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Chapter 1
Resolution of Singularities: an Introduction

Mark Spivakovsky

Abstract The problem of resolution of singularities and its solution in various
contexts can be traced back to I. Newton and B. Riemann. This paper is an attempt
to give a survey of the subject starting with Newton till the modern times, as well
as to discuss some of the main open problems that remain to be solved. The main
topics covered are the early days of resolution (fields of characteristic zero and
dimension up to three), Zariski’s approach via valuations, Hironaka’s celebrated
result in characteristic zero and all dimensions and its subsequent strenthenings and
simplifications, existing resutls in positive characteristic (mostly up to dimension
three), de Jong’s approach via semi-stable reduction, Nash and higher Nash blowing
up, as well as reduction of singuarities of vector fields and foliations. In many places,
we have tried to summarize themain ideas of proofs of various results without getting
too much into technical details.
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2 Mark Spivakovsky

1.1 Introduction

Let X be a singular irreducible algebraic vaeriety. A resolution of singularities of
X is a birational proper morphism

π : X ′→ X (1.1)

such that X ′ is non-singular.

A morphism π : X ′→ X is said to be birational if there exists a proper algebraic
subvarietyY $ X such that π induces an isomorphism π

��
X′\π−1(Y) : X ′ \ π−1(Y ) → X \ Y .

The subvariety Y is sometimes called the center of the blowing up π and
Y ′ := π−1(Y ) the exceptional set of π.

Amorphism π is birational if and only if it induces an isomorphismK(X) � K(X ′)
between the fields of rational functions of X and X ′.

Figure 1.1 depicts resolution of singularities of the nodal curve and of the non-
degenerate quadratic cone.

π π

X′

X

(a) Nodal curve y2 − x2 − x3 = 0.

π

(b) Non-degenerate quadratic cone
z2 − x2 − y2 = 0.

Fig. 1.1 Resolution of singularities. The center of the blowing up is in blue and the exceptional set
in red.
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The equivalence relation induced by all the relations of the form X ∼ X ′ where
X ′ admits a birational morphism (1.1) is called the birational equivalence relation.

A very closely related question is resolution of singularities of analytic varieties.
To state it, replace “algebraic” by “analytic” and “birational” by “bimeromorphic”
in the definitions above.

Locally (in the sense of valuation theory explained in detail below) resolution of
singularities can be understood as parametrizing wedges of the singular variety X by
non-singular algebraic varieties. If X is an (analytically) irreducible curve, resolution
of singularities of X is the same as a parametrization of X by a non-singular curve.

The goal of this paper is to give a survey of known results about existence
and various constructions of resolution of singularities in cases where it has been
achieved as well as discuss the status of this probelm in cases when it is still open.

1.1.1 Motivation, significance and some applications of resolution of
singularities

(1) There are many objects and constructions which can only be defined, or at least
are much easier to define and study for non-singular varieties. These include Hodge
theory, singular and étale cohomology, the canonical divisor, etc.

(2) The classification problem.

“In any branch of mathematics, there are usually guiding problems, which are so difficult
that one never expects to solve them completely, yet which provide stimulus for a great
amount of work, and which serve as yardsticks for measuring progress in the field. In
algebraic geometry such a problem is the classification problem. In its strongest form, the
problem is to classify all algebraic varieties up to isomorphism. We can divide the problem
into parts. The first part is to classify varieties up to birational equivalence. As we have
seen, this is equivalent to the question of classifying all the function fields (finitely generated
extension fields over k) up to isomorphism. The second part is to identify a good subset of a
birational equivalence class, such as the nonsingular projective varieties, and classify them
up to isomorphism. The third part is to study how far an arbitrary variety is from one of the
good ones considered above. In particular, we want to know (a) how much do you have to
add to a nonprojective variety to get a projective variety, and (b) what is the structure of
singularities, and how can they be resolved to give a nonsingular variety?”

Robin Hartshorne, Algebraic Geometry, §1.8 What is Algebraic Geometry? [87].

From this point of view, resolution of singularities answers a very natural ques-
tion: does every birational equivalence class contain a non-singular variety (a non-
singular model) and, more precisely, is every singular variety X birationally dom-
inated by a non-singular one as in (1.1)? Once this question has been answered
affirmatively, one may, on the one hand, look for birational invariants, that is, num-
bers associated to the given birational equivalence class and defined in terms of some
non-singular model, and, on the other hand, address the finer questions about the
relation between different non-singular models in the given birational equivalence
class and what can be said about the relation between the resolution of singularities



4 Mark Spivakovsky

and the original singular variety which it dominates. This is a very active area of
research, known as the Mori program; it has been the stage of some spectacular
recent developments.

(3) Embedded desingularization is a somewhat stronger form of resolution
of singularities, which is particularly useful for applications. Suppose that X is
embedded in a regular variety Z . Embedded desingularization asserts that there exists
a sequence ρ : Z̃ → Z of blowings up along non-singular centers (this notion will
be defined precisely below), under which the total transform ρ−1(X) of X becomes a
divisor with normal crossings, whichmeans that all of its irreducible components are
smooth hypersurfaces and locally at each point of Z̃ , ρ−1(X) is defined by amonomial
with respect to some regular system of parameters. Geometrically, this means that
at every point of Z̃ there exists a local coordinate system such that ρ−1(X) looks
locally like a union of coordinate hyperplanes, counted with certain multiplicities.
Thus divisors with normal crossings locally have a very simple structure. There are
many situations in which it is useful to know that every closed subvariety can be
turned into a divisor with normal crossings by blowing up. For example, this is used
for compactifying algebraic varieties (problem (b) mentioned in the passage by R.
Hartshorne cited above). Let X be a regular algebraic variety over a field k, embedded
in some projective space Pn

k
. If X is not closed in Pn

k
, we can always consider its

Zariski closure X̄ , which is, by definition, projective over k. The problem is that even
though we started with a regular X , X̄ may well turn out to be singular. Resolution
of singularities, together with its embedded version, assures us that, after blowing
up closed subschemes, disjoint from X , we may embed X in a regular projective
variety X ′ such that X ′ \ X is a normal crossings divisor.

(4) Finally, resolution of singularities is useful for studying singularities them-
selves. Namely, let ξ ∈ X be a singularity and let π : X̃ → X be a desingularization.
Wemay adopt the following philosophy for studying the singularity ξ. All the regular
points are locally the same; every singular point is singular in its own way. We may
regard resolution of singularities as a way of getting rid of the local complexity of
the singularity ξ and turning it into global complexity of the regular variety X̃ . Thus
some global invariant of X̃ may also be regarded as an invariant of the singularity
ξ. For example, if X is a surface and the singularity ξ is isolated, then π−1(ξ) is a
collection of curves on the regular surface X̃ . By embedded resolution for curves,
we may further achieve the situation where π−1(ξ) is a normal crossings divisor
(a resoluion of singularities having this property is called a good resolution). If
{Ei}1≤i≤n, are the irreducible components of π−1(ξ), then the intersection matrix
(Ei .Ej) (equivalently, the dual graph of the configuration

n⋃
i=1

Ei) is an important

combinatoral invariant associated to the singularity ξ. A good illustration of the
usefulness of replacing local difficulties by global is D. Mumford’s theorem that
asserts that a normal surface singularity which is topologically trivial is regular.
More precisely, given a normal surface singularity ξ ∈ X over C, one may consider
its link, which is the intersection of X with a small Euclidean sphere centered at ξ.
The link is a real 3-dimensional manifold. Mumford’s theorem asserts that if the link
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is simply connected, then ξ is regular. The idea behind Mumford’s proof is that the
link is nothing but the boundary of a tubular neighbourhood of the collection

n⋃
i=1

Ei

of non-singular curves on the non-singular surface X̃ . This really helps to analyze
the link.

1.2 A brief early history of the subject: first constructions of
resolution of curve singularities

1.2.1 Newton polygon and Newton’s rotating ruler method for
resolving plane curve singularities

Resolution of singularities of plane curves is due to Newton and Puiseux.
Consider a polynomial or a power series f (x, y) =

∑
i, j∈N

aji xiy j , where ai j ∈ C,

f (0, 0) = 0 and there exists a strictly positive integer n such that

a0n , 0 (1.2)

(that is, the monomial yn appears in f with a non-zero coefficient). Newton and
Puiseux proved that, viewed as an equation in y to be solved in functions of x,
f (x, y) = 0 has a solution in Puiseux series of x (by definition, in a Puiseux series
the exponents are rational numbers with bounded denominators).

Theorem 1.2.1 (Newton 1676, Puiseux 1850) There exists a strictly positive integer
m and a Puiseux series y(x) =

∞∑
i=1

ci x
i
m such that f (x, y(x)) ≡ 0 as a series in x

1
m .

Remark 1.2.2 Let K =
∞⋃

m=1
C

((
x

1
m

))
. Theorem 1.2.1 says, in particular, that K is

algebraically closed. This was the motivation and the point of view adopted by
Puiseux.

Newton polygon.

In order to prove Theorem 1.2.1, Newton introduced the notion of Newton poly-
gon which, together with its generalization to higher dimensions called Newton
polyhedron ([59], [94], [143]) has proved to be one of the most fundamental tools
in the theory of resolution of singularities.

Let R2
+ denote the first quadrant of R2.

Definition 1.2.3 The Newton polygon of f , which we will denote by ∆( f , y), is the
convex hull of the set ⋃

(i, j)∈N2

ai j,0

(
(i, j) + R2

+)

)
⊂ R2.
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Let n be the smallest strictly postive integer satisfying (1.2).

Definition 1.2.4 The vertex (0, n) is called the pivotal vertex of ∆( f , y). The non-
vertical edge of ∆( f , y) is called the leading edge of ∆( f , y).

As Newton says, to trace the leading edge we put a vertical ruler through (0, n) and
rotate it till it hits another point (i, j) with ai j , 0 (equivalently, another vertex of
∆( f , y)). Let E denote the leading edge of ∆( f , y). Let inE f :=

∑
(i, j)∈E

ai j xiy j . The

polynomial inE f is called the initial form of f with respect to E . The leading edge,
the pivotal point, the initial form of f with respect to an edge and their generalizations
to the higher dimensional context of Newton polyhedra play a crucial role in many
constructions of resolution of singularities today.

We give a sketch of Newton’s proof of Theorem 1.2.1.

Proof If E is horizontal then yn | f , so y = 0 is a root of f of multiplicity n.
Assume that E is not horizontal. Let α be a root of inE f (1, y) and s the multiplicity
of the root α.

Write the slope of E as− q
r , where q and r are two relatively prime strictly positive

integers. There are two cases to be considered.

Case 1.We have inE f , a0n

(
y − αx

r
q

)n
. In other words,

s < n. (1.3)

Put x1 = x
1
q and y1 =

y
xr1
− α. Make the substitution

x = xq1 (1.4)
y = y1xr1 + αxr1 . (1.5)

Case 2. We have inE f = a0n

(
y − αx

r
q

)n
. Note that in this case, by Newton’s

binomial theorem, we have
(
n − 1, rq

)
∈ E . This implies that r

q ∈ N (in other words,
q = 1) and ar,n−1 , 0.

Remark 1.2.5 Here we are using in a crucial way the fact that char C = 0. This
phenomenon will have important repercussions later when we discuss H. Hironaka’s
proof of resolution of singularities in characteristic zero and all dimensions, the
notions of Tschirnhausen transformation and maximal contact used there and the
failure of all them over fields of characteristic p > 0. �

Put x1 = x and y1 = y − αxr1 . Make the substitution

x = x1 (1.6)
y = y1 + αxr1 . (1.7)



1 Resolution of Singularities: an Introduction 7

In both cases, let f1(x1, y1) denote the polynomial or power series, resulting from
substituting (1.4)–(1.5) (resp. (1.6)–(1.7)) into f . Let

n1 = n − s in Case 1 (1.8)
n1 = n in Case 2. (1.9)

A direct computation shows the following:
(a) the Newton polygon ∆( f1, y1) has (0, n1) as a vertex
(b) in Case 2, the slope of the leading edge of ∆( f1, y1) is strictly greater than − 1

r .

Now, iterate the procedure to construct (xi, yi) and fi for i ∈ N. Since in Case 1 we
have n1 < n, Case 1 can occur at most n times. Take i0 ∈ N such that Case 2 occurs
for all i ≥ i0. For i > i0, let − 1

ri
denote the slope of the leading edge of the Newton

polyhedron ∆( fi, yi). Our iterative procedure produces xi = xi0 , yi = yi0 −
i−1∑
j=i0

bj x
rj
i0

for suitable bj ∈ C. According to statement (b) above, the sequence of integers (ri)i
is strictly increasing with i, hence goes to∞ (it may happen that the leading edge of
∆( fi, yi) becomes horizontal for some finite i, in which case we set all the subsequent
coefficients bj to be equal to 0; the procedurewill stop here). Let y∞ := yi0−

∞∑
j=i0

bj x
rj
i0
,

substitute yi0 = y∞ +
∞∑
j=i0

bj x
rj
i0

into fi0 and let f∞ be the resulting polynomial (resp.

power series). The leading edge of ∆( f∞, y∞) has slope strictly greater than − 1
ri

for

all i, hence it is horizontal. Thus y
ni0
∞

��� f∞, so yi0
(
xi0

)
:=

∞∑
j=i0

bj x
rj
i0

is a root of fi0

of multiplicity ni0 .

Let m :=
i0∏
j=0

qi , Q :=
i0∑
j=0

j∏̀
=0

q` and R :=
i0∑
j=0

j∏̀
=0

r` . By construction, we have

xi0 = x
1
m (1.10)

and
yi0 = yx−

R
Q + g

(
x

1
m

)
, (1.11)

where g is a suitable polynomial with complex coefficients. Let
∞∑
i=1

ci x
i
m be the

Puiseux series x
R
Q

(
∞∑
j=i0

bj x
r j
m

i0
− g

(
x

1
m

))
. Making the substitution (1.10)–(1.11)

back into fi0 and setting y(x) :=
∞∑
i=1

ci x
i
m , we see that (y − y(x))ni0 | f , that is,

y(x) is a root of f of multiplicity ni0 , as desired. �

Remark 1.2.6 Every timeCase 1 occured inNewton’s algorithm some choices needed
to be made. For example, if Case 1 happens at the first step we had to choose a root
α of inE f . Counted with multiplicity there were s = n − n1 such choices. Starting
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with the step i0 we have constructed a root of f of multiplicity ni0 . Therefore the
total number of roots of f obtained by this procedure, counted with multiplicity, is

ni0 +
i0−1∑
j=0

(
nj − nj+1

)
= n.

