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Abstract1

The recent years have seen a growing number of studies investigating evolutionary2

questions using ancient DNA techniques and temporal samples of DNA. To address3

these questions, one of the most frequently-used algorithm is based on principal com-4

ponent analysis (PCA). When PCA is applied to temporal samples, the sample dates5

are, however, ignored during analysis, which could lead to some misinterpretations of6

the results. Here we introduce a new factor analysis (FA) method for which individ-7

ual scores are corrected for the effect of allele frequency drift through time. Based8

on a diffusion approximation, our approach approximates allele frequency drift in9

a random mating population by a Brownian process. Exact solutions for estimates10

of corrected factors are obtained, and a fast estimation algorithm is presented. We11

compared data representations obtained from the FA method with PCA and with PC12

projections in simulations of divergence and admixture scenarios. Then we applied13

FA with correction for temporal drift to study the evolution of hepatitis C virus in14

a patient infected by multiple strains, and to describe the population structure of15

ancient European samples.16
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1 Introduction17

In recent years, the number of studies analyzing temporal samples of DNA or ancient18

DNA has increased dramatically, both for humans and for other organisms (Lazaridis19

et al., 2014; Haak et al., 2015; Mathieson et al., 2015; Carroll et al., 2015; Skoglund20

and Mathieson, 2018). In such studies, a central question concerns the inference of21

ancestral relationships between sampled populations (Slatkin, 2016). Evolutionary22

biologists and population geneticists have devised many methods for addressing this23

question. One of the most frequently-used method is based on principal component24

analysis (PCA) and projections of ancient samples on axes built from present-day25

samples (Patterson et al., 2006, 2012). In population genetics, PCA is performed26

by finding the eigenvalues and eigenvectors, or axes, of the covariance matrix of al-27

lele frequencies. The highest order eigenvectors indicate the directions in the high28

dimensional allele-frequency space which account for most of the covariance. Indi-29

vidual samples are then plotted on the plane spanned by the first axes, offering a30

visual representation of the structure hidden in the data obtained with short com-31

puting time. Relative distances in the reduced space indicate their similarity and32

their ancestral relationships (McVean, 2009). When PCA or PC projections are ap-33

plied to analyze temporal samples, information on sample dates is, however, usually34

omitted in the computation of eigenvalues and eigenvectors (Slatkin, 2016; Slatkin35

and Racimo, 2016; Harris and DeGiorgio, 2017).36

Previous studies have reported that time differences in samples are reflected in the37

principal axes of a PCA (Skoglund et al., 2014), creating sinusoidal shapes similar to38

those observed with geographic samples (Novembre and Stephens, 2008). The combi-39

nation of both time and spatial heterogeneity in sampling further modify the patterns40
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observed in PCA. Local dispersal through time causes ancient samples to be shrunk41

toward the center of the PC plot and not to cluster with their present-day counter-42

part despite no major discontinuity in the demographic process (Duforet-Frebourg43

and Slatkin, 2016). Sinusoidal distortions linked to gradients and longitudinal data44

also occur in various fields, and are called horseshoes or arches. Those distortions45

complicate the interpretation of multidimensional scaling, local kernel methods and46

ordination analysis (Hill and Gauch, 1980; Diaconis et al., 2008). Supervised methods47

that combine ancient and modern samples by using PC projections on present-day48

samples also suffer from some statistical issues. PC projections exhibit a shrinkage49

bias toward the center of the principal axes, and this bias could increase in analyses50

of temporal samples (Lee et al., 2010). Since those biases could lead to misinterpre-51

tations or to incorrect estimates of individual ancestry, it is important to propose52

methods that correct principal components when temporal samples are analyzed for53

descriptive purposes.54

Corrections of sinusoidal patterns arising in principal components have been pro-55

posed when distortions are caused by spatial auto-correlation in geographic samples56

(Frichot et al., 2012). Similarly, Kalaitzis and Lawrence (2012) have proposed to57

remove temporal correlations leaving residual variance with residual component anal-58

ysis. Modified versions of the STRUCTURE algorithm – which is closely related to59

PCA – were also developed to integrate corrections based on spatial or temporal diffu-60

sion models (Pritchard et al., 2000; Caye et al., 2018; Joseph and Pe’er, 2018). In this61

study, we introduce a new factor analysis (FA) method for visualizing hidden struc-62

ture and for describing ancestral relationships among samples collected at distinct63

time points in the past. Based on a diffusion approximation, our approach approxi-64
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mates allele frequency drift in a random mating population by a Brownian process.65

