
HAL Id: hal-02413965
https://hal.science/hal-02413965v1

Submitted on 16 Dec 2019 (v1), last revised 23 Sep 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Core Scientific Dataset Model: A lightweight and
portable model and file format for multi-dimensional

scientific data
Deepansh Srivastava, Thomas Vosegaard, Dominique Massiot, Philip

Grandinetti

To cite this version:
Deepansh Srivastava, Thomas Vosegaard, Dominique Massiot, Philip Grandinetti. Core Scientific
Dataset Model: A lightweight and portable model and file format for multi-dimensional scientific
data. PLoS ONE, 2020, 15, pp.e0225953. �10.1371/journal.pone.0225953�. �hal-02413965v1�

https://hal.science/hal-02413965v1
https://hal.archives-ouvertes.fr

Core Scientific Dataset Model: A lightweight and portable
model and file format for multi-dimensional scientific data

Deepansh J. Srivastava1, Thomas Vosegaard2, Dominique Massiot3, Philip J.
Grandinetti1*,

1 Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus,
OH 43210, USA
2 Laboratory for Biomolecular NMR Spectroscopy, Department of Molecular and
Structural Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
3 CEMHTI UPR3079 CNRS, Univ. Orléans, F-45071 Orléans, France

* grandinetti.1@osu.edu

Abstract

The Core Scientific Dataset (CSD) model with JavaScript Object Notation (JSON)
serialization is presented as a lightweight, portable, and versatile standard for intra- and
interdisciplinary scientific data exchange. This model supports datasets with a
p-component dependent variable, {U0, . . . ,Uq, . . . ,Up�1}, discretely sampled at M
unique points in a d-dimensional independent variable (X0, . . .Xk, . . .Xd�1) space.
Moreover, this sampling is over an orthogonal grid, regular or rectilinear, where the
principal coordinate axes of the grid are the independent variables. It can also hold
correlated datasets assuming the different physical quantities (dependent variables) are
sampled on the same orthogonal grid of independent variables. The model encapsulates
the dependent variables’ sampled data values and the minimum metadata needed to
accurately represent this data in an appropriate coordinate system of independent
variables. The CSD model can serve as a re-usable building block in the development of
more sophisticated portable scientific dataset file standards.

Keywords: open data, data management, information storage and
retrieval, metadata, databases, data mining, computer software, software
tools, data processing, data reduction, physical sciences, engineering, earth
sciences, biology and life sciences.

1 Introduction 1

A frustrating and common problem faced by scientists in many disciplines is the lack of 2

a portable scientific dataset format and universal standards for exchanging and 3

archiving multi-dimensional datasets—both experimental and computational. Scientific 4

datasets are too often saved in vendor-specific file-formats using proprietary software, 5

making archiving and data-exchange problematic even within a discipline, let alone 6

across disciplines. A majority of scientists rely on vendor-specific proprietary software 7

to interact with their datasets. These scientists are at a constant risk that the original 8

dataset files could become unreadable if a future version of the software stops 9

supporting older file formats or the vendor stops supporting the software, or even worse, 10

goes out of business. 11

September 24, 2019 1/38

As a result of such risks and incompatibilities, many scientists resort to using 12

comma-separated values (CSV) files for dataset exchange and archival. Such an 13

approach, however, is not resourceful, especially in the case of multi-dimensional 14

datasets. Furthermore, such approaches often leave out essential metadata about 15

experimental or computational procedures. Other scientists resort to specialized library 16

packages to import datasets from the vendor-specific file formats into their favorite 17

programming languages such as Matlab, Python, R, Java, or use the third-party 18

software for dataset imports. This is only a temporary fix since it just delays the 19

original problem as the dataset files are translated to yet another third-party software 20

or user-specific file-format—and again, often with metadata loss. 21

With increasing pressure from the funding agencies and scientific journals to archive 22

and share primary and processed data, there is a growing sense of urgency for a stable, 23

resourceful and future-proof file-format for the exchange of scientific datasets. Here we 24

take the first step in addressing this problem by proposing a Core Scientific Dataset 25

(CSD) Model that can encode a wide variety of multi-dimensional and correlated 26

datasets. The objective of the CSD model is to encapsulate the data values and the 27

minimum metadata needed to accurately represent the data in an appropriate 28

coordinate system. We envision the CSD model as a re-usable building block in a 29

hierarchical description of more sophisticated portable scientific dataset file standards. 30

2 Overview of CSD Model 31

The CSD model supports a dataset of a continuous physical quantity (dependent 32

variable) discretely sampled on a multi-dimensional grid with vertexes associated with 33

one or more independent quantities (dimensions), e.g., a density as a function of 34

temperature, a current as a function of voltage and time, an ionization energy as a 35

function of element symbol, etc. 36

Similarly, the CSD model supports a dataset with a multi-component dependent 37

variable. For example, a color image with a red, green, and blue (RGB) light intensity 38

components as a function of two independent spatial dimensions, or the six components 39

of the symmetric second-rank diffusion tensor MRI dataset as a function of three 40

independent spatial dimensions. In the CSD model, a dataset is defined as an 41

p-component dependent variable, {U0, . . . ,Uq, . . . ,Up�1}, discretely sampled at M 42

unique points in a d-dimensional (X0, . . .Xk, . . .Xd�1) space. Moreover, this sampling 43

is over an orthogonal grid, regular or rectilinear, where the principal coordinate axes of 44

the grid are the dimensions. A regular grid is an orthogonal grid where the spacing 45

between vertex coordinates along each dimension is uniform. If the spacing along any 46

one of the dimensions is not uniform, the grid is rectilinear. 47

The CSD model can also hold multiple datasets when different physical quantities 48

(dependent variables) are sampled on the same multi-dimensional (independent 49

variables) grid. We refer to this case as correlated datasets. One such example would be 50

the simultaneous sampling of current and voltage as a function of time. Another 51

example would be datasets for air temperature, pressure, wind velocity, and solar-flux, 52

all simultaneously sampled on a two-dimensional grid associated with the same region of 53

latitude and longitude coordinates. 54

We adopt the JavaScript Object Notation (JSON) as the file-serialization format [2] 55

for the CSD model because it is human-readable, if properly organized, as well as easily 56

integrable with any number of programming languages and field related 57

application-software. 58

September 24, 2019 2/38

Figure 1. Unified Modeling Language (UML) [1] class diagram of the Core Scientific Dataset (CSD) Model. Each class is
represented with a box that contains two compartments. The top compartment contains the name of the class, and the
bottom compartment contains the attributes of the class. The enumerations QuantityType, EncodingType, and NumericType
are described in Tables 4, 5, and 6, respectively. The enumeration UnsignedIntegerType is a subset of NumericType
enumeration with only unsigned integers. The enumerations DimObjectSubtype and DVObjectSubtype are described in
Tables 2 and 3 as the description of the type attribute. The ScalarQuantity represents a physical quantity containing a
numerical value and a unit. Note: When encoding is base64 the type and multiplicity for the components attribute in
InternalDependentVariable is String[1..*]. Similarly, when encoding is base64 the type and multiplicity for the
sparse_grid_vertexes attribute in SparseSampling is String[1].

2.1 UML Class Diagram 59

The schema for the CSD model, in the form of a UML class diagram [1], is shown in 60

Fig. 1. In such diagrams, each class is represented with a box that contains two 61

compartments. The top compartment contains the name of the class, and the bottom 62

compartment contains the attributes of the class. A composition is depicted as a binary 63

association decorated with a filled black diamond. Inheritance is shown as a line with a 64

hollow triangle as an arrowhead. 65

Each line in the bottom compartment of a box describes a single attribute of the 66

class in the form: 67

name : type [multiplicity] = default {properties} 68

In this line name is the name of an attribute in the class, type defines the kind of object 69

that may be placed in the attribute, multiplicity indicates how many objects are assigned 70

to the attribute. The multiplicity can be a single number, e.g., "[1]", indicating that one 71

object must be assigned to the attribute. Alternatively, the multiplicity can be given as 72

a lower and upper bound for how many objects can be assigned to the attribute, e.g., 73

"[0..1]" indicates that the assignment of a single object to an attribute is optional. An 74

asterisk indicates an unlimited number of objects. For example, an attribute with a 75

multiplicity of "[1..*]" must have no less than one object and an unlimited upper bound 76

of objects that can be assigned to it. The default is the object assigned when an 77

optional attribute is unspecified. The {properties} value at the end of the line gives 78

additional information on the attribute. In Fig. 1 this is used to indicate whether a set 79

of objects assigned to an attribute is ordered and/or unique. 80

For object attribute names we adopt the “snake case” convention with all lower case 81

characters and “camel case” for class or type names. Attribute value types used in the 82

model are given in Table 1 along with the corresponding JSON value type used for 83

serialization of the model. Of particular importance in the CSD model is the 84

ScalarQuantity type, which is composed of a numerical value and any valid SI unit 85

symbol or any number of accepted non-SI unit symbols. It is serialized in the JSON file 86

as a string containing a numerical value followed by the unit symbol, for example, 87

"3.4 m" (SI) or "2.3 bar" (non-SI). The CSD model follows the International System 88

of Units guideline [3] for defining the physical quantities. In software usage, one must 89

adhere to stricter conventions for unit and physical constant symbols to avoid 90

ambiguities and symbol collisions. All unit symbols are case sensitive. For derived unit 91

symbols, the multiplication and division of the units are represented by the asterisk 92

symbol, "*", and the solidus symbol, "/", respectively. For example, a unit of speed is 93

"m/s". Note that derived unit symbols in the CSD model require explicit use of the 94

multiplication symbol instead of multiplication implied with spacing between symbols, 95

e.g., use "N*m" instead of "N m". Similarly, avoid the use of compound symbols, e.g., 96

use "kW*h" instead of "kWh". The caret symbol, "^" is used for raising unit symbols to 97

September 24, 2019 3/38

CSD model attribute value type JSON value type

DependentVariable object
Dimension object
DimObjectSubtype string
DVObjectSubtype string
ScalarQuantity string
NumericType string
EncodingType string
QuantityType string
String string
Integer number
Boolean boolean

Table 1. The relation between the CSD model attribute value types and the
corresponding JSON serialized value type. In JSON serialization the attribute name is
the JSON key.

a power—a unit of force is "kg*m^2/s^2", and a unit of concentration is "g/cm^3". 98

Operator precedence can be specified using parentheses, e.g., "J/(mol*K)". Also, note 99

that while both �C and �F are valid units, they are not proper thermodynamic 100

temperature units and are discouraged due to their ambiguity. Further details on the SI 101

system and how units are used in the CSD model are given in the supporting 102

information. 103

2.2 CSDM object 104

At the root level of the CSD model is the CSDM object. The CSDM object includes a 105

required version attribute whose value is a string representing the version number of the 106

CSD model, here assigned a string value of "1.0". The optional timestamp attribute 107

indicates when the CSDM file was last serialized and holds a combined date and time 108

string representation of the Coordinated Universal Time (UTC) formatted according to 109

the ISO-8601 standard. The optional geographic_coordinate attribute indicates where 110

the CSDM file was last serialized and holds a GeographicCoordinate object, inside 111

which are three attributes: the required latitude and longitude, and the optional altitude. 112

Positive latitude values indicate latitudes north of the equator, while negative values 113

indicate latitudes south of the equator. Longitude values are relative to the zero 114

meridian, with positive values extending east of the meridian and negative values 115

extending west of the meridian. Positive altitudes indicate above sea level while negative 116

values indicate below sea level. All three are ScalarQuantity types. The optional 117

boolean read_only attribute is set to true for archived datasets—informing applications 118

that the dataset should not be modified or overwritten. The optional tags attribute 119

holds a set of UTF-8 allowed string values describing keywords associated with the 120

dataset. The description attribute appears in nearly every CSD model object and holds 121

a UTF-8 allowed string describing the instance of the model object. The application 122

attribute also appears in nearly every CSD model object and is a generic object that 123

can be used for storing application-specific metadata within the CSD model. Further 124

details on the expected behavior of application attributes are given in section 2.5. 125

The dependent_variables and dimensions attributes each hold a set of 126

DependentVariable and Dimension objects, respectively. The ordered and unique set 127

of Dimension objects, indexed from k = 0 to d� 1, define the d-dimensional coordinate 128

grid where discrete samples of the dependent variables are taken. 129

September 24, 2019 4/38

2.3 Dimension object 130

The mapping of grid vertexes along the kth dimension to an ordered set of coordinates, 131

