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Summary

� Iron (Fe) homeostasis is crucial for all living organisms. In mammals, an integrated posttran-

scriptional mechanism couples the regulation of both Fe deficiency and Fe excess responses.

Whether in plants an integrated control mechanism involving common players regulates

responses both to deficiency and to excess is still to be determined.
� In this study, molecular, genetic and biochemical approaches were used to investigate tran-

scriptional responses to both Fe deficiency and excess.
� A transcriptional activator of responses to Fe shortage in Arabidopsis, called bHLH105/

ILR3, was found to also negatively regulate the expression of ferritin genes, which are markers

of the plant’s response to Fe excess. Further investigations revealed that ILR3 repressed the

expression of several structural genes that function in the control of Fe homeostasis. ILR3

interacts directly with the promoter of its target genes, and repressive activity was conferred

by its dimerisation with bHLH47/PYE. Last, this study highlighted that important facets of

plant growth in response to Fe deficiency or excess rely on ILR3 activity.
� Altogether, the data presented herein support that ILR3 is at the centre of the transcrip-

tional regulatory network that controls Fe homeostasis in Arabidopsis, in which it acts as both

transcriptional activator and repressor.

Introduction

The control of iron (Fe) homeostasis is essential in all living
organisms. Perturbations of Fe uptake, circulation, metabolism
or storage alter plant productivity and the quality of their derived
products (Briat et al., 2015). Although Fe is one of the most
abundant elements found in soils, it is generally poorly available
to plants because it is mainly present in the form of insoluble
chelates. This is, for instance, found for calcareous soils that rep-
resent one-third of the world’s cultivated lands (Guerinot & Yi,
1994). Therefore, decrypting the physiological and molecular
mechanisms governing plant Fe uptake, transport and storage is a
critical issue considering that all the Fe that is present in the
human diet comes, directly or indirectly, from plants.

Plants respond to Fe shortage through different mechanisms
(Kobayashi & Nishizawa, 2012). Nongraminaceous monocot as
well as dicot species such as Arabidopsis thaliana have evolved a
reduction-based strategy to solubilise and absorb Fe from the soil
(Morrissey & Guerinot, 2009; Brumbarova et al., 2015; Curie &
Mari, 2016; Connorton et al., 2017). It relies on the reduction of

Fe(III) chelates present in the soil by FRO2 (FERRIC
REDUCTION OXIDASE 2) (Robinson et al., 1999). The Fe2+

ion generated is then transported across the rhizodermis cell
membranes by IRT1 (IRON-REGULATED TRANSPORTER
1) (Eide et al., 1996; Henriques et al., 2002; Varotto et al., 2002;
Vert et al., 2002). This process is facilitated by the activity of the
AHA2 proton-ATPase, whose activity leads to rhizosphere acidi-
fication (Santi & Schmidt, 2009). In addition, Fe solubilisation
is enhanced by the excretion (by the rhizodermis-specific PDR9/
ABCG37 transporter) of Fe-mobilising phenolic compounds
(Fourcroy et al., 2004, 2014, 2016; Rodr�ıguez-Celma et al.,
2013a; Schmid et al., 2014). Fe transport, compartmentalisation
and storage is also modulated in response to fluctuations in Fe
availability (Morrissey & Guerinot, 2009; Kobayashi &
Nishizawa, 2012; Brumbarova et al., 2015; Curie & Mari, 2016;
Connorton et al., 2017).

Plant response to Fe deficiency is tightly regulated at the tran-
scriptional level by a complex transcriptional regulatory cascade
in which basic helix�loop�helix (bHLH) transcription factors
(TFs) play a predominant role (Heim et al., 2003; Gao et al.,
2019). In Arabidopsis, the main TFs involved have been charac-
terised. At the top of this regulatory network, four bHLH TFs*These authors contributed equally to this work.
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(bHLH34, bHLH104, bHLH105/ILR3 – IAA-LEUCINE
RESISTANT3, and bHLH115) form homo- and heterodimers
that regulate the expression of five additional bHLH TFs (Zhang
et al., 2015; Li et al., 2016; Liang et al., 2017). Targeted TFs con-
sist of bHLH38, bHLH39, bHLH100, bHLH101 and bHLH47/
PYE (POPEYE) (Colangelo & Guerinot, 2004; Wang et al.,
2007, 2013; Yuan et al., 2008; Zhang et al., 2015). Once
induced, bHLH38, bHLH39, bHLH100, bHLH101 can form
heterodimers with bHLH29/FIT (FE-DEFICIENCY
INDUCED TRANSCRIPTION FACTOR) (Colangelo &
Guerinot, 2004; Jakoby et al., 2004; Yuan et al., 2008). Then,
these FIT-dependent transcriptional complexes activate the tran-
scription of genes encoding for the Fe uptake system (for example
FRO2, IRT1) located at the root epidermis (Vert et al., 2002;
Yuan et al., 2008; Wang et al., 2013). Four additional bHLH
partners of FIT (bHLH18, bHLH19, bHLH20, and bHLH25)
promote its degradation in response to jasmonic acid induction,
antagonising the activity of bHLH38, bHLH39, bHLH100,
bHLH101 and hence Fe uptake (Cui et al., 2018). By contrast,
PYE is a transcriptional repressor that contains in its C-terminal
part an EAR motif (DLNxxP), one of the most predominant
form of transcriptional repression motif identified in plants
(Kagale & Rozwadowski, 2011). For instance, in the root pericy-
cle, PYE represses the expression of genes notably implicated in
Fe transport such as NAS4 (NICOTIANAMINE SYNTHASE 4),
a key gene involved in phloem-based transport of Fe to sink
organs (Klatte et al., 2009; Long et al., 2010). PYE was shown to
heterodimerise in vivo with bHLH104, ILR3 and bHLH115
(Long et al., 2010; Zhang et al., 2015). However, it is still unclear
if these interactions play a role in the plant response to Fe defi-
ciency or in the control of Fe homeostasis.

Under aerobic conditions, Fe can react with H2O2 (Fenton
reaction) producing reactive oxygen species (ROS) that are dele-
terious to the cell. This property renders Fe excess detrimental for
plant growth, severely affecting crop yield (Becker, 2005;
Khabaz-Saberi, 2010). Regulation of Fe excess responses in plants
has been studied at cellular and molecular levels mostly by using
the AtFER1 gene as a model. AtFER1 encodes the most expressed
Fe storage ferritin protein in Arabidopsis vegetative tissues whose
expression and protein abundance is strongly induced in response
to Fe excess (Petit et al., 2001; Duc et al., 2009; Briat et al., 2010;
Bournier et al., 2013; Reyt et al., 2015).