Remark 1.2.7 In the Newton–Puiseux theorem, assume that f is either a polynomial
or a convergent power series. It is not hard to show (by estimating the coefficients bj at
each step of the construction) that the Puiseux series produced byNewton’s algorithm
is also convergent. Assume, in addition, that the plane complex curveC := { f (x, y) =
0} is irreducible as an analytic space (in other words, has only one branch near the
origin). Then Newton’s procedure gives a parametrization of C near the origin by a
complex disk with the coordinate xi0 , that is, a resolution of singularities of a suitable
neighbourhood of the origin in C. Algebraically, this resolution of singularities is
described by the birational, injective ring homomorphism C{x, y} ↪→ C{xi0 }, that

maps x to xmi0 and y to
∞∑
i=1

ci xii0 .

More generally, if the analytic curve C has several branches, parametrizations of
each of them are obtained bymaking suitable choices of roots in Newton’s algorithm.

Global resolution of singularities of analytic curves is due to B. Riemann and was
achieved using complex-analytic methods. Indeed, the Riemann surface associated
to a complex-analytic curve is its resolution of singularities.

Purely algebraic proofs of resolution of curve singularities were given much later
by Italian geometers like Albanese (1924). Albanese’s proof consists in projecting
a singular curve embedded in a projective space of a sufficiently large dimension
(more than twice than the degree of the curve) from one of its singular points and
showing that this process improves the singularity. Below we will discuss a beautiful
one-step procedure defined by O. Zariski [171] that resolves singularities of curves.

1.3 Blowing up, multiplicity and the Hilbert–Samuel function

In this section we introduce one of the main tools for constructing resolution of
singularities: blowing up. Blowing up of a variety X along a subvariety Y (more
generally, along an ideal sheaf I) is a birational projective morphism π : X ′ → X ,
defined below, that induces an isomorphism π

��
X′\π−1(Y) : X ′ \ π−1(Y ) → X \ Y . As

we will see, blowing up of a non-singular variety along a non-singular subvariety
is again non-singular. Thus a very general idea for constructing a resolution of
singularities of a variety X , that we will explain in more detail below, goes as
follows.

(1) Embed X in a non-singular variety Z .
(2) Construct a sequence

Z
ρ1
←− Z1

ρ2
←− ...

ρi
←− Zi (1.12)
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of blowings up along non-singular centers and study the strict transform Xi of
X in Zi (defined below) in the hope of improving and eventually eliminating the
singularities of Xi . We now go for precise definitions.

Let X be an affine algebraic variety with coordinate ring A and I = ( f1, . . . , fn)
an ideal of A. As usual, V(I) will denote the zero locus of I.

Definition 1.3.1 The blowing up of X along I is the birational projective morphism
π : X̃ → X , defined as follows. Consider the morphism φ : X\V(I) → X ×k ¶n−1

k
,

which sends every ξ ∈ X \V(I) to (ξ, ( f1(ξ) : · · · : fn(ξ))) ∈ X ×k ¶n−1
k

. The blowing
up X̃ is defined to be the closure φ(X \ V(I)) ⊂ X ×k ¶n−1

k
in the Zariski topology.

Remark 1.3.2 (1) Since the blowing up X̃ = φ(X \ V(I)) ⊂ X ×k ¶n−1
k

, the natural
projection X ×k ¶n−1

k
→ X induces a map X̃ → X . In particular, X̃ is projective over

X .
The natural map π : X̃ → X is an isomorphism away fromV(I) (the inverse mapping
is given by φ). This means that the map π : X̃ → X is birational.

Remark 1.3.3 If X is irreducible (that is, A is an integral domain), then X̃ as being
covered by n affine charts Ui , i ∈ {1, . . . , n} with coordinate rings

A
[

f1
fi
, . . . ,

fn
fi

]
, 1 ≤ i ≤ n, (1.13)

where the glueing of the charts is implicit in the notation.

Example 1. 1) Blowing up the plane at a point. Let X = k2 be the affine plane,
A = k[x, y] its coordinate ring and I = (x, y) the ideal defining the origin. Let
(u1, u2) be homogeneous coordinates on ¶1

k
. We have the map k2\{0} → k2 × ¶1

k

that sends the point (x, y) to the point (u1 : u2) ∈ ¶
1
k
.

The blowing up X̃ is defined in k2 ×k ¶
1
k
by the equation xu2 − yu1 = 0. For

example, if k = R, then X̃ is nothing but the Möbius band.
Perhaps the most useful way of thinking about the blowing up X̃ is that it is a

variety glued together from two coordinate charts with coordinate rings k
[
u1,

u2
u1

]
and k

[
u2,

u1
u2

]
, where, again, the glueing is implicit in the notation.

2) More generallly, we can blow up the affine n-space at the origin. Let

A = k[x1, . . . , xn], I = (x1, . . . , xn).

Let u1, . . . , un denote homogeneous coordinates on ¶n−1
k

. Then X̃ ⊂ kn × ¶n−1
k

is the
subvariety defined by the equations xiu j− xjui , 1 ≤ i, j ≤ n. Again, X̃ is covered by n

coordinate charts with coordinate rings k
[
u1
ui
, . . . , ui−1

ui
, ui,

ui+1
ui
, . . . , un

ui

]
, 1 ≤ i ≤ n.

3) Even more generally, the blowing up X̃ of kn along (x1, . . . , xl) for l < n is
the subvariety of kn × ¶l−1 defined by the equations xiu j − xjui , 1 ≤ i, j ≤ l.
The blowing up X̃ is covered by l coordinate charts with coordinate rings
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k
[
u1
ui
, . . . , ui−1

ui
, ui,

ui+1
ui
, . . . , ului , ul+1, . . . , un

]
. Intuitively, we may think of this last

construction as first blowing up the origin in kl and then taking the direct product of
the whole situation with kn−l .

1.3.1 The universal mapping property of blowing up

We now give a characterization of the blowing up of a variety X along an ideal
I ⊂ A by a universal mapping property (in particular, this charactreization makes no
reference to any particular ideal base ( f1, . . . , fn) of I).

Let π : X̃ → X be a morphism of algebraic varieties and I a coherent ideal
sheaf on X . Let X̃ =

⋃
i, j∈Φi

Vi j and X =
⋃

1≤i≤s
Ui be the respective coverings by affine

charts, where the Φi are certain index sets such that π−1(Ui) =
⋃
j∈Φi

Vi j , 1 ≤ i ≤ s.

Let Ai denote the coordinate ring ofUi and Bi j that ofVi j . For each i and each j ∈ Φi

we have a homomorphism Ai → Bi j . Let π∗I denote the coherent ideal sheaf on X̃
whose ideal of sections over Vi j is IiBi j .

Let X be a scheme and I a coherent ideal sheaf on X . The idea, which we now
explain in detail, is that the blowing up π : X̃ → X of X along I is characterized
by the universal mapping property with respect to making π∗I invertible (see the
Definition below).
Definition 1.3.4 Let I be an ideal in a ring A. The ideal I is said to be locally
principal if for every maximal ideal m of A the ideal I Am is principal. The ideal I
is said to be invertible if for every maximal ideal m of A the ideal I Am is principal
and generated by a non-zero divisor.
Of course, if A is a domain, then invertible and locally principal are the same thing;
this case will be our main interest in the present paper.
Definition 1.3.5 An ideal sheaf I on a variety X is locally principal if there exists
an affine open cover X =

⋃
i

Ui such that, denoting by Ai the coordinate chart of Ui ,

the ideal IUi of sections of I is a principal ideal of Ai for all i.The ideal sheaf I is
said to be invertible if each IUi is principal and generated by an element which is
not a zero divisor.
Again, if X is irreducible then invertible and locally principal are the same thing.

Let the notation be as in 4) above. We have

I A
[

f1
fi
, . . . ,

fi−1
fi
,

fi+1
fi
, . . . ,

fn
fi

]
= ( f1, . . . , fn)A

[
f1
fi
, . . . ,

fi−1
fi
,

fi+1
fi
, . . . ,

fn
fi

]
=

= ( fi)A
[

f1
fi
, . . . ,

fi−1
fi
,

fi+1
fi
, . . . ,

fn
fi

]
,

(1.14)
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so that π∗I is invertible on X̃ . Since we are dealing with a local property, this
statement remains valid even if X is not affine. In other words, if π : X̃ → X is the
blowing up of a coherent ideal sheaf I, then π∗I is invertible.

We now point out that this property is also sufficient to characterize blowing up.
Namely, the blowing up π of I is the smallest (in the sense explained in þ1.3.6
below) projective morphism such that π∗I is invertible. More precisely, we have the
following theorem.

Theorem 1.3.6 (the universal mapping property of blowing up [87], Proposition
II.7.14, p. 164) Let ρ : Z → X be a morphism of irreducible algebraic varieties
such that ρ∗I is invertible. Then ρ factors through X̃ in a unique way.

Proof We briefly sketch the idea of the proof. Since ρ∗I is invertible, at each point
of Z it must be generated by one of the fi . Hence Z admits a covering Z =

n⋃
i=1

Vi by

affine charts with coordinate rings Bi such that IBi = ( fi)Bi . Then
fj
fi
∈ Bi , so

A
[

f1
fi
, . . . ,

fi−1
fi
,

fi+1
fi
, . . . ,

fn
fi

]
↪→ Bi . (1.15)

The inclusion (1.15) determines a morphism λi : Vi → Ui of affine algebraic
varieties, where Ui is as in (1.13). Glueing together the morphisms λi , 1 ≤ i ≤ n,
gives the desired factorization of ρ through X̃ . �

Remark 1.3.7 All of the above definitions, constructions and results can easily be
generalized to the case of varieties that may be reducible. We chose to work with
irreducible ones to simplify the notation and the exposition.

1.3.2 Strict transforms

Let Z be an irreducible variety and I a coherent ideal sheaf on Z . Let ι : X ↪→ Z be
a closed irreducible subvariety of Z with its natural inclusion ι. Let π : Z̃ → Z be
the blowing up along I. Let X̃ := π−1(X\V(I)) ⊂ Z̃ , where "¯" denotes the closure
in the Zariski topology.

Definition 1.3.8 The variety X̃ is called the strict transform of X under π.

Of course, X̃ ⊂ π−1(X) = X̃ ∪ π−1(V(I)). To distinguish it from the strict transform,
π−1(X) is sometimes called the total transform of X under π. We state the following
useful fact without proof.

Theorem 1.3.9 The variety X̃ together with the induced morphism ρ : X̃ → X is
nothing but the blowing up of the coherent ideal sheaf ι∗I on X .

Example 2. Let k be a field and u, v — independent variables. Let Z = k2 be
the affine plane with coordinate ring k[u, v], I = (u, v) and X — the plane curve{
u2 − v3 = 0

}
⊂ Z .
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The blowing up Z̃ of Z along I is covered by two affine charts with coordinate
rings

k
[u
v
, v

]
and k

[
u,

v

u

]
.

Let us denote the coordinates in the first chart U1 by u1, v1, so that v = v1, u = u1v1.
Let u2, v2 be the coordinates in the second chart U2, so that u = u2, v = u2v2.

To calculate the strict transform X̃ of U2, we first find its full inverse image. This
inverse image is defined by the equation u2 − v3, but written in the new coordinates:

u2 − v3 = u2
2 − u3

2v
3
2 = u2

2(1 − u2v
3
2).

Here u2 = 0 is the equation of the exceptional divisor. To obtain the strict transform
X̃ , we must factor out the maximal power of u2 out of the equation. In this case,
X̃ ∩U2 is defined by 1 − u2v

3
2 . In U1, we have

u2 − v3 = u2
1v

2
1 − v

3
1 = v2

1(u
2
1 − v1).

Here v1 = 0 is the equation of exceptional divisor, so that X̃ ∩U1 = V(u2
1 − v1). In

particular, note that although X had a singularity at the origin, X̃ is non-singular.
Thus, in this example we started with a singular variety X with one singular point,
blew up the singularity and found that the strict transform of X became non-singular.
That is, we obtained a resolution of singularities of X after one blowing up.

1.3.3 Fundamental numerical characters of singularity: multiplicity
and the Hilbert–Samuel function

We can now elaborate on the very general description of many constructions of
resolution of singularities by sequences of blowings up, given at the beginning of
this section.

Typically, we embed the variety X we want to desingularize into an ambient
non-singular variety Z . Our goal is to successively construct a sequence (1.12) of
blowings up along non-singular centers (that is, blowings up that are isomorphic to 3)
of Example 1 locally in the classical or étale topology) and study the strict transform
Xi of X in Zi . We want to choose the center of the blowing up ρi at each step so as to
“improve” the singularities of Xi . The precise meaning of “improve” is the following.
Associate to each singular point ξ of Xi a discrete, upper-semicontinuous numerical
character d(ξ) that is an element of a fixed well-ordered set, usually a finite string of
non-negative integers or a function N→ N. Improving the singularities of Xi means
ensuring that

max {d(ξ) | ξ ∈ Xi+1 } < max {d(ξ) | ξ ∈ Xi } . (1.16)

Experience shows that the best bet for achieving the strict inequality (1.16) is to blow
up largest possible centers contained in the maximal stratum of d(ξ).
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In this subsection we define the most fundamental numerical characters that
usually go into the leading place of d(ξ): multiplicity and its generalization — the
Hilbert–Samuel function.

Let k be a field, n a strictly positive integer and X = V( f ) an (n− 1)-dimensional
hypersurface in kn. Write f =

∑
α

cαuα, where cα ∈ k, u = (u1, . . . , un), α =

(α1, . . . , αn) runs over a finite subset of Nn, uα =
n∏
j=1

uαj

j is the usual multi-index

notation. Further, we will use the notation |α | =
n∑
j=1

αj .

Definition 1.3.10 The multiplicity of f at the origin of kn is the quantity

mult0 f := min{|α | | cα , 0}.

The multiplicity at any other point ξ = (a1, . . . , an) of kn is defined similarly, but
using the expansion of f in terms of ui − ai instead of the ui .

Equivalently, the multiplicity of f at ξ is given by multξ f = max {n ∈ N | f ∈ mn },
where m =

{ g
h

�� g, h ∈ k[u], g(ξ) = 0 , h(ξ)
}
is the maximal ideal of the local ring

of kn at ξ.
The only problem with this definition is that it is only valid for hypersurfaces

whereas we would like to work with varieties of arbitrary codimension. The gen-
eralization of multiplicity that is used in many constructions is the Hilbert–Samuel
function [20], which we now define.