Xk, are defined by one of three Dimension subtypes: LabeledDimension, 132

MonotonicDimension, and LinearDimension. Figure 1 gives the required and optional 133

attributes along with their default values for the three subtypes. Descriptions of the 134

attributes for all three subtypes are also given in Table 2, and examples of various 135

instances are given in section 3. 136

2.3.1 LabeledDimension object 137

An ordered set, Ak, of Nk character string labels in the labels attribute of a 138

LabeledDimension object are mapped to the grid vertexes along the kth dimension, 139

becoming the ordered set of coordinates, Xk, along the dimension, as given by 140

Xk = Ak. (1)

This is a purely qualitative dimension, with no physical significance given to the spacing 141

between grid vertexes along the dimension. 142

2.3.2 MonotonicDimension object 143

An ordered set, Ak, of Nk strictly ascending or descending coordinates in the 144

coordinates attribute of a MonotonicDimension object are similarly mapped to the grid 145

vertexes along the kth dimension and become the ordered set of coordinates along the 146

dimension, also given by Eq. (1). 147

For the MonotonicDimension and LinearDimension objects, the CSD model allows 148

the mapping of grid vertexes along a dimension to an ordered set of absolute 149

coordinates, Xabs

k , using the origin_offset attribute according to 150

Xabs

k = Xk + ok1, (2)

where ok is the value of the origin_offset attribute. Note, the ScalarQuantity objects in 151

Xk, and ok must all share the same unit dimensionality. 152

2.3.3 LinearDimension object 153

The ordered set of Nk uniformly spaced coordinates along the kth
LinearDimension 154

object are given by 155

Xk = �xk (Jk � Zk) + bk1, (3)

where �xk and bk are the ScalarQuantity objects in the increment and 156

coordinates_offset attributes, respectively, and Jk is an ordered set of coordinate 157

indexes along the kth dimension, 158

Jk = [0, 1, 2 . . . , jk, . . . , Nk � 1] . (4)

Here, Nk is the Integer object in the count attribute. As before, the absolute 159

coordinates along the kth dimension are given by Eq. (2). Again, the ScalarQuantity 160

objects �xk, bk, and ok must all share the same unit dimensionality. 161

The Zk variable in Eq. (3) is an integer with a value of Zk = 0 when the 162

LinearDimension attribute complex_fft is false. The complex_fft is set to true when 163

a complex fast Fourier transform (FFT) has been applied to the dataset along the kth
164

dimension, and then the value of Zk becomes Tk/2, where Tk = Nk and Nk � 1 for even 165

and odd values of Nk, respectively. There are two reasons for the inclusion of the 166

attribute complex_fft and the different values of Zk. First, it provides the metadata 167

September 24, 2019 5/38

needed for determining whether a forward (false) or reverse (true) complex FFT 168

should be performed on the dataset. Second, a value of Zk = Tk/2 in Eq. (3) when 169

complex_fft is true associates bk with the zero “frequency” after a complex FFT. This 170

definition makes bk independent of count and the increment in the Reciprocal dimension, 171

i.e., the dimension before the complex FFT. 172

2.3.4 ReciprocalDimension object 173

An optional attribute named reciprocal can be present in both the LinearDimension 174

and MonotonicDimension objects. This attribute holds a ReciprocalDimension object 175

which contains metadata about the coordinate that is reciprocal to the Xk coordinate. 176

This metadata is useful for datasets which are frequently transformed into the reciprocal 177

dimension, such as NMR, FTIR and x-ray datasets. 178

2.4 DependentVariable object 179

The DependentVariable object can be one of two subtypes: 180

InternalDependentVariable and ExternalDependentVariable, depending on whether 181

the serialized components are stored internally with the rest of the serialized metadata 182

or externally at a location specified by a uniform resource locator (URL) [4], 183

respectively. Descriptions of all DependentVariable attributes are given in Table 3, as 184

well as through examples given in section 3. See Fig. 1 for the required and optional 185

attributes along with their default values. 186

A DependentVariable object holds an ordered set of p components indexed from 187

q = 0 to p� 1, 188

{U0, . . . ,Uq, . . . ,Up�1}. (5)

Each component, Uq, contains an ordered array of M physical quantity values indexed 189

from i = 0 to M � 1. These values represent samples on the coordinates grid and are 190

ordered to follow a column-major order relative to the ordered set of dimensions. If Uq 191

contains a sample at every vertex of the d-dimensional grid, then 192

M =
d�1Y

k=0

Nk, (6)

and the mapping of the values in Uq to the grid vertexes follows a simple reshaping of 193

Uq to a N0 ⇥N1 ⇥ . . .⇥Nd�1 matrix where d is the number of Dimension objects. In 194

this case, the location or memory offset of the ith value in a component array maps to a 195

grid vertex with coordinate indexes, (j0, j1, . . . , jd�1), given by 196

jk =
i

Qk�1
`=0 N`

mod Nk, k = 0, . . . , d� 1. (7)

Conversely, the memory offset of the ith value in a component array is obtained from 197

the ordered array of coordinate indexes (j0, j1, . . . , jd�1), according to 198

i =
d�1X

k=0

k�1Y

l=0

Nl

!
jk. (8)

It is also helpful to recall that the value of the empty product,
Qn

m am where m > n is 1. 199

Taken together, the ith values from each of the p components form a quantity 200

specified by one of the quantity_type attribute values given in Table 4. 201

September 24, 2019 6/38

Dimension

attribute description

type Required attribute for all Dimension objects. Holds a String object with one of the allowed DimObjectSubtype

enumeration literals—linear, monotonic or labeled.

labels Required attribute for LabeledDimension objects. Holds an ordered and unique array of String objects containing
UTF-8 allowed characters. Invalid for LinearDimension and MonotonicDimension objects.

coordinates Required attribute for MonotonicDimension objects. Holds an ordered and unique array of strictly increasing or
decreasing ScalarQuantity objects along the dimension. The dimensionality of ScalarQuantity objects must be
consistent with each other and other dimension attributes. Invalid for LinearDimension and LabeledDimension

objects.

count Required attribute for LinearDimension objects. Holds an Integer object specifying the number of coordinates,
Nk, along the dimension. Invalid for MonotonicDimension and LabeledDimension objects.

increment Required attribute for LinearDimension objects. Holds a ScalarQuantity object specifying the increment, �xk,
along the dimension. Invalid for MonotonicDimension and LabeledDimension objects.

coordinates_offset Optional attribute for LinearDimension objects. Holds a ScalarQuantity object specifying the coordinates offset,
bk, used in Eq. (3) to calculate the coordinates along the dimension. The default value is a physical quantity
with a numerical value of zero. Invalid for MonotonicDimension and LabeledDimension objects.

origin_offset Optional attribute for LinearDimension and MonotonicDimension objects. Holds a ScalarQuantity object specify-
ing the origin offset, ok, along the dimension. The default value is a physical quantity with a numerical value of
zero. Invalid for LabeledDimension objects.

complex_fft Optional attribute for LinearDimension objects. Holds a Boolean specifying how the coordinate, Xk, along the
dimension are calculated from Eq. (3). When false, the value of Zk = 0 otherwise, Zk = Tk/2 where Tk = Nk

and Nk � 1 for even and odd values of Nk, respectively. Invalid for MonotonicDimension and LabeledDimension

objects.

period Optional attribute for MonotonicDimension and LinearDimension objects. Holds a ScalarQuantity object speci-
fying the period of the dimension. The default value is a physical quantity with an infinite numerical value,
that is, the absence of this key indicates that the dimension is non-periodic. When present it indicates that all
dependent variables are periodic along the dimension. A ScalarQuantity object with a numerical value of zero is
invalid for this attribute. Invalid for LabeledDimension objects.

quantity_name Optional attribute for MonotonicDimension and LinearDimension objects. Holds a String object containing the
quantity name associated with the dimension. This value may resolve ambiguities which may otherwise be
inherent. For example, with only a unit of "J/(mol*K)", one cannot distinguish between the thermodynamic
quantities ‘molar entropy’ and ‘molar heat capacity.’ Similarly, the units "1/s", "Bq", and "Hz" all have the
dimensionality of inverse time, but generally "Bq" would be an acceptable unit for the quantity of radioactivity
and "Hz" for frequency. If unspecified the valid quantity name is left at the end-user’s discretion. A list of
CSDM-accepted physical quantity names and their corresponding dimensionalities can be found in the supporting
information. Invalid for LabeledDimension objects.

label Optional attribute for all Dimension objects. Holds a String object of UTF-8 allowed characters containing the
label for the Dimension object. The default value is an empty string.

description Optional attribute for all Dimension objects. Holds a String object of UTF-8 allowed characters describing an
instance of the Dimension object. The default value is an empty string.

reciprocal Optional attribute for MonotonicDimension and LinearDimension objects. Holds a ReciprocalDimension object.
See Fig. 1 for the list of attributes in this object. These attributes follow the same definitions as described in
this Table with the only difference being that these attributes describe the reciprocal dimension. Invalid for
LabeledDimension objects.

application Optional attribute for all Dimension objects. Holds a generic dictionary object. See section 2.5 for expected
behavior.

Table 2. The description of the attributes from the Dimension class in version 1.0 of the CSD model. There are three
subtypes of this class—LinearDimension, MonotonicDimension, and LabeledDimension. See Fig. 1 for the list of valid
attributes for a given subtype. If an attribute is optional, its value should only be serialized to the file if it is not the default
value. As a recommendation, when deserializing a JSON file the numerical value associated with the physical quantities
should be converted to a 32-bit or higher floating-point number.

September 24, 2019 7/38

DependentVariable

attribute description
type Required attribute for all DependentVariable objects. Holds a String object with one of the two allowed

DVObjectSubtype enumeration literals—internal or external.
components Required attribute for InternalDependentVariable objects. Holds an ordered array of p components. When the

value of encoding attribute is none each component, Uq, is an ordered array of numerical values. When the value
of the encoding attribute is base64, each component is a Base64 string. Invalid for ExternalDependentVariable

objects.
components_url Required attribute for ExternalDependentVariable objects. Holds a String object containing the Uniform Resource

Locator (URL) of a local or a remote file where the ordered array of numerical values {U0, . . . ,Uq, . . . ,Up}
are stored as binary data. The CSD model utilizes the https and file schemes for locating the files. For
local data files, the URL is specified relative to the .csdfe file and is located either in the folder containing
the .csdfe file or in a subfolder of the folder containing the .csdfe file. The corresponding syntax follows
file:./relative/path/to/the/file. Invalid for InternalDependentVariable objects.

numeric_type Required attribute for all DependentVariable objects. Holds a String object with one of the allowed NumericType

enumeration literals from Table 6. This value represents the numeric type and the number of bits associated
with each numerical value in Eq. (5) when the component data is stored in an external file or when Base64
encoded into a string. When numerical values are expressed as JSON numbers, this value specifies the numerical
precision needed for import.

quantity_type Required attribute for all DependentVariable objects. Holds a String object with any of the allowed QuantityType

enumeration literals from Table 4. The value specifies the number, p, and interpretation of the DependentVariable

components.
unit Optional attribute for all DependentVariable objects. Holds a String object representing the unit associated with

the data values in Eq. (5). The default value is "", i.e., the data values are dimensionless.
quantity_name Optional attribute for all DependentVariable objects. Holds a String object containing the quantity name

associated with the physical quantity. See the description for the quantity_name attribute in Table 2 for further
details.

encoding Optional attribute for InternalDependentVariable objects. Holds a String object with one of the allowed
EncodingType enumeration literals in Table 5. This value specifies the encoding method used to store the data
values in the components attribute. The default value is none. Invalid for ExternalDependentVariable objects.

component_labels Optional attribute for all DependentVariable objects. Holds an ordered array of String objects where the qth

String is the label associated with the qth component. The default value is an ordered set of empty strings.
name Optional attribute for all DependentVariable objects. Holds a String object of UTF-8 allowed characters

containing the name associated with the dependent variable. Naming is good practice as it improves the human
readability of the serialized file when multiple dependent variables might be present. The default value is an
empty string.

description Optional attribute for all DependentVariable objects. Holds a String object of UTF-8 allowed characters describing
an instance of the DependentVariable. The default value is an empty string.

sparse_sampling Optional attribute for all DependentVariable objects. Holds a SparseSampling object, which contains the
attributes dimension_indexes and sparse_grid_vertexes. The attribute dimension_indexes holds an array of
integers indicating which dimensions in the ordered array of dimensions are sparsely sampled and form the
sparse grid. The attribute sparse_grid_vertexes holds an array of integers defining the ordered set of sampled
vertexes on the sparse grid. See section 2.4.1 for further details.

application Optional attribute for all DependentVariable objects. Holds a generic dictionary object. See section 2.5 for
expected behavior.