Using the Karhunen-Loève theorem, we propose a representation of the factor model66

in which additional covariates, representing temporal eigenvectors, are introduced67

in the model. Our model assumes informative Gaussian prior distributions for the68

effect sizes of the temporal covariates. Exact solutions for time-corrected factors69

are obtained, and a fast algorithm based on singular value decomposition (SVD) is70

proposed. We compare corrections for temporal drift in FA with PCA in coalescent71

and generative simulations of divergence and admixture scenarios. We eventually72

apply corrections for temporal drift to study the evolution of hepatitis C virus in a73

patient infected by multiple viral strains, and to describe population structure for74

DNA samples from ancient Europeans and Eurasians.75

2 New Method76

This section introduces a new factor analysis method for describing ancestry among77

samples taken at distinct time points in the past. The objective is to propose a78

factorial decomposition of the data matrix similar to a PCA, in which the individual79

scores are corrected for the effect of allele frequency drift through time. The scores,80

called factors, will be obtained as maximum-a-posteriori estimates in a Bayesian81

model.82

Model. Let Y be an n × p matrix of genotypic data, where n is the number of83

individual samples and p is the number of markers, typically represented as single84

nucleotide polymorphisms (SNPs). We suppose that the data are centered, so that85

the mean value for each column (or marker) is null. We also suppose that each sample,86
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i, is associated with a sampling date, ti, corresponding to the age of the sample. The87

dates are normalized to span the unit interval 0 < t1 ≤ · · · ≤ tn ≤ 1. Here, time has88

a forward representation. The date t1 corresponds to the most ancient sample, and89

t = 1 represents samples at present time. Our FA model takes the following form90

Y = UVT + ε, (1)

where U is an n × K matrix of scores, VT is a K × p matrix of loadings. The91

number of factors, K, can be set to any number smaller that n and p depending92

on how drastically one wants to reduce the dimension of the data (and approximate93

the data matrix). It can be set to the number of ancestral groups minus one when94

this information is known. The individual scores contained in the K column vectors,95

u1, . . . ,uK , of the matrix U reflect the ancestral relationships among samples (Pat-96

terson et al., 2006). To incorporate corrections for temporal drift, we model the error97

term, ε, as follows98

ε ∼ N(0, α−1C + σ2I) , (2)

where N(0, α−1C + σ2I) is the multidimensional Gaussian distribution with mean 099

and covariance matrix α−1C + σ2I, α is a precision (scale) parameter for temporal100

drift, σ2 is the variance of the residual error, and I is the n× n identity matrix. We101

suppose that C is an n× n covariance matrix given by102

cij = min(ti, tj) i, j = 1, . . . , n. (3)

The definition of the covariance matrix, C, is related to the covariance function103

of the Brownian process. This model assumption corresponds to the diffusion ap-104

proximation of allele frequency drift in a random mating population conditional on105
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non-fixation of alleles in the population (Kimura, 1964, 1983). The diffusion approx-106

imation underlies the development of several recent methods of ancestry estimation107

similar to our model (Patterson et al., 2012; Pickrell and Pritchard, 2012; Peter, 2016;108

Joseph and Pe’er, 2018). As a consequence of the definition, the variance of allele109

frequencies is proportional to time. In applications, we normalized the sample dates110

so that t1 corresponds to the variance of allele frequencies in the oldest sample.111

Factor estimates. To compute the factor matrix, U, in the model equation (1),112

we turned to an equivalent formulation of this equation113

Y = W + ZBT + ε′, (4)

where the residual noise is described by114

ε′ ∼ N(0, σ2I) . (5)

In this formula, effect sizes, Bj, j = 1, · · · , p, are introduced, and considered as115

i.i.d. random variables with univariate Gaussian prior distribution N(0, α−1). A116

latent matrix, W = UVT , has a non-informative prior distribution. After a spectral117

decomposition of the covariance matrix C, we define118

Z = P
√

Λ (6)

where P is a unitary matrix of eigenvectors, and Λ is the diagonal matrix containing119

the eigenvalues of C120

C = ZZT = (P
√

Λ)(P
√

Λ)T . (7)

Based on the Karhunen-Loève theorem (Loève, 1948), the diagonal terms of Λ can121

be approximated as122

λi ≈
n

(i− 1/2)2π2
, i = 1, . . . , n, (8)
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and we have123

Zij ≈ fi(tj)
√
λi/n , i, j = 1, . . . , n, (9)

where fi(t) is defined as fi(t) =
√

2 sin((i − 1/2)πt) for all t in the interval [0, 1].124

According to these results, the eigenvectors of the covariance matrix have sinusoidal125

shapes, and a diffusion model is consistent with the arch effect observed in principal126

components of genetic variation (Skoglund et al., 2014).127

Statistical estimates of the matrices U, V and B can be obtained by maximizing128

a posterior distribution in a Bayesian framework. This approach amounts to finding129

the minimum of the following loss function130

L(W,B) =
1

2
‖Y −W − ZBT‖2F +

1

2
λ‖B‖2 , (10)

where we have set λ equal to the inverse of the temporal signal-to-noise ratio, λ =131