Definition 1.3.11 Let (A,m, k) be a local Noetherian ring. The Hilbert–Samuel
function of A is the function HA,m : N→ N, defined by HA,m(n) = length

(
A

mn+1

)
(considered as an A-module).

By additivity of length,

length
(

A
mn+1

)
=

n∑
i=0

dimk
mi

mi+1 , (1.17)

where the mi

mi+1 are k-modules, that is, k-vector spaces.

Note that since A is Noetherian, each of mi is finitely generated, so that all the
quantities in (1.17) are finite.

Theorem 1.3.12 (Hilbert–Serre) The function HA,m(n) is a polynomial for n � 0.
In other words, there exists a polynomial P(n) with rational coefficients, such that

P(n) = HA,m(n) for n � 0.

The polynomial P(n) is called the Hilbert polynomial of A.
Notation. Let d(A) denote the degree of the Hilbert polynomial of A.
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Example 3. 1) Let k be a field, A = k[x1, . . . , xd] the polynomial ring in d variables.
Let m = (x1, . . . , xd) be the maximal ideal corresponding to the origin in kd .
Consider the localization Am. The Hilbert-Samuel function of Am is HAm,m(n) =

length
(

A
mn+1

)
=

(n+d
d

)
, which is a polynomial in n of degree d. In this case, HAm,m(d)

is a polynomial for all n, not merely for n sufficiently large.

2) Let B := Am
( f ) , where f is a polynomial of multiplicity µ at the origin and let n

denote the maximal ideal of B. It is not hard to show that

HB,n =

(
n + d

d

)
if n < µ

=

(
n + d

d

)
−

(
n + d − µ

d

)
if n ≥ µ.

(1.18)

Now,
(n+d

d

)
−

(n+d−µ
d

)
is a polynomial of degree d − 1, whose leading coefficient is

µ
(d−1)! . This shows that in the case of hypersurface singularities multiplicity can be
recovered from the Hilbert–Samuel function. In fact, in this case multiplicity and the
Hilbert–Samuel fucntion are equivalent sets of data.

An important property of multiplicity, the Hilbert–Samuel function and the
Hilbert polynomial is that they are upper semicontinuous. This means that the
stratum of points on an algebraic variety X where the multiplicity (resp. Hilbert–
Samuel function, resp. the Hilbert polynomial) is greater than or equal to a given
value is a closed algebraic subvariety of X .

1.3.4 Normal flatness and the stability of the Hilbert–Samuel function
under blowing-up

In this subsection we provide further details on the above program of resolving the
singularities of any algebraic variety by constructing a sequence (1.12) of blowings
up that strictly decreases a certain upper semicontinuous numerical invariant d(ξ),
ξ ∈ X .

For a point ξ ∈ X , we denote by OX,ξ the local ring of X at ξ, that is, the ring
formed by all the rational functions g

h on X whose denominator h does not vanish
at ξ. Let mX,ξ denote the maximal ideal of OX,ξ ; it is the ideal formed by all the g

h
such that g(ξ) = 0. Write HX,ξ for HOX, ξ ,mX, ξ

.
Wedefine the leading component of our numerical invariant d(ξ) to be theHilbert–

Samuel function HX,ξ (resp. multξX if X is a hypersurface, where multξX denotes
the multiplicity at ξ of a local defining equation of X in an ambient non-singular
variety Z near ξ).

Let X be an algebraic variety, Y a subvariety of X and ξ a point of Y . Let IY
denote the ideal sheaf, defining Y in X . The normal cone of Y in X is defined to be
the algebraic variety with coordinate ring



1 Resolution of Singularities: an Introduction 15

∞⊕
n=0

In
Y

In+1
Y

.

Assume that Y is non-singular.
Definition 1.3.13 (H. Hironaka 1964) We say that X is normally flat along Y at

ξ if
∞⊕
n=0

In
Y, ξ

In+1
Y, ξ

is a free OY,ξ -module. We say that X is normally flat along Y if it is

normally flat at every point ξ ∈ Y (equivalently, if CX,Y is flat over Y ).
Theorem 1.3.14 (B. Bennett, H. Hironaka ) The variety X is normally flat along
Y at ξ if and only if HX,η = HX,ξ for all η ∈ Y near ξ (in other words, the Hilbert–
Samuel function of X is locally constant on Y near ξ).
The next theorem (valid over fields of arbitrary characteristic) constitutes the first step
of the above program of constructing a resolution of singularities of any algebraic
variety by lowering a suitable numerical character d(ξ). Namely, it says that a
blowing up along a center Y over which X is normally flat does not increase the
Hilbert–Samuel function (resp. multiplcity).
Theorem 1.3.15 (H.Hironaka 1964) LetY ⊂ X be a non-singular algebraic variety
of X overwhich X is normally flat. LetH denote the commonHilbert–Samuel function
HX,ξ for all ξ ∈ Y . Let π : X̃ → X be the blowing up along Y and ξ̃ ∈ π−1(Y ). Then

HX̃, ξ̃ ≤ H (1.19)

(we compare Hilbert–Samuel functions in the lexicographical order, but in fact all
the inequalities we write such as (1.19) hold componentwise, that is, separately for
each n).
A subvariety Y as in the Theorem is sometimes referred to as a permissible center
of blowing up and the blowing π itself as a permissible blowing up.

If we can achieve strict inequaity in (1.19), our proof of resolution of singularities
will be finished by induction. The difficult question is: what to do if equality holds
in (1.19)?

1.4 Resolution of surface singularities over fields of characteristic
zero

Resolution of singularities of surfaces was constructed in late nineteenth – early
twentieth century by the Italian school (P. del Pezzo 1892, Beppo Levi 1897 [118],
[119], O. Chisini 1921 [50], G. Albanese 1924 [12]) as well as by H.W.E. Jung 1908
[106], followed by the first completely rigorous algebraic proof by R. Walker 1935
[165] and another one by O. Zariski 1939 [172].

Let k be an algebraically closed field of characteristic zero. Below we briefly
summarize Beppo Levi’s, Jung’s and O. Zariski’s constructions of resolution of
singularities of surface over k, with Beppo Levi’s proof valid only for hypersurfaces.
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1.4.1 Beppo Levi’s method

Let X be an algebraic surface over k, embedded in a smooth threefold Z . For a point
ξ ∈ X let multξX denote the multiplicity at ξ of a local defining equation of X in Z
near ξ. Beppo Levi’s algorithm goes as follows.

1) Let µ = max
{
multξX

�� ξ ∈ X
}
.

2) Let Sµ =
{
ξ ∈ X

�� multξX = µ
}
. By upper semicontinuity of multiplicity, Sµ

is an algebraic subvariety of X , that is, a union of algebraic curves and points.
3) First assume that Sµ is not a union of a normal crossings divisor with a finite

set of points.
4) The set of points of Sµ where it fails to be a normal crossings divisor is finite.

Blow up each of these points, and keep doing so until Sµ becomes a union of a
normal crossings divisor with a finite set of points.

5) If Sµ is a union of a normal crossings divisor with a finite set of points, let
π : X̃ → X be a blowing up of an irreducible component of Sµ.

6) By þ1.3.15 (which Beppo Levi proved in the special case of two-dimensional
hypersurfaces over fields of characteristic zero), we have

µ ≥ max
{
multξ̃ X̃

��� ξ̃ ∈ X̃
}
. (1.20)

7) If equality hotds in (1.20), let S̃µ =
{
ξ̃ ∈ X̃

��� multξ̃ X̃ = µ
}
. Again by þ1.3.15

we have S̃µ ⊂ π−1(Sµ). Observe that S̃µ is again a union of a normal crossings divisor
with a finite set of points (or the empty set).

8) Keep repeating the procedure of 5) until the locus of points of multiplicity µ
becomes the empty set. This completes the proof by induction on µ.

Remark 1.4.1 Predictably, Beppo Levi’s method of resolution of singularities fails
starting with dimension three. [147] gives an example of a threefold X in k4 all of
whose singular points have mutliplicity 2. The locus of multiplicity 2 is a normal
crossings subvariety consisting of two lines that meet each other at the origin.
Blowing up any one of the two lines produces a new threefold whose multiplicity 2
locus is a union of three lines. Blowing up one of those three lines yields a threefold
containing a singularity, isomorphic to the origin in X . Thus there exists an infinite
sequence of blowings up along non-singular components of the locus of multiplicity
2 which does not resolve the singularities of X .

It was later pointed out by Zariski that none of the proofs of resolution of surfaces
by the Italian geometers was complete and some were outright wrong. The first
completely rigorous algebraic proof was given by R. Walker in 1935 [165].
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1.4.2 Normalization

Before discussing the proofs by Jung and O. Zariski of 1939, we need to introduce
the notion of normalization.

Let A be an integral domain with field of fractions K . We may consider the
integral closure Ā of A in K (sometimes it is also called the normalization of A. If
A if of finite type over k, it is the coordinate ring of an irreducible affine algebraic
variety X . The inclusion A ↪→ Ā gives rise to the natural birational filnite (hence
projective) morphism π : X̄ → X of irreducible algebraic varieties. The canonical
morphism π is called the normalization of the variety X . Because of the uniqueness
of normalization, even if X is not affine, the separate normalizations of the various
affine charts of X glue together in a natural way to yield the normalization of X .

Definition 1.4.2 An integral domain is said to be normal if it coincides with its
normalization. An algebraic variety is said to be normal if the coordinate rings of all
of its affine charts are normal.

The notion of normalization was defined (surprisingly late – in 1939) by Oscar
Zariski [171]. This is a great example of the usefulness of the algebraic language in
geometry: this notion, extremely important as it turned out to be, did not occur to
anyone until the algebraic language was developed. The importance of normalization
for resolution of singularities is explained by the following result.

Theorem 1.4.3 (Zariski) Let A be a one-dimensional Noetherian local ring. Then
A is regular if and only if A is normal.

Corollary 1.4.4 (Zariski) If X is a normal algebraic variety, dim Sing(X) ≤
dim X − 2.

Geometrically, 1.4.3 says that normalization resolves the singularities of curves.
More generally, it says that for an arbitrary reduced variety normalization resolves
the singularities in codimension 1. When normalization was defined, the theorem
of resolution of singularities of curves was known for almost a century, yet it was
quite a surprise that it had such a simple and elegant proof and that the procedure
for desingularization had such a simple description.

We now summarize Jung’s and Zariski’s methods for the resolution of surfaces.

1.4.3 Jung’s method

1) Fix a projection σ : X → C2 from our affine singular surface X to a plane and
consider the branch locus C of the σ.

2) Apply embedded resolution of plane curve singularities to the curve C, that is,
construct a sequence ρ : W ′→ C2 of point blowings up such that the total transform
of C under ρ is a normal crossings divisor.
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3) Let X ′ := X ×C2 W ′. We obtain a cartesian square

X ′ //

σ′

��

X

σ
��

W ′
ρ // C2

(1.21)

4) Let X̄ → X ′ be the normalization of X ′. The branch locus of X̄ over W ′ is still
a normal crossings divisor.

5) Observe that the fact that the branch locus of the normal surface X̄ has normal
crossings implies that the singularities of X̄ are of a very special type, namely, cyclic
quotient singularities (that is, singularities obtained from C2 by taking a quotient
by a cyclic group; these are precisely the toric ones among the normal surface
singularities).

6) Resolve the cyclic quotient singularities by hand.

Remark 1.4.5 Even though normalization was officially defined by Zariski in 1939,
Jung constructs it by hand in this special case. Items 4) and 6) in Jung’s proof use
complex-analytic and topological methods (namely, the theory of ramified coverings
of analytic varieties).

1.4.4 Zariski’s method

Let k be an algebraically closed field of characteristic zero and X an algebraic surface
over k. Zariski’s method for desingularizing X goes as follows.

1) Let X̄ → X be the normalization of X . According to Corollary 1.4.4, Sing
(
X̄
)

has codimension 2 in X̄ , that is, is a finite union of isolated points.
2) Let X ′→ X be the blowing up of all the singular points of X̄ .
3) Replace X by X ′ and go back to step 1). Keep iterating steps 1) and 2) until

the singularties are resolved.

Remark 1.4.6 Zariski’s algorithm has the virtue of being extremely easy to state.
However, proving that it works is technically quite difficult (an improved version of
this reslut was given later by J. Lipman). An itermediate step in the proof is to show
that after finitely many iterartions the resulting surface X (i) has only sandwiched
singullarities (see the definition below).

Definition 1.4.7 A surface singularity (X, ξ) is said to be sandwiched if a neigh-
bourhood of ξ in X admits a birational map to a non-singular surface.

Being sandwiched is quite a strong restriction; in particular, sandwiched singularities
are rational.
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1.5 Oscar Zariski

The appearance on the scene of O. Zariski and his school marks a completely new
era in the study of resolution of singularities. In the earlier section we mentioned the
introduction of normalization which gives a one-step procedure for desingularizing
curves in all characteristics, as well as Zariski’s proof of resolution for surfaces.
In the late nineteen thirties and early forties Zariski proposed a completely new
approach to the problem using valuation theory (building on some earlier ideas of
Krull). In a nutshell this approach can be summarized as saying that valuation theory
provides a natural notion of “local” in birational geometry and allows to state a local
version of the resolution problem called Local Uniformization.

1.5.1 Valuations

Definition 1.5.1 An ordered group is an abelian group Γ together with a subset
P ⊂ Γ (here P stands for “positive elements”) which is closed under addition and
such that

Γ = P
∐
{0}

∐
(−P).

Remark 1.5.2 P induces a total ordering on Γ: a < b ⇐⇒ b − a ∈ P. Thus an
equivalent way to define an ordered group would be “a group with a total ordering
which respects addition, that is, a > 0, b > 0 =⇒ a + b > 0”.

Note that an ordered group is necessarily torsion-free.

Example 4. The additive groups Z,R with the usual ordering are ordered groups.
Any subgroup Γ ⊂ R is an oredred group with the induced ordering (more generally,
any subgroup of an ordered group is an ordered group). The group Zn with the
lexicographical ordering is an ordered group.

All the ordered groups which appear in algebraic geometry are subgroups of

groups of the form
r⊕
i=1

Γi , where Γi ⊂ R for all i and the total order is lexicographic.

We are now ready to define valuations. Let K be a field, Γ an ordered group. Let
K∗ denote the multiplicative group of K .