Table 3. The description of the attributes from the DependentVariable class in version 1.0 of the CSD model. If an
attribute is optional, its value may only be serialized to the file if it is not the default value.

September 24, 2019 8/38

QuantityType

scalar
This value represents a p = 1, single-component dependent variable where the ith

data value is interpreted as a scalar value, Si = U0,i.
vector_n

The value represents a p = n component dependent variable where the ith data
value is interpreted as a vector, Vi = [U0,i, U1,i, . . . Un�1,i].

matrix_m_n
The value represents a p = mn component dependent variable where the ith

data value is interpreted as a m⇥ n matrix, with m rows and n columns. The p
components of the matrix are in column-major order.

Mi =

2

6664

U0,i Um,i . . . U(n�1)m,i

U1,i Um+1,i . . . U(n�1)m+1,i
...

...
...

...
Um�1,i U2m�1,i . . . Unm�1,i

3

7775
.

Here, the entry at the rth row and the cth column is Ucm+r,i.
symmetric_matrix_n

The value represents a p = n(n+1)
2 component dependent variable. This is a special

case of matrix data value where n = m and the matrix is symmetric about the
leading diagonal. In this case, only the upper half of the matrix is specified. The
n⇥ n symmetric matrix, M(s)

i , of the ith data value is interpreted as,

M(s)
i =

2

6664

U0,i U1,i . . . Un�1,i

U1,i Un,i . . . U2n�2,i

...
...

...
...

Un�1,i U2n�2,i . . . Un(n+1)
2 �1,i

3

7775
.

pixel_n
The value represents a p = n component dependent variable where the ith data
value is interpreted as a pixel, [U0,i, U1,i, . . . , Un�1,i], with the n components
corresponding to pixel component intensities. Note this quantity type, as do all
quantity types, is restricted to components that share the same physical dimen-
sionality, i.e., can be added or subtracted, making it, for example, appropriate for
holding RGB or CMYK components but not HSV components.

Table 4. The literals of the QuantityType enumeration allowed in version 1.0 of the
CSD model along with its description. The literals are String objects and correspond to
the value of the quantity_type attribute of the DependentVariable object. In the
description, the index i refers to the ith data value from the ordered array, Uq, in
Eq. (5).

September 24, 2019 9/38

EncodingType

base64
The binary data corresponding to the ordered array of numerical values in Uq

from Eq. (5) is stored as a Base64 encoded strings for the numeric_type specified
assuming ‘little-endian’ format. This is the recommended storage method when
the type attribute of the corresponding DependentVariable object is internal.

none
The literal denotes that the ordered array of numerical values from Eq. (5) are
serialized as JSON numbers. This is the default encoding type when the encoding
attribute is not present in the DependentVariable object.

Table 5. The literals of the EncodingType enumeration allowed in version 1.0 of the
CSD model along with its description. The literals are the String object corresponding
to the value of the encoding attribute of the DependentVariable object.

NumericType

uint8 8-bit unsigned integer
uint16 16-bit unsigned integer
uint32 32-bit unsigned integer
uint64 64-bit unsigned integer
int8 8-bit signed integer
int16 16-bit signed integer
int32 32-bit signed integer
int64 64-bit signed integer
float32 32-bit floating-point number
float64 64-bit floating-point number
complex64 two 32-bit floating-points numbers
complex128 two 64-bit floating-points numbers

Table 6. The literals of the NumericType enumeration allowed in version 1.0 of the
CSD model along with its description. The literal is a String object corresponding to
the value of the numeric_type attribute of the DependentVariable object.

September 24, 2019 10/38

InternalDependentVariable: The components attribute in an 202

InternalDependentVariable object holds an ordered array of p components, and each 203

component, Uq, is an ordered array of M numerical values associated with the qth
204

component. When the value of the encoding attribute is none or unspecified, a JSON 205

serialization of this object gives a human-readable list of numerical values. This 206

approach, however, is not resourceful compared to the serialization of raw binary data. 207

As JSON files are strictly text-based it is not possible to serialize raw binary data inside 208

a JSON file. A commonly used approach to reduce JSON file sizes in such situations is 209

to encode raw binary data into plain text using a binary-to-text encoding scheme. The 210

CSD model allows this approach with the raw binary data for each component encoded 211

into a Base64 string when the encoding attribute is set to base64. In this case, JSON 212

serialization of the components attribute in an InternalDependentVariable object holds 213

an ordered array of p Base64 strings where the qth string represents the array Uq. Out 214

of the various binary-to-text encoding schemes, we chose Base64 encoding because of its 215

widespread use and easy access to decoders across most object-oriented programming 216

languages. Base64 provides an efficiency of ⇠75% compared to the serialization of raw 217

binary data. When encoding and decoding raw binary data with Base64 we assume a 218

‘little-endian’ byte order for multi-byte numeric types such as 32-bit and 64-bit integers 219

or floats. Typically, data saved on Intel x86 platforms use the little-endian as the native 220

format. Also, binary floating-point standard IEEE 754 is assumed for float and complex 221

numeric types. 222

ExternalDependentVariable: The components_url attribute is only valid when the 223

value of the corresponding type attribute is external. Its value is a String object 224

containing the address of a local or a remote file where the ordered array of numerical 225

values {U0, . . . ,Uq, . . . ,Up} are stored as binary data. In this case we also assume 226

little-endian byte order and the binary floating-point standard IEEE 754 for float and 227

complex numeric types. The CSD model utilizes the https and file schemes of the 228

Uniform Resource Locator (URL) for locating the files. For local data files, the URL is 229

specified relative to the .csdfe file (see section 2.6) and is located either in the folder 230

containing the .csdfe file or in a subfolder of the folder containing the .csdfe file. The 231

corresponding syntax follows, file:./relative/path/to/the/file. 232

2.4.1 SparseSampling object 233

Equations (6), (7) and (8) are no longer valid when the DependentVariable 234

components are sparsely sampled on the d dimensional grid. In this case, additional 235

metadata is required to determine the grid vertex, (j0, j1, . . . , jd�1), where the ith 236

sampled component value belongs. If the component is sparsely sampled along all d 237

dimensions, then the additional metadata can be an ordered set of M grid vertexes. We 238

must, however, consider the general mixed case of s fully sampled dimensions and d� s 239

sparsely sampled dimensions. In this case, we adopt an approach where the component 240

values are organized into a set of fully sampled s-dimensional cross-sections taken at 241

vertexes of a sub-grid formed from the sparsely sampled dimensions, which we will call 242

the sparse grid. In adopting this approach, we require that the component values along 243

the fully sampled dimensions are packed together into the array in column-major order 244

relative to the ordered set of fully sampled dimensions, i.e., excluding the sparsely 245

sampled dimensions. 246

The SparseSampling object provides this metadata in its two attributes
dimension_indexes and sparse_grid_vertexes. The dimension_indexes attribute holds an
ordered and unique set of integers indicating along which dimensions the
DependentVariable is sparsely sampled. These dimensions form the sparse grid. The
sparse_grid_vertexes holds an ordered set of vertexes on the sparse grid. Each sparse

September 24, 2019 11/38

grid vertex is an ordered array of d� s indexes. To make the serialization more
resourceful, we flatten the ordered set of arrays intended for the sparse_grid_vertexes
attribute into an ordered array of integers, for example,

[[1, 0], [3, 4], [5, 7], [8, 11], . . .] ! [1, 0, 3, 4, 5, 7, 8, 11, . . .],

in a case of two sparsely sampled dimensions. The set of arrays (on the left) can be 247

easily reconstructed from the array of integers (on the right) given the number of 248

indexes specified in the dimension_indexes attribute. Additional storage reduction can 249

be had by encoding the sparse_grid_vertexes array as a Base64 character string of 250

specified unsigned_integer_type and little-endian byte ordering. The encoding attribute 251

in the SparseSampling object would indicate this option with a value of base64. 252

2.5 Generic application objects - Beyond the CSD Model 253

As stated earlier, the objective of the CSD model is to encapsulate the data values and 254

the minimum metadata needed to accurately represent the data in an appropriate 255

coordinate system, that is, the minimum metadata for defining the current state of the 256

dataset. Thus, the goal of the CSD model is to always remain relevant as the state of 257

the dataset changes. In our refinement of the CSD model, we identified any metadata 258

attribute as extraneous if it could become irrelevant as the state of the dataset changes. 259

Metadata attributes extraneous to the CSD model could generally be classified as 260

belonging in one of four broad and somewhat overlapping categories: acquisition, 261

process, analysis, and presentation. The design of models organizing these extraneous 262

metadata attributes tends to be scientific domain specific, although some commonalities 263

exist. The CSD model allows the inclusion of metadata models describing these other 264

categories using generic application objects. An application can place its own attribute 265

type, e.g., a dictionary object with application-specific metadata attributes inside each 266

generic application object using a reverse domain name notation string as the attribute 267

key, for example, “com.example.myApp”. The use of a reverse-DNS key provides a 268

simple mechanism for reducing name-space collisions. Overall, we believe generic 269

application objects give the CSD model enough flexibility to become the native file 270

format of many applications. 271

This approach, however, creates a dilemma when CSDM files are saved and opened 272

by different applications. Specifically, what does an application from company B (e.g., 273

“com.B.process”) do with generic application objects placed in a CSDM file by an 274

application from company A (e.g., “com.A.acquire”)? On the one hand, company B 275

could retain the company A specific metadata (as found) in the generic application 276

object using the “com.A.acquire” key as well as serialize its own metadata using the 277

“com.B.process” key. If the company B application made any modification to the 278

dataset, however, it runs the risk that parts of the company A application-specific 279

metadata are now irrelevant or logically inconsistent with the newly saved 280

dataset—potentially causing company A’s application to crash when it tries to open this 281

newly saved dataset. On the other hand, company B could decide to discard the 282

company A specific metadata, in which case the company A application can safely open 283

the dataset saved by company B, but will have lost all of its previously saved metadata. 284

Finding a consistent solution to this dilemma is critically important as one can easily 285

envision a workflow where a dataset passes through many applications as it progresses 286

from the raw dataset to the final “product.” During such a workflow there is often an 287

expectation of an audit trail, which most likely could be determined from application 288

metadata saved by each application used during the workflow. 289

One approach that could solve this dilemma is to allow the CSDM file to contain a 290

time-ordered array of CSDM objects. In other words, company B would simply append 291

September 24, 2019 12/38

a second CSDM object with only company B metadata to the array that already 292

contains the CSDM object created by company A. No application metadata would be 293

lost, and the metadata in each CSDM object would be relevant and logically consistent 294

with its respective datasets. In this approach, the CSDM “array” file would grow as each 295

application completes its task in the overall workflow. 296

It is our opinion, however, that it is better to delegate such a task of managing a 297

time-ordered array of CSDM objects to the operating system. In this approach, we 298

envision the workflow associated with a particular dataset to result in a folder 299

containing a series of CSDM files, each a snapshot from the workflow as it progresses 300

from the raw dataset to the final “product.” When each application is finished with its 301

workflow task a CSDM file is saved with the read_only flag set to true, so that any 302

future work on the dataset would be performed on a copy of the CSDM dataset, leaving 303

the “read-only” file with application metadata intact. Typically, the read_only flag 304

would be set to true immediately after the acquisition of raw data, after processing is 305

complete, or after analysis of a dataset. Delegating the task of managing a time-ordered 306

set of CSDM objects to the operating system also makes the workflow status involving 307

individual CSDM files more transparent to the end-user. In adopting this solution we 308

propose the general rule that while application attributes should be visible to any 309

application opening a CSDM file, only the reverse-DNS owners have permission to use 310

their respective keys to place an attribute in an application object. 311

An application could implement an additional layer of protection from application 312

metadata loss by saving CSDM compliant files with its own application-specific file 313

extension. Other applications could still open the CSDM compliant file but would be 314

discouraged from saving with another application’s file extension. 315

2.6 JSON file-serialization 316

A JSON file is ordinarily a UTF-8 encoded text file which is built on two structures: a 317

collection of unordered key-value pairs and an ordered list of values. The "key": value 318

pair is separated by a colon symbol, with the key to the left and the value to the right 319

of the colon. Different key-value pairs are separated using commas. The JSON keys are 320

always wrapped in double quotation marks, as in "key", and the value type can either 321

be (a) a string, (b) a number, (c) a JSON object, (d) an array, (e) a boolean or (d) null. 322