ασ2. Finding the matrices W and B that minimize the loss function L(W,B) is132

equivalent to computing their estimates in a latent factor regression model with ridge133

penalty (Frichot et al., 2013). According to Caye et al. (2019), the latent matrix, W,134

minimizes the following loss function135

L(W) =
1

2
‖DλP

T (Y −W)‖2F , (11)

where Dλ is a diagonal matrix with coefficients equal to136

Dλ(i, i) =

(
λ

λ+ λi

)1/2

, i = 1, . . . , n. (12)

The estimate of W is provided by the best approximation of rank K of the matrix137

Y, where “best approximation” is related to the following matrix norm138

‖Y‖2A = Tr(YTAY) , A = PD2
λP

T . (13)
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In closed form, the optimal solution is equal to139

W = PD−1λ svdK(DλP
TY) . (14)

The K corrected factors forming U and their associated loadings, V, can be obtained140

from the SVD of the matrix W (see Table S1). For very large data sets, a modification141

of the SVD based on random projections could provide an accelerated version of the142

algorithm (Halko et al., 2011).143

Software availability. A short working R code presenting the algorithm in a self-144

contained way is provided in Table S1. The method described in this section is145

currently implemented as an R package temporalFA.146

3 Results147

Horseshoe effect. To provide an example of distortion arising in PCA due to148

uncorrected temporal drift, we performed a simulation of a coalescent model for149

forty-one samples with ages ranging from 0 to 4,000 generations in a population150

with effective size Ne = 10, 000. The sample dates in the simulation corresponded151

to an interval of 100 generations. Covariance among samples was smaller for the152

most ancient samples than for the most recent samples, and it increased linearly153

with time (Figure 1A). The patterns observed in the sample covariance matrix were154

highly similar to those obtained in a theoretical covariance function corresponding155

to a Brownian process (Figure 1C). The PC plots of individual samples exhibited156

sinusoidal patterns, in which the most ancient and recent samples were placed at157

both extremes of a horseshoe (Figure 1B). Correcting for temporal drift, the factor158
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Figure 1. Horseshoe effect. Coalescent simulation of allele frequencies drifting
through time in a single population (Ne = 10, 000). Forty-one samples with ages
ranging from 0 (present, grey color) to 4,000 generations (past, dark blue color) were
simulated. A) Covariance matrix for observed samples B) PC plot for individual
samples, C) Brownian covariance matrix used as a correction model, D) Factor anal-
ysis plot showing correction for temporal drift. In covariance matrices, the blue color
indicates lower values whereas the yellow and grey colors indicate higher values.
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analysis plot displayed a single cluster grouping all samples without any apparent159

structure among samples (Figure 1D). This last result showed that distortion due to160

temporal drift was correctly removed in a factor analysis using a Brownian model of161

genetic drift.162

Divergence model. In a second series of experiments, we simulated models of163

divergence of two populations. In coalescent simulations, twenty-four samples with164

ages ranging from 0 to 1,000 generations were simulated, corresponding to a sampling165

interval of 100 generations and four present-day individuals. In a PCA of simulated166

samples, PC1 reflected the level of divergence between populations while PC2 repre-167

sented temporal drift (Figure 2A). Correcting for temporal drift, the factor analysis168

plot exhibited two clusters without any apparent structure within each group (Figure169

2B). The Davies-Bouldin clustering index reached higher values in the FA plots than170

in the PC plots, meaning that the clusters were better characterized and better rep-171

resented populations of origin in FA than in PCA (Figure 3C). In generative model172

simulations, factor 1 in FA better explained the hidden factor than did the first PC173

in PCA (Figure 3D). The results provided evidence that correcting for temporal drift174

in FA revealed population structure hidden in the noisy data.175

Admixture models. In another series of experiments, we considered admixture176

models in which an ancestral population splits into two sister populations 1,300 gen-177

erations ago. The two divergent populations came into contact 500 generations ago,178

giving rise to descendants having 75% ancestry in the first ancestral population and179

25% ancestry in the second ancestral population. One hundred present-day individ-180

uals were sampled from the admixed population, and fifty individuals were sampled181
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showing correction for temporal drift, C) Clustering index for PCA and FA results
(100 coalescent simulations), D) Squared correlation between PC1 - Factor 1 and a
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Figure 3. Simulation of admixture models. One hundred samples were simu-
lated for present-day admixed individuals (admixture rate 25 and 75%, grey color)
and samples from two ancestral populations (age 1,000 generations, orange and blue
colors). A) Typical plot for PC projection of ancient samples onto the admixed pop-
ulation showing a shrinkage effect, B) Factor analysis plot showing correction for
shrinkage, C) Mean square error for estimates of admixture proportions from PC
projections and FA plots (100 generative model simulations), D) Mean squared error
for estimates of admixture proportions (100 coalescent simulations). Green crosses
represent population centers, from which admixture estimates were computed.
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from each ancestral population before the admixture event (1,000 generations ago).182