Definition 1.5.3 A valuation of K with value group Γ is a surjective group homo-
morphism ν : K∗ → Γ such that for all x, y ∈ K∗

ν(x + y) ≥ min{ν(x), ν(y)}. (1.22)

Remark 1.5.4 Let K be a field, ν a valuation of K and x, y non-zero elements of K
such that ν(x) , ν(y). It is a consequence of Definition 1.5.3 that in this case equality
must hold in (1.22), that is,

ν(x + y) = min{ν(x), ν(y)}. (1.23)
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Example 5. Let X be an irreducible algebraic variety, K = K(X) its field of rational
functions, ξ ∈ X such that OX,ξ is a regular local ring. Let mX,ξ be the maximal
ideal of OX,ξ . Define νξ : K∗ → Z by

νξ ( f ) = multξ f = max
{
n

��� f ∈ mn
X,ξ

}
, f ∈ OX,ξ .

The map νξ extends from OX,ξ to all of K in the obvious way by additivity:

νξ

(
f
g

)
= νξ ( f ) − νξ (g).

Themap νξ induces a group homomorphism because
⊕ mn

X, ξ

mn+1
X, ξ

is an integral domain.

In the above example, note that ξ could be any scheme-theoretic point; for example,
it could stand for the generic point of an irreducible codimension 1 subvariety. In
that case, the condition that OX,ξ be non-singular holds automatically whenever X
is normal (þ1.4.3).

Remark 1.5.5 Let X be an irreducible algebraic variety, A its coordinate ring, K =
K(X) the field of fractions of A, I ⊂ A an ideal. We can generalize the above example
as follows. Define

νI ( f ) = max{n | f ∈ In}, for f ∈ A.

In general, νI is a pseudo-valuation, which means that the condition of additivity in
the definition of valuation is replaced by the inequality νI (xy) ≥ νI (x) + νI (y). The
map νI is a valuation if and only if ⊕ In

In+1 is an integral domain (a condition which
always holds if I is maximal and AI is regular).

Valuations of the form νI are called divisorial. The reason for this name is that
if A is the coordinate ring of an affine algebraic variety X , even if dim AI > 1, we
can always blow up X along I. Let π : X̃ → X be the blowing up along I. Then
K(X) = K

(
X̃
)
.

The property that ⊕ In

In+1 is a domain means that the exceptional divisor

D̃ := V(π∗I) = π−1(V(I))

is irreducible. Then OX̃,D̃ is a regular local ring of dim 1 and νI = νD̃ measures the
order of zero or pole a a rational function at the generic point of D̃. This example
illustrates an important philosophical point about valuations: a valuation is an object
associated to the field K , that is, to an entire birational equivalence class, not to a
particular model in that birational equivalence class. Thus to study a given valuation,
one is free to perform blowings up until one arrives at a model which is particularly
convenient for understanding this valuation.

Valuation rings.
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Let K be a field, Γ an ordered group, ν : K∗ � Γ a valuation of K . Associated to
ν is a local subring (Rν,mν) of K , having K as its field of fractions:

Rν = {x ∈ K∗ | ν(x) ≥ 0} ∪ {0}
mν = {x ∈ K∗ | ν(x) > 0} ∪ {0}. (1.24)

Example 5 (Divisorial valuations).Let X be an irreducible algebraic variety, D ⊂ X
a closed irreducible subvariety, ξ the generic point of D.

Assume that OX,ξ is a regular local ring of dimension 1. Let t be a generator of
mX,ξ . Then K = (OX,ξ )t . Indeed, any element f ∈ OX,ξ can be written as f = tnu,
where n ∈ N and u is invertible. For each f = tnu as above, we have νD( f ) = n.
Then Rν = OX,D .

Definition 1.5.6 Let (R1,m1), (R2,m2) be two local domains with the same field of
fractions K . We say that R2 birationally dominates R1, denoted R1 < R2, if

R1 ⊂ R2 and (1.25)
m1 = m2 ∩ R1. (1.26)

Remark 1.5.7 One of the main examples of biratinal domination encountered in
algebraic geometry is the following. Let X be an irreducible algebraic variety and
π : X ′ → X a blowing up of X . Let ξ ∈ X , ξ ′ ∈ X ′ be such that ξ = π(ξ ′). Then
OX,ξ < OX′,ξ′ .

Theorem 1.5.8 Let (R,m) be a local domain with field of fractions K . The following
conditions are equivalent:
(1) R = Rν for some valuation ν : K∗ � Γ

(2) for any x ∈ K∗, either x ∈ R or 1
x ∈ R (or both)

(3) the ideals of R are totally ordered by inclusion
(4) (R,m) is maximal (among all the local subrings of K) with respect to birational
domination.

Remark 1.5.9 Although we omit the proof of þ1.5.8, we note that the proof of the
implication (3) =⇒ (1) involves reconstructing the valuation ν (in a unique way)
from the valuation ring. Hence the valuation ring Rν completely determines ν.

For future reference, we define to important numerical characters of valuations: rank
and rational rank.

Definition 1.5.10 An subgroup ∆ of an ordered group Γ is said to be isolated if ∆ is
a segment with respect to the given ordering: if a ∈ ∆, b ∈ Γ and −a ≤ b ≤ a then
b ∈ ∆.

The set of isolated subgroups of an ordered group Γ is totally ordered by inclusion.

Definition 1.5.11 Let ν be a valuation with value group Γ. The rank of ν, denoted
rk ν, is the number of distinct isolated subroups of Γ. We have rk ν = dim Rν .

Definition 1.5.12 The rational rank of ν is, by definition, rat.rk ν := dimQ Γ ⊗Z Q.
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Theorem 1.5.8 (in particular, its part (4)) paves the way for a geometric interpretation
of valuations. This is due to Zariski in the nineteen fourties, when he developed
valuation theory with the express purpose of applying it to the problem of resolution
of singularities. To explain how valuations provide a natural notion of “local” in
birational geometry and to give a precise statement of the Local Uniformization
Theorem we need the notion of center of a valuation and also that of local blowing
up with respect to a valuation, which we now define.

Definition 1.5.13 Let (R,m, k) be a local domain with field of fractions K and ν a
valuation of K . We say that ν is centered in R if R < Rν (this is equivalent to saying
that ν(R) ≥ 0 and ν(m) > 0).

If X is an irreducible algebraic variety with K = K(X) and ξ a point of X , we say
that ν is centered in ξ (or that ξ is the center of ν on X) if it is centered in the local
ring OX,ξ , that is, if OX,ξ < Rν .

The center of a given valuation ν on a variety X is uniquely determined by ν.
Let X be an irreducible algebraic variety, ξ a point of X and I a coherent ideal

sheaf on X . Let π : X1 → X be the blowing up of X alongI. Take a point ξ1 ∈ π
−1(ξ).

The map π induces a local homomorphism σ : OX,ξ → OX1,ξ1 of local rings.

Definition 1.5.14 A homomorphism of the form σ : OX,ξ → OX1,ξ1 , where ξ1 is a
point of π−1(ξ), is called a local blowing up of OX,ξ alongIX,ξ . Let ν be a valuation,
centered atOX,ξ . We say thatσ is a local blowing upwith respect to ν if ν is centerd
at OX1,ξ1 , that is,

νOX1, ξ1

(
OX1,ξ1

)
≥ 0

and ν
(
mX1,ξ1

)
> 0.

Let X be an irreducible algebraic variety, ξ a point of X and ν a valuation of
K = K(X), centered at ξ. Let π : X ′ → X be a birational projective morphism. The
following theorem is a version of the valuative criterion of properness:

Theorem 1.5.15 There exists a unique point ξ ′ ∈ π−1(ξ) such that ν is centered in
ξ ′.

The notion of center of a valuation together with þ1.5.15 allows us to divide the
problem of resolution of singularities into two parts: local and global. The local
version of resolution of singularities is called Local Uniformization.

Let X , K and ν be as above and assume that ν is centered at a point ξ of X .

Definition 1.5.16 A local uniformization of X with respect to ν is a birational
projective morphism π : X ′ → X such that the center ξ ′ of ν in π−1(ξ) is a regular
point of X ′.

Zariski proved in 1940 that if X is an algebraic variety over a field of characteristic
zero then X admits a local uniformization with respect to any valuation, centered at
a point of X [173]. The same question is still open for fields of characteristic p > 0.

Clearly, a resolution of singularities π : X ′ → X also constitutes a local uni-
formization simultaneously with respect to every valuation ν, centered at a point
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of X . The converse, however, is not so clear: assume that local uniformization is
known with respect to every valuation. Does this imply the existence of resolution
of singularities of X?

To study this question, Zariski introduced what is known today as the Zariski–
Riemann space. Let X be an irreducible algebraic variety. Consider the totality of all
the birational projective morphisms Xα → X . This set naturally forms a projective
system, whose arrows are birational projective morphisms. Indeed, given two such
morphisms

Xα → X and (1.27)
Xβ → X, (1.28)

one can construct a new variety Xαβ together with birational projective morphisms

λα : Xαβ → Xα, (1.29)
λβ : Xαβ → Xβ (1.30)

which make the diagram

Xαβ
λβ //

λα

��

Xβ

πβ

��
Xα

πα // X

(1.31)

commute. The variety Xαβ is the unique irreducible component of the cartesian
product Xα ×X Xβ which maps dominantly onto X , Xα and Xβ . More explicitly,
since πα and πβ are birational, there exist non-empty open subvarieties U ⊂ X ,
Uα ⊂ Xα and Uβ ⊂ Xβ such that πα |Uα : Uα � U and πβ |Uβ : Uβ � U. Then
U � Uα ×U Uβ embeds naturally into Xα ×X Xβ as an irreducible open set. The
variety Xαβ is nothing but the Zariski closure of U in Xα ×X Xβ . Geometrically, one
should think of Xαβ as the graph of the birational correspondence between Xα and
Xβ .

Let S := lim
←−
α

Xα.

Theorem 1.5.17 (Zariski) There is a natural bijection between S and the set

M := {valuations ν of K, centered at points of X} .

We briefly sketch the proof.

Proof First, fix a valuation ν of K , centered at a point ξ ∈ X . By þ15.11, for each
πα : Xα → X in our projective system, there exists a unique ξα ∈ π−1(ξ) such
that ν is centered at ξα. Therefore we can associate to ν a collection {ξα ∈ Xα}α,
compatible with the morphisms in our projective system, that is, an element of S.
This defines a natural map f : M → S.

Conversely, take an element {ξα ∈ Xα}α ∈ S. The local ringsOXα,ξα form a direct
system, whose arrows are relations of birational domination. It should therefore not
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come as a surpris that the direct limit R := lim
−→
→α

OXα,ξα of this system is a local

subring of K , maximal with respect to <, that is, a valuation ring. To prove this
rigorously, a short argument using the equivalence (1)⇐⇒(2) of þ1.5.8 is required.
We omit the details.

This defines the map g : S → M . It is routine to check that the maps f and g are
inverse to each other. �

Definition 1.5.18 The set S is called the Zariski–Riemann space associated to X .

Zariski’s original name for this object (in the special case when X was a projective
variety over k) was the abstract Riemann surface of the field K . The thinking was
that in the special case when k = C and dim X = 1, the projective system defining
S is finite and its inverse limit is nothing but the resolution of singularities of X ,
that is, a smooth complex projective curve, or a Riemann surface. However, when
dim X ≥ 2, S does not even have a structure of a variety or a scheme, only one of
a ringed space. It resembles more John Nash’s space of arcs than it does anything
like a Riemann surface. This is why the name “Zariski–Riemann space” seems more
appropriate.

In order to address the problem of “glueing” the local uniformizationswith respect
to various valuations, it is useful to introduce a topology on S. Namely, S is naturally
endowed with the inverse limit topology (which is usually referred to as the Zariski
topology on S). By definition of inverse limit, for each Xα in our projective system
we have a natural map ρα : S → Xα; this map assigns to each valuation ν centered
at a point ξ ∈ X the center of ν in Xα, lying over ξ. A base for the Zariski topology
is given by all the sets of the form ρ−1

α (U) where Xα runs over the entire projective
system and U over all the Zariski open sets of Xα. In other words, the Zariski
topology is the coarsest topology which makes all the maps ρα continuous.

Theorem 1.5.19 (Zariski, Chevalley) The topological space S is compact.

We spell out the main idea ofthe proof. By definition, S comes with a natural
embedding ι into the direct product

∏
α

Xα. Each Xα is compact with respect to its

Zariski topology, hence so is
∏
α

Xα by Tychonoff’s theorem. If all the topologies

in sight were Hausdorff, ι would be a closed embedding, and the compactness of S
would follow immediately. Indeed, this is how one proves a standard theorem from
general topology: an inverse limit of compact Hausdorff spaces is again compact.

Unfortunately, none of the spaces we are working with here are Hausdorff. The
next idea is to replace the Zariski topology on the Xα by a finer, Hausdorff topology,
pass to the inverse limit and conclude compactness as above, and then observe that
the compactness property is preserved by passing from a finer topology to a coarser
one. This is, indeed, what Zariski did in the special case of projective varieties overC.
He replaced the Zariski topology by the classical Euclidean topology and the proof
was completed as above. Finally, Chevalley came up with a proof, which follows
roughly the same plan, but is applicable to varieties over fields of any characteristic
and even to arbitrary noetherian schemes.
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Once Zariski proved the Local Uniformization Theorem in characteristic zero,
his plan went as follows. For each valuation ν ∈ S, let π : X ′ → X be the local
uniformization with respect to ν and let ξ ′ be the center of ν on X ′. Let U denote
the preimage in S of the set Reg(X ′). By definition, U is an open set, containing ν.
Furthermore, for every ν′ ∈ U the map π constitutes local uniformization also with
respect to ν′. Conclusion: once we achieve local uniformization with respect to some
ν ∈ S, we automatically achieve it for all the valuations in some open neighbourhood
U of ν. Since this can be done for every ν ∈ S, we obtain an open covering of S
by sets U, for each of which there exists a simultaneous local uniformization of all
the elements of U. By compactness, this open covering admits a finite subcovering.
Finally, we obtain: there exist finitely many birational projective morphisms πi :
Xi → X , 1 ≤ i ≤ n, having the following property. Let ρi : S → Xi denote the
natural map, given by the definition of projective limit. Then

n⋃
i=1

ρ−1(Reg(Xi)) = S.

At this point, the problem of resolution of singularities in characteristic zero was
reduced to one of “glueing” the n partial desingularizations Xi together to produce
a global resolution of singularities. More precisely by induction on n it is sufficient
to prove the following:

There exists an algebraic variety X12 together with birational projective mor-
phisms

λ1 : X12 → X1 (1.32)
λ2 : X12 → X2, (1.33)

having the following properties:
1) the diagram

X12
λ2 //

λ1
��

X2

π2

��
X1

π1 // X

(1.34)

commutes
2) we have Reg(X12) ⊃ λ

−1
1 (Reg(X1)) ∪ λ

−1
2 (Reg(X2)).