A string is a composition of JSON allowed characters [2] wrapped in double quotation 323

marks. A number can be integer or float. A JSON object is an unordered set of 324

key-value pairs which begins with a left curly brace, {, and ends in a right curly brace, 325

}. An array is an ordered collection of JSON values that begins with a left square 326

bracket, [, and ends in a right square bracket,]. A boolean is true or false. In the 327

JSON serialization of the CSD model, the JSON "key" corresponds to the attribute 328

name of the various CSD model objects while the JSON value and CSD model 329

attribute value follow the relationship listed in Table 1. 330

Efforts have been made in the design of the CSD model to keep the keys intuitive 331

and self-explanatory to all scientists and engineers. To further enhance the 332

human-readability aspect of the files, we recommend, as a general rule, that no key be 333

present in the file unless its value differs from the default value. With this in mind, the 334

CSD model defines all boolean values as false when unspecified. In other words, the 335

only boolean keys that need to appear in the file are those set to true. 336

The serialization file names are designated with two possible extensions: .csdf and 337

.csdfe, the acronyms for Core Scientific Dataset Format and Core Scientific Dataset 338

Format External. When all data values are stored within the file, i.e., there are no 339

instances of an ExternalDependentVariable object in the serialization, then the .csdf 340

file extension is allowed, otherwise, the serialization file name must use the extension 341

.csdfe. This difference in extensions is intended to alert the end-user to a possible risk 342

September 24, 2019 13/38

of failure if the external data file is inaccessible when deserializing a file with the 343

.csdfe file extensions. 344

3 dD{p0, p1, . . . } example datasets 345

In this section we examine the CSD model in a number of illustrative examples. We use 346

a shorthand notation of dD{p} to indicate that a dataset has a p-component dependent 347

variable defined on a d-dimensional coordinate grid. In the case of correlated datasets 348

the number of components in each dependent variable is given as a list within the curly 349

braces, i.e., dD{p0, p1, p2, . . . }. 350

Efforts have been made to include examples across disciplines, although given our 351

expertise in magnetic resonance spectroscopy, we include multiple examples from this 352

field. It is worth noting, however, that magnetic resonance datasets prove to be 353

excellent test cases for the CSD model as they are diverse and often multi-dimensional 354

in nature. We have converted a variety of datasets from various fields to the CSD model 355

format. To accomplish this, we utilize several Python packages [5, 6] to import the 356

original field-specific scientific datasets as Numpy [7] array(s) and export the latter in 357

the CSD model format using the csdmpy package for Python, described in the appendix. 358

3.1 1D{1} examples 359

In this section, we examine the JSON serialization for illustrative cases of 1D{1} 360

datasets. These are the simplest cases, with one dimension, d = 1, and one 361

single-component dependent variable, p = 1. The supplementary material gives further 362

1D{1} examples from FITR, UV-vis, and EPR spectroscopies. 363

GMSL.csdf 364

An example of a JSON serialized CSD model holding a 1D{1} dataset is shown in 365

Listing 1. This dataset is a measurement of the global mean sea level [8] (GMSL) based 366

on the satellite altimeter data from 1993-2009. 367

At the root level is the csdm key, an acronym for the core scientific dataset model. 368

The value of this key is a JSON object which is a serialization of the CSD model’s 369

CSDM object and includes six keys—version, timestamp, tags, description, dimensions, 370

and dependent_variables. The value of the dimensions key is an array (lines 7-14) with a 371

single JSON object defined in-between lines 8 and 13. This object is a JSON 372

serialization of the CSD model’s Dimension object. In this example, it represents a 373

LinearDimension object, as indicated by the value of linear in the type key, and with 374

a coordinate count of 1608 as defined by the value of the key count. Furthermore, it is a 375

temporal dimension with ScalarQuantity values of 0.08333 yr for increment and 376

1880.0417 yr for coordinates_offset. The coordinates at vertexes along this temporal 377

dimension are obtained from Eq. (3). 378

The value of the dependent_variables key is an array (lines 15-31) with a single 379

JSON object describing the global mean sea level. This object is a JSON serialization of 380

an InternalDependentVariable object, with data values stored within the object, as 381

indicated by the value of internal for the type key. The data values are serialized as 382

JSON numbers as seen in-between lines 23-28 of Listing 1. Ellipses indicate where 383

superfluous lines were omitted from the listing. The value of float32 for the 384

numeric_type key indicates that the array of JSON numbers should be converted into a 385

numerical array of data values with 32-bit floating-point precision on import. The value 386

of mm for the unit key is the unit associated with the data values. The value of the 387

component_labels is an array with a single entry holding the label associated with the 388

September 24, 2019 14/38

GMSL.csdf ⌅
1 {
2 "csdm": {
3 "version": "1.0",
4 "timestamp": "2019-05-21T13:43:00Z",
5 "tags": ["Jason-2", "satellite altimetry", "mean sea level", "climate"],
6 "description": "Global Mean Sea Level (GMSL) rise from late 19th to Early 21st

Century.",
7 "dimensions": [
8 {
9 "type": "linear",

10 "count": 1608,
11 "increment": "0.083333333 yr",
12 "coordinates_offset": "1880.0417 yr"
13 }
14],
15 "dependent_variables": [
16 {
17 "type": "internal",
18 "unit": "mm",
19 "quantity_type": "scalar",
20 "numeric_type": "float32",
21 "component_labels": ["GMSL"],
22 "components": [
23 [-183.0,
24 -171.125,
25 ...
26 ...
27 59.6875,
28 58.5]
29]
30 }
31]
32 }
33 }⌃

Listing 1. A JSON serialized CSD model describing the global mean sea level dataset.
The listing was created by the authors using data from reference 8.

Figure 2. A line plot, derived from Listing 1, depicting the global mean sea level as a
function of time. The figure was created by the authors using data from reference 8.

September 24, 2019 15/38

component values. The value of scalar for the quantity_type key indicates that the 389

component of the dependent variable is interpreted as scalar. 390

A plot of the dataset is shown in Fig. 2. Note that meta-data on how a dataset is 391

presented in a plot or otherwise is not included in the CSD model. While such 392

presentation metadata is outside the scope of the core model, it can be included in an 393

application dictionary. 394

blochDecay.csdf 395

Another simple example of a 1D{1} dataset is shown in Listing 2. This example 396

corresponds to a 13C free induction decay signal from a nuclear magnetic resonance 397

spectroscopy of ethanol. 398

The value of the dimensions key is an array (lines 12-26) with a single JSON 399

serialized LinearDimension object (lines 13-25) representing a temporal dimension with 400

4096 coordinate positions sampled every 0.1 ms starting at �0.3 ms. The coordinate 401

values along the dimension are evaluated using Eq. (3). This LinearDimension object 402

also contains an optional JSON serialized ReciprocalDimension object (lines 19-24) as 403

the value of the reciprocal key. In this example, it provides the metadata needed for 404

describing the reciprocal time or the frequency dimension, i.e., after a Fourier transform. 405

The value of the dependent_variables key is an array (lines 27-41) with a single 406

JSON serialized InternalDependentVariable object (lines 28-40) describing the signal 407

response. While the keys and values in this object are similar to the corresponding 408

object from the previous example, a key difference is that the value of the numeric_type 409

key denotes a complex64 numeric type. Complex numbers are stored as an ordered 410

array of alternating real and imaginary data values, starting with the real value. In this 411

example, the first and the last complex numbers of the signal in Fig. 3 are 412

(�8899.406� i1276.773) and (�193.923� i67.065), respectively. Note that the length of 413

the ordered data array is 2M for complex numeric types, where M is the total number of 414

sampled data points. Figure 3 shows a line plot of the time domain NMR decay signal. 415

acetone.csdf 416

In Listing 3 is an illustration of a 1D{1} mass spectrum dataset serialized with sparse 417

sampling. Here the InternalDependentVariable object (lines 17-43) holds a 418

SparseSampling object (lines 23-34) in the sparse_sampling key. Inside the 419

SparseSampling object are the three keys dimensions_indexes, sparse_grid_vertexes, 420

and unsigned_integer_type. The dimensions_indexes key holds an array of integers 421

specifying the indexes of the dimensions along which the dependent variable is sparsely 422

sampled. In this case, it is the zeroth dimension, i.e., the only dimension in the dataset. 423

The sparse_grid_vertexes key holds an array of integers specifying the vertexes on the 424

one-dimensional sparsely sampled grid. Again, in this example with only one dimension, 425

the array of integers corresponds to the sampled sparse grid vertexes, i.e., the 426

coordinate indexes, j0, along the zeroth dimension. The value uint8 for the 427

unsigned_integer_type key is the numeric type used when importing the JSON 428

serialized integer array from the sparse_grid_vertexes key. 429

3.2 2D{1} examples 430

TEM.csdf 431

Figure 4 is an intensity plot of a Transmission Electron Microscopy (TEM) dataset of a 432

section of the early larval brain of Drosophila melanogaster used in the analysis of 433

neuronal microcircuitry [9]. The CSDM JSON serialization for this 2D{1} dataset is 434

September 24, 2019 16/38

blochDecay.csdf ⌅
1 {
2 "csdm": {
3 "version": "1.0",
4 "timestamp": "2016-03-12T16:41:00Z",
5 "geographic_coordinate": {
6 "altitude": "238.9719543457031 m",
7 "longitude": "-83.05154573892345�",
8 "latitude": "39.97968794964322�"
9 },

10 "tags": ["13C", "NMR", "spectrum", "ethanol"],
11 "description": "A time domain NMR 13C Bloch decay signal of ethanol.",
12 "dimensions": [
13 {
14 "type": "linear",
15 "count": 4096,
16 "increment": "0.1 ms",
17 "coordinates_offset": "-0.3 ms",
18 "quantity_name": "time",
19 "reciprocal": {
20 "quantity_name": "frequency",
21 "origin_offset": "75.42632886 MHz",
22 "coordinates_offset": "3.005363 kHz",
23 "label": "13C frequency shift"
24 }
25 }
26],
27 "dependent_variables": [
28 {
29 "type": "internal",
30 "quantity_type": "scalar",
31 "numeric_type": "complex64",
32 "components": [
33 [-8899.40625,
34 -1276.7734375,
35 ...
36 ...
37 -193.9228515625,
38 -67.06524658203125]
39]
40 }
41]
42 }
43 }⌃

Listing 2. JSON serialized CSD model describing the 13C NMR Bloch decay time
signal along with the relevant metadata of the reciprocal frequency dimension.

Figure 3. A plot, derived from Listing 2, of the real (left) and imaginary (right) 13C
NMR Bloch decay signal as a function of time.

September 24, 2019 17/38

acetone.csdf ⌅
1 {
2 "csdm": {
3 "version": "1.0",
4 "timestamp": "2019-06-23T17:53:26Z",
5 "description": "Mass spectrum of acetone",
6 "dimensions": [
7 {
8 "type": "linear",
9 "count": 51,

10 "increment": "1",
11 "coordinates_offset": "10",
12 "label": "m/z",
13 "quantity_name": "dimensionless"
14 }
15],
16 "dependent_variables": [
17 {
18 "type": "internal",
19 "name": "acetone",
20 "numeric_type": "float32",
21 "quantity_type": "scalar",
22 "component_labels": ["relative abundance"],
23 "sparse_sampling": {
24 "dimension_indexes": [0],
25 "sparse_grid_vertexes": [
26 27,
27 28,
28 ...
29 ...
30 48,
31 49
32],
33 "unsigned_integer_type": "uint8"
34 },
35 "components": [
36 [9,
37 9,
38 ...
39 ...
40 270,
41 10]
42]
43 }
44]
45 }
46 }⌃

Listing 3. JSON serialized CSD model describing the mass spectrum of acetone.