Artificial genotypes generated according to a Brownian model were also used to simu-183

late levels of admixture similar to those observed in coalescent models (see Methods).184

The objective of the experiments was to compare the results of PC projections of an-185

cient samples onto the present-day population with those obtained in factor analysis186

with correction for temporal drift. Typical plots for PC projections exhibited a187

shrinkage effect in which the projected samples were shifted toward zero, and closer188

to the admixed population than expected (Figure 3A). The shrinkage effect was even189

more pronounced in coalescent simulations than in generative model simulations (Fig-190

ure S1 and Figure 3C-D). Correction for temporal drift in factor analysis removed191

the shrinkage effect, and, in the FA plot, the locations of centers of ancestral clusters192

reflected admixture levels more precisely than in PC plots (Figure 3B). The mean193

squared errors for estimates of admixture proportions were higher in PC projections194

than in FA plots both in generative and in coalescent simulations (Figure 3C-D). The195

results showed that correcting for temporal drift in FA improved the representation196

of admixed individuals and their source populations compared with projections on197

present-day individual PCs.198

Hepatitis C virus infection. To follow chronic infection in a non-responder hep-199

atitis C patient treated in the 2000’s, we studied n = 1, 934 samples of viral RNA200

sequences over a period of thirteen years (Caporossi et al., 2019). The patient was201

coinfected by viral strains from two HCV genotypes, 4k and 1b. Height serum sam-202

ples were available from years 2002 to 2014. Treatment with dual therapy had been203

administered for six months after the beginning of the follow-up period. A PC plot204
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of viral samples displayed a pattern similar to those observed in simulations of di-205

vergence models (Figure 4A and Figure 2A). PC1 reflected divergence among the206

samples classified in distinct viral types, and PC2 was influenced by the ages of the207

samples. After correction for temporal drift in a FA plot, viral particles were grouped208

according to their phylogenetic classification (Figure 4B). In the FA plot, a first clus-209

ter consisted of 1b strains from year 2003 to 2014. A second cluster consisting of 4k210

strains exhibited some degree of substructure, separating samples taken during treat-211

ment (year 2003) to the other samples. An interpretation of this result was that 1b212

strains had mainly evolved through drift after treatment, whereas 4k strains might213

had experienced other evolutionary changes, suggesting selection on this genotype214

during the evolution of the disease (Caporossi et al., 2019).215

Ancient European genomes. We used PC projections and a Brownian model of216

factor analysis to study a merged data set consisting of 155k SNP genotypes for 249217

present-day European individuals and 386 ancient samples from Eurasia. The ages of218

ancient individuals were less than 12,080 years cal BP, and individuals were selected219

to be close to present-day Europeans in a preliminary FA analysis to leverage the220

effect of low genomic coverage on factor one. The data set contained ancient samples221

mainly from (Olalde et al., 2018; Mathieson et al., 2015; Haak et al., 2015; Mathieson222

et al., 2018). First, we computed principal components on present-day samples, and223

projected the ancient samples on the first two PCs (Figure S2). We also computed224

factors with temporal correction for present-day and ancient samples, choosing the225

hyper-parameter so that the factors correlate with principal components on present-226

day individuals (λ = 2× 10−6, Multiple R2 = 0.97 for factor 1, R2 = 0.75 for factor227

16

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/801324doi: bioRxiv preprint first posted online Oct. 10, 2019; 

http://dx.doi.org/10.1101/801324
http://creativecommons.org/licenses/by-nc-nd/4.0/


2, P < 10−10, Figure S3). Both analyses revealed a similar pattern, in which most228

ancient samples from Ukraine and all samples from Scandinavia, including hunter-229

gatherers from Latvia, were close to present-day Finnish samples, ancient samples230

from Great Britain were close to present-day British samples, and ancient samples231

from Anatolia and Israel were close to present-day southern Europeans. Ancient232

samples from Iran, Armenia and Iraq formed a distinct group.233

Next, we performed an unsupervised time-corrected factor analysis considering234

ancient samples only. In this analysis, sample ages explained 0.2% of the variance235

in factor 1 and 5.4% of the variance in factor 2, showing that temporal bias was236

correctly removed from the first two factors (λ = 10−3). The FA plot exhibited237

four main clusters and a pattern of variation strongly consistent with the geographic238

origin of samples (Figure 5, see Figure S4 for a definition of clusters). A first cluster239

grouped ancient samples from Ukraine, Latvia and Sweden (Figure 5, green color).240