The glueing problem is highly non-trivial because the local uniformization al-
gorithms used to construct the partial resolutions Xi depend on the respective val-
uations. A priori absolutely nothing is known about the nature of the birational
correspondences among the various Xi .

Zariski was able to solve this problem in dimension 2 by proving his famous
factorization theorem: a birational morphism between non-singular surfaces is a
compostion of point blowings up. It is also worth mentioning that Zariksi’s factor-
ization theorem together with Castelnuovo’s criterion for contractability of rational
curves on a non-singular surfaces implies the existence of minimial resolution for
surfaces, that is, a resolution such that every other resolution of sngularities factros
through it.
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With much greater difficulty Zariski advanced to dimension three. This work of
Zariski was recently generalized and sytematized by O. Piltant [139]. Thanks to this,
we now have a general procedure for glueing local uniformizations in dimension
three in a much more general context and for much more general objects than just
algebraic varieties or schemes.

1.6 Resolution of singularities of algebraic varieties over a
ground field of characteristic zero

Almost twenty-five years have passed after Zariski’s proof of his Local Uniformiza-
tion Theorem until H. Hironaka proved the existence of resolution of singularities
in caracteristic zero without using valuations or the Zariski–Riemann space. This
(next) revolution in the field of resolution of singularities is the subject of the present
section.

Theorem 1.6.1 (H. Hironaka [93] 1964) Every variety X over a ground field of
characteristic zero admits a resolution of singularities.

Hironaka’s original proof of this was over 200 pages long. It is one of the most
technically difficult and one of the most often quoted results of the twentieth century
mathematics. We give a very brief sketch of the main ideas of the proof, as seen
from fifty-five years into the future.

Proof Step 1. The definition of normally flat (see Definition 1.3.13 and þ1.3.14).

Step 2:

Proposition 1.6.2 Let X be an algebraic variety and Y a smooth subvariety of X .
Assume that X is normally flat along Y . Let π : X̃ → X be the blowing up of
X along Y . Take a point ξ̃ ∈ π−1(Y ). Then the Hilbert–Samuel function HX̃, ξ̃ is
smaller than or equal to the common Hilbert–Samuel function HX,ξ of all the points
ξ ∈ X . In particular, the blowing up π does not increase the maximal value of the
Hilbert–Samuel function HX,ξ of all the points ξ ∈ X . �

To complete the proof of the Theorem, it is sufficient to construct a sequence of
blowings up of X that decreases the Hilbert–Samuel function strictly.

Step 3. Reduce the problem to the case when X is an n-dimensional hypersurface
embedded into kn+1:

X = V( f ), where f ∈ k[x, y], y is a single variable and x = (x1, . . . , xn).
(1.35)

This amounts to choosing a Gröbner basis (or a standard basis in Hironaka’s termi-
nology) ( f1, . . . , fr ) of the defining ideal I of X having the following properties.

(a) The maximal locus of the Hilbert–Samuel function of X is equal to the in-
tersection of the loci of maximal multiplicity of the polynomials fi . In particular, a
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blowing up center Y is permissible for X if and only if it is simultaneously permis-
sible for each of the hypersurfaces V( fi). This property holds after any permissible
sequence of blowings up under which the maximal value of the Hilbert–Samuel
function does not decrease.

(b) Let
π : X̃ → X (1.36)

be a permissible sequence of blowings up. The sequence π strictly decreases the
maximal value of the Hilbert–Samuel function of X if and only if it strictly decreases
the maximal multiplicity of a singularity of at least one of the hypersurfaces V( fi).

Remark 1.6.3 In 1977 H. Hironaka proved that, regardless of the charactristic of the
ground field there exists a basis ( f1, . . . , fr ) of I such that (a) and (b) hold [97]. �

Step 4. From now on, assume that X is a hypersurface as in (1.35). Let µ := mult0 f ;
assume that µ is the greatest multiplicity of a singular point of X . Using theHenselian
Weierstrass Preparation Theorem, further reduce the problem to the case when f has

the form f (x, y) = yµ +
µ∑
i=1

φi(x)yµ−i , where mult0φi ≥ i. This requires replacing X

by a suitable étale covering, but we will not dwell on this point here.

Step 5. Make the Tchirnhausen transfomration, that is, the change of coordinates
y → y + 1

µ φ1(x). This amounts to ensuring that in the new coordinates we have

φ1(x) = 0. (1.37)

We will assume that (1.37) holds from now on. In this situation we say that y is a
maximal contact coordinate for X .

Step 6. The following Proposition is proved by an easy direct calculation.

Proposition 1.6.4 (1) The maximal contact hyperplane W := {y = 0} contains all
the points of X of multiplicity µ sufficiently close to the origin. In particular, every
permissible center Y is contained in W .

(2) Let (1.36) be a permissible blowing up with center Y . Take a point ξ̃ ∈ π−1(Y )
and let f̃ be a local defining equation of X̃ near ξ̃. If multξ̃ f̃ = µ then ξ̃ lies in the
strict transform of W . �

This looks like a good setup for induction on dim X . Indeed, on the one hand, we
are only interested in blowing up centers Y that are contained in the hyperplane W .
On the other hand, the only points we are interested in studying after blowing up
belong to the strict transform of W . Thus the next idea is to try to define a variety
V strictly contained in W and relate the problem of desingularizing V to that of
desingularizing our original variety X .

Step 7. In fact, instead of a variety V we need to consider a more general object: a
scheme, defined by the idealistic exponent, associated to f . Precisely, consider the

ideal H :=
(
φ
µ!
i

i

)
2≤i≤µ

⊂ k[x]. After defining a notion of a permissible blowing up
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center for V(H) and showing that a center Y is permissible for V(H) if and only if it
is permissible for X , one can use the induction assumption to construct a sequence
(1.36) of permissible blowings up that monomializes the ideal H (by this we mean
that π∗H is principal and generated locally near every point of X̃ by a singlemonomial
in suitable coordinates; this should be thought of as an embedded resolution of
V(H)). This is an important feature of Hironaka’s construction: in order to construct
a resolution of singularities of n-dimensional varieties, we need embedded resolution
in dimension n − 1. Because of this, both resolution and embedded resolution are
proved by two simultaneous inductions: embedded resolution in dimension n−1 =⇒
resolution in dimension n =⇒ embedded resolution in dimension n.

Step 8. By Step 7, assume that H is generated by a monomial ω. To monomialize
f it remains to construct a sequence of blowings up along permissible coordinate
subvarieties (1.36) such that at each point of X̃ one of the monomials ω and yµ!

divides the other. This is a special case of a purely combinatorial problem that has
been variously called Hironaka’s game, Perron’s algorithm and resolution of (not
necessarily normal) toric varieties by permissible blowings up. It is the combinatorial
skeleton of resolution of singularities that appears, implicitly or explicitly in every
desingularization algorithm that consists of a sequence of blowings up along non-
singular subvarieties of the ambient regular variety. We refer the reader to [70],
[173], [145] and [128] for various solutions of this problem. �

Remark 1.6.5 The assumption char k = 0 is used crucially in Step 5. Naively, one
sees that 1

µ makes no sense when char k = p > 0 and p | µ. More seriously, R.
Narashimhan gave the following example showing that in positive characteristic
there might not exist a non-singular subvariety satisfying (1) of Proposition 1.6.4,
that is, containing all the points of multiplicity µ sufficiently near the origin.

Example 6.Let k be a perfect field of characteristic 2 and consider the hypersurface X
defined by f (x, y) = y2+x1x3

2+x2x3
3+x3x7

1 = 0 in k4. This threefold has multipilcity
2 at the origin and all of its points are either non-singular or have multiplicity 2, so its
multiplicity 2 locus coincides with the singular locus. The singular locus Sing(X) is
defined by ∂ f

∂x1
=

∂ f
∂x2
=

∂ f
∂x3
= 0, that is, x3

2 + x3x6
1 = x1x2

2 + x3
3 = x2x2

3 + x7
1 = 0. We

find that Sing(X) is the parametrized curve t →
(
t7, t19, t15, t32) and that this curve

has embedding dimension 4 at the origin. Thus it is not contained in any non-singular
subvariety of k4 passing through the origin. This shows that in this case there does
not exist a non-singular variety W satisfying (1) of Proposition 1.6.4.

Much work has been done since 1964 to simplify and better understand resolution
of singularities in characteristic zero. We mention [34], [19]–[22], [24]–[26], [29]–
[33], [41]–[42], [64], [75], [76], [89], [153]–[155], [163], [166], [169] and [170].

Many of the later proofs (starting with Bierstone–Milman and Villamayor) have
the following transparent structure. One defines a discrete, upper semi-continuous
numerical character of singularity d(ξ), consisting of the Hilbert–Samuel function
followed by a finite string of non-negative integers. We regard the set of possible
values of d(ξ) as being totally ordered by the lexicographical ordering. One stratifies
the singular variety X according to d(ξ). By upper semi-continuity, the maximal
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stratum Smax of d(ξ) is a closed subvariety of X . One shows that Smax is a normal
crossings subvariety and chooses one of its coordinate subvarieties Y in a canonical
way (discussed and explained below by example). One lets π : X̃ → X be the blowing
up along Y and one shows that for every ξ̃ not belonging to the strict transforms of
compoinents of Smax other than Y we have d

(
ξ̃
)
< d(ξ). Repeating this procedure

for the other components of Smax we strictly lower the maximum value of d(ξ). This
completes the proof by induction on d(ξ).

1.6.1 Functorial properties of resolution in characteristic zero

The later proofs cited above are functorial with respect to smooth morphisms (flat
morhisms with non-singular fibers). This means that they produce a functor from the
category of varieties and smoothmorphisms to the category of non-singular varieties
and smooth morphisms that assigns to each variety X its resolution of singularities
X̃ . Being a functor simply means that each smooth morphism of varieties φ : X → V
lifts (necessarily uniquely) to a smooth morphism φ̃ : X̃ → Z̃ of their resolutions. In
particular, if φ is an open embedding (resp. an isomoprhism), so is φ̃. In this way we
obtain that our procedure of resolution of singularities is equivariant with respect to
automorphisms of X , any group actions on X , etc.
Choosing a unique coordinate subvariety of Smax in a canonical way.

We illustrate the situation by example.
Example 7.Consider the surface X defined by the equation z2−x3y3 = 0. Its singular
locus coincides with its locus of multiplicity 2 and is the union of the x-axis and the
y-axis. These two axes play a symmetric role (in fact, they can be carried into each
other by an automorphism X). From a naive point of view, blowing up the origin
does not seem to improve the singularity, so one is tempted to blow up one of the
one-dimensional components of Sing(X). However, there is no way to do this and
respect the functoriality described above. Even if one did not care for functoriality
in its own right, a desingularization algorithm that involves an arbitrary choice of a
branch would present serious problems: after all, there could be a singularity that
locally looks like X but such that the two branches of Sing(X) are in fact two branches
of the same irreducible curve.

The modern solution to this problem goes as follows. Start by blowing up the
origin since it is the only canoncial choice that can be made. The multiplicity 2 locus
Sing

(
X̃
)
of X̃ now consists of three lines: the respective strict transforms L̃x and L̃y

of the x- and the y-axes and the exceptional divisor E . At first glance the singular
points E ∩ L̃x and E ∩ L̃y look worse than the singularity at the origin that we started
with, and Sing

(
X̃
)
is again a union of two lines near each of those points. However,

they have one important new advantage: there is a natural ordering on the set of
irreducible components of the equimultiple locus, namely, the order of appearance
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of those components in the history of the resolution process until this point. This
settles the difficult issue of which component should be blown up first.

This points to another important feature of all the known resolution procedures
by permissible blowings up: the choice of the blowing up center at each step depends
not only on our singular variety itself but also on the history of the resolution process
up to the given point.

A recent preptint [125] by M. McQuillan and G. Marzo gets around this prob-
lem by working in the 2-category of excellent Deligne–Mumford stacks instead of
varieties or schemes (stacks are beyond the scope of this survey, but a definition of
excellent and quasi-excellent schemes is given in the Appendix).

Finally, we mention a construction of resolution of singularities of analytic vari-
eties due to J.M. Aroca, H. Hironaka and J.L. Vicente Cordoba [13]–[15] as well as
the paper [98] by H. Hironaka.

1.7 Resolution of singularities of algebraic varieties over a
ground field of positive characteristic

1.7.1 Resolution in dimensions 1, 2 and 3

As mentioned above, resolution of curve singularities in arbitrary characteristic was
settled in 1939 when Zariski defined normalization: this one-step procedure works
equally well in characteristic zero and characteristic p > 0.

The first proof for surfaces is due to S. Abhyankar in 1956 [1] with subsequent
strengthenings by H. Hironaka [100] and J. Lipman [120] to the case of more general
2-dimensional schemes, with Lipman giving necessary and sufficient condition for
a 2-dimensional scheme to admit a resolution of singularities. See also [63].

The next breakthrough came in 1966, again due to S. Abhyankar, who proved
resolution of singularities for threefolds except in characteristics 2, 3 and 5. The
idea of Abhyankar’s proof is the following. The starting point of the proof is an
Auxiliary Theorem which says that any d-dimensional variety over an algebraically
closed ground field can be birationally transformed to a variety having no e-fold
point for any e > d!. The proof of this Auxiliary Theorem generalizes an argument
used by Albanese [12] in the surface case combined with the Veronese embedding.
Since 3! = 6, in the special case d = 3 we obtain that our variety has singularities
of multiplicity at most 6. If p > 6 then all the singularities have multiplicity strictly
smaller than the characteristic of the ground field (this is precisely the reason for the
restriction on the characteristic of the ground field in Abhyankar’s proof). Roughly
speaking, in this situation one can imitate characteristic zero methods to finish the
proof. Still, Abhyankar’s proof is extremely technical and difficult and comprises a
total of 508 pages [2]–[6]. For a more recent and more palatable proof we refer the
reader to [65].
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Resolution of singularities for surfaces was reproved by J. Giraud in 1983 [79],
using a novel idea that has proved to be very influential for subsequent work. Namely,
let k be a perfect field of characteristic p > 0 and consider the (typical and significant)
special case of a surface in k3, defined by an equation of the form

f (x1, x2, y) = yp − g(x1, x2) = 0, (1.38)

where g is some polynomial in two variables of multiplicity strictly greater than p.
If we wanted to imitate characteristic zero methods, we would naturally study the
transformation law for g under blowing up and try to relate the resolution problem
for f to the problem of monomialization of g. We already mentioned in the previous
section that the main obstruction to imitating characteristic zero proof in the case
of characteristic p > 0 is the non-existence of maximal contact coordinates in the
situation when p divides the multiplicity of a defining equation. A natural idea for a
replacement of maximal contact coordinates in the case of equation (1.38) is to use
a transformation of the form

y → y + φ(x1, x2) (1.39)

to make sure that no monomials which are p-th powers appear in g. However, unlike
maximal contact coordinates in characteristic zero which are stable under coordinate
changes in the x variables and under blowings up that do not lower the Hilbert–
Samuel function, the above “maximal contact” coordinates in positive characteristic
can be destroyed even by the simplest of linear homogeneous coordinate changes, as
the following example shows.