September 24, 2019 18/38

TEM.csdf ⌅
1 {
2 "csdm": {
3 "version": "1.0",
4 "timestamp": "2016-03-12T16:41:00Z",
5 "tags": ["TEM", "Drosophila melanogaster"],
6 "description": "TEM image of the early larval brain of Drosophila melanogaster

used in the analysis of neuronal microcircuitry.",
7 "dimensions": [
8 {
9 "type": "linear",

10 "count": 512,
11 "increment": "4.0 nm",
12 },
13 {
14 "type": "linear",
15 "count": 512,
16 "increment": "4.0 nm"
17 }
18],
19 "dependent_variables": [
20 {
21 "type": "internal",
22 "quantity_type": "scalar",
23 "numeric_type": "uint8",
24 "encoding": "base64",
25 "components": ["fmt6fIODjI5w ... Onfzbekqw=="]
26 }
27]
28 }
29 }⌃

Listing 4. JSON serialized listing of a TEM dataset containing one single-component
InternalDependentVariable object and two LinearDimension objects. The listing was
created by the authors using data from reference 9.

Figure 4. An intensity plot, derived from Listing 4, of a TEM dataset depicting the
early larval brain of Drosophila melanogaster. The figure was created by the authors
using data from reference 9.

September 24, 2019 19/38

given in Listing 4. This dataset has two dimensions, d = 2, and one single-component 435

dependent variable, p = 1. 436

The value of the dimensions key is an array with two JSON serialized 437

LinearDimension objects, defined in-between lines 8-12 and 13-17. Both these objects 438

describe a linearly sampled spatial dimension with 512 points sampled every 4 nm. As 439

before, Eq. (3) gives the ordered list of the coordinates along the respective dimensions. 440

The value of the dependent_variables key is an array containing a single JSON serialized 441

InternalDependentVariable object (lines 20-26). Unlike the previous examples, the 442

value of the components key is an array with a single element. This element is a Base64 443

encoded string, as indicated by the encoding key, and decodes to an array of binary data 444

values which are interpreted as an array of numerical values with a uint8 numeric type. 445

The array of numerical values is then mapped to the 512⇥ 512 coordinate grid 446

according to Eqs. (7) and (8). 447

bubble.csdfe 448

In Fig. 5 and in Listing 5 we present a 2D{1} astronomy dataset of the bubble nebula 449

acquired at 656 nm wavelength by the Hubble Heritage Project [10] team. In this 450

example, the value of the dimensions key is an array with two JSON serialized 451

LinearDimension objects defined in lines 8-15 and 16-23. Both these objects describe a 452

linearly sampled angular dimension. The value of the dependent_variables key is an 453

array with a single JSON serialized ExternalDependentVariable object, described in 454

lines 26-32. In this example, the value of the type key is external, indicating that the 455

data values are stored in an external file located at the Uniform Resource Locator 456

(URL) address given by the components_url key. In this case, the address corresponds 457

to a local file, designated by the file scheme of the URL, relative to the location of the 458

bubble.csdfe file. The external file holds an ordered array of 11592⇥ 11351 binary 459

values, which are specified by the numeric_type key as 32-bit floating-point numbers. 460

satRec.csdf 461

A monotonic dimension is employed when measurements are not uniformly spaced or 462

span several orders of magnitude along a dimension. An example of a 2D{1} dataset 463

with a monotonic dimension is given in Listing 6. Here the dataset comes from a 29Si 464

NMR magnetization recovery measurement of a highly siliceous ZSM-12 zeolite sampled 465

on a 2D rectilinear grid. Figure 6 depicts a stacked plot corresponding to the dataset 466

from Listing 6. 467

The value of the dimensions key is an array with two JSON serialized Dimension 468

objects (lines 18-30 and 31-38). The first is a LinearDimension object, labeled as t2, 469

describing a temporal dimension with 1024 points sampled at every 80 µs with a 470

coordinates_offset of �41.04 ms. Additionally, this LinearDimension object contains a 471

ReciprocalDimension object serialized as the value of the reciprocal key. The second is 472

a MonotonicDimension object, labeled as t1, with the coordinates associated with grid 473

vertexes along the dimension explicitly given in the ordered set of values in the 474

coordinates key. The value of the dependent_variables key is an array with a single 475

JSON serialized InternalDependentVariable object (lines 41-47) describing the signal 476

response. Here, the data values are encoded as an array with one Base64 string in the 477

components key. 478

This listing also gives an example of the use of the application key in the csdm 479

dictionary. Here an application owning the domain name physyapps.com has placed an 480

attribute in the application dictionary using the reverse domain name key 481

com.physyapps.rmn. Domain name owners are free to place any valid JSON object as 482

the value of their respective reverse domain name attribute inside the application 483

September 24, 2019 20/38

bubble.csdfe ⌅
1 {
2 "csdm": {
3 "version": "1.0",
4 "timestamp": "2016-02-26T16:41:00Z",
5 "tags": ["Bubble Nebula","Hubble"],
6 "description": "The dataset is a new observation of the Bubble Nebula acquired

by The Hubble Heritage Team, in February 2016.",
7 "dimensions": [
8 {
9 "type": "linear",

10 "count": 11596,
11 "increment": "-2.27930619e-05 �",
12 "coordinates_offset": "350.311874957 �",
13 "quantity_name": "plane angle",
14 "label": "Right Ascension"
15 },
16 {
17 "type": "linear",
18 "count": 11351,
19 "increment": "1.10055218e-05 �",
20 "coordinates_offset": "61.12851495 �",
21 "quantity_name": "plane angle",
22 "label": "Declination"
23 }
24],
25 "dependent_variables": [
26 {
27 "type": "external",
28 "name": "Bubble Nebula, 656nm",
29 "quantity_type": "scalar",
30 "numeric_type": "float32",
31 "components_url": "file:./Bubble_1.dat"
32 }
33]
34 }
35 }⌃

Listing 5. JSON serialized listing of the astronomy dataset describing the bubble
nebula observed at 656 nm wavelength. The listing was created by the authors using
data from reference 10.

Figure 5. A log intensity plot, derived from Listing 5, of the bubble nebula [10]
observed at 656 nm wavelength. The figure was created by the authors using data from
reference 10.

September 24, 2019 21/38

satRec.csdf ⌅
1 {
2 "csdm": {
3 "version": "1.0",
4 "timestamp": "2016-03-12T16:41:00Z",
5 "tags": ["29Si", "NMR", "nuclear magnetism relaxation", "zeolite ZSM-12"],
6 "description": "A 29Si NMR magnetization saturation recovery measurement of

highly siliceous zeolite ZSM-12.",
7 "application": {
8 "com.physyapps.rmn": {
9 "focus": {

10 "mem_offset": 166,
11 "component_index": 0,
12 "dependent_variable_index": 0
13 },
14 "dimension_precedence": [0,1]
15 }
16 }
17 "dimensions": [
18 {
19 "type": "linear",
20 "count": 1024,
21 "increment": "0.08 ms",
22 "coordinates_offset": "-41.04 ms",
23 "label": "t2",
24 "reciprocal": {
25 "origin_offset": "79.578822262 MHz",
26 "coordinates_offset": "-8.7660626 kHz",
27 "quantity_name": "frequency",
28 "label": "29Si frequency shift"
29 }
30 },
31 {
32 "type": "monotonic",
33 "coordinates": [
34 "1 s","5 s", "10 s","20 s","40 s","80 s"
35],
36 "label": "t1",
37 "quantity_name": "time"
38 }
39],
40 "dependent_variables": [
41 {
42 "type": "internal",
43 "quantity_type": "scalar",
44 "numeric_type": "complex64",
45 "encoding": "base64",
46 "components": ["AEU2Q7h/...y0NGPyJD"]
47 }
48]
49 }
50 }⌃

Listing 6. JSON serialized listing of 29Si NMR magnetization saturation relaxation
dataset containing one single-component DependentVariable object and two
Dimension objects.

September 24, 2019 22/38

Figure 6. A stacked plot, derived from Listing 6, of an NMR dataset depicting the
29Si saturation recovery measurement of a highly siliceous ZSM-12 zeolite.

dictionary. In this case, the domain name owner has used the reverse domain name key 484

com.physyapps.rmn to place a dictionary holding two keys, focus and 485

dimension_precedence. 486

An application key can also be placed in any Dimension, ReciprocalDimension, 487

DependentVariable, and SparseSampling object. Again, according to the rule in 488

section 2.5, only the reverse domain name owner has permission to serialize a file using 489

their respective reverse domain name as a key in the application attribute. 490

iglu_1d.csdf 491

Listing 7 is a 2D{1} example of an NMR signal with sparse sampling along one 492

dimension [11]. Here the InternalDependentVariable object (lines 30-44) holds a 493

SparseSampling object (lines 37-43) in the sparse_sampling key. The SparseSampling 494

object contains three keys dimension_indexes, sparse_grid_vertexes, and 495

unsigned_integer_type. The dimension_indexes key holds an array of integers specifying 496

the indexes of the dimensions along which the dependent variable is sparsely sampled, 497

in this case, the k = 1 dimension. The sparse_grid_vertexes key holds an array of 498

integers specifying the vertexes on the one-dimensional sparsely sampled grid. Since 499

there are two dimensions in the dataset the array of integers corresponds to the 500

coordinate indexes, j1, along the k = 1 dimension. In this example, the dependent 501

variable values are fully sampled along the k = 0 dimension. The value of the 502

unsigned_integer_type key holds the numeric type used in importing the integer array 503

from sparse_grid_vertexes. 504

iglu_2d.csdf 505

Listing 8 is a 2D{1} example of an NMR signal shown in Fig 8 with sparse sampling
along two dimensions [11]. As before, the sparse_sampling key holds a SparseSampling

object with the dimension_indexes, sparse_grid_vertexes, and unsigned_integer_type
attributes. The dimension_indexes key holds an array of two integers, k = 0 and 1,
specifying the sparse sampling dimensions. The sparse_grid_vertexes key holds an array
of integers defining the vertexes on the two-dimensional sparsely sampled grid. As
described in section 2.4.1 this array is a flattened ordered set of arrays which can be
reshaped into the ordered set of sparse grid vertexes, i.e.,

[0, 0, 1, 0, . . . , 972, 511, 1015, 511] �! [[0, 0], [1, 0], . . . , [972, 511], [1015, 511]] .

The ith vertex in the ordered set of sparse grid vertexes specifies the sparse grid location 506

of the ith value in each component array of the dependent variable. 507

3.3 2D{3} example 508

RGB_image.csdf 509

A simple example of a 2D dataset with multiple components is a color image, such as 510

the one shown in Fig. 9. This is a 2D{3} dataset, with two LinearDimension objects 511

and one three-component dependent variable, p = 3. The CSDM serialization is shown 512

in Listing 9. The dimensions key holds an array with two JSON serialized 513

LinearDimension objects (lines 8-13 and 14-19) with 1024 and 768 points, respectively, 514

September 24, 2019 23/38

iglu_1d.csdfe ⌅
1 {
2 "csdm": {
3 "version": "1.0",
4 "timestamp": "2019-07-07T23:41:50Z",
5 "dimensions": [
6 {
7 "type": "linear",
8 "count": 1024,
9 "increment": "0.192 ms",

10 "label": "1H t2",
11 "quantity_name": "time",
12 "reciprocal": {
13 "origin_offset": "400.13 MHz",
14 "quantity_name": "frequency",
15 "coordinates_offset": "-3.32 Hz"}
16 },
17 {
18 "type": "linear",
19 "count": 512,
20 "increment": "0.192 ms",
21 "label": "1H t1",
22 "quantity_name": "time",
23 "reciprocal": {
24 "origin_offset": "400.13 MHz",
25 "quantity_name": "frequency",
26 "coordinates_offset": "-3.32 Hz"}
27 }
28],
29 "dependent_variables": [
30 {
31 "quantity_name": "dimensionless",
32 "numeric_type": "complex64",
33 "components_url": "cos.data",
34 "quantity_type": "scalar",
35 "type": "external",
36 "name": "cos",
37 "sparse_sampling": {
38 "dimension_indexes": [1],
39 "sparse_grid_vertexes": [
40 0, 1, ..., 470, 499
41],
42 "unsigned_integer_type": "uint16"
43 }
44 }
45]
46 }
47 }⌃

Listing 7. JSON serialized listing of 13C-15N NMR HSQC dataset containing one
single-component DependentVariable object and two Dimension objects. The listing
was created by the authors using data from reference 11.