This is by contrast with the animal systems in which the balance
between Fe uptake and storage is mainly achieved by the posttran-
scriptional regulation of ferritin and transferrin receptor synthesis
by the iron-responsive protein element (IRE)/iron-reponsive pro-
tein (IRP1)�cytosolic aconitase Fe switch (Hentze et al., 2010).
Briefly, specific sequences, named IREs and found in the
50-untranslated region (UTR) of ferritin mRNA and in the 30-
UTR of transferrin receptor transcript, function as binding sites
for related trans-acting factors, named IRPs. In the case of Fe defi-
ciency, IRPs are bound to IREs. Consequently, the translation of
the ferritin mRNA is inhibited, avoiding Fe storage, and the trans-
ferrin receptor mRNA is stabilised, leading to an increase in abun-
dance of the corresponding protein, which promotes Fe uptake.
By contrast, Fe excess leads to IRPs dissociation from IREs,

promoting ferritin mRNA translation and Fe storage on the one
hand, and transferrin receptor mRNA degradation and Fe uptake
inhibition on the other hand. Under Fe excess conditions, some
IRPs contain a 4Fe�4S cluster, conferring to them a cytosolic
aconitase activity, whereas others that do not contain such a cluster
are degraded. If the Fe deficiency and Fe excess responses are con-
trolled in plants by an integrated pathway involving common play-
ers, as it is the case in mammals (Hentze et al., 2010), is therefore
an important issue that remains to be addressed.

In this study, by combining molecular, genetic and biochemi-
cal approaches, ILR3 was found to act as a repressor of AtFER1
gene expression in vegetative tissues. Expression studies together
with chromatin immunoprecipitation (ChIP) assays highlighted
that ILR3 represses the expression of structural genes involved in
the control of Fe homeostasis through the direct binding to their
promoter and that ILR3 repressive activity is conferred by its
dimerisation with PYE. The use of ilr3 mutants (loss-of-function
and dominant mutations), as well as a triple ferritin mutant, indi-
cated that several facets of plant growth in response to fluctua-
tions in Fe availability, from deficiency to excess, rely on ILR3
and ferritin activities. Altogether, the data presented here indicate
that ILR3 function extends beyond the sole control of bHLH
TFs expression upstream of the Fe deficiency transcriptional reg-
ulatory network and therefore support the theory that ILR3 plays
a critical role in the transcriptional regulatory network that con-
trols Fe homeostasis in Arabidopsis, where it acts as both tran-
scriptional activator and repressor.

Materials and Methods

Arabidopsis gene IDs

APX1, At1g07890; AtFER1, At5g01600; AtFER3, At3g56090;
AtFER4, At2g40300; At-NEET, At5g51720; bHLH34,
At3g23210; bHLH39, At3g56980; bHLH47/PYE, At3g47640;
bHLH104, At4g14410; bHLH105/ILR3, At5g54680; bHLH
115, At1g51070; IRT1, At4g19690; PP2AA3, At1g13320;
NAS4, At1g56430; VTL2, At1g76800.

Plant materials

Arabidopsis thaliana ecotype Columbia (Col-0) was used as the
wild-type (WT). The following mutant lines were used in this
study: bhlh34 (Li et al., 2016), bhlh104-1 (Zhang et al., 2015),
ilr3-1 (Rampey et al., 2006), ilr3-3 (Li et al., 2016), pye-1 (Long
et al., 2010), ilr3-3 pye-1 (this study), bhlh115-2 (Liang et al.,
2017) and fer1,3,4 (Ravet et al., 2009).

Growth conditions

In vitro cultures: Seedlings were grown under long day conditions
(16 h : 8 h, light : dark) on half strength Murashige and Skoog
medium (½MS) with 0.05% MES, 1% sucrose, 0.7% agar for
7–10 d. Fe concentration was 50 lM and provided as Fe(III)-
EDTA. For GUS experiments as well as for qRT-PCR, western
and ChIP analyses, seedlings were transferred from agar plates to
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liquid ½MS medium for an additional 3 days of growth in the
absence or presence of Fe (50 lM Fe(III)-citrate), corresponding
to the Fe deficiency (�Fe) or control (C) conditions, respectively.
Fe excess (+Fe) treatment was applied by adding 500 lM Fe-
citrate for 6 h to the growth solution for plants grown in the
absence of Fe. For root length and fresh weight measurements,
seedlings were grown on solid ½MS for 2 wk in the presence or
absence of Fe(III)-EDTA (C, �Fe and +Fe). Root length was
measured using the IMAGEJ software.

Detailed protocols for physiological, biochemical, molecular
and cytological analyses are given in Supporting Information
Methods S1. All the primers used are described in Table S1.

Results

Repression of AtFER1minimal promoter activity involves a
G-box cis-regulatory sequence

To identify TFs that could link Fe deficiency and Fe excess
responses, the promoter of AtFER1 (ProAtFER1) was functionally
characterised. The aim was to identify cis-regulatory sequences
involved in ProAtFER1 repression that could be used as baits in
yeast one-hybrid (Y1H) screens. A deletion series of ProAtFER1
fused to the uidA reporter gene (ProAtFER1:GUS) expressed in
WT plants was carried out. This approach allowed the identifica-
tion of a 496 bp minimal promoter (ProAtFER1mini) whose activ-
ity was still inducible in response to Fe excess, as does the
endogenous gene (Figs 1a, S1) (Reyt et al., 2015). Sequence com-
parison of ProAtFER1mini with the corresponding sequence of
ProAtFER3 and ProAtFER4, the two other ferritin genes
expressed in vegetative tissues (Reyt et al., 2015), highlighted
some potential cis-regulatory motifs including a G-box
(CACGTG) (Fig. S2) (Strozycki et al., 2010). Because most of
the master TFs regulating the Fe deficiency responses belong to
the bHLH family (Li et al., 2016; Cui et al., 2018), and because
bHLH TFs bind G-box sequences (and more generally E-box,
CANNTG) that are usually localised within the promoter of their
target genes (De Masi et al., 2011), this potential cis-regulatory
element was selected for further analysis. In support of this
choice, the G-box sequences present in the promoter of the fer-
ritin genes were located in nuclesosome-free regions (NFR), sug-
gesting the presence of regulatory proteins at these loci when Fe
is not limiting (Fig. S3).

Site-directed mutagenesis revealed that the mutation of the
G-box (mG-box) leads to an enhanced ProAtFER1mini activity in
the control (C: 50 lM Fe) condition (Fig. 1a). However, the
effect of mG-box on ProAtFER1mini activity in the control condi-
tion was lower than that of the mutation of the well characterised
repressive IDRS (Iron-Dependent Regulatory Sequence) regulatory
element (Petit et al., 2001). These observations indicate that this
G-box plays a key role in the transcriptional repression of
ProAtFER1mini when Fe is not in excess, and that part of the
dynamic response of AtFER1 expression to Fe availability relies
on this specific cis-regulatory sequence.

Therefore, a 20 bp long DNA fragment containing the G-box
(Element 5, Figs S2, S4a,b) present on ProAtFER1mini was used

as bait for Y1H experiments using a normalised TF cDNA library
(Paz-Ares, 2002). This approach led to the identification of four
TFs (Fig. S4c). Among these genes, there was only one bHLH
TF, bHLH105/ILR3 (IAA-LEUCINE RESISTANT 3), a well
described transcriptional activator of plant responses to Fe short-
age (Rampey et al., 2006; Zhang et al., 2015; Li et al., 2016). In
presence of 1 mM 3-AT (3-Amino-1,2,4-triazole), ILR3 was the
sole TF still interacting with the bait DNA. ILR3 interaction in
Y1H experiments was abolished when the G-box was mutated
(Fig. 1b).