Example 8. Take g = x1x2p−1
2 in (1.39). Then g is a single monomial that is not

a p-th power. Hovever, after a coordinate change (x1, x2) → (x1 + x2, x2) the new
equation involves the monomial xp

2 .

Giraud’s idea for dealing with this difficulty was to study the behaviour of the
differential dg (instead of that of g itself) under permissible blowings up. The point
is that the differential dg is stable under coordinate changes of the form (1.39). The
drawback of this approach is that the transformation rules of dg under blowing up
are much more complicated than those for g itself. In spite of this, Giraud was able
to give a new proof of resolution of surface singularities using this idea.

Themethod of Giraudwas systematically exploited by his Ph.D student V. Cossart
to give, in his Ph.D thesis [52], a proof of resolution of singularities of threefolds
defined by equations of the form yp − f (x1, x2, x3) = 0, which for a long time had
been considered to be the basic and significant special case, exhibiting most of the
phenomena and difficulties of the general problem.

The same result was obtained independently and by differentmethods by T.T.Moh
[127]. Both works are of a formidable technical difficulty and comprise hundreds of
pages.

It was not until much later that V. Cossart and O. Piltant settled the problem
of resolution of threefolds in complete generality (their theorem holds for arbitrary
quasi-excellent noetherian schemes of dimension three, including the arithmetic
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case) in a series of three long papers spanning the years 2008 to 2019 [60]–[62]. The
overall method is based on the idea of Giraud mentioned above. The main point is to
prove the Local Uniformization Theorem. After that global resolution of singularities
becomes an immediate consequence of Piltant’s work [139] that axiomatizes Zariski
globalization in three dimensions.

1.7.2 Resolution and Local Uniformization in dimension four and
higher

In this subsection we briefly mention and discuss known recent partial results,
programs and attempts at proofs in arbitrary dimension.

In the paper [156] Michael Temkin proves a version of the Local Uniformization
Theorem in which the required desingularization map π : X̃ → X is generically
finite instead of being birational (in other words, it induces a finite extension ι :
K(X) ↪→ K

(
X̃
)
of function fields istead of an isomorphism). In Temkin’s proof the

extension ι can be taken to be puirely inseparable. Among other things, he gives
a rigorous proof of a fact that until then was a mere philosophical belief: to prove
Local Uniformization (for varieties over fields of characteristic p > 0) it is sufficient
to prove it for hypersurfaces defined by equations of the form yp +g(x1, . . . , xn) = 0.

A similar, though in some sense complementary result was obtained by H. Knaf
and F.-V. Kuhlmann [111]: they also prove Local Uniformization after a finite ex-
tension ι of function fields, but in their case the extension ι is Galois (combined
with a purely inseparable extension of the residue field of the valuation ring in the
case of non-perfect residue fields). In the paper [111] the same authors prove Local
Uniformization with respect to Abhyankar valuations. A valuation ν is said to be
Abhyankar if equality holds in Abhyankar’s inequality:

rat.rk ν + tr.deg(kν/k) = tr.deg(K/k),

where k denotes the ground field, K = K(X) is the field of rational functions of the
variety X we want to desingularize and kν is the residue field of the valuation ring.

It is well known that to prove the Local Uniformization Theorem it is sufficient to
prove it for the case of hypersurfaces (since in the case of general varieties one can
handle the defining equations one by one). Let X be a hypersurface in kn defined
by an equation f (u1, . . . , un) = 0. We would like to construct a local uniformization
with respect to a given valuation ν. Consider the extension

θ : k(u1, . . . , un−1) ↪→
k(u1, . . . , un−1)[un]

( f )
(1.40)

of valued fields.
One way of thinking of the main difficulty of constructing a local uniformization

of X with respect to ν is in terms of the defect δ of the extension θ (this point of view
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has been promoted by F.-V. Kuhlmann among others). Defining defect is beyond the
scope of this survey, but we briefly mention some of its properties relevant to us.

Let

p = 1 if char kν = 0 (1.41)
= char k if char kν > 0. (1.42)

The defect δ is always a power of p, hence is equal to 1 if char k = 0. We have
δ = 1 as well in the case of Abhyankar valuations (this explains why the characteristic
zero case as well as the case of Abhyankar valuations is easier to handle than the
case of arbitrary valuations in characteristic p > 0). The philosophy that “all the
difficulty of local uniformization lies in the defect” has been understood for some
time, but we would like to mention two recent works that make the above statement
precise: J.-C. San Saturnino [142], þ6.5 and S. D. Cutkosky–H. Mourtada [66].

We mention two papers by B. Teissier, [151] and [152], that propose another
possible approach to constructing Local Uniformization using the graded algebra
associated to the given valuation ν and trying to interpret this graded algebra as the
coordinate ring of an (infinite-dimensional) toric variety that is a deformation of the
variety X we want to desingularize, inspired by the case of plane curve singularties
[11], [80].

Finally, for the approach to local uniformization via key polynomials we refer the
reader to [67], [68], [91], [121]–[123], [141]–[142], [159]–[162]. J. Decaup’s Ph.D.
thesis carries out the program of proving a strengthening of the Local Uniformization
Theorem over fields of characteristic zero, but with a view to generalizing the result
to fields of positive characteristic.

There has also been recent work whose goal is to construct (or at least make
progress toward constructing) global resolution of singularities directly, without
going through valuation theory and local uniformization, but the jury is still out on
how close to or far from a complete proof we are: [35]–[38], [18], [43], [104], [107],
[108].

1.8 An alternative approach by J. de Jong et al. via semi-stable
reduction

In 1996 a major event occurred in the field of resolution of singularities: J. de Jong
[69] proved the existence of resolution of singularities for varieties over fields of
arbitrary characteristic by alterations:

Definition 1.8.1 An alteration is a proper surjective morphism

π : X̃ → X (1.43)

such that the induced homomorphism K(X) ↪→ K
(
X̃
)
of function fields is finite.
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Theorem 1.8.2 Let X be a variety over a ground field k. There exists an alteration
(1.43) such that X̃ is non-singular. In fact, we can choose X̃ to be a complement of
a normal crossings divisor in some regular projective variety X ′.

We briefly summarize his proof which uses the compactification of moduli stacks of
curves of genus g by stable curves (in the special case when X is projective).

Proof Step 1. Take a sufficiently general projection ρ : X → Y to a variety Y of
dimension dim X − 1, so that the fibers of ρ are curves.

Step 2. Normalizing X , we may assume, in addition, that X is normal. After further
modifying X by a birational transformation, we may choose the fibrarion morphism
to Y to be generically smooth along any component of any fiber.

Step 3. Choose a sufficiently general and sufficiently ample relative divisor H on X
over Y . After taking a base change with an alteration Y ′ → Y , we may assume that
H is a union of sections σi : Y → X:

H =
n⋃
i=1

σi(Y )

(this is one of the places in the proof where we actually need to use an alteration
rather than a birational map).

Step 4. Since H was chosen sufficiently general and sufficiently ample, for every
component of every fiber of ρ there are at least three sections σi , intersecting it in
distinct points of the smooth locus of ρ. Therefore there exists a Zariski open subset
U ⊂ Y such that for each η ∈ U the fiber ρ−1(η), together with the points determined
by the σi , is a stable n-pointed curve of certain genus g. By definition of the moduli
stackMg,n of stable curves of genus g with n marked points, we obtain a unique
morphism U →Mg,n such that the family

ρ
��
ρ−1(U) : ρ−1(U) → U (1.44)

is the pullback of the universal family of stable n-pointed curves of genus g over
Mg,n. Now,Mg,n admits a finite étale covering M →Mg,n by a projective scheme
M; the universal family of stable n-pointed curves of genus g can be lifted to M .
Putting U ′ := U ×

Mg,n
M , we obtain a cartesian diagram

U ′ θ //

λ

��

M

��
U //Mg,n

(1.45)

where λ is an alteration and the pullback of the family of curves (1.44) under λ
coincides with the pullback of the universal family by θ (this is the second place in the
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proof where we genuinely need to use alterations rather than birational morphisms).

Step 5. Let XU denote the preimage of U in X . Let Y ′ be the closure of

Im(U ′→ Y × M̄) ⊂ Y × M̄ .

ThenY ′ is a projective variety over k andY ′→ Y is an alteration which is generically
étale. The smooth stable n-pointed curve (XU, σ1 |U, . . . , σn |U )×U ′ extends to a stable
n-pointed curve X ′ over Y ′.
Step 6. Replacing Y by Y ′ and X by X ′ we reduce the problem to the case in which
there exist a stable n-pointed curve (C, τ1, . . . , τn) overY , a nonempty open subvariety
U ⊂ Y and an isomorphism β : CU → XU mapping the section τi |U to the section
σi |U (where CU denotes the preimage of U in C). It can be proved that the rational
map β can me be made into a morphism, possibly after base change by a birational
projective transformation of Y .

To summarize the result of Steps 4–6: we started out with a morphism ρwhose
generic fiber was a stable n-pointed curve of genus g. We ended up with a morphism
ψ, all of whose fibers are stable n-pointed curves. In other words, we have reduced
the problem to the case where all the fibers of ρ are stable pointed curves (and the
generic fiber is non-siingular).
Step 7. By induction on dim X , resolve the singularities of Y . Furthermore, by the
induction hypothesis in the non-projective case we may assume that the non-smooth
locus of the morphism ρ is a normal crossings divisor (note that we are using the
induction hypothesis in the non-projective case even to prove the result for projective
X).
Step 8. At this point the only singularities of C are given by equations of the form

xy = tn1
1 . . . tnd

d
.

These are resolved explicitly by hand. �

Now assume that char k = 0. Shortly after the appearance of de Jong’s theorem on
alterations D. Abramovich and J. de Jong [9] took it as a starting point to give a new
proof of resolution of singularities by birational morphisms in characteristic zero.

Their proof goes as follows. Fix an alteration X ′→ X such that X ′ is non-singular.
We may assume that the corresponding finite extension K(X) ↪→ K(X ′) of function
fields is Galois. Let G denote the Galois group Gal(K(X ′)/K(X)). Then G acts on
X ′ and the quotient of this action birationally dominates X . By induction on dim X
we may assume that the subvariety { ξ ∈ X ′ | g(ξ) = ξ for some g ∈ G} of points of
X ′ fixed by at least one g ∈ G is a normal crossings divisor. A few auxiliary blowups
make the quotient X ′/G toroidal. Finally, the authors apply the well known result on
resolution of toroidal singularities ([109], Theorem 11∗) finishes the argument.

Another proof of resolution of singularities in characteristic zero based on the
same basic idea but quite different in detail from the Abramovich–de Jong one was
given independently by F. Bogomolov and T. Pantev [39].
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1.9 Resolving singularities in characteristic zero by Nash and
higher Nash blowing up: results and conjectures

The goal of this section is deine Nash and higher Nash blowing up and to give an
overview of both known results and conjectures involving their desingularization
properties.

H. Hironaka’s proof that every algebraic variety over a field of characteristic
zero admits a resolution of singularities provided an inspiration to John Nash for
several extremely fruitful ideas, one of the most important being the introduction of
Nash blowing up as a conjectural method for constructing a canonical resolution of
singularities of varieties in characteristic zero.

Let k be a field and X an affine irreducible algebraic variety of dimension n
embedded in kN .

Definition 1.9.1 The Gauss map φ : X \ Sing(X) → G := Grass(N, n) si the map
that sends every non-singular point ξ ∈ X to its tangent space, viewed as a point of
G.

Definition 1.9.2 TheNashblowing up N X of X is the closure graph(φ) of graph(φ)
in X × G.

We have a canonical map µ : N X −→ X induced by the canonical projection of
X × G onto the first factor. Over X \ Sing(X) the variety µ−1(X \ Sing(X)) is the
graph of the Gauss map, hence isomorphic to X \ Sing(X). Thus µ is birational.
Since G is a projective variety, the morphism µ is projective.

If X is a complete intesection defined by equations

f1(x1, . . . , xN ) = · · · = f`(x1, . . . , xN ) = 0

then µ coincides with the blowing up of the Jacobian ideal, that is, the ideal generated
by all the (` × `)-minors of the Jacobian matrix

(
∂ fi
∂x j

)
1≤i≤`

1≤ j≤N
. Even if X is not a

complete intersection, there is a similar description of Nash blowing up in terms
of the Jacobian matrix, though it took mankind much longer to come up with it.
Namely, let r = N − n = codim(X, kN ). Let M be a submatrix of the Jacobian
matrix formed by r rows that are linearly independent as K-vectors (where, as usual,
K = K(X) denotes the field of rational functions of X). Then µ coincides with the
blowing up of the ideal generated by all the (r × r)-minors of the matrix M .

The above constructions seem, a priori, to depend on the chosen embedding
ι : X ↪→ CN . We now give two other characterization of Nash blowing up, both of
them independent of ι.

This construction of an ideal whose blowing up coincides with the Nash blowing
up is a special case of a more general construction of the determinant of a module
(in this case, the module of Kahler differentials of X) due to Rossi in the analytic
case and to O. Villamayor [164] in the general setting. Namely, let R be a domain,
K its field of fractions and M and R-module. Let r := dimK (M ⊗R K) denote the
generic rank of M .
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Definition 1.9.3 The determinant of M is Im (
∧r M −→

∧r M ⊗R K � K).
We think of the determinant as a fractional ideal, that is, an R-submodule of K .
Clearing denominators,we can construct a non-canonical isomorphismof R-modules
between a fractional ideal and an honest ideal of R. To obtain an ideal whose blowing
up coincides with Nash blowing up, we take the determinant of the module Ω1

X/C
of

Kahler differentials whose generic rank is n.
Finally, Nash blowing up can be characterized by a universal mapping property.

Namely, we have the following
Proposition 1.9.4 Let µ : X ′ → X be the Nash blowing up of X . The following
statements hold.

(1) The OX′-module
µ∗Ωn

X/C

torsion is locally principal (that is, generated by a single
element).