Ages in the Scandinavian cluster 1 were around 7,671 years BP (mean value, SD241

= 1,710 years). A second cluster grouped ancient samples from Russia, including242

samples from Samara of the Yamnaya culture, Central Europe and Great Britain243

(Figure 5, dark blue stars to golden points). Ages in cluster 2 were around 3,832244

years cal BP (SD = 1,570 years). A third cluster grouped individuals from Anatolia245

and Israel, Southern Europe and Great Britain (Figure 5, brown stars to golden246

points). Ages in the southeastern cluster 3 were around 6,079 years cal BP (SD =247

1,311 years). A fourth cluster grouped samples from Central Asia (salmon triangles).248

Samples from Bronze age Great Britain (4,300 years BP) were grouped in cluster 2,249

whereas samples from the neolithic period and from the same region were found in250

cluster 3 representing Southeastern Europe. More generally, samples with ages older251
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Figure 5. Ancient European genomes. Factor analysis of 386 ancient Eurasian
individuals with ages ranging between 400 and 12,000 years BP. Four main groups
represent individuals from 1) Northern Europe and Ukraine (green color), 2) Russia,
Steppe, Central Europe and the British Isles (average dates around 4k years BP, blue
color), 2) Near East, Southern Europe and the British Isles (average dates around 6k
years BP, brown color), and 4) Central Asia (Salmon color).
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than around 4,500 years BP were grouped in the southeastern cluster, while more252

recent samples from the bronze age clustered with ancient North Eurasian, Russian253

and Steppe samples in the central cluster 2. Discontinuities in ancestry reflected254

in factor 1 were observed for samples from Great Britain, Germany and Hungary255

(Figure 6). In Hungarian samples, a linear trend was observed for the period 4,500 -256

8,000 years BP, consistent with levels of hunter-gatherer ancestry detected in (Lipson257

et al., 2017).258

To assess the genetic ancestry of samples from Great Britain, a second FA was259

performed. This analysis isolated British samples from ancient North Eurasians260

and ancient Near Easterners, considered as putative source populations (Figure 7).261

British samples with dates earlier than 4,300 years cal BP clustered with samples262

from the Near East. Samples with dates around 4,300 years cal BP (early bronze263

age) were close to samples from Russia, and a genetic discontinuity was observed with264

more ancient samples from Anatolia. Estimating admixture coefficients from factor265

1, the early bronze age samples shared around 64% of their ancestry with the North266

Eurasian samples and 36% with the Neolithic Easterners. Samples from the middle267

bronze age (around 3,300 BP) formed a distinct group, suggesting a more complex268

history than two waves of invasions in the British Isles.269

Finally, a larger set of 697 ancient samples was considered for replication of PC270

projection and unsupervised FA results. PCA and FA plots yielded similar descrip-271

tions of the data when a larger set of ancient samples was considered (Figure S5-S6).272
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Figure 6. Factor 1 as a function of age (years cal BP). Factor 1 of a temporal
FA displayed as a function of age for samples from Great Britain, Germany, Hungary
and Bulgaria. The data support a major change in genetic mixture of individuals
from Great Britain, Germany, Hungary around 4,500 years BP (dashed line).
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4 Discussion273

We introduced a new factor analysis method for describing ancestral relationships274

among DNA samples collected at distinct time points in the past. Like in PCA, the275

method is based on a factorial decomposition of the data matrix into a product of276

score and loading matrices. The most important difference with the PCA approach277

is that individual scores in FA were corrected for the effect of temporal drift in allele278

frequency. Based on a diffusion approximation, we approximated allele frequency279

drift by a Brownian process, and an efficient algorithm based on the singular value280

decomposition computed the factor estimates.281

Using a Brownian model of genetic drift, we compared the results of FA with282

those of PCA and PC projections in simulations of divergence and admixture. In283

divergence scenarios, distortions due to temporal drift were removed in FA. Correct-284

ing for temporal drift revealed hidden population structure better than did a PCA.285

In admixture scenarios, estimates of ancestry coefficients were more accurate in FA286

than those inferred from principal components. In those simulations, correcting for287

temporal drift allowed a better representation of admixed individuals than PC pro-288

jections.289

Next, we applied temporal corrections to study the evolution of hepatitis C virus290

in a patient infected by multiple strains. After correction for temporal drift, viral291

strains clustered according to their phylogenetic classification. In agreement with the292

fact that the patient did not respond to treatment, FA suggested that 1b strains had293

mainly evolved through drift after treatment. Evidence for substructure within 4k294

samples suggested an action for other evolutionary processes among those strains.295