September 24, 2019 24/38

Figure 7. A plot, derived from Listing 7, of the real part 2D{1} dataset sparsely
sampled in one dimension. The figure was created by the authors using data from
reference 11.

and a unit sampling interval. The dependent_variable key holds an array with a single 515

JSON serialized InternalDependentVariable object (lines 22-34) containing an image 516

dataset as indicated by the pixel_3 value of the quantity_type key. The first part, 517

pixel, indicates pixel data, and the last part, 3, gives the number of pixel components. 518

An array holding to the three components, i.e., the red, green, and blue color intensities 519

with each encoded as a Base64 string, is the value of the components key. The Base64 520

decoded binary data values are then interpreted as an array of 8-bit unsigned integer 521

(uint8), for each component, and subsequently mapped onto a 1024⇥ 768 coordinate 522

grid. The value of the component_labels key is an array of the labels ordered to match 523

the order of the components. 524

3.4 3D{2} example 525

wind_velocity.csdfe 526

An example of a 3D{2} dataset, i.e., with three dimensions, d = 3, and one 527

two-component dependent variable, p = 2, is the wind velocity prediction [12] dataset as 528

a function of latitude, longitude and time, shown in Listing 10. 529

The value of the dimensions key is an array with three JSON serialized Dimension 530

objects. The first two LinearDimension objects, labeled as longitude and latitudes 531

respectively, describe two linear dimensions sampled at every 0.5� for 49 points starting 532

at �102.5� longitudes and 13.5� latitudes. Together, these two objects create a 533

two-dimensional grid that spans the region around the Gulf of Mexico as depicted in 534

Fig. 10. The third dimension is a LabeledDimension object as indicated by the value of 535

the type key. The corresponding labels array lists six date-time stamps entries. 536

The value of the dependent_variable key is an array with a single JSON serialized 537

ExternalDependentVariable object (lines 34-43) containing a two-component vector 538

dataset as identified by the quantity_type key-value. This value is vector_2 where the 539

first part, vector, indicates vector data, and the last part, 2, gives the number of vector 540

components. The two vector components are labeled as ugrd10m-eastward_wind and 541

vgrd10m-northward_wind, in the array assigned to the component_labels key. The 542

data values are located in an external file as a binary data whose address, relative to the 543

wind_velocity.csdfe file, is the value of the components_url key. The binary data is 544

interpreted as a 32-bit floating-point numerical array. Note, because the binary data 545

does not support array indexing, unlike JSON serialization, the corresponding numerical 546

array of data values is reshaped into a matrix which includes the number of components. 547

In this case, the reshaped matrix is 49⇥ 49⇥ 6⇥ 2, where the last number is the 548

number of components, p = 2, and the remaining three is the number of points from the 549

Dimension objects. Table 4 contains a description of the number of components, p, for 550

each quantity_type. 551

Figure 10 depicts a quiver plot of the wind velocity at three different date-time 552

stamps. Underlaid these plots is a map of the Earth corresponding to the given range of 553

latitudes and longitudes. These plots were generated using the Matplotlib library [14] 554

for python in addition to the Matplotlib Basemap toolkit [13] for rendering maps. 555

September 24, 2019 25/38

iglu_2d.csdfe ⌅
1 {
2 "csdm": {
3 "version": "1.0",
4 "timestamp": "2019-07-14T15:13:09Z",
5 "dimensions": [
6 {
7 "quantity_name": "time",
8 "type": "linear",
9 "count": 1024,

10 "increment": "0.192 ms",
11 "label": "1H t2",
12 "reciprocal": {
13 "origin_offset": "400.13 MHz",
14 "quantity_name": "frequency",
15 "coordinates_offset": "-3.32 Hz"}
16 },
17 {
18 "quantity_name": "time",
19 "type": "linear",
20 "count": 512,
21 "increment": "0.192 ms",
22 "label": "1H t1",
23 "reciprocal": {
24 "origin_offset": "400.13 MHz",
25 "quantity_name": "frequency",
26 "coordinates_offset": "-3.32 Hz"}
27 }
28],
29 "dependent_variables": [
30 {
31 "type": "external",
32 "quantity_name": "dimensionless",
33 "numeric_type": "complex64",
34 "quantity_type": "scalar",
35 "components_url": "cos.data",
36 "sparse_sampling": {
37 "dimension_indexes": [0, 1],
38 "sparse_grid_vertexes": [
39 0, 0, 1, 0, ..., 972, 511, 1015, 511
40],
41 "unsigned_integer_type": "uint16"
42 },
43 }
44]
45 }
46 }⌃

Listing 8. JSON serialized listing of 1H NMR TOCSY dataset containing two
Dimension objects and one single-component DependentVariable object with sparsely
sampled values in both dimensions. The listing was created by the authors using data
from reference 11.

September 24, 2019 26/38

Figure 8. A plot, derived from in Listing 8, of the real part of a 2D{1} dataset
sparsely sampled in both dimensions. The figure was created by the authors using data
from reference 11.

RGB_image.csdf ⌅
1 {
2 "csdm": {
3 "version": "1.0",
4 "timestamp": "2016-03-12T16:41:00Z",
5 "tags": ["raccoon", "image", "Judy Weggelaar"],
6 "description": "An RGB image of a raccoon face.",
7 "dimensions": [
8 {
9 "type": "linear",

10 "count": 1024,
11 "increment": "1",
12 "label" : "horizontal index"
13 },
14 {
15 "type": "linear",
16 "count": 768,
17 "increment": "1",
18 "label" : "vertical index"
19 }
20],
21 "dependent_variables": [
22 {
23 "type": "internal",
24 "name": "raccoon",
25 "quantity_type": "pixel_3",
26 "numeric_type": "uint8",
27 "encoding": "base64",
28 "component_labels": ["Red","Green","Blue"],
29 "components": [
30 "eYqZm5ue ... eHl5eHd2",
31 "cIGQkpKU ... m5ycnJua",
32 "g5Slp6es ... ZWRiX11c"
33]
34 }
35]
36 }
37 }⌃

Listing 9. JSON serialized listing of an RGB image dataset containing two Dimension

objects, and one DependentVariable object with three components corresponding to
red, green and blue color intensities. The listing was created by the authors using data
from https://pixnio.com/fauna-animals/raccoons/raccoon-procyon-lotor in public
domain under (Creative common 0) CC0 license.

Figure 9. An image plot, derived from Listing 9, of an RGB dataset depicting a
raccoon face. Photo: Judy Weggelaar

September 24, 2019 27/38

wind_velocity.csdfe ⌅
1 {
2 "csdm": {
3 "version": "1.0",
4 "timestamp": "2018-12-12T10:00:00Z",
5 "tags": ["wind velocity", "weather forecast"],
6 "description": "Dataset from NOAA/NCEP Global Forecast System (GFS) Atmospheric

Model. Latitudes and longitudes defined in geographic coordinate system
.",

7 "dimensions": [
8 {
9 "type": "linear",

10 "label": "longitude",
11 "count": 49,
12 "coordinates_offset": "-102.5 �",
13 "increment": "0.5 �"},
14 {
15 "type": "linear",
16 "label": "latitude",
17 "count": 49,
18 "coordinates_offset": "13.5 �",
19 "increment": "0.5 �"},
20 {
21 "type": "labeled",
22 "description": "Forecast time for ForecastModelRunCollection. Data time

stamps defined with ISO 8601 format.",
23 "label": "UTC date-time stamp",
24 "labels": [
25 "2018-12-12T12:00:00Z",
26 "2018-12-12T18:00:00Z",
27 "2018-12-13T00:00:00Z",
28 "2018-12-13T06:00:00Z",
29 "2018-12-13T12:00:00Z",
30 "2018-12-13T18:00:00Z"]
31 }
32],
33 "dependent_variables": [
34 {"type": "external",
35 "description": "Component labels are standard attribute names used by

Dataset Attribute Structure (.das). ’ugrd10m’ is ’eastward wind
velocity at 10 m above ground level’, and ’vgrd10m’ is ’northward wind
velocity at 10 m above ’ground level’.",

36 "components_url": "file:./NCEP_Global.dat",
37 "component_labels": ["ugrd10m-eastward_wind", "vgrd10m-northward_wind"],
38 "quantity_type": "vector_2",
39 "name": "Wind velocity dataset",
40 "numeric_type": "float32",
41 "quantity_name": "speed",
42 "unit": "m/s"
43 }]
44 }
45 }⌃

Listing 10. JSON serialized listing of the predicted wind velocities over and around
the Gulf of Mexico. The model contains one two-component DependentVariable object
and three Dimension objects. Listing was created by the authors using data from the
national centers for environment information/national oceanic and atmospheric
administration [12].

September 24, 2019 28/38

Figure 10. A quiver plot, derived from Listing 10, of the wind velocities from the
dataset in Listing 10 at three different date-time stamps. The underlaid map of the
Earth corresponding to the latitudes and longitudes is rendered using the Matplotlib
Basemap toolkit [13]. The figure was created by the authors using data from
reference 12.

3.5 3D{6} example 556

brain_MRI.csdf 557

A 3D{6} dataset has three dimensions, d = 3, and one six-component dependent 558

variable, p = 6. An example of such a dataset is the second rank symmetric diffusion 559

tensor MRI dataset [15] of a brain given in Listing 11. 560

The value of the dimensions key is an array with three JSON serialized Dimension 561

objects describing the three spatial dimensions, labeled as x, y, and z respectively. Here, 562

all objects describe a linear dimension with the sampling resolution of 1 mm, and 148, 563

190 and 160 points along the respective dimension. 564

The value of the dependent_variables key is an array with a single JSON serialized 565

InternalDependentVariable object (lines 30-52) describing a symmetric matrix dataset 566

as indicated by the value of the quantity_type key. The value symmetric_matrix_3 567

emphasizes a six-component dataset as noted in Table 4. The six components, labeled 568

as Dxx, Dxy, Dxz, Dyy, Dyz, and Dzz respectively, are stored as Base64 strings as the 569

value of the components key. Each Base64 decoded binary array is interpreted as 32-bit 570

floating-points array and subsequently reshaped to a 148⇥ 190⇥ 160 matrix. 571

The symmetric matrix data from the brain_MRI.csdf file was partially processed as 572

a second-rank symmetric diffusion tensor to determine the isotropic diffusion 573

coefficients. The intensity plots in Fig. 11 depicts the projection of the isotropic 574

diffusion coefficients on to the three spatial dimensions. 575

3.6 2D{1,1,2,1,1} example 576

An example of a 2D{1,1,2,1,1} dataset using data from the US National Centers for 577

Environment Information / National Oceanic and Atmospheric Administration [12] is 578

given in Listing 12. 579

In this example, the value of the dimensions key is an array with two 580

LinearDimension objects describing the two spatial dimensions, labeled as longitude 581

and latitude, respectively. The value of the dependent_variables key is an array with five 582

ExternalDependentVariable objects describing the surface temperature (p0 = 1), the 583

air temperature at 2 m above ground level (p1 = 1), the two-component wind velocity 584

vector at 10 m above surface (p2 = 2), the relative humidity (p3 = 1), and the air 585

pressure at the sea level (p4 = 1). Figure 12 depicts the intensity and quiver plots of 586

four dependent variables. 587

3.7 0D{1,1} example 588

J_vs_s.csdf 589

The CSD model also allows the serialization of datasets without a coordinate grid. A 590

0D{1,1} datasets, for example, has no dimensions, d = 0, and two single-component 591

dependent variable, p0 = 1 and p1 = 1. The listing for such a dataset [16] is given in 592

Listing 13. In this example, the two “correlated” dependent variables are the 29Si-29Si 593

nuclear spin couplings, 2J , across a Si-O-Si linkage and the s-character product on the 594

September 24, 2019 29/38

brain_MRI.csdf ⌅
1 {
2 "csdm": {
3 "version": "1.0",
4 "timestamp": "2016-03-12T16:41:00Z",
5 "tags": ["MRI", "image", "brain" ,"diffusion tensor"],
6 "dimensions": [
7 {
8 "type": "linear",
9 "label": "x",

10 "quantity_name": "length",
11 "count": 148,
12 "increment": "1.0 mm"
13 },
14 {
15 "type": "linear",
16 "label": "y",
17 "quantity_name": "length",
18 "count": 190,
19 "increment": "1.0 mm"
20 },
21 {
22 "type": "linear",
23 "label": "z",
24 "quantity_name": "length",
25 "count": 160,
26 "increment": "1.0 mm"
27 }
28],
29 "dependent_variables": [
30 {
31 "type": "internal",
32 "quantity_type": "symmetric_matrix_3",
33 "name": "Brain MRI",
34 "encoding": "base64",
35 "numeric_type": "float32",
36 "components": [
37 "kIa/PisXXEAwp+4/Pa8MQHsG... ",
38 "aCplv7vVYcAAKOm/QpCkv2Jq... ",
39 "AAAAAAAAAAAAAAAAAAAAAFp/... ",
40 "4l6IwdjgZsG+I4DB1H2IwbV0... ",
41 "pjiUPyb3pD9AaKo+IJF4PoyQ... ",
42 "kIa/visXXMAwp+6/Pa8MwDn4... "
43],
44 "component_labels": [
45 "Dxx",
46 "Dxy",
47 "Dxz",
48 "Dyy",
49 "Dyz",
50 "Dzz"
51]
52 }
53]
54 }
55 }⌃

Listing 11. JSON serialized listing of the diffusion tensor MRI dataset [15] of the
brain containing one six-component DependentVariable object and three Dimension

objects. Listing was created by the authors using data from reference 15.

