltage. It also provides a fast Proportional-Integral-Derivative (PID) control for the z-piezo
stack. Custom-built reliable and user-friendly LabVIEW programs for all operations, including data acquisition and
analysis, have been developed specifically for the setup.
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FIGURE 1. (a) Schematic of the microscope. (b) Schematic showing a Hall bar mounted on a tuning fork. (c¢) Typical probe-
sample contact regulation during a scan. (d) Approach curve of a tuning fork with a probe mounted on it. Note the reduced fz, due
to anchoring of one prong of the tuning fork to the probe plate, and the Hall probe mounted on the other prong. (¢) Optical image
of'a Hall bar. (f) SEM image of the Hall bar showing the Hall cross. (g) Calibration curve of a Hall sensor. The graph shows B vs.

Ry data, along with linear fit of the data.

Probe-Sample Distance Regulation

Real-time control of the probe-sample distance (/%) is crucial in a scanning probe setup to approach the probe
close to the sample without crashing it, e.g., as in the schematic shown in Fig. 1(c). This is achieved by regulating
the extension of the z-piezo stack during a scan via a PID control using the amplitude of oscillation of the tuning
fork for feedback [14] to maintain a desired /. The basis of the regulation is that the amplitude of oscillation of the
tuning fork decreases monotonically on approaching the sample surface (cf. Fig. 1(d)). Typically, a desired setpoint
for 4 is chosen, and the amplitude of oscillation of the tuning fork is regulated accordingly, e.g., to set 4 ~ 500 nm,
the amplitude od oscillation is regulated at ~ 50% of the value when the tuning fork is far from the sample surface,
as shown in Fig. 1(d).

Magnetic Field Detection

The Hall probes consist of heterostructures of GaAs/AlGaAs two-dimensional electron gas (2DEG) materials.
Figure 1(e) shows an optical image of a typical Hall bar. Figure 1(f) shows an SEM image of a portion of the Hall
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bar showing the Hall cross (identified by the red lines) and contact leads. The four edges of the Hall cross are
labelled as 1, 2, 3, and 4. The distances of the Hall cross from the edges of the Hall bar are shown as L; and L,
(typically 8-15 um). Hall probes of size 1-5 pm have been prepared. See Ref. 10 for further details on the
preparation and properties of the Hall probes. A typical calibration curve for the Hall probes is shown in Fig. 1(g),
which shows a clear linear variation of the Hall resistance (Ry,;) with magnetic field (B). The Hall sensitivity (k) is
determined to be ~ 200 £ 2 Q/T for all probes used in our microscope.

To protect the probe from damage due to brushing against the sample surface, the probe is kept at a slight tilt
with respect to the sample stage during a scan. The effective distance of the probe from sample surface during a scan
can be estimated by taking into account the distance of the Hall cross from the Hall bar edges (L, and L,), and the tilt
angles along the x and y axes (cf. Ref. 10 for detailed calculations). A minimum effective probe-sample distance <2
um has been achieved in our microscope

Further, scanning at any desired height above the sample surface, within a z-range of 35 mm, is also possible.
Apart from scanning measurements, the system has also been extensively used for fast recording of local B(z)
profiles.

MEASUREMENTS

The microscope has been extensively used for characterization of a wide range of magnetic structures: hard and
soft magnetic materials, topographically as well as thermomagnetically patterned micro-magnetic structures, and
commercial bulk permanent magnets [10,15-17]. Discussed below are a few results highlighting the high resolution
and long-range scanning capabilities of the microscope.

Topographically Patterned NdFeB Micro-Pillar Array

Figures 2(c)-2(h) show a set of SHPM images showing the z-component of the stray field (B.) over a 200 um X
200 pm area in a 2D array of topographically patterned NdFeB micro-pillars embedded in PDMS
(polydimethylsiloxane) at different scan heights. The scan resolution is 1 pum. A schematic of the sample in Fig. 2(a)
shows the relevant feature sizes. The topographic image in Fig. 2(b), obtained simultaneously with the SHPM image
obtained closest to the sample surface, clearly shows the modulations in the PDMS due to the underlying micro-
pillars. From Figs. 2(c)-2(h), large field variation due to the micro-pillars, with B, varying between ~ 28 mT at their
centers, and ~ - 11 mT in between them, is observed at the nearest scan height # ~ 10 um. With increasing 4, the B,
variations diminish. At 4 ~ 70 um, the variations disappear altogether, and B, ~ 0 is measured across the image area.

30 um 40 um

FIGURE 2. (a) Schematic of a micro-pillar in the NdFeB micro-pillar array embedded in PDMS sample. (b) Image showing
topography of the sample (the scale bar is in um). (¢)-(h) SHPM images showing the B, distribution over the sample at different
scan heights, as indicated. The B, distribution in these images is represented by the common scale bar shown in (h).

Imaging Large Magnetic Structures

Figure 3(a) shows a sample consisting of arrays of square and circular dots of 1 mm side/diameter consisting of
carbonyl-iron powder mixed with PDMS embedded in a pure PDMS matrix (sample A), placed on top of a 5 mm
cubic magnet. Figures 3(b)-3(c) show SHPM images showing the B, distribution over a 2 mm x 2 mm area and at a
scan height of ~ 60 um, across a square and circular dot, respectively. The scan resolution is 5 pm. The strong
concentration of flux emanating from the underlying magnet by the dots is clear from these images. Figures 3(d)—
3(e) show SHPM images of a sample consisting of NdFeB dots of similar dimensions (sample B). From these
images, we can readily observe the variation of magnetic flux across the dots, with flux strongly concentrated near
the edges, and decreasing towards the centers of the dots.
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FIGURE 3. (a) Sample A placed on top of a 5 mm cubic magnet. (b)-(c) SHPM images showing the B, distribution in sample A
at a scan height of 60 um. The scale bar in between represents B, variation in both images. (d)-(¢) SHPM images showing the B,
distribution in sample B at a scan height of 60 um. The scale bar in between represents B, variation in both images.

In summary, we have developed a scanning Hall probe microscope for high resolution, large area, variable
height magnetic field imaging, for the quantitative characterization of micro-magnets as well as mm-sized magnetic
structures.
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