Caporossi et al. (2019) reported that nucleotide diversity was higher in 1b time sam-296
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ples than in 4k time samples, which might indicate that drift was more important in297

the 4k population. With the FA result, this suggests that distinct corrections should298

be applied to 4k and 1b samples. We performed a separate FA with 4k samples only299

(not shown), and the observed substructure persisted. Overall, the FA plot supported300

the hypothesis that drift was not the only process acting on the genetic diversity of301

4k genotypes, and that those strains might have experienced some form of selection302

during the course of disease evolution Caporossi et al. (2019).303

In a re-analysis of a merged data set of ancient DNA filtering out SNPs with high304

levels of missing data and genomes of low coverage, we implemented correction for305

temporal drift to describe ancestry in samples from ancient Europeans and Eurasians.306

After correction, the patterns observed in FA plots were consistent with those ob-307

served in projections of ancient samples on axes built on the 1,000 Genomes data.308

The factor analysis supported the hypothesis that a major change in genetic mixture309

of individuals occurred in Great Britain and in continental populations around 4,300310

years BP (Olalde et al., 2018). Observed FA patterns were more consistent with311

geography in than those in PC projections, suggesting a role of localized gene flow312

unseen in previous analyses at the continental scale. Our analysis provided a visual313

representation of Bronze age British samples consistent with the proportion of North314

Eurasian and steppe ancestry of the original (Olalde et al., 2018).315

In conclusion, including corrections for temporal drift resulted in an algorithm316

with a computational cost similar to a PCA. Determining the model hyper-parameter317

was based on simple approaches, computing a correlation between sample dates and318

first FA scores. Our study showed that the FA method corrected biases observed in319

PC plots successfully. A useful and important feature of the new approach was to320
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avoid supervised analyses in which unbalanced samples over-representing present-day321

individuals are utilized. The unsupervised approach based on FA revealed details of322

population structure masked in PC projections, and was generally more accurate323

than principal component analysis of population structure for ancient samples.324

5 Materials and Methods325

Coalescent simulations. We used the computer program msprime to simulate326

temporal samples for individuals at distinct time points in the past (Kelleher et al.,327

2016). Firstly, a single population of Ne = 10, 000 individuals was simulated during328

4,000 generations. An individual was sampled every 100 generations, resulting in 41329

samples with ages ranging between 0 (present-day) and 4,000 generations. A total of330

around 9,000 SNPs were simulated for each individual. Secondly, a divergence model331

was considered in which an ancestral population of effective size Ne = 10, 000 split332

into two sister populations of equal sizes 1,500 generations ago. Twenty-four individ-333

uals with ages ranging from 0 to 1000 generations were sampled every 100 generations334

(four present-day individuals were simulated), and around 8,800 SNPs were simulated335

for each individual. One hundred replicate data sets were created with the same de-336

mographic parameters. For each simulation, the Davies-Bouldin index was computed337

(Davies and Bouldin, 1979). The Davies-Bouldin index is a metric for evaluating the338

degree of clustering in multidimensional data, and ranges between zero and one. Cor-339

rections for temporal drift in allele frequency are expected to provide index values340

closer to one than those for principal components. Thirdly, an admixture model was341

considered in which an ancestral population of effective size Ne = 10, 000 split into342

two sister populations of equal sizes 1,300 generations ago. The two divergent pop-343
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ulations came into contact 500 generations ago, and this event gave rise to a third344

population. Individuals in the admixed population shared 75% ancestry with the345

first ancestral population, and 25% ancestry with the second ancestral population.346

One hundred individuals were sampled from the admixed present-day population,347

and fifty individuals were sampled from each ancestral population, 1,000 generations348

ago. A total of around 9,600 SNPs were simulated for each individual. One hundred349

replicate data sets were created with the same demographic parameters. For each350

simulation, we computed the centers of the ancestral and admixed population on the351

first axis, and we estimated admixture proportion based on the ratio of distances352

between population centers. We also did this for the first factor with correction for353

temporal drift. We eventually computed mean squared estimation errors both for354

PCA and for FA estimates.355

Generative model simulations. Since the correction method is not restricted

application to ancient DNA, we performed a series of experiments using the generative

model defined in equation (1)

Y = UVT + ε, ε ∼ N(0, α−1C + σ2I) .