ILR3 is a repressor of ferritin gene expression

To characterise the role of ILR3 in the transcriptional control of
ferritin gene expression, a ILR3 T-DNA insertion line (ilr3-3,
knock down mutant) was studied together with another mutant
expressing a dominant version of ILR3 (ilr3-1) and compared
with WT seedlings (Fig. S5) (Rampey et al., 2006; Meinke,
2013). The dominant ilr3-1 allele displays conserved bHLH and
leucine zipper domains, respectively involved in DNA binding
and protein dimerisation, but lacks the C-terminal domain sus-
pected to improve the stability of ILR3 homo- or heterodimers
(Rampey et al., 2006; Meinke, 2013).

Seedlings were grown with three different Fe concentrations
in the growth media: control condition (C: 50 lM), Fe defi-
ciency (�Fe: 0 lM) and Fe excess (+Fe: 500 lM). By con-
trast to �Fe and +Fe, C condition corresponds to Fe
concentration in the culture medium allowing optimal plant
growth (repleteness). qRT-PCR analysis showed that in C
and +Fe conditions the mRNA steady state level of AtFER1
was increased in the ilr3-3 mutant when compared with WT
seedlings and decreased in ilr3-1 (Fig. 1c). In �Fe condition,
AtFER1 transcript level was increased in ilr3-3 compared with
WT seedlings, whereas no difference was observed between
WT and ilr3-1 seedlings. For the two other ferritin genes
expressed in vegetative tissues, namely AtFER3 and AtFER4,
comparable expression patterns to that of AtFER1 were
observed (Fig. S6).

Western blot analysis confirmed that ferritin protein (FER)
abundance was, in comparison with WT seedlings, higher and
lower in the ilr3-3 and ilr3-1 mutants, respectively (Fig. 1d).
Under C conditions, the difference in AtFER1 transcript levels
between WT and ilr3-3 was less pronounced when compared
with the difference observed at the protein levels. Since the anti-
body used recognises all three ferritins, this observation suggests
that ILR3 might regulate AtFER1 and/or AtFER3 and AtFER4
protein abundance through a mechanism that expands beyond
the sole regulation of their expression.

Then, WT plants carrying the ProAtFER1mini:GUS and
ProAtFER1mini-mG-box:GUS constructs were crossed with the
ilr3-3 and ilr3-1 mutants. Homozygous mutant plants harbour-
ing the transgenes were selected, and the GUS activities analysed
(Fig. 1e). As expected, ProAtFER1mini:GUS activity led to a more
intense blue coloration in ilr3-3 mutant when compared with
both WT and ilr3-1. This result highlighted the repressive role of
ILR3 on the activity of ProAtFER1mini. ProAtFER1mini-mG-box:
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GUS staining was stronger in all three genotypes tested when
compared with WT plants expressing ProAtFER1mini:GUS, con-
firming the role of the G-box in the repression of ProAtFER1mini

activity. This experiment demonstrates, in planta, the genetic
connection between ILR3 and the G-box present in
ProAtFER1mini.

(c)

0

10 000

20 000

30 000

40 000

50 000

60 000

WT ilr3-3 ilr3-1 WT ilr3-3 ilr3-1

C

a
b

c

0

10 000

20 000

30 000

40 000

50 000

60 000

WT ilr3-3 ilr3-1

-Fe

a
b

a

R
el

at
iv

e 
A

tF
E

R
1

ex
pr

es
si

on

0

10 000

20 000

30 000

40 000

50 000

60 000

+Fe

a

b

c

WT ilr3-3 ilr3-1

ProAtFER1mini

ProAtFER1mini
mG-box

(e)

(d)

α-FER

Coomassie

(f)

α-GFP (ILR3)

α-FER

Coomassie

C +Fe–Fe
ProILR3:ILR3:GFP #2

C +Fe–Fe

ProILR3:ILR3:GFP #1

WT ilr3-3 ilr3-1

–Fe

WT ilr3-3 ilr3-1

C

WT ilr3-3 ilr3-1

+Fe

bHLH105/ILR3

–W

–WH
(1mM 3-AT)

G-box mG-box

(b)

0 100 200 300

 -
Fe

ProAtFER1:GUS activity

a

C
+Fe

a

b

b

b
c

b

e
e

e

d
d

–239

GUS
–1478 bp

GUS
–946

–496
GUS

GUS

ProAtFER1mini

ProAtFER1mini
mG-box

ProAtFER1mini
mIDRS

GUS

GUS

(a)

Fig. 1 ILR3 is a repressor of ferritin genes expression. (a) Left panel, scheme of 50-end deletion and site-directed mutagenesis constructs used for the
functional characterisation of ProAtFER1 as revealed by GUS (b-glucuronidase) activity in 2-wk-old wild-type (WT) Arabidopsis thaliana seedlings. Red
boxes, IDRS (AGCACGAGGCCGCCACACGCCCC); grey boxes, G-box (CACGTG).mIDRS, mutated Iron-Dependent Regulatory Sequence;mG-box,
mutated G-box cis-regulatory sequence. C and +Fe correspond to the control (50 lM Fe) and Fe excess (500 lM Fe) condition, respectively. Right panel,
quantitative GUS analysis (nmol 4-MUmin�1 mg�1 proteins) driven by ProAtFER1 50-end deletion and site-directed mutagenesis constructs. Means with
the same letter are not significantly different according to one-way analysis of variance (ANOVA) followed by post-hoc Tukey test, P < 0.05 (n = 6, three
biological repeats9 2 independent transgenic lines, from one representative experiment). Error bars show � SD. (b) Yeast one-hybrid experiment: yeasts
were stably transformed with tetramers of a 20 bp long ProAtFER1 DNA fragment containing the native G-box or a mutated version (mG-box) fused to
HIS3 (auxotrophic markers). These two yeast strains were then transfected with ILR3/bHLH105. Upper panel, growth on control media deprived of W
amino acids. Lower panel, growth on selective media deprived of W and H amino acids. 3-AT, 3-amino-1,2,4-triazole. Two independent colonies per
construct are shown. (c) Quantitative RT-PCR (qRT-PCR) analysis of AtFER1mRNA levels in 2-wk-old WT, ilr3-3 (loss-of-function) and ilr3-1 (dominant
mutation) seedlings. �Fe, C and +Fe correspond to Fe deficiency (0 lM Fe), control (50 lM Fe), and Fe excess (500 lM Fe) condition, respectively. Means
with the same letter are not significantly different according to one-way ANOVA followed by post-hoc Tukey test, P < 0.05 (n = 3 biological repeats from
one representative experiment). Error bars show � SD. (d) Abundance of ferritin proteins in 2-wk-old WT, ilr3-3 and ilr3-1 seedlings grown as in (a). (e)
Histochemical detection of GUS activity driven by the ProAtFER1mini with the native or the mutated G-box (mG-box) in WT, ilr3-3 and ilr3-1 leaves. (f)
Western blot analysis of ILR3 (a-GFP) and ferritin proteins (a-FER) in 2-wk-old WT seedlings expressing pILR3::gILR3:GFP (2 independent transgenic lines
are shown, #1 and #2) grown as in (c).
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Because of the repressive role of ILR3 on AtFER1 expression,
one would expect that a negative correlation exists in planta in
term of protein accumulation between ILR3 and the FER pro-
teins. Western blot analysis was carried out using WT plants
expressing the ProILR3:gILR3:GFP construct. This experiment
confirmed the negative correlation between ILR3 abundance and
Fe availability (Fig. 1f).