September 24, 2019 30/38

Figure 11. The intensity plots, derived from the diffusion tensor MRI dataset in Listing 11, are the projection of the
isotropic diffusion coefficients, calculated on to the three spatial dimensions. The figure was created by the authors using data
from reference 15.

NCEI.csdfe ⌅
1 {
2 "csdm": {
3 "version": "1.0",
4 "timestamp": "2017-09-17T12:00:00Z",
5 "read_only": true,
6 "description": "Dataset from NOAA/NCEP Global

Forecast System (GFS) Atmospheric Model.",
7 "dimensions": [
8 {
9 "type": "linear",

10 "count": 192,
11 "increment": "0.5 degree",
12 "coordinates_offset": "264.0 degree",
13 "quantity_name": "plane angle",
14 "label": "longitude"
15 },
16 {
17 "type": "linear",
18 "count": 89,
19 "increment": "0.5 degree",
20 "coordinates_offset": "-4.0 degree",
21 "quantity_name": "plane angle",
22 "label": "latitude"
23 }
24],
25 "dependent_variables": [
26 {
27 "type": "external",
28 "name": "Surface air temperature",
29 "unit": "K",
30 "quantity_name": "temperature",
31 "component_labels": ["tmpsfc - surface air

temperature"],
32 "numeric_type": "float64",
33 "quantity_type": "scalar",
34 "components_url: "file:./surface_temp.dat"
35 },
36 {
37 "type": "external",
38 "name": "Air temperature at 2 m",
39 "unit": "K",
40 "quantity_name": "temperature",
41 "component_labels": ["tmp2m - air temperature

at 2m"],

42 "numeric_type": "float64",
43 "quantity_type": "scalar",
44 "components_url": "file:./air_temp_at_2m.dat"
45 },
46 {
47 "type": "external",
48 "name": "Wind velocity at 10 m",
49 "unit": "m/s",
50 "quantity_name": "speed",
51 "component_labels": ["ugrd10m - eastward wind

velocity at 10m", "vgrd10m - northward wind
velocity at 10m"],

52 "numeric_type": "float64",
53 "quantity_type": "vector_2",
54 "components_url": "file:./wind_velocity.dat
55 },
56 {
57 "type": "external",
58 "name": "Relative humidity",
59 "unit": "%",
60 "quantity_name": "dimensionless",
61 "component_labels": ["rh2m - relative humidity

at 2m"],
62 "numeric_type": "float64",
63 "quantity_type": "scalar",
64 "components_url": "file:./relative_humidity.dat

"
65 },
66 {
67 "type": "external",
68 "name": "Air pressure at sea level",
69 "unit": "Pa",
70 "quantity_name": "pressure",
71 "component_labels": ["prmslmsl - mean sea level

pressure"],
72 "numeric_type": "float64",
73 "quantity_type": "scalar",
74 "components_url": "file:./

sea_level_air_pressure.dat"
75 }
76]
77 }
78 }⌃

Listing 12. JSON serialized listing of multiple dependent variables including scalar and vector on a two-dimensional grid.
Listing was created by the authors using data from the US National Centers for Environment Information / National Oceanic
and Atmospheric Administration [12].

September 24, 2019 31/38

Figure 12. The figure depicts (a) an intensity plot of the air temperature at 2 m above surface, (b) a quiver plot of the wind
vectors at 10 m above surface, (c) an intensity plot of the relative humidity, and (d) an intensity of the air pressure at sea
level corresponding to the last four dependent-variables from Listing 12. These plots are overlaid on the coastline map of the
Earth corresponding to the latitude and longitudes. These coastline were rendered using the Matplotlib Basemap toolkit [13].
The plots were generated using the Matplotlib library [14] for python. The figure was created by the authors using data from
reference 12.

O and two Si along the Si-O bond across the Si-O-Si linkage [16]. The value of the 595

dependent_variables key is an array with two JSON serialized 596

InternalDependentVariable object (lines 7-16 and 17-27). The first object, named as 597

Gaussian computed J-couplings, describes the 2J couplings. The data values are stored 598

as a Base64 string in the components key. The Base64 decoded binary array is 599

interpreted as a 32-bit floating-point numerical array following the value of the 600

numeric_type key. The second object is named as the product of s-characters. Here, the 601

data values are again stored as a Base64 string, which after decoding is interpreted as a 602

32-bit floating-point numerical array. A scatter plot revealing the correlation between 603

the two dependent variables from the dataset in Listing 13 is presented in Fig. 13. 604

4 Conclusions 605

We have designed the Core Scientific Dataset (CSD) Model as a lightweight, portable, 606

versatile, resourceful, and standalone data model that is capable of handling 607

multi-dimensional and correlated datasets from various spectroscopies, diffraction, 608

microscopy, and imaging techniques. A guiding principle in the design of this model was 609

to encapsulate only the minimal metadata necessary to represent the correlated datasets 610

sampled on a common orthogonal coordinate grid. The model also allows for sparse 611

sampling on this grid. Throughout the model, we make use of the ScalarQuantity class, 612

which is composed of a numerical value and any valid SI unit symbol or any number of 613

accepted non-SI unit symbols. This approach enables tremendous flexibility in allowing 614

the dataset model to be agnostic of the scientific domain. Historically, this may have 615

been perceived as a potential barrier to software implementation of the CSDM, however, 616

in recent years libraries capable of parsing units have become freely available for various 617

computing environments such as Matlab, Mathematica, and python. The CSD model is 618

independent of the hardware, operating system, application software, and 619

file-serialization method used for data exchange. The model provides a mechanism for 620

the inclusion of additional application-specific metadata without compromising its 621

fundamental role as a data exchange and archiving standard. When serialized using 622

JSON serialization the resulting file format is human readable and integrable with most 623

object-oriented programming languages and software. The serialization of the CSD 624

model has been adopted as an open dataset file format in NMR software development 625

under our control, i.e., SIMPSON [17,18], DMFIT [19], jsNMR [20], and RMN [21], 626

which already have a large installed user base within the solid-state NMR scientific 627

community. We envision the CSD model and its associated file format as playing an 628

important role in community accessible databases and in greater data-trail integrity and 629

compliance issues for many research laboratories. 630

September 24, 2019 32/38

J_vs_s.csdf ⌅
1 {
2 "csdm": {
3 "version": "1.0"
4 "timestamp": "2016-03-12T16:41:00Z",
5 "tags": ["magnetic resonance", "29Si", "nuclear J coupling", "computational

chemistry", "silicates"],
6 "dependent_variables": [
7 {
8 "type": "internal",
9 "name": "Gaussian computed J-couplings ",

10 "unit": "Hz",
11 "component_labels": ["J-coupling"],
12 "quantity_type": "scalar",
13 "numeric_type": "float32",
14 "encoding": "base64",
15 "components": ["Btjvv1/vtr/+ ... w2TJQYV80EE="]
16 },
17 {
18 "type": "internal",
19 "name": "product of s-characters",
20 "unit": " %",
21 "component_labels": ["s-character product"],
22 "quantity_type": "scalar",
23 "numeric_type": "float32",
24 "encoding": "base64",
25 "components": ["xIJYP6N5Wj+6 ... +ovDP3m0wz8="]
26]
27 }
28]
29 }
30 }⌃

Listing 13. JSON serialized listing of quantum chemistry calculation of nuclear
spin-spin coupling constant between 29Si nuclei across a Si-O-Si linkage in small cluster
molecule. An example dataset with two DependentVariable objects and no Dimension

objects. The listing was created by the authors using data from reference 16.

Figure 13. Two dependent variables [16] correlating 2JSi-O-Si couplings to the
corresponding product of s-characters on the Si, O and Si atoms along the Si-O bond
across the Si-O-Si linkage. The figure was created by the authors using data from
reference 16.

September 24, 2019 33/38

Appendix 631

Scaled variables 632

Coordinates along a dimension can also be converted into scaled quantities based on 633

other attributes in the Dimension object or in application meta-data. For example, in 634

nuclear magnetic resonance spectroscopy, the spectra are conventionally plotted as a 635

function of a dimensionless frequency ratio. In CSD model, the origin_offset, ok, is 636

interpreted as the NMR spectrometer frequency and the coordinates_offset, bk, as the 637

reference frequency. Given the dimension coordinate, Xk, from Eq. (3), the 638

corresponding dimensionless-coordinate ratio follows, 639

Xratio

k =
Xk

ok � bk
. (9)

csdmpy 640

The csdmpy module is the Python support for the core scientific dataset (CSD) model 641

file-exchange format. The source code is available at 642

https://github.com/DeepanshS/csdmpy and the corresponding documentation at 643

https://csdmpy.readthedocs.io/en/stable, which includes links for downloading 644

the CSDM compliant files used in this report. 645

The main objective of this python module is to facilitate the import and export of 646

the CSD model serialized files for Python users. Moreover, the module utilizes Python 647

libraries such as Numpy and therefore allowing the end-users to process or visualize the 648

imported datasets with any third-party package(s) compatible with Numpy. 649

Supporting Information 650

Supporting information contains additional csdf examples and a review of SI Units and 651

constants as used in the CSD model. 652

Author Contributions Statement 653

P.J.G. conceived the idea. All authors contributed to the design of the CSD model and 654

wrote codes. D.J.S. and P.J.G. prepared the figures and wrote the main manuscript 655

text. All authors reviewed the manuscript. 656

Acknowledgments 657

The diffusion tensor MRI Brain dataset [15] is courtesy of Gordon Kindlmann at the 658

Scientific Computing and Imaging Institute, University of Utah, and Andrew Alexander, 659

W. M. Keck Laboratory for Functional Brain Imaging and Behavior, University of 660

Wisconsin-Madison. 661

This material is based upon work supported in part by the US National Science 662

Foundation under Grant No. DIBBS OAC 1640899. T.V. acknowledges financial 663

support from the European Commission (H2020 Future and Emerging Technologies 664

Grant 731475 and Research Infrastructures Grant 731005). Early support for this work 665

came from the Le Studium Loire Valley Institute for Advanced Studies, Orléans, France. 666

September 24, 2019 34/38

References

1. Fowler M. UML Distilled, A Brief Guide to the Standard Object Modeling
Language. Boston: Addison-Wesley; 2004.

2. ECMA. Standard ECMA-404: The JSON Data Interchange Syntax. 2017;.

3. Thompson A, Taylor BN. Guide for the use of the International System of Units
(SI). 2008;.

4. (w3c) WWWC. Architecture of the World Wide Web, Volume One. 2004;.

5. PythonWare. Python Imaging Library (PIL);. Available from:
http://www.pythonware.com/products/pil/.

6. Collaboration A, Robitaille TP, Tollerud EJ, Greenfield P, Droettboom M, Bray
E, et al. Astropy: A community Python package for astronomy. aap.
2013;558:A33. doi:10.1051/0004-6361/201322068.

7. van der Walt S, Colbert SC, Varoquaux G. The NumPy Array: A Structure for
Efficient Numerical Computation. Computing in Science & Engineering.
2011;13:22 – 30. doi:10.1109/MCSE.2011.37.

8. Church JA, White NJ. Sea-Level Rise from the Late 19th to the Early 21st
Century. Surveys in Geophysics. 2011;32:585–602. doi:10.1007/s10712-011-9119-1.

9. Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, et al. An
Integrated Micro- and Macro architectural Analysis of the Drosophila Brain by
Computer-Assisted Serial Section Electron Microscopy. PLoS Biology.
2010;8:e1000502. doi:10.1371/journal.pbio.1000502.

10. The Hubble Heritage Project. 2016;.

11. Balsgart NM, Vosegaard T. Fast Forward Maximum entropy reconstruction of
sparsely sampled data. J Magn Reson. 2012;223:164 – 169.
doi:10.1016/j.jmr.2012.07.002.