The objective was to evaluate statistical errors for latent factor estimates in a general356

context. The generative model simulations have the advantage of creating artificial357

data for which the ground truth is available. Based on a genealogical interpretation358

of principal components, we devised two series of simulations (McVean, 2009). The359

first scenario considered a divergence model in which two populations evolved without360

gene flow. In this case, populations were grouped separately along the first factor, and361

their divergence time was represented by the distance separating the group means.362
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The samples were taken at random times in the past and correlated noise was included363

in the data matrix. The second scenario considered an admixture model in which two364

populations diverged in the distant past and an admixture event occurred recently.365

Half of the samples were ancient, taken from the ancestral populations at random366

times in the past, and the other half of the samples were collected from the admixed367

population in present time.368

For the divergence model, the factor matrix U contained K = 3 factors, simulated369

as Gaussian independent random variables. The standard deviation for first factor,370

s1, measured divergence between the two ancestral populations, and was varied in the371

range from to 2 to 10. Factors 2 and 3 had lower standard deviations, respectively372

equal to s2 = 1.5 and s3 = 0.5, so that u1 contained the largest genomic information.373

The λ parameter, representing an inverse temporal signal-to-noise ratio, was chosen374

in the range [10−1, 10−6]. The number of samples, n, was equal to 200, and the375

number of markers was kept to p = 1, 000. Loadings were simulated as independent376

standard Gaussian random variables, and the residual variance was set to σ2 = 1.377

For each simulation the squared correlation between the true u1 and estimated factor378

û1 was computed.379

For the admixture model, the factor matrix U contained K = 3 factors. In the380

first factor, the two ancestral populations were positioned (with a standard deviation381

of 1) so that the distance separating their centers, d1, measuring divergence between382

them, was varied in the interval [10,12]. Factors 2 and 3 had standard deviations equal383

to s2 = 1.2 and s3 = 1. Admixed individuals were positioned so that center was at384

relative distance a from ancestral population 1, and 1−a from ancestral population 2,385

where a represents the ancestry contribution of population 1 to modern samples. The386
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simulated ancestry coefficients ranged between a = 0.2 and a = 0.4. The λ parameter387

was set to λ = 5.10−2. The number of samples was set to n = 200, and the number388

of markers was kept to p = 5, 000. The loadings were simulated as independent389

Gaussian, N(0,0.2), random variables, and the residual error was set to σ = 0.1. We390

performed a total of 100 simulations. For each simulation, the squared correlation391

between the true u1 and estimated factor û1 was computed, and an estimate of the392

ancestry coefficient was provided, based on the relative positions of cluster means in393

û1.394

Hepatitis C virus data. To understand chronic infection in non-responder hep-395

atitis C virus (HCV) patients treated with dual therapy in the 2000’s, Caporossi et al.396

(2019) performed deep sequencing on the NS5B (381 bp) region of the viral genome397

for a patient followed at Grenoble-Alpes University Hospital. The patient had a398

known date of infection because of an identified transmission event due to transfu-399

sion. The patient was treated with dual therapies based on pegylated interferon and400

ribavirin. The treatment had been administered for six months from January to June401

2003, and a total of height serum samples were available for a follow-up period of 13402

years. Co-infection by viral genotypes 4k and 1b was detected, and n = 1, 934 RNA403

samples from years 2002 to 2014 were studied.404

Ancient Human DNA samples. A merged data set consisting of genotypes for405

1,820 ancient and present-day individuals compiled from published papers was down-406

loaded from David Reich’s repository (https://reich.hms.harvard.edu/). The407

downloaded data matrix contained up to 1.23 million positions in the genome. Con-408

sidering age defined as average of 95.4% date with range in cal BP computed as 1950409
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CE, Eurasian samples with age less than 12,080 years were retained. The data matrix410

was filtered out for samples falling far outside of the present-day Europeans in a pre-411

liminary FA analysis, leading to a median genomic coverage of 3.35x and a minimum412

coverage of 0.51x in the final data set. Only genomic positions with less than 25% of413

missing genotypes were analyzed. Missing genotypes were imputed by using a matrix414

completion algorithm based on sparse non-negative matrix factorization (Frichot and415

François, 2015; Frichot et al., 2014).416

The resulting data set contained 155,682 genotypes for 249 present-day European417

individuals from the 1,000 Genomes project (phase 3) and 386 ancient samples from418

Eurasia studied in previous works (The 1000 Genomes Project Consortium, 2015)419

(Supplementary File 1). The most important contributions to samples included in420

our data set were 1) 137 ancient individuals in (Olalde et al., 2018) including 72421

individuals from Great Britain, 30 from Czech Republic, 24 from Hungary, 14 from422

Germany and 13 from Russia, 2) 74 ancient individuals in (Mathieson et al., 2015) (31423

same samples with 390k in (Haak et al., 2015)), including 49 individuals from Great424

Britain, 15 from Turkey, 35 from Finland, 8 from Russia, 3) 57 ancient individuals425

from (Mathieson et al., 2018), including 18 individuals from Great Britain, 11 from426