In order to determine if ILR3 function in regulating ferritin
gene expression is unique within the bHLH clade it belongs to
(IVc), AtFER1 mRNA abundance was measured in bhlh34,
bhlh104 and bhlh115 loss-of-function mutants (Zhang et al.,
2015; Li et al., 2016). No variation in AtFER1 expression was
found in bhlh34, bhlh104 and bhlh115 mutants when compared
with WT seedlings for the three Fe conditions tested, by contrast
to what is observed for the ilr3-3 mutants (Fig. S7).

Taken together, these data demonstrate that ILR3 repression
of ferritin gene expression is specific within the clade IVc
bHLHs.

ILR3 acts as both transcriptional activator and repressor to
regulate Fe homeostasis

To determine if ILR3 repressive activity is specific to the ferritin
genes, mRNA abundance of genes associated with Fe homeostasis
and/or metabolism was measured by qRT-PCR under contrast-
ing Fe conditions (C, �Fe and +Fe).

APX1 is strongly induced in response to Fe excess and encodes
the cytosolic ASCORBATE PEROXIDASE 1 that is, with the
ferritin genes, another well known marker of the Arabidopsis
response to Fe excess (Fourcroy et al., 2004). APX1 mRNA abun-
dance was unaffected in the ilr3-1 and ilr3-3 mutant back-
grounds when compared with WT seedlings regardless of the Fe
condition (Fig. S8a). This observation indicates that the regula-
tion of ferritin expression by ILR3 is related to the control of Fe
homeostasis per se. As expected, IRT1 expression was diminished
in ilr3-3 when compared with WT and ilr3-1 seedlings in

response to �Fe (Fig. S8b; Zhang et al., 2015). By contrast,
IRT1 mRNA level was higher in ilr3-1 when compared with WT
seedlings in C or +Fe conditions. Because bHLH39 is a known
target of ILR3 that participates to the transcriptional regulation
of IRT1 expression in response to Fe shortage (Zhang et al.,
2015), its mRNA steady state level was also analysed. This analy-
sis confirmed that bHLH39 expression is induced in response to
�Fe in an ILR3-dependent manner (Fig. S8c). Last, NAS4
expression was increased in ilr3-3 when compared with WT and
ilr3-1 seedlings in �Fe or C conditions (Fig. 2a). These data
indicate that ILR3, like PYE, represses NAS4 expression when Fe
is not in excess.

Three additional genes whose expression was previously
reported to depend on ILR3 activity were assayed, namely At-
NEET, VTL2 (VACUOLAR IRON TRANSPORTER-LIKE 2)
and PYE. At-NEET encodes a protein that is capable of transfer-
ring [Fe-S] cluster to an acceptor protein and that is thought to
play a role in Fe homeostasis and/or metabolism (Nechushtai
et al., 2012). As previously described, At-NEET mRNA abun-
dance was decreased in ilr3-1 and unaffected in ilr3 loss-of-
function mutant when compared with WT seedlings grown in C
condition (Fig. 2b) (Rampey et al., 2006). Surprisingly, growth
in �Fe or +Fe conditions led to a drastic decrease of At-NEET
mRNA abundance in both mutants when compared with WT
seedlings. These observations indicate that ILR3 represses
At-NEET expression when plants are grown under Fe-replete
condition. VTL2 encodes a Fe vacuolar transporter whose expres-
sion was previously reported as increased in ilr3-1 and decreased
in ilr3 loss-of-function mutant when compared with WT
seedlings (Gollhofer et al., 2011, 2014). This pattern of VTL2
mRNA accumulation was conserved regardless of the Fe concen-
tration in which seedlings were grown, with a less marked differ-
ence between WT and ilr3-3 in +Fe condition (Fig. 2c). These
data confirm that, like for the ferritin genes, ILR3 is a transcrip-
tional repressor of VTL2 expression. PYE mRNA abundance was
then measured as PYE was proposed to be a target of ILR3
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Fig. 2 ILR3 acts as both transcriptional
activator and repressor to regulate Fe
homeostasis. Relative expression of (a) NAS4
(NICOTIANAMINE SYNTHASE 4), (b) At-
NEET, (c) VTL2 (VACUOLAR IRON

TRANSPORTER-LIKE 2) and (d) PYE
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correspond to Fe deficiency (0 lM Fe),
control (50 lM Fe), and Fe excess (500 lM
Fe) conditions, respectively. Means within
each condition with the same letter are not
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P < 0.05 (n = 3 biological repeats from one
representative experiment). Error bars show
� SD.
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(Zhang et al., 2015; Li et al., 2016). This analysis revealed that
PYE expression was higher in the ilr3-1 mutant when compared
with WT and ilr3-3 in �Fe condition, confirming the positive
role of ILR3 on PYE expression when Fe availability is low
(Fig. 2d). By contrast, when Fe availability was not limiting, PYE
expression appeared to be repressed in an ILR3-dependent man-
ner, in particular in the +Fe condition. This later observation
suggests that ILR3 acts as a transcriptional repressor of PYE
expression when Fe is not limiting.

ILR3 binds to E-boxmotifs present in the promoter of its
target genes

In order to determine whether or not ILR3 interacts with the
E-box motifs present in the promoter of the ferritins genes
(AtFER1, AtFER3 and AtFER4), as well as with the promoter of
At-NEET, VTL2 and NAS4, ChIP experiments were carried out
(Fig. 3a). ChIP experiments were conducted on two independent
transgenic lines expressing the ProILR3:gILR3:GFP construct
using an anti-GFP antibody (Figs 1f, S9). A promoter fragment
containing an E-box motif for both bHLH39 and FIT was used
as positive and negative control, respectively (Zhang et al., 2015).
As previously reported, ChIP-qPCR analyses showed that ILR3
bound to the promoter of bHLH39 (ProbHLH39) and not to the

one of FIT (ProFIT) (Fig. 3b). The results presented Fig. 3c–e
support the in vivo binding of ILR3 to the promoter of AtFER1
(ProFER1), AtFER3 (ProFER3) and AtFER4 (ProFER4) with a
higher affinity to the regions that contain the canonical E-box
motif CACGTG also called G-box (Figs 1b, 3c–e). ILR3 also bind
to the promoter of At-NEET (ProAt-NEET), VTL2 (ProVTL2)
and NAS4 (ProNAS4) (Fig. 3f–h). Interestingly, ILR3 interacts
with ProNAS4 at the same locus than PYE, located on the main
NFR region of ProNAS4 that is about 3.2 kb upstream from the
transcriptional initiation start (Fig. S10) (Long et al., 2010).

These results indicate that ILR3 interacts with specific E-box
motifs present in the promoter of its target genes to affect their
transcription, in accordance with the amount of Fe that is present
in the surrounding media.