12. ERDDAP: Marine Domain Awareness (MDA) ERDDAP Server - JRC Italy;.

13. Whitaker J. Matplotlib Basemap Toolkit; 2011. Available from:
https://matplotlib.org/basemap/.

14. Hunter JD. Matplotlib: A 2D Graphics Environment. Computing in Science &
Engineering. 2007;9:90 – 95. doi:10.1109/MCSE.2007.55.

15. Diffusion tensor MRI datasets; 2000. Available from:
http://www.sci.utah.edu/~gk/DTI-data/.

16. Srivastava DJ, Florian P, Baltisberger JH, Grandinetti PJ. Correlating geminal
2JSi–O–Si couplings to structure in framework silicates. Phys Chem Chem Phys.
2018;20:562 – 571. doi:10.1039/C7CP06486A.

17. Bak M, Rasmussen JT, Nielsen NC. SIMPSON: A General Simulation Program
for Solid-State NMR Spectroscopy. J Magn Reson. 2000;147:296–330.
doi:10.1006/jmre.2000.2179.

18. Tos̆ner Z, Andersen R, Stevensson B, Edén M, Nielsen NC, Vosegaard T.
Computer-intensive simulation of solid-state NMR experiments using SIMPSON.
J Magn Reson. 2014;246:79–93.

September 24, 2019 35/38

http://www.pythonware.com/products/pil/
https://matplotlib.org/basemap/
http://www.sci.utah.edu/~gk/DTI-data/

19. Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, et al. Modelling
one- and two-dimensional solid-state NMR spectra. Magn Reson Chem.
2002;40:70 – 76. doi:10.1002/mrc.984.

20. Vosegaard T. jsNMR: an embedded platform-independent NMR spectrum viewer.
Magn Reson Chem. 2015;53:285 – 290. doi:10.1002/mrc.v53.410.1002/mrc.4195.

21. PhySy Ltd . RMN 2.0; 2019. Available from: https://www.physyapps.com/rmn.

September 24, 2019 36/38

https://www.physyapps.com/rmn

CSDM

0..*

LinearDimension

count: Integer[1]
increment: ScalarQuantity[1]
coordinates_offset: ScalarQuantity[0..1]
origin_offset: ScalarQuantity[0..1]
quantity_name: String[0..1]
period: ScalarQuantity[0..1]
complex_fft: Boolean[0..1] = False
reciprocal: ReciprocalDimension[0..1] = {}

MonotonicDimension

coordinates: ScalarQuantity[1..*] {ordered, unique}
origin_offset: ScalarQuantity[0..1]
quantity_name: String[0..1]
period: ScalarQuantity[0..1]
reciprocal: ReciprocalDimension[0..1] = {}

ReciprocalDimension

coordinates_offset: ScalarQuantity[0..1]
origin_offset: ScalarQuantity[0..1]
quantity_name: String[0..1]
label: String[0..1] = ""
period: ScalarQuantity[0..1]

DependentVariable
type: DVObjectSubtype[1]
name: String[0..1] = ""
numeric_type: NumericType[1]
unit: String[0..1] = ""
quantity_name: String[0..1]
quantity_type: QuantityType[1]
component_labels: String[0..*] {ordered}
sparse_sampling: SparseSampling[0..1] = {}
description: String[0..1] = ""
application: Generic[0..1] = {}

0..*

LabeledDimension

labels: String[1..*] {ordered, unique}

Dimension

label: String[0..1] = ""
type: DimObjectSubtype[1]

description: String[0..1] = ""
application: Generic[0..1] = {}

0..1

0..1

0..1

{com
plete, disjoint}

{com
plete, disjoint}

InternalDependentVariable

components: Array[1..*] {ordered}
encoding: EncodingType[1] = "none"

SparseSampling

ExternalDependentVariable
components_url: String[1]

dimensions: Dimension[0..*] {ordered, unique}
dependent_variables: DependentVariable[0..*]
tags: String[0..*] {unique}
read_only: Boolean[0..1] = False
version: String[1]
timestamp: String[0..1]
geographic_coordinate: GeographicCoordinate[0..1]
description: String[0..1] = ""
application: Generic[0..1] = {}

description: String[0..1] = ""
application: Generic[0..1] = {}

dimensions_indexes: Integer[1..*] {ordered, unique}
sparse_grid_vertexes: Integer[1..*] {ordered}
encoding: EncodingType[1] = "none"
unsigned_integer_type: UnsignedIntegerType[1]
description: String[0..1] = ""
application: Generic[0..1] = {}

GeographicCoordinate
latitude: ScalarQuantity[1]
longitude: ScalarQuantity[1]
altitude: ScalarQuantity[0..1]

0..1

Click here to access/download;Figure;CSDM-
Figure1.pdf

https://www.editorialmanager.com/pone/download.aspx?id=25202237&guid=cadfb2cc-f8a6-44df-a651-9f653dab42e6&scheme=1
https://www.editorialmanager.com/pone/download.aspx?id=25202237&guid=cadfb2cc-f8a6-44df-a651-9f653dab42e6&scheme=1

1880 1900 1920 1940 1960 1980 2000
Time / yr

−150

−100

−50

0

50

G
lo

ba
l M

ea
n

Se
a

Le
ve

l /
 m

m
Click here to
access/download;Fig

https://www.editorialmanager.com/pone/download.aspx?id=25202238&guid=e630ebe3-3fe7-4dd4-8d72-69844636800f&scheme=1
https://www.editorialmanager.com/pone/download.aspx?id=25202238&guid=e630ebe3-3fe7-4dd4-8d72-69844636800f&scheme=1

0 200 400
time / ms

−1.0

−0.5

0.0

0.5

1.0

0 200 400
time / ms

Click here to
access/download;Figure;CSDM

https://www.editorialmanager.com/pone/download.aspx?id=25202239&guid=f87abf56-bc1f-446e-a1ee-18ddddf4a299&scheme=1
https://www.editorialmanager.com/pone/download.aspx?id=25202239&guid=f87abf56-bc1f-446e-a1ee-18ddddf4a299&scheme=1

0.0

0.5

1.0

1.5

2.0
le

ng
th

 /
µm

50

100

150

200

250

di
m

en
si

on
le

ss

0.0 0.5 1.0 1.5 2.0
length / µm

Click here to
access/download;Fi

https://www.editorialmanager.com/pone/download.aspx?id=25202240&guid=0d5d01f0-51cf-48a7-969b-2d037b94ca33&scheme=1
https://www.editorialmanager.com/pone/download.aspx?id=25202240&guid=0d5d01f0-51cf-48a7-969b-2d037b94ca33&scheme=1

350.10350.15350.20350.25
Right Ascension / °

61.16

61.18

61.20

61.22
D

ec
lin

at
io

n
/ °

Bubble Nebula 656nm

10−2

10−1

100

101

di
m

en
si

on
le

ss

Click here to
access/download;Fig

https://www.editorialmanager.com/pone/download.aspx?id=25202241&guid=8e99f201-34f2-406e-8513-d1665813cabf&scheme=1
https://www.editorialmanager.com/pone/download.aspx?id=25202241&guid=8e99f201-34f2-406e-8513-d1665813cabf&scheme=1

t2 / s

t 1
/ s

0 20 40-20-40

1
5

10
20
40
80

Click here to
access/download;Figur

https://www.editorialmanager.com/pone/download.aspx?id=25202242&guid=be92957d-e142-40d6-bb74-7b23d01d1669&scheme=1
https://www.editorialmanager.com/pone/download.aspx?id=25202242&guid=be92957d-e142-40d6-bb74-7b23d01d1669&scheme=1

1H t2 / ms
40 80 120 160

1H
 t

1
/ m

s

4

8

12

16

20

24
Click here to
access/download;Fi

https://www.editorialmanager.com/pone/download.aspx?id=25202243&guid=b9809a49-2e68-4a05-bd8b-bd637743df7a&scheme=1
https://www.editorialmanager.com/pone/download.aspx?id=25202243&guid=b9809a49-2e68-4a05-bd8b-bd637743df7a&scheme=1

1H t2 / ms
20 40 60 80

1H
 t

1
/ m

s

20

40

60

80 Click here to
access/download;Fi

https://www.editorialmanager.com/pone/download.aspx?id=25202244&guid=38251cb0-fde8-4d01-9b2f-62c2ebd6b36d&scheme=1
https://www.editorialmanager.com/pone/download.aspx?id=25202244&guid=38251cb0-fde8-4d01-9b2f-62c2ebd6b36d&scheme=1

0

0

100

200

200

300

400

400 600 800 1000

500

600

700

ve
rti

ca
l i

nd
ex

horizontal index

Click here to
access/download;Fig

https://www.editorialmanager.com/pone/download.aspx?id=25202249&guid=1d24632e-5686-490b-8161-77a9e1fb2e8e&scheme=1
https://www.editorialmanager.com/pone/download.aspx?id=25202249&guid=1d24632e-5686-490b-8161-77a9e1fb2e8e&scheme=1

13.5°

17.5°

21.5°

25.5°

29.5°

33.5°

2018-12-12T12:00:00

13.5°

17.5°

21.5°

25.5°

29.5°

33.5°

2018-12-12T18:00:00

13.5°

17.5°

21.5°

25.5°

29.5°

33.5°

-102.5° -94.5° -86.5° -78.5°

2018-12-13T00:00:00
la
tit
ud

e

longitude

la
tit
ud

e
la
tit
ud

e
Click here to
access/download;F

https://www.editorialmanager.com/pone/download.aspx?id=25202250&guid=68b2aeed-0a8d-4918-8f8f-f6e944faf218&scheme=1
https://www.editorialmanager.com/pone/download.aspx?id=25202250&guid=68b2aeed-0a8d-4918-8f8f-f6e944faf218&scheme=1

0 50 100x / mm

0

40

80

120

160

y
/ m

m

0 50 100x / mm

0

40

80

120

z
/ m

m

0 50 100 150
y / mm

0

40

80

120

z
/ m

m

Click here to access/download;Figure;CSDM-
Figure11.pdf

https://www.editorialmanager.com/pone/download.aspx?id=25202251&guid=b301c7e1-01ae-43f5-bff9-494d5d4aabe9&scheme=1
https://www.editorialmanager.com/pone/download.aspx?id=25202251&guid=b301c7e1-01ae-43f5-bff9-494d5d4aabe9&scheme=1

4°S

11°N

26°N

40 50 60 70 80 90 100

Relative humidity / %

96°W 81°W 66°W 51°W 36°W
longitude

96°W 81°W 66°W 51°W 36°W 21°W

0.985 0.990 0.995 1.000 1.005 1.010

Air pressure at sea level / atm

longitude

la
tit

ud
e

la
tit

ud
e

Air temperature at 2 m / K

4°S

11°N

26°N

280 285 290 295 300 305

96°W 81°W 66°W 51°W 36°W
longitude

20 40 60 80 100 120

Wind velocity at 10 m / (km/h)

96°W 81°W 66°W 51°W 36°W 21°W
longitude

(a) (b)

(d)(c)

Click here to access/download;Figure;CSDM-
Figure12.pdf

https://www.editorialmanager.com/pone/download.aspx?id=25202252&guid=7b56de0c-0ee0-4a92-b29d-21b3ac40500c&scheme=1
https://www.editorialmanager.com/pone/download.aspx?id=25202252&guid=7b56de0c-0ee0-4a92-b29d-21b3ac40500c&scheme=1

0.8 1.0 1.2 1.4

0

5

10

15

20

25

product of s-characters / %

J-
co

up
lin

g
/ H

z
Click here to
access/download;Figur

https://www.editorialmanager.com/pone/download.aspx?id=25202253&guid=d04680f1-aec3-4d21-b238-47fd5fcd51cd&scheme=1
https://www.editorialmanager.com/pone/download.aspx?id=25202253&guid=d04680f1-aec3-4d21-b238-47fd5fcd51cd&scheme=1

	Introduction
	Overview of CSD Model
	UML Class Diagram
	CSDM object
	Dimension object
	LabeledDimension object
	MonotonicDimension object
	LinearDimension object
	ReciprocalDimension object

	DependentVariable object
	SparseSampling object

	Generic application objects - Beyond the CSD Model
	JSON file-serialization

	dD{p0, p1, …} example datasets
	1D{1} examples
	2D{1} examples
	2D{3} example
	3D{2} example
	 3D{6} example
	2D{1,1,2,1,1} example
	0D{1,1} example

	Conclusions