Hungary, 7 from Germany, 6 from Finland, 11 from Russia, 5 from Ukraine, 4) 40427

ancient individuals in (Lipson et al., 2017), including 6 individuals from Great Britain,428

9 from Hungary, 14 from Finland, 4 from Ukraine. For a full list of individuals429

studied see Table S2. A larger set of genotypes with 5,081 ancient and present-day430

individuals from the same repository was also considered in analyses. Following the431

same filtering and imputation procedures as for the first data set, the resulting data432

contained 123,763 genotypes for 477 present-day European individuals from the 1k433
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Genomes project and 697 ancient samples from previous studies (Supplementary File434

2). The data were imputed from genotypes with 20% missing SNPs.435
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Table S1. R code for temporal factor analysis

temporal_fa = function(sample_ages, Y, k = 2, lambda = 1e-3){

# sample_ages: Ages of samples (year BP/BCE or generations)

# Y: Matrix of fully imputed genotypes

# k: Number of factors

# lambda: Hyper-parameter (range: 1e-1 to 1e-6)

# conversion of ages as elapsed times between 0 and 1

Y <- t(scale(t(Y), center = TRUE, scale = FALSE))

var_Y <- apply(Y, 1, FUN = var)

range_ages <- max(sample_ages) - min(sample_ages)

t_n <- 1 - (sample_ages - min(sample_ages))/range_ages

t_n <- min(var_Y) + (max(var_Y) - min(var_Y)) * t_n

# Brownian covariance model

n <- length(t_n)

C <- matrix(NA, n, n)

for (i in 1:n){

for (j in 1:n)

C[i,j] <- min(t_n[i], t_n[j])}

# Eigenvectors and eigenvalues

ec <- eigen(C)

P_n <- ec$vector

lambda_n <- ec$values

# New factors

D <- diag(sqrt(lambda/(lambda_n + lambda)))

D_inv <- diag(sqrt((lambda_n + lambda)/lambda))

sv <- svd(D %*% t(P_n) %*% Y, nu = k)

U_n <- P_n %*% D_inv %*% sv$u %*% diag(sv$d[1:k])

W_n <- U_n %*% t(sv$v[,1:k])

# Returns corrected factors U and latent matrix W

return(list(u = U_n, w = W_n))

}
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Figure S1. Admixture model simulation. Shrinkage in PC projections.
Simulation of two-population admixture models (25-75 % proportions). Two hun-
dred samples with ages equal to 0 (present-day admixed individuals, grey color)
and 1,000 generations (ancestors, orange and blue colors) were simulated. A) Plot
for PC projection of ancient samples onto the admixed population, with a strong
shrinkage effect (coalescent simulation), B) Factor analysis plot showing correction
for shrinkage, C) Mean square error for estimates of admixture proportions from PC
projections and FA plots (100 generative model simulations), D) Mean square error
for estimates of admixture proportions (100 coalescent simulations). Green crosses
represent population centers, from which admixture estimates were computed.
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Figure S2. Ancient Humans - PC projections. Projections of 386 ancient
Eurasian genomes with age ranging between 400 and 12,000 years BP on principal
components of 249 European genomes from the 1,000 Genomes data. Present-day
individuals are represented as colored full dots. Smaller light grey dots and other
types of dots are ancient genomes.
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Figure S3. Ancient Humans - Supervised factor analysis. Factor analysis of
386 ancient Eurasian genomes with age ranging between 400 and 12,000 years BP
and 249 European genomes from the 1,000 Genomes data. Present-day individuals
are represented as colored dots. Smaller light grey dots and other types of dots are
ancient genomes.
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Figure S4. Ancient Europeans - Clusters in factor analysis. Definition of
clusters for computing estimates of average ages per factor region. Cluster 1 consists
of individuals from Ukraine and Scandinavia, not represented in the plot. Cluster 2
is formed of North Eurasian individuals (Russia, Samara, red color) and central and
western Europeans (green color). Cluster 3 is formed of Near Eastern individuals,
southern and western Europeans (Neolithic, black and blue colors). Cluster 4 is
formed of central Asians (Neolithic, light-blue color). Clustering was performed with
a k-means algorithm.
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Figure S5. Extended ancient genome data set - PC projections on 1k
Genomes data. Projections of 697 ancient genomes on the principal components
of 477 genomes from the 1k Genomes data. Only ancient individuals are displayed
with some populations emphasized (dates more recent than 12 ky cal BP).
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Figure S6. Extended ancient genome data set - Factor Analysis. Factor
analysis of 697 ancient genomes with some populations emphasized (dates more re-
cent than 12 ky cal BP). The observed pattern similar to PC projections, but more
consistent with geography.
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