ILR3 and PYE repress the expression of a common set of
genes

mRNA abundance of genes whose expression is repressed by
ILR3 was measured in loss-of-function pye-1 mutant grown by
contrasting Fe conditions (�Fe, C and +Fe) and compared with
that of WT seedlings. AtFER1, AtFER3 and AtFER4 expression
was induced in pye-1 mutant regardless of the Fe condition in
which seedlings were grown (not significantly for AtFER1 in C
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Fig. 3 Chromatin immunoprecipitation
(ChIP)-qPCR analysis of the binding of ILR3
to the promoter of selected Fe deficiency or
excess responsive genes. (a) Promoter
structure diagrams for the assayed genes.
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G-box (CACGTG). Lines under the boxes
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condition), indicating that PYE acts as a transcriptional repressor
of ferritin genes expression (Figs 4a, S11a,b). Similarly, At-
NEET, VTL2 and NAS4 mRNA levels were increased in pye-1
when compared with WT seedlings when grown in �Fe and C
conditions. These observations indicate that PYE is a repressor of
At-NEET, VTL2 and NAS4 expression when Fe is not in excess
(Fig. 4b,d). By contrast, ILR3 expression in pye-1 mutant was
unaffected when compared with WT seedlings regardless of the
Fe condition, supporting the postulate that PYE is not a tran-
scriptional regulator of ILR3 expression (Fig. S11c).

ChIP experiments were then conducted on a transgenic line
expressing the ProPYE:gPYE:GFP (in pye-1) using an anti-GFP
antibody (Fig. 4e–j) (Long et al., 2010). This approach revealed
that PYE interacts in planta with the same promoter loci than
ILR3 on ProFER1, ProFER3, ProFER4, ProAt-NEET, ProVTL2
and ProNAS4. Since ILR3 could potentially act as a transcrip-
tional repressor of PYE expression when Fe is not limiting
(Fig. 2d), additional ChIP experiments were conducted in order
to determine if ILR3 and PYE interact at the same locus with the
promoter of PYE. For this purpose, the above described ProILR3:
gILR3:GFP (positive control; Zhang et al., 2015) and ProPYE:
gPYE:GFP transgenic lines were used revealing that PYE can

interact with its own promoter at the same locus than ILR3
(Fig. 5a,b).

Altogether, these experiments show that ILR3 and PYE repress
the expression of a common set of genes (for example AtFER1,
AtFER3, AtFER4, VTL2, At-NEET and NAS4) and that the tran-
scriptional repressor activity of ILR3 is likely conferred by its
heterodimerisation with PYE (Long et al., 2010). This later
hypothesis is supported by BiFC experiments that show, in
planta, the nuclear localisation of ILR3 and PYE interaction in
planta (Fig. 5c) (Zhang et al., 2015).

ILR3 and ferritin activities modulate Arabidopsis growth in
a Fe-dependent manner

WT, ilr3-3, pye-1, ilr3-3 pye-1, and ilr3-1 seedlings were grown
under contrasting Fe concentrations in order to determine if
ILR3 activity could affect seedling growth in a Fe-dependent
manner. In �Fe condition a strong reduction of ilr3-3, pye-1,
and ilr3-3 pye-1 root growth was observed when compared with
WT seedlings, confirming observations made in previous studies
(Fig. S12a,d) (Zhang et al., 2015; Li et al., 2016). Among the
three mutants, pye-1 was the less affected whereas ilr3-3 pye-1
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Fig. 4 ILR3 and PYE regulate common set of
genes. Relative expression (qRT-PCR) of
(a) AtFER1, (b) At-NEET, (c) VTL2 and (d)
NAS4 genes as revealed by quantitative RT-
PCR analysis in 2-wk-old Arabidopsis
thalianawild-type (WT) and pye-1 seedlings.
�Fe, C and +Fe correspond to the control
(50 lM Fe), Fe deficiency (0 lM Fe) and Fe
excess (500 lM Fe) conditions, respectively.
t-test significance (compared with WT): *,
P < 0.05; **, P < 0.01; ***, P < 0.001, ns not
significant. Error bars show � SD. (e–j)
Chromatin immunoprecipitation (ChIP)-
qPCR analysis of the binding of PYE to the
promoter of selected genes whose expression
is repressed by ILR3. Chromatin from 2-wk-
old Arabidopsis seedlings expressing ProPYE:

PYE:GFP (Long et al., 2010) and grown
under Fe deficiency was extracted using anti-
GFP antibodies. Seedlings overexpressing
GFP (Pro35S:GFP) were used as the negative
control. qPCR was used to quantify
enrichment of PYE to promoter regions that
are targeted by ILR3 (Fig. 3). PYE DNA
binding ratio (as revealed by GFP enrichment
in ChIP experiments) to the promoter of (e)
AtFER1, (f) AtFER3, (g) AtFER4, (h) At-NEET,
(i) VTL2 and (j) NAS4. t-test significance:
(n = 2 technical repeats from one
representative experiment) ***, P < 0.001;
ns, not significant. Error bars show � SD.
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displayed a similar phenotype to that of ilr3-3. Conversely, an
opposite trend was observed for the ilr3-1 mutant. Under Fe-
replete condition, no significant difference in root length was
observed between the mutants and WT seedlings (Fig. S12b,e).
When seedlings were grown on Fe excess, root growth was drasti-
cally affected in all six genotypes. However, ilr3-3, pye-1 and ilr3-
3 pye-1 on one hand and ilr3-1 on the other displayed longer and
shorter root length when compared with WT seedlings, respec-
tively (Fig. S12c,f). Similarly to root growth, seedling fresh
weight was also affected in a Fe-dependent manner (Fig. S13).
These data suggest that ILR3 function extends beyond its role in
the control of plant response to �Fe to a more central role in the
transcriptional regulation of plant growth in response to Fe
availability.

To investigate the possibility that the role of ILR3 in the Fe-
dependent control of seedlings growth may involve ferritin activ-
ity, the triple fer1,3,4 ferritin loss-of-function mutant was
included in the analysis. Growth parameters of the fer1,3,4
mutant were compared with those of the ilr3-3, pye-1, ilr3-3
pye-1 and ilr3-1 mutants and WT seedlings (Fig. S12). In all the
conditions tested, the fer1,3,4 and the ilr3-1 mutants displayed
similar growth parameters when compared with WT seedlings.
These later observations suggest that part of ILR3 function relies
on ferritin activity. In order to test this hypothesis, ilr3-1 mutant
overexpressing AtFER1 lines (Pro35S:FER1) were generated and

grown as described above (Figs 6, S14). This approach revealed
that the overexpression of AtFER1 in ilr3-1 was sufficient to
revert the ilr3-1 seedling root length and fresh weight pheno-
types. Importantly, under Fe-replete condition, no significant
difference was observed between the different genotypes. Alto-
gether these experiments indicate that part of ILR3 function in
the control of seedling growth, in response to Fe availability,
relies on ferritin activity. Additional experiments also revealed
that ILR3, by modulating ferritin expression, plays a key role in
the response to Fe availability not only in seedlings but also in
adult plants (Figs S15, S16).

ILR3 and PYE regulate Fe distribution in leaves

To characterise ILR3’s role in the control of Fe homeostasis, Fe
accumulation in rosette leaves was evaluated.

