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Abstract 15 

Generative models have shown breakthroughs in a wide spectrum of domains due to 16 

recent advancements in machine learning algorithms and increased computational 17 

power. Despite these impressive achievements, the ability of generative models to 18 

create realistic synthetic data is still under-exploited in genetics and absent from 19 

population genetics. 20 

 21 

Yet a known limitation of this field is the reduced access to many genetic databases 22 

due to concerns about violations of individual privacy, although they would provide a 23 

rich resource for data mining and integration towards advancing genetic studies. In this 24 

study, we demonstrated that deep generative adversarial networks (GANs) and 25 

restricted Boltzmann machines (RBMs) can be trained to learn the high dimensional 26 

distributions of real genomic datasets and create high quality artificial genomes (AGs) 27 

with none to little privacy loss. To illustrate the promising outcomes of our method, we 28 

showed that (i) imputation quality for low frequency alleles can be improved by 29 

augmenting reference panels with AGs, (ii) scores obtained from selection tests on 30 

AGs and real genomes are highly correlated and (iii) AGs can inherit genotype-31 

phenotype associations. AGs have the potential to become valuable assets in genetic 32 

studies by providing high quality anonymous substitutes for private databases. 33 

  34 
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Introduction 35 

Availability of genetic data has increased tremendously due to advances in sequencing 36 

technologies and reduced costs (Mardis 2017). The vast amount of human genetic 37 

data is used in a wide range of fields, from medicine to evolution. Despite the 38 

advances, cost is still a limiting factor and more data is always welcomed, especially 39 

in population genetics and genome-wide association studies (GWAS) which usually 40 

require substantial amounts of samples. Partially related to the costs but also to the 41 

research bias toward studying populations of European ancestry, many autochthonous 42 

populations are under-represented in genetic databases, diminishing the extent of the 43 

resolution in many studies (Cann 2002; Popejoy and Fullerton 2016; Mallick et al. 44 

2016; Sirugo et al. 2019). Additionally, a huge portion of the data held by government 45 

institutions and private companies is considered sensitive and not easily accessible 46 

due to privacy issues, exhibiting yet another barrier for scientific work. A class of 47 

machine learning methods called generative models might provide a suitable solution 48 

to these problems. 49 

 50 

Generative models are used in unsupervised machine learning to discover intrinsic 51 

properties of data and produce new data points based on those. In the last decade, 52 

generative models have been studied and applied in many domains of machine 53 

learning (Libbrecht and Noble 2015; Zhang et al. 2017; Rolnick and Dyer 2019). There 54 

have also been a few applications in the genetics field (Davidsen et al. 2019; Liu et al. 55 

2019; Tubiana et al. 2019; Shimagaki and Weigt 2019), one specific study focusing on 56 

generating DNA sequences via deep generative models to capture protein binding 57 

properties (Killoran et al. 2017).  Among the various generative approaches, we focus 58 

on two of them in this study, generative adversarial networks (GANs) and restricted 59 

Boltzmann machines (RBMs). GANs are generative neural networks which are 60 

capable of learning complex data distributions in a variety of domains (Goodfellow et 61 

al. 2014). A GAN consists of two neural networks, a generator and a discriminator, 62 

which compete in a zero-sum game (Supplementary Figure 1). During training, the 63 

generator produces new instances while the discriminator evaluates their authenticity. 64 

The training objective consists in learning the data distribution in a way such that the 65 

new instances created by the generator cannot be distinguished from true data by the 66 

discriminator. Since their first introduction, there have been several successful 67 
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applications of GANs, ranging from generating high quality realistic imagery to gap 68 

filling in texts (Ledig et al. 2017; Fedus et al. 2018). GANs are currently the state-of-69 

the-art models for generating realistic images (Brock et al. 2018). 70 

 71 

A restricted Boltzmann machine, initially called Harmonium is another generative 72 

model which is a type of neural network capable of learning probability distributions 73 

through input data (Smolensky 1986; Teh and Hinton 2001). RBMs are two layer neural 74 

networks consisting of an input (visible) layer and a hidden layer (Supplementary 75 

Figure 2). The learning procedure for the RBM consists in maximizing the likelihood 76 

function over the visible variables of the model. This procedure is done by adjusting 77 

the weights such that the correlations between the visible and hidden variables on both 78 

the dataset and sampled configurations from the RBM converge. Then RBM models 79 

recreate data in an unsupervised manner through many forward and backward passes 80 

between these two layers (Gibbs sampling), corresponding to sampling from the 81 

learned distribution. The output of the hidden layer goes through an activation function, 82 

which in return becomes the input for the hidden layer. Although mostly overshadowed 83 

by recently introduced approaches such as GANs or Variational Autoencoders 84 

(Kingma and Welling 2013), RBMs have been used effectively for different tasks (such 85 

as collaborative filtering for recommender systems, image or document classification) 86 

and are the main components of deep belief networks (Hinton and Salakhutdinov 2006; 87 

Hinton 2007; Larochelle and Bengio 2008). 88 

 89 

Here we propose and compare a prototype GAN model along with an RBM model to 90 

create Artificial Genomes (AGs) which can mimic real genomes and capture population 91 

structure along with other characteristics of real genomes. We envision two main 92 

applications of our generative methods: (i) improving the performance of genomic 93 

tasks such as imputation, ancestry reconstruction, GWAS studies, by augmenting 94 

genomic panels with AGs serving as proxies for private datasets, (ii) demonstrating 95 

that a proper encoding of the genomic data can be learned and possibly used as a 96 

starting input of various inference tasks by combining this encoding with recent neural 97 

network-based tools for the reconstruction of recombination, demography or selection 98 

(Sheehan and Song 2016; Adrion et al. 2019; Flagel et al. 2019).  99 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/769091doi: bioRxiv preprint first posted online Sep. 14, 2019; 

http://dx.doi.org/10.1101/769091
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 100 

Reconstructing genome wide population structure: 101 

Initially we created AGs with GAN, RBM, and two simple generative models for 102 

comparison: a Bernoulli and a Markov chain model (see Materials & Methods) using 103 

2504 individuals (5008 haplotypes) from 1000 Genomes data (1000 Genomes Project 104 

Consortium et al. 2015), spanning 805 SNPs from all chromosomes which reflect a 105 

high proportion of the population structure present in the whole dataset (Colonna et al. 106 

2014). Both GAN and RBM models capture a good portion of the population structure 107 

present in 1000 Genomes data while the other two models could only produce 108 

instances centered around 0 on principal component analysis (PCA) space (Figure 1). 109 

All major modes, corresponding to African, European and Asian genomes, are well 110 

represented in AGs produced by GAN and RBM models. Uniform manifold 111 

approximation and projection (UMAP) mapping results also correlate with the 112 

performed PCA (Supplementary Figure 3). We additionally checked