(2) the Nash blowing up µ has the universal mapping property with respect to
(1). This means, by definition, that every birational morphism λ : V → X such that
λ∗Ωn

X/C

torsion is locally principal factors through X ′ in a unique way.
With a view of constructing a resolution of singularities of X , consider the sequence

X
µ1
←− X1

µ2
←− . . .

µi
←− Xi

µi+1
←− . . . (1.46)

where each µi is either a Nash blowing up or a normalized Nash blowing up (that is,
a Nash blowing up followed by normalization). The question posed to Hironaka by
Nash was: does Xi become non-singular for i � 0?

An affirmative answer to this question would provide a very simple and natural
algorithm for resolving singularities over fields of characteristic zero.

Unfortunately, very little is known about Nash’s question, despite considerable
effort by many mathematicians. Let us briefly summarize the existing results.

In order to have any hope for the answer to be affirmative, we must at least ensure
that no singular variety remains unchanged after Nash blowing up. This is the content
of Nobile’s Theorem:
Theorem 1.9.5 (Nobile 1975 [132]) The Nash blowing up µ : X ′ → X is an
isomorphism if and only if X is non-singular.
The “if” part of the þis trivial, so its main content is “only if”.
Corollary 1.9.6 If dim X = 1 iterating Nash blowing up produces a resolution of
singularities.
Proof Let X̃ → X be the resolution of singularities of X . As we saw earlier, X̃ is
nothing but the normalization of X . In particular, OX̃ is a finite (hence a noetherian)
OX -module. Now, the sequence of morphisms (1.46) induces a sequence

OX

µ∗1
−→ OX1

µ∗2
−→ . . .

µ∗i
−→ OXi

µ∗
i+1
−→ . . . (1.47)

of homomorphisms of rings, with all the OXi contained in OX̃ . Since OX̃ is a
noetherian OX -module, the sequence (1.47) must stabilize after OXi for some i ∈ N.
By Nobile’s theorem, Xi is non-singular. �
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Remark 1.9.7 Assume that char k = p > 0, fix a prime number q , 2 and consider the
plane curve X = { f (x, y) = yp + xq = 0}. This is a complete intersection variety
whose Jacobian ideal J is principal (since ∂ f

∂y = 0). Hence the Nash blowing up
µ : X ′ → X is an isomorphism. Thus Nobile’s theorem does not hold over fields of
positive characteristic. There seems to be little hope to devise a plausible approach
to resolution over fields of characteristic p > 0 along the lines of Nash blowing up.

Theorem 1.9.8 (Rebassoo 1977 [140]) Iterating Nash blowings up gives resolution
of singularities of any surface X defined in C3 by an equation of the form

za − xbyc = 0. (1.48)

The proof is quite long and technical. One of the difficulties is that after Nash blowing
up X stops being a hypersurface, though, as we will see below, it remains a toric
variety.

Theorem 1.9.9 (Hironaka 1983 [99]) Startingwith a surface X , consider a sequence
(1.46) of morphisms such that each µi dominates the Nash blowing up of Xi−1 (that is,
µi is a composition of Nash blowing up with another birational projective morphism.
There exists i ∈ N such that the normalization X̄i of Xi dominates a non-singular
surface (in other words, X̄i has at most sandwiched singularities).

Using this result as a starting point, M. Spivakovsky proved in 1985 that iterating
normalized Nash blowings up resolves the singularities of any surface over a field of
characteristic zero:

Theorem 1.9.10 [149] Assume that dim X = 2 and each µi in (1.46) is a normalized
Nash blowing up. Then Xi is non-singular for i � 0.

By Hironaka’s result, it is enough to prove this Theorem in the case when X has
at most sandwiched singularities. Again, the proof is long and technical. The first
step is a classification of sandwiched surface singulaities, accomplished in [149],
building on a classification of valuations in function fields of surfaces [148].

Another important ingredient in the proof is a geometric characterization of Nash
blowing up in terms of polar curves, inspired by [82]–[83].

1.9.1 Nash blowing up and the base locus of the polar curve

Consider a variety X of dimension n embedded in CN .

Definition 1.9.11 (Lê–Teissier) The first polar variety of X is the closure of the
critical locus of a generic projection X → Cn, restricted to X \ Sing(X). If X is a
surface, the first polar variety is referred to as the polar curve of X; it is the critical
locus of a generic projection X → C2.

One should think of the polar curve as a linear system: as we vary the generic
projection, we obtain a family of polar curves, all of them linearly equivalent to each
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other. In this way, we may talk about the base locus of the polar curve. Another
way of thinking of polar curves is as zeroes of sections of the sheaf Ω2

X/C
of Kahler

differentials. This is why making this sheaf (modulo torsion) locally principal is
equivalent to removing the base locus of the strict transform of the polar curve.

Proposition 1.9.12 [149] Let X be a variety of dimension n.
(1) Consider a birational transformation µ : X ′ → X , dominating the Nash

blowing up of X . The linear system formed by the strict transforms of the polar
curves has no base points (we say that Nash blowing up resolves the base points of
the polar curve).

(2) Conversely, assume that µ resolves the base points of the polar curve and that
X ′ is normal. Then X ′ dominates the Nash blowing up of X .

This leads to the following method of computing the normalized Nash blowing
up of any given normal surface singularity (this method is essentially due to G.
Gonzalez-Sprinberg [82]–[83]). Consider the commutative diagram

Y ′ σ //

π′

��

Y

π

��
X ′

µ // X

(1.49)

where π and π′ are the respective minimal resolutions of singularities of X and X ′,
µ is the normalized Nash blowing up and σ the factorization of µ ◦ π′ through Y
given by definition of the minimal resolution Y .

By Zariski’s factorization theorem,σ is a sequence of blowings up of points. Now,
µ resolves the base points of the polar curve, hence so does µ◦ π′. Since, by þ1.9.12,
µ is the “smallest” birational transformation with this property, σ is the smallest
sequence of point blowings up that resolves the base points of the strict transform of
the polar curve of X in Y . The method for studying the desingularization properties
of Nash blowing up, inspired by [82]–[83], consists of computing directly the strict
tranform of the polar curve in Y , particularly, its base points, and thus deducing
information about σ and Y ′.

Once we classify sandwiched singularities, we consider a subclass of them called
minimal singularities (rational singularities of surfaces with reduced fundamental
cycle; this includes all the toric surface singularities). In the case of minimal singu-
larities the polar curve, and thus σ andY ′, can be computed explicitly. We show that
the number of irreducible exceptional curves of π′ is at most one half of the number
of irreducible exceptional curves of π. Thus, if we let E be the number of irreducible
exceptional curves in the minimal resolution of the surface X , the singularities of X
are resolved after at most log2 E normalized Nash blowings up.

In the case of non-minimal sandwiched singularities our results are much less
explicit, but we are able to get enough information about the polar curve to give
an indirect proof that if X has at most sandiwched singularities then after finitely
many normalized Nash blowings up the resulting surface Xi has at most minimal
singularities. This completes the proof.
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1.9.2 Nash blowing up of toric varieties

Recently, there has been a resurgence of interest in resolution of singularities by
iterating Nash blowing up, particularly, in the case of (not necessarily normal) toric
varieties. We summarize some of the main advances here.

Let n be a strictly positive integer. Consider a semigroup Φ ⊂ Zn having the
following properties:

(1) Φ generates Zn as an additive group
(2) the cone C generated by Φ in Rn ⊃ Zn is strictly convex (this means that C

contains no straight lines). Let γ1, . . . , γs be a set of generators of Φ (not necessarily
minimal).

Definition 1.9.13 The affine toric variety X determined by Φ is the image of the
map

Cn → Cs

defined by t → (tγ1, . . . , tγs ) (here we are using the multi-index notation: t =

(t1, . . . , tn), each γi is an n-vector and tγi =
n∏
j=1

tγi jj ).

As everything else related to toric varieties, the Nash blowing up of such a variety
can be described combinatorially. More precisely, we can compute the logarith-
mic Jacobian ideal explicitly in terms of the elements γ1, . . . , γs . This task was
accomplished, independently, in [81] and [85] (the latter paper includes the case
of reducible toric varieties). Namely, the module Ωn

X,C
is generated by elements of

the form dtγi1
∧
· · ·

∧
dtγin , where (i1, . . . , in) runs over all the n-tuples of distinct

elements of {1, . . . , s}. We have

dtγi1
∧
· · ·

∧
dtγin = det

(
γi1, . . . γin

)
t

n∑
j=1
γi j −n

dt1
∧
· · ·

∧
dtn.

Thus the logarithmic Jacobian ideal we must blow up to compute the Nash blowing

up is the ideal generated by all the monomials t

n∑
j=1
γi j −n as (i1, . . . , in) runs over all

the n-tuples of distinct elements of {1, . . . , s} satisfying

det
(
γi1, . . . γin

)
, 0. (1.50)

Picking one of these monomials specifies a coordinate chart of the Nash blowing
up. For example, assume that det (γ1, . . . , γn) , 0 and consider the coordinate

chart determined by the monomial t

n∑
j=1
γj−n

. The semigroup Φ1 that determines the
corresponding affine toric variety is generated by γ1, . . . , γs and all the vectors of
the form

n∑
j=1

γi j −

n∑
j=1

γj, (1.51)
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where (i1, . . . , in) runs over all the n-tuples of distinct elements of {1, . . . , s} satisfy-
ing (1.50). Now, an important special case to be considered is one when there exists
j ∈ {1, . . . , n} such that ij′ = j ′ for all j ′ ∈ {1, . . . , n} \ { j} and ij , j. Then the
condition (1.50) amounts to saying that

det
(
γ1, . . . , γj−1, γi j , γj+1, . . . , γn

)
, 0. (1.52)

One can show that after a permutation of the n-tuple (i1, . . . , in) we can achieve the
situation where condition (1.52) holds for all j ∈ {1, . . . , n} simultaneously. This
shows that Φ1 is generated by γ1, . . . , γs and all the differences of the form

γi−γj, j ∈ {1, . . . , n}, i ∈ {n+1, . . . , s} such that det
(
γ1, . . . , γj−1, γi, γj+1, . . . , γn

)
, 0

(1.53)
A complete list of coordinate charts on the Nash blowing up of the toric variety
X is obtained in this way, after imposing the additional condition that the resulting
semigroup determines a strictly convex cone.

One way of thinking of the choice of an affine coordinate chart on the Nash
blowing up is in terms of valuations. We saw earlier that by a theorem of Zariski
fixing a valuation ν of the rational function field K(X) of X is equivalent to specifying
a (scheme-theoretic) point called the center of ν on every blowing up of X . Here
we are interested in a less precise version of this statement: specifying the values
ν(t1),. . . ,ν(tn) of the torus variables t1,. . . ,tn limits the choice of a coordinate chart
to those charts that contain the center of ν. Namely, a coordinate chart as above
contains the center of ν if and only if for every pair i, j as in (1.53) we have

ν (tγi ) ≥ ν (tγj ) . (1.54)

In general, even under this restriction the choice of the coordinate chart is not
uniquely determined, unless the inequality in (1.54) is strict for all the choices of
i, j as in (1.53). This last statement holds whenever the values ν(t1),. . . ,ν(tn) are
Q-linearly independent.

In [71] and [72] it is shown that if dim X = 2 and the rank of the group generated
by ν(t1) and ν(t2) coincides with its rational rank then iterating Nash blowing up
resolves the singularities of X in all the coordinate charts compatible with the
valuation ν. In [81] the same result is proved for X of arbitrary dimension.

The simplest case of a group whose rank differs from its rational rank is that of
rank 1 and rational rank 2. Thus the simplest case in which resolution of singularities
of toric varieties by iterating Nash blowing up is not known is the following.

An open problem:
Let Φ = (γ1, . . . , γs) ⊂ Z

2 be a semigroup which generates Z2 as a group, such
that the cone generated by it is strictly convex. Let α be an irrational number. Let
L : Z2 → R be the map given by L(x, y) = x + αy. Assume that L(Φ \ {0}) > 0
and that L(γ1) < L(γ2) < L(γj) for j > 2. Let Φ1 be the semigoup generated by
γ1, γ2 and all the differences of the form γi − γ1 and γj − γ2 where det(γi, γ2) , 0
and det(γj, γ1) , 0. Replace Φ by Φ1 (as we explained above, this corresponds to
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performing a Nash blowing up of our toric surface and picking the unique coordinate
chart prescribed by the valuation such that ν(t1) = 1 and ν(t2) = α). Question: is it
true that after finitely many iterations of this procedure the resulting semigroup Φi

is generated by two elements?

There is overwhelming computer evidence that the answer to this question is
affirmative. Rebassoo’s theorem is a special case of this, providing further evidence.
On this subject we also mention the paper [16].

1.9.3 Higher Nash blowing up

Let X ⊂ CN be an irreducible affine algebraic variety of dimension n and R its
coordinate ring. Consider the map λ : R ⊗k R → R which sends a ⊗ b to ab. Let
I = Ker(λ). We view I as an R-module via the map R→ R ⊗k R, r → r ⊗ 1.

For i ∈ N, i ≥ 2, the higher Nash blowing up NiX of X was defined by Oneto
and Zatini [137] in terms of the Grassmanian of the i-jet module

(
I

I i+1

)∗
and by

Takehiko Yasuda [167] using Hilbert schemes of points of length
(n+i
n

)
, with an

alternative, explicit characterization by E. Chavez, D. Duarte and A. Giles in terms
of the generalized Jacobian matrix [49]. We summarize the first two constructions
here.

For a point x ∈ X . Let (Rx,mx) be the localization of R at the point x and Ix the
localization of I. Consider the following C = Rx

mx
-vector space:

T i
xX :=

(
Ix

I i+1
x

⊗R C

)∗
This is a vector space of dimension L =

(i+n
n

)
−1 whenever x is a non-singular point.

Since X ⊂ CN , we have T i
xX ⊂ T i

xC
N = CM where M =

(N+i
N

)
− 1, that is, we may

view T i
xX as an element of the Grassmanian G(M, L). Consider the Gauss map:

Gi : X \ Sing(X) → G(M, L) (1.55)
x → T i

xX . (1.56)

Denote by Xi the Zariski closure of the graph of Gi . Call µi the restriction to Xi of
the projection of X × G(M, L) to X .

Definition 1.9.14 ([137], Definition 1.1 ) The pair (Xi, µi) is called theNash blowing
up of X relative to I

I i+1 .

Similarly to the usual Nash blowing up, theNash blowing up relative to I
I i+1 coincides

with the blowing up of the determinant of the module I
I i+1 [137].