First, the Fe content present in the leaves of 6-wk-old plants
grown under three different conditions was measured: Fe-replete
condition (C, 50 lM), Fe deficiency (�Fe: 20 d of Fe deficiency
prior harvesting) and Fe excess (+Fe: 10 d of Fe deficiency fol-
lowed by 10 d of Fe excess prior harvesting) (Fig. S17). This
experiment revealed, for all genotypes, that the Fe content
increased as the amount of Fe in the media rose. Under �Fe con-
dition, no significant difference in Fe content was observed
between the different genotypes. Under Fe-replete condition,

0

50

100

150

200

(a)

ProILR3:ILR3:GFP #2
Pro35S:GFP

*** ***

ProPYE

D
N

A
 b

in
di

ng
 ra

tio

0
5

10
15
20
25

ProPYE:PYE:GFP
Pro35S:GFP

(b)

ProPYE

D
N

A
 b

in
di

ng
 ra

tio

ILR3:YFP-N
+

PYE:YFP-C

ILR3:YFP-N
+

YFP-C

YFP-N
+

PYE:YFP-C

YFPBright field Chlorophyll Merged
(c)

Fig. 5 ILR3 and PYE directly interact, at the
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Chromatin immunoprecipitation (ChIP)-
qPCR analysis of the binding of ILR3 and PYE
to the promoter of PYE (ProPYE). Chromatin
from 2-wk-old wild-type (WT) Arabidopsis
thaliana seedlings expressing ProILR3:ILR3:
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and grown under Fe deficiency was
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Seedlings overexpressing GFP (Pro35S:GFP)
were used as the negative control. qPCR was
used to quantify enrichment of ILR3 and PYE
to PYE promoter region that is targeted by
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DNA binding ratio (as revealed by GFP
enrichment in ChIP experiments) to the
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ilr3-1 mutant accumulated more Fe than any other genotype.
This later observation was more pronounced in Fe excess.

Fe localisation in leaves of 5-wk-old WT, ilr3-3, pye-1, ilr3-3
pye-1 and ilr3-1 plants grown in soil and watered or not with an
excess of Fe was then determined (Fig. 7). For this purpose, the
Perls/DAB histochemical staining method was used (Roschzt-
tardtz et al., 2009, 2013). ilr3-3, pye-1 and ilr3-3 pye-1 Perls/
DAB staining was similar to that of WT plants but displayed
some more Fe-rich structures (black dots), in particular alongside
the vasculature (that is vascular bundle and mesophyll cells)
where the ferritins accumulate when Fe availability is in excess
(Roschzttardtz et al., 2013). Interestingly, these Fe-rich dots are
absent in ilr3-1. Instead, Fe accumulates in plaques in the vascu-
lar bundle and is nearly totally absent from the mesophyll cells.
The absence of Fe-rich dots in ilr3-1 is in agreement with the
lack of induction of ferritin genes expression in response to Fe
excess in this mutant as these structures are described as being Fe-
ferritin (Roschzttardtz et al., 2013). In addition, these data sup-
port the hypothesis that ferritins play an important role in buffer-
ing the excess of Fe during xylem unloading (Roschzttardtz et al.,
2013).

Taken together, these data highlight that ILR3 regulates, in
addition to Fe uptake, the distribution of Fe at the tissue, cellular
and subcellular levels.

Discussion

ILR3/bHLH105 is a transcriptional regulator of ferritin
genes expression

The ferritins are a class of ubiquitous Fe storage proteins found
in all living kingdoms and that play a central role in the control
of Fe homeostasis (Briat et al., 2010). In plants, the role of fer-
ritins is to buffer Fe to maintain Fe concentration to levels that
are optimal for metabolic purposes and to avoid the deleterious
effects of free Fe-associated reactive oxygen species (ROS) (Ravet
et al., 2009). The abundance of ferritins found in plants (mostly
in chloroplasts) is transiently induced in response to Fe excess.
The induction of ferritin mRNA levels is essentially regulated at
the transcriptional level and involves the cis-regulatory element
IDRS (Iron-Dependent Regulatory Sequence) through which fer-
ritins expression is repressed (Petit et al., 2001). No trans-acting

(a)

–Fe

WT ilr3-1
#1 #2 #3

Pro35S:FER1 in ilr3-1

0

1

2

3

4

5

WT ilr3-1 5 6 7

R
oo

t l
en

gt
h 

(c
m

)

a
a, c

c c

b

WT ilr3-1 #1 #2 #3

Pro35S:FER1
in ilr3-1

(d)

0

1

2

WT ilr3-1 5 6 7

R
oo

t l
en

gt
h 

(c
m

)

a
a, c

c a, c

b

WT ilr3-1 #1 #2 #3

Pro35S:FER1
in ilr3-1(f)

0

1

2

3

4

5

6

7

WT ilr3-1 5 6 7

Pro35S:FER1
in ilr3-1

a a
a a a

WT ilr3-1 #1 #2 #3

R
oo

t l
en

gt
h 

(c
m

)

(e)

C

WT ilr3-1
#1 #2 #3

(b) Pro35S:FER1 in ilr3-1

(c)

+Fe

WT ilr3-1
#1 #2 #3

Pro35S:FER1 in ilr3-1

Fig. 6 Complementation of ilr3-1 seedling
root growth phenotypes by overexpressing
AtFER1. Seedling phenotypes of the wild-
type (WT), ilr3-1 and three independent ilr3-
1 lines overexpressing AtFER1 (Pro35S:FER1
in ilr3-1) grown for 2 wk in (a) Fe deficiency
(0 lM Fe), (b) control (50 lM Fe), and (c) Fe
excess (500 lM Fe) conditions. Bar, 1 cm.
Root length of WT, ilr3-1 and three
independent ilr3-1 lines overexpressing
AtFER1 (Pro35S:FER1 in ilr3-1) grown for
2 wk in (d) Fe deficiency (0 lM Fe), (e)
control (50 lM Fe), and (f) Fe excess
(500 lM Fe) conditions. Means within each
condition with the same letter are not
significantly different according to one-way
ANOVA followed by post-hoc Tukey test,
P < 0.05 (n = 16 seedlings from one
representative experiment). Error bars show
� SD.

� 2019 INRA

New Phytologist� 2019 New Phytologist Trust
New Phytologist (2019) 223: 1433–1446

www.newphytologist.com

New
Phytologist Research 1441



factors interacting with the IDRS have been identified so far.
Strikingly, all the studies aiming at decrypting the molecular
mechanisms controlling ferritins expression have failed in identi-
fying any actor repressing ferritin gene expression in response to
Fe deprivation. Instead, it has been found that Fe is not the sole
signal that directly modulates ferritin genes expression. Ferritin
gene expression is under the control of the circadian clock and
involves the nuclear factor TIC (TIME FOR COFFEE) (Four-
croy et al., 2004; Duc et al., 2009). Plant ferritin gene expres-
sion is also tightly connected to phosphate availability. In
Arabidopsis, AtFER1 expression (the most expressed ferritin
gene present in vegetative tissues) is induced under phosphate
starvation (Briat et al., 2010; Bournier et al., 2013). This induc-
tion relies on the interaction between two MYB-like TFs
(PHOSPHATE STARVATION RESPONSE 1, PHR1 and
PHR1-like 1, PHL1) and the P1BS (PHR1 binding site) cis-
regulatory sequence present on AtFER1 promoter. An AtFER1

promoter-based strategy was therefore developed with the aim
to identify key molecular players that could coordinate the tran-
scriptional regulatory cascade associated with the Fe acquisition
from the soil and the Fe buffering activity of ferritins, connect-
ing the plant responses to Fe deficiency and Fe excess. This
approach led to the identification of both a cis-regulatory motif
(G-box) through which AtFER1 expression is repressed, and a
cognate trans-acting factor, namely bHLH105/ILR3 (IAA-
LEUCINE RESISTANT 3) (Fig. 1). ILR3 binding to this G-
box was then confirmed in planta by ChIP experiments (Fig. 3)
and its repressive role on AtFER1 expression was validated using
dominant (ilr3-1) and loss-of-function (ilr3-3) mutant alleles
(Fig. 1). Importantly, ILR3 has been described as a master regu-
lator of the plant responses to Fe shortage acting as a transcrip-
tional activator (Zhang et al., 2015; Li et al., 2016). Therefore,
it emerges that the role of ILR3 extends beyond the activation
of the Fe acquisition machinery in response to Fe deficiency.
Indeed, it connects the plant responses to both Fe deficiency
and Fe excess, which are of central importance when plants are
recovering from a period of Fe shortage or when Fe availability
in the soil solution is fluctuating.

ILR3 integrates Fe signals to adjust plant growth

The transcriptional activity of ILR3 in coordinating the responses
to Fe shortage is central for the plant survival. The ILR3-
dependent transcriptional regulatory cascade is well characterised
and most of the downstream targets participating to Fe assimila-
tion from the soil by the plant have been identified (Brumbarova
et al., 2015; Li et al., 2016). The specific role of ILR3 in the con-
text of Fe deficiency is best exemplified by the extent of the
growth defects that are observed in ilr3-3 mutant when compared
with WT plants (Figs S12, S13) (Zhang et al., 2015; Li et al.,
2016). These growth defects are abolished in plants displaying
increased ILR3 activity (ilr3-1). Nevertheless, some evidence sug-
gests that ILR3 function may extend beyond the induction of the
sole Fe acquisition machinery. ILR3 was first characterised as a
potential regulator of metal homeostasis and (auxin) IAA-
conjugate metabolism, whose activity was dependent on Fe avail-
ability (Rampey et al., 2006). Rampey et al. (2006) found that
ILR3 may regulate the expression of three vacuolar Fe transporter
homologues (Gollhofer et al., 2011, 2014) and a gene encoding a
chloroplastic [Fe–S] cluster transfer protein called At-NEET
(Nechushtai et al., 2012). A recent study showed that ILR3 is
involved in the salicylic acid-dependent defence signalling
response in Arabidopsis and that ILR3 acts as transcriptional
regulator of At-NEET expression (Aparicio & Pallas, 2016).
Importantly, plant sensitivity to Fe availability is also dependent
on At-NEET activity as its suppression renders mutant plants
more susceptible to Fe deprivation and more resistant to Fe
excess than WT plants (Nechushtai et al., 2012). By contrast to
its role in response to Fe deficiency, our data indicate that ILR3
functions as a repressor of the plant responses to high Fe concen-
trations, in agreement with an increased sensitivity of the ilr3-1
mutant to an excess of Fe compared with WT plants (Figs S12,
S13). Interestingly, it has recently been shown that ILR3 acts as a

C +Fe

WT

irl3-3

pye1

irl3-3
pye1

irl3-1

Fig. 7 ILR3 regulates Fe storage in leaves. Fe localisation in rosette leaves
as revealed by Perls/DAB histochemical staining of Arabidopsis thaliana
wild-type (WT), ilr3-3, pye-1, ilr3-3 pye-1 and ilr3-1 plants grown in
control (left panels, C) or Fe excess condition (right panels, +Fe). Arrows,
Insoluble iron in vasculature; bars, 20 lm.
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repressor of glucosinolate biosynthesis, a class of secondary
metabolites conferring resistance against several pathogens, con-
firming the dual role of ILR3 in regulating genes expression (Li
et al., 2014; Samira et al., 2018).

The tight connection between ILR3 activity and ferritins
accumulation, together with the strong similarity of ilr3-1 and
fer1,3,4 (triple mutant deprived of ferritins in vegetative tis-
sues) mutant responses to Fe availability (Figs S12, S13, S15),
support that ILR3 integration of Fe signals to adjust plant
development partly relies on ferritins. This hypothesis was con-
firmed by overexpressing AtFER1 (Pro35S:FER1) in ilr3-1
mutant (Figs 6, S14).

ILR3 and BTS are central to the regulation of Fe
homeostasis

Recent studies have shown the upstream position of ILR3,
bHLH34, bHLH104 and bHLH115 in the Fe deficiency tran-
scriptional regulatory network (Li et al., 2016; Liang et al.,
2017). However, the peculiar nature of ILR3 in regulating Fe
homeostasis was not fully assessed, most probably because ILR3
displays redundant activities with bHLH34, bHLH104 and
bHLH115. The only evidence reported so far was that ilr3 loss-
of-function mutants displayed the strongest Fe deficiency pheno-
type when compared with the other class IVc bHLH mutants

PYE ILR3 

bHLH 
34*/104/115 ILR3 PYE 

Fe availability +Fe –Fe 

BTS 

BTS 

bHLH 
38/39/100/101 

bHLH 
34/104/115/ILR3 

Activation (direct) 

Repression (direct) 

Translation 
Protein 

Transcript 

Activation (indirect) 

Repression (indirect) 