Next, we summarizeYasuda’s construction. Consider aC-rational point x ∈ X and
letm be the corresponding maximal ideal of R. Let n = dim X . Let x(i) := Spec R

mi+1

be the i-th infinitesimal neighborhood of x. If X is smooth at x, then x(i) is a closed
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subscheme of X of length L+1 =
(i+n
n

)
(that is, R

mi+1 has length L+1 as an R-module).
Therefore, it corresponds to a point [x(i)] ∈ HilbL+1(X), where HilbL+1(X) is the
Hilbert scheme of (L + 1)-points of X (see [130], Definition 1.2). If Reg(X) denotes
the smooth locus of X , we have a map

δi : Reg(X) → HilbL+1(X) (1.57)
x → [x(i)] (1.58)

Definition 1.9.15 ([167], Definition 1.2) The higher Nash blowup of X of order i,
denoted by NiX , is the closure of the graph of δn in X ×k HilbL+1(X) with reduced
scheme structure. By restricting the projection X ×k HilbL+1(X) → X to NiX we
obtain a map πn : NiX → X .

This map is projective, birational, and is an isomorphism over Reg(X).

Proposition 1.9.16 ([167], Proposition 1.8) For every variety X and every strictly
positive integer i, we have a canonical isomorphism (Ni(X), πn) � (Xi, µi). In
particular, N1(X) is canonically isomorphic to the classical Nash blowup of X .

Yasuda conjectured that for i large enough, the i-th Nash blowup of X is non-singular
([167], Conjecture 0.2). If the conjecture were true, this construction would give a
one-step resolution of singularities. In the same paper, the author proves that the
conjecture is true for curves (here we give the statement only for irreducible varieties
whereas Yasuda’s result is stated and proved for reduced ones):

Theorem 1.9.17 ([167], Corollary 3.7) Let X be an irreducible variety of dimension
1. For i large enough the variety NiX is non-singular.

The proof of ths is not trivial and consists of two parts. First, the author shows that for
i � 0 the transformation Ni separates the (analytic) branches of X , that is, X becomes
analytically irreducible at every point. Yasuda goes on to show that each branch gets
desingularized by Ni for i � 0. Precisely, he shows the following. Assume that X
is analytically irreducible at a certain point ξ. The resolution of singularities of X
gives an injection of OX,ξ into a regular local ring and thus induces a discrete rank
1 valuation ν on OX,ξ . Consdier the semigroup Φ := ν(OX,ξ \ {0}) ⊂ N and let
0 = s0, s1, s2, s3, ... be the complete list of elements of Φ arranged in an increasing
order.

Theorem 1.9.18 ([167], þ3.3) For an integer i ∈ N the curve NiX is non-singular if
and only if si+1 − 1 ∈ Φ.

SinceΦ coincides withN for i � 0, þ1.9.18 immediately implies þ1.9.17 in the case
of analytically irreducible curves.

Yasuda has stated that the A3 singularity (that is, the singularity defined by the
equation z4 − xy = 0) is probably a counterexample to his conjecture (see [169],
Remark 1.5). Recently Rin Toyama [157] has shown that this is, indeed, the case,
building on previous work by D. Duarte.
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Incredibly, the analogue of Nobile’s theorem (that is, the statement that a higher
Nash blowing up of X is an isomorphism if and only if X is non-singular) is not
known for higher Nash blowing up. The best partial results on this subject are due to
D. Duarte, who proved it for normal toric varieties [73] and for normal hypersurfaces
[74]. It has also recently been proved for toric curves [49].

Finally, we mention another conjecture of T. Yasuda about higher Nash blowing
up of (analytically) irreducible curves. Let X be an analytically irreducible curve,
Φ its associated semigroup and the si elements of Φ listed in increasing order, as
above.

Conjecture 1.9.19 (Yasuda [168]) Let Φi denote the semigroup associated to the
analytically irreducible curve NiX . We have Φi = {s` − sj | ` > i, j ≤ i}.

The paper [49] contains the following results:
(1) a definition of the higher-order Jacobianmatrix J of an affine algebraic variety,

so that the i-th higher Nash blowing up coincides with the blowing up of an ideal
generated by suitable minors of J in a way completely analogous to that of usual
Nash blowinng up described above

(2) a proof that the higher Nash blowings up of a toric variety are themselves toric
varieties

(3) a proof of Conjecture 1.9.19 in the case of toric curves
(4) as an immediate corollary of (3), a proof of the analogue of Nobile’s theorem

for toric curves
(5) a family of counterexamples to Conjecture 1.9.19 in the general case (namely,

the parametrized curves t →
(
t4, t4i+2 + t4i+3) giving a counterexample for each

positive integer i).

1.10 Reduction of singularities of vector fields, foliations by lines
and codimension one foliations

Let K be the field of rational functions of a projective algebraic variety M0 of
dimension n over an algebraically closed field k of characteristic zero.

Consider the n-dimensional K-vector space DerkK of k-derivations from K to
itself.

Definition 1.10.1 A foliation by lines is a 1-dimensional K-vector subspace L ⊂
DerkK .

Take a regular point P on a projective model M of the field K . We know that

DerkOM,P ⊂ DerkK

is a free OM,P-module of rank n generated by the partial derivatives ∂
∂zi

, i ∈
{1, 2, . . . , n}, for a regular system of parameters z1, z2, . . . , zn of the local ring OM,P .
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Definition 1.10.2 The free rank one submodule LM,P := L ∩ DerkOM,P of
DerkOM,P is called the local foliation induced by L at M, P.

Let mM,P denote the maximal ideal of OM,P .

Definition 1.10.3 A germ of a vector field ξ ∈ DerkOM,P is said to be non-singular
if ξ < mM,PDerkOM,P . The germ ξ is elementary if it is singular and the k-linear
endomorphism

ξ :
mM,P

m2
M,P

→
mM,P

m2
M,P

(1.59)

is not nilpotent.
We say that L is non-singular (resp. elementary) at P if there is a germ ξ ∈ LM,P

that is non-singular (resp. elementary). IfY ⊂ M is an irreducible subvariety, we say
that L is non-singular (resp. elementary) at Y if it is so at a generic point of Y . Note
that this definition makes sense only if M itself is non-singular at the generic point
of Y .

A plane vector field D = a ∂
∂x + b ∂

∂y , with a, b two relatively prime polynomials in
x and y, defines a one-dimensional saturated foliation F having singularities at the
zeroes of D (that is, the common zeroes of a and b). It was proved by Seidenberg
in 1968 [144] that after a finite number of point blowings up of the ambient plane
we obtain a foliation F̃ which is given locally at each singular point by a vector
field D̃ whose linear part has eigenvalues 1 and λ, with λ < Q+ (= strictly positive
rational numbers). The above singularities may be thought of as final forms in the
sense that they are preserved under all subsequent point blowings up. Note also that
these singularities are characterized by the fact that they are elementary in the sense
of Definition 1.10.3 and remain elementary after the subsequent blowings up. On
the other hand, if the eigenvalues are 1, λ ∈ Q+, the linear part of the vector field (cf.
(1.59)) will become nilpotent after finitely many blowings up.

This points to a new feature of the desingularization problem for vector fields
and foliations: in general, it is not possible to make them non-singular by blowings
up, so one must start by defining the final form of the singularity that one is trying
to achieve. This is why in this subject we usually talk about reduction rather than
resolution of singularities. A counterexample by F. Sanz and F. Sancho shows that
starting with dimension three it is not possible to arrive at elementary singularities by
a sequence of blowings up along non-singular centers (see the Introduction to [138]).
Therefore a new notion of a final form of singularities is needed. In dimension a
useful and natural notion seems to be that of log-elementary singularities, motivated
by the results of [45].

Let the notation be as in the beginning of this section.

Definition 1.10.4 A germ of a vector field ξ ∈ DerkOM,P is said to be log-
elementary if there is a regular system of parameters z1, z2,. . . ,zn of OM,P , and an

integer e, 0 ≤ e ≤ n such that ξ has the form ξ =
e∑
i=1

aizi ∂
∂zi
+

n∑
i=e+1

ai ∂
∂zi

, where

ai ∈ OM,P for i ∈ {1, 2, . . . , n} and aj < m
2
M,P for at least one index j. We say

that L is log-elementary at P if there is a germ ξ ∈ LM,P that is log-elementary. If
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Y ⊂ M is an irreducible subvariety, we say that L is log-elementary at Y if it is so
at a generic point of Y .

The following result is the main theorem of [48]:

Theorem 1.10.5 Assume that n = 3. Consider a foliation by lines L ⊂ DerkK .
There is a birational projective morpism M → M0 such that L is log-elementary at
all the points of M .

The general structure of the proof is à la Zariski. First, a local uniformization along
any valuation ν of K vanishing on k is established: a sequence of blowings up
M → M0 along non-singular centers is constructed such that L is log-elementary
at the center Y of ν on M . After that þ1.10.5 is deduced from the Piltant–Zariski
general globalization procedure in dimension three [139]: one just has to check that
Piltant’s axioms I–VI hold in this special case. The proof of local uniformization of
three-dimensional vector fields is inspired by [45].

We mention, without giving the details, the following related results on reduction
of singularities of foliations and vector fields.

1) The paper [47] constructs a reduction of singularities of codimension 1 folia-
tions in ambient dimension 3.

2) The paper [138] acccomplishes reduction of singularities of real-analytic vector
fields; the real setting is used in an essential way in the proof.

3) The paper [126] proves reduction of singularities of foliations by curves in
ambient dimension 3 to canonical ones (the condition of being canonical is somewhat
stronger than being log-elementary), but in the 2-category of Deligne–Mumford
stacks.

4) The paper [78] proves the Local Uniformization theorem for codimension one
foliations in all dimensions, under two restrictions on the given valuation ν: rk ν = 1
and kν = C.

1.11 Appendix

It is natural to pose the problem of resolution of singularities in the more general
context of noetherian schemes.

Definition 1.11.1 Let X be a reduced noetherian scheme. A resolution of singu-
larities of X is a blowing up X ′ → X along a subscheme of X , not containing any
irreducible components of X , such that X ′ is non-singular.

In this Appendix we address the question of the hypotheses that must be imposed
on X in order for resolution of singularities to exist. Let Reg(X) denote the set of
regular points of X . It is obvious that the following condition is necessary for the
existence of a resolution of singularities of X:

(1) Reg(X) must contain a non-empty Zariski open set.

Furthermore, suppose X admits a resolution of singularities π : X ′→ X and let
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π̄ : X̄ → X

denote the normalization of X . Then π must factor through X̄ . We have X̄ = V π∗OX′

and π∗OX′ is a coherent sheaf ofOX -modules. This gives another necessary condition
for the existence of resolution:

(2) X̄ must be finite over X .

Moreover, since the usual methods involve blowing up and induction on dim X ,
we are led to assume that (1) and (2) hold for every reduced scheme of finite type
over X . By Nagata’s criterion, (1) then implies that X is a J-2 scheme, that is, for
every scheme X̃ , reduced and of finite type over X , Reg(X̃) is open.

Grothendieck ([86], IV.7.9) proved that if all of the irreducible closed subschemes
of X and all of their finite purely inseparable covers admit resolution of singularities,
then X must satisfy a somewhat stronger condition than (1)∧(2) above, called quasi-
excellence, which we now define. For a point ξ on a scheme we will denote by κ(ξ)
the residue field of the local ring of that point.

Definition 1.11.2 ([124], Chapter 13, (33.A), p. 249) Let σ : X → Y be a morphism
of noetherian schemes. We say that σ is regular if it is flat, and for every ξ ∈ Y the
fiber X ×Y V κ(ξ) is geometrically regular over κ(ξ) (this means that for every finite
field extension κ(ξ) → k ′, the scheme X ×Y V k ′ is regular).

Remark 1.11.3 If κ(ξ) is perfect, the fiber X ×Y V κ(ξ) is geometrically regular over
κ(ξ) if and only if it is regular.

Remark 1.11.4 It is known that a morphism of finite type is regular in the above
sense if and only if it is smooth (that is, flat with smooth fibers).

1.11.1 Quasi-excellent schemes

Regular morphisms come up in a natural way when one wishes to pass to the formal
completion of a local ring at a singularity:

Definition 1.11.5 ([124], (33.A) and (34.A)) Let R be a noetherian ring. For a
maximal ideal m of R, let R̂m denote the m-adic completion of R. We say that R is a
G-ring if for every maximal ideal m of R, the natural map V R̂m → V R is a regular
morphism.

Definition 1.11.6 ([124], (34.A), p. 259) Let X be a noetherian scheme. We say that
X is quasi-excellent if the following two conditions hold:

(1) X is J-2, that is, for every scheme X̃ , reduced and of finite type over X , Reg(X̃)
is open in the Zariski topology.

(2) For every closed point ξ ∈ X , OX,ξ is a G-ring.

Remark 1.11.7 If X = V R with R a local noetherian ring then (2) =⇒ (1) in the
above definition [124].
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A scheme is said to be excellent if it is quasi-excellent and universally catenary.
In general, rings that arise from natural constructions in algebra and geometry are
excellent. Complete and complex-analytic local rings are excellent (see [124], þ30.D
for a proof that every complete local ring is excellent and [124], (33.H), þ78, p. 257 for
a proof of finiteness of normalization for quasi-excellent schemes). Both excellence
and quasi-excellence are preserved by localization and passing to schemes of finite
type over X ([124], Chapter 13, (33.G), þ77, p. 254). In particular, every scheme
that is essentially of finite type over a field, Z, Z(p), Zp , the Witt vectors or any
other excellent Dedekind domain, or over a complete or complex-analytic local ring
is excellent. See [129], Appendix A.1, p. 203, for some examples of non-excellent
rings.

If X is a quasi-excellent scheme then for every ξ ∈ X the natural map

V ÔX,ξ → X

is a regular homomorphism (by Definition 1.11.6 (2)). Thus, the passage to the
formal completion is a natural operation in the category of quasi-excellent schemes;
in particular, it does not change the nature of singularity.

Once local unifromization is proved in a given context, in order to globalize it
and to make it canonical (that is, functorial in the category whose objects are quasi-
excellent noetherian schemes and whose morphisms are regularmorphisms), one is
interested in local uniformization algorithms determined, locally at every point ξ, by
the formal completion ÔX,ξ of OX,ξ .

Grothendieck’s result means that the largest subcategory of the category of
noetherian schemes, closed under passing to closed subschemes and finite purely
inseparable covers, for which resolution of singularities could possibly exist, is that
of quasi-excellent schemes. In [86], IV.7.9, Grothendieck conjectures that resolution
of singularities exists in this most general possible context.
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