bHLH 
18/19/20/25 

bHLH 
38/39/100/101 FIT 

FIT 

NAS4 VTL2 FER1 FER3 FER4 At-NEET 

Fe transport Fe storage Fe assimilation 

IRT1 FRO2 AHA2 

Fe uptake 

Fig. 8 ILR3-mediated control of Fe homeostasis. The proposed model describes the dual role played by ILR3/bHLH105 in the control of the plant responses
to fluctuations in Fe availability present in the growth medium. Depending on its interacting partner ILR3 acts as a transcriptional activator or repressor.
Activating ILR3-dependent complexes relies on ILR3 heterodimerisation with bHLH34, bHLH104 and bHLH115. ILR3 as well as bHLH34, bHLH104 and
bHLH115 belong to the bHLH clade IVc. ILR3 repressing activity relies on its heterodimerisation PYE/bHLH47 (clade IVb; Long et al., 2010). PYE
expression as well as expression of additional bHLH transcription factors regulating the plant response to Fe shortage (for example bHLH39, clade Ib)
depends on activating ILR3-dependent complexes (Zhang et al., 2015). A negative feedback regulatory loop involving the ILR3-PYE complex might
repress the expression of PYE when Fe availability is not limiting. FIT/bHLH29 is another key transcriptional regulator of the plant response to Fe deficiency
whose activity modulates the expression of structural or regulatory genes (for exampleMYB10 andMYB72) required to maintain Fe homeostasis (Palmer
et al., 2013; Wang et al., 2007, 2013). Part of FIT activity relies on its ability to form heterodimers with some clade Ib bHLH TFs (that is bHLH38, bHLH39,
bHLH100 and bHLH101), and its stability is affected by its interaction with clade IVa bHLH TFs (that is bHLH18, bHLH19, bHLH20 and bHLH25) (Cui
et al., 2018). Structural genes whose expression is modulated by ILR3 are involved in Fe acquisition (for example IRT1, FRO2, AHA2), transport (for
example NAS4), storage (for example AtFER1, AtFER3, AtFER4, VTL2) and assimilation (for example At-NEET). ILR3-dependendent activities are
modulated by the activity of BTS (BRUTUS; Selote et al., 2015; Matthiadis & Long, 2016), an E3 ubiquitin ligase that specifically targets clade IVc bHLH
transcription factors leading to their degradation through the 26S proteasome (*, excluding bHLH34). BTS expression is induced in response to Fe
deficiency in order to fine tune Fe uptake and avoid Fe excess that could be detrimental to the plant. BTS interaction with Fe, through its hemerythrin
(HHE) domains, leads to its destabilisation. In this proposed model ILR3 and BTS play a central role in controlling the transcriptional machinery that
regulates Fe homeostasis. Model adapted from Li et al. (2016).
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when grown in low Fe availability (Zhang et al., 2015; Li et al.,
2016; Liang et al., 2017). BTS (BRUTUS), a Fe binding E3
ubiquitin ligase, specifically targets ILR3, bHLH104 and
bHLH115 leading to their degradation through the 26S protea-
some (Selote et al., 2015; Matthiadis & Long, 2016). BTS con-
tains a hemerythrin-like domain able to bind Fe. The binding of
Fe to the hemerythrin-like domain of BTS participates in its
destabilisation and subsequent degradation (Selote et al., 2015;
Matthiadis & Long, 2016). Therefore, BTS was seen as the main
regulator of Fe homeostasis, even if the link between BTS and
the plant response to Fe excess was not clearly established.

The data presented in this study support that, unlike its closet
homologues, ILR3 represses the expression of the main markers
of the plant response to Fe excess, the ferritin genes (Figs 1, S4).
In addition, our data indicate that ILR3 and PYE repress the
expression of a common set of target genes (Figs 2–4, S6, S11),
most probably through the formation of heterodimers (Fig. 5;
Long et al., 2010; Zhang et al., 2015). Last, our data suggest that
the regulation of PYE expression might rely on a negative feed-
back regulatory loop involving the ILR3-PYE complex. Alto-
gether, these findings highlight the dual and unique role played
by ILR3 in regulating the plant responses to fluctuations in Fe
availability in the growth medium.

bHLH34, bHLH104, bHLH115, ILR3 and PYE are mainly
expressed in the pericycle cells (Long et al., 2010; Rodr�ıguez-
Celma et al., 2013b), which is the place of accumulation of fer-
ritins in response to Fe excess in roots (Reyt et al., 2015), and
consistent with the repressive role of PYE on ferritin genes
expression under Fe deficiency. Interestingly, the extent of the
induction of bHLH34, bHLH104, bHLH115 and ILR3 tran-
script abundance in response to Fe deficiency is less pronounced
than that of PYE (Zhang et al., 2015; Liang et al., 2017) (Figs 2d,
S5, S11c). By contrast, Fe excess had no striking effect on ILR3
or PYE mRNA abundance, compared with control condition
(Figs 2d, S5, S11c). Therefore, assuming that the relative mRNA
abundance of the bHLH IVc on the one hand and PYE on the
other reflects the amount of ILR3-dependent protein complexes
acting as activator (that is bHLH34-ILR3, bHLH104-ILR3 and
bHLH115-ILR3) or repressor (that is PYE-ILR3), it can be
hypothesised that the stoichiometry between the two types of
complex would be modified by the Fe conditions (deficiency vs
excess). In this model, the formation of the PYE-ILR3 complex is
triggered in response to Fe deficiency by the ILR3-dependent
activating protein complexes favouring the repression of ILR3
target genes. The recent work, which shows that ILR3 and PYE
function in a regulatory network that controls wounding
pathogen response, clearly reinforces this hypothesis (Samira
et al., 2018).

Taken together, the data gathered herein and in previous stud-
ies suggest that ILR3 and BTS play a central role in the machin-
ery controlling Fe homeostasis (Fig. 8). In this model ILR3,
whose activity is regulated by BTS in a Fe-dependent manner,
acts as both a transcriptional activator of plant responses to Fe
shortage and as a repressor of plant responses to Fe excess. Such
regulatory loops between ILR3 and BTS, through the modula-
tion of the equilibrium between the different ILR3-dependent

protein complexes, most probably ensure the dynamic and bal-
anced expression of genes involved in Fe homeostasis in accor-
dance with Fe availability.
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Fig. S1 Histochemical detection of GUS activity in 2-wk-old
seedlings driven by ProAtFER1 50-end deletion and site-directed
mutagenesis constructs.

Fig. S2 Schematic representation of conserved DNA regions (ele-
ments) and cis-regulatory sequences present in the 500 bp
upstream from the transcription initiation sequence of the three
main ferritin genes expressed in vegetative tissues.

Fig. S3 Genome Browser snapshots of ATAC-seq, and H3K9ac,
H3K4me3 and H3K27me3 ChIP-seq peaks on the three main
ferritin genes found in Arabidopsis thaliana vegetative tissues,
namely AtFER1, AtFER3 and AtFER4.

Fig. S4 Yeast one-hybrid (Y1H) screen using ProAtFER1 Ele-
ment 5 as bait.

Fig. S5 ilr3-3 and ilr3-1 express a loss-of-function and a domi-
nant mutant allele of ILR3, respectively.

Fig. S6 ILR3 is a repressor of ferritin genes expression.

Fig. S7 ILR3 repression of ferritins expression is unique within
the clade IVc bHLHs TFs implicated in the transcriptional con-
trol of iron deficiency responses.

Fig. S8 ILR3 acts as both transcriptional activator and repressor
to regulate Fe homeostasis.

Fig. S9 ilr3-3 complementation experiment using ProILR3:ILR3:
GFP.

Fig. S10 Genome Browser snapshots of ATAC-seq, and
H3K9ac, H3K4me3 and H3K27me3 ChIP-seq peaks on the
Arabidopsis thaliana NICOTIANAMINE SYNTHASE 4 gene
(NAS4).

Fig. S11 ILR3 and PYE regulate common set of genes.

Fig. S12 Fe-dependent seedling root growth involves ILR3 and
ferritins activity.

Fig. S13 Fe-dependent seedling fresh weight involves ILR3 and
ferritins activity.

Fig. S14 Complementation of ilr3-1 seedling fresh weight phe-
notype by overexpressing AtFER1

Fig. S15 ILR3 participates to the plant response to Fe excess.

Fig. S16 Overexpression of AtFER1 rescue ilr3-1 sensitivity to Fe
excess.

Fig. S17 ILR3 modulates Fe content.

Methods S1 Detailed protocols used in this study for physiologi-
cal, biochemical, molecular and cytological analyses.

Table S1 Primers used in this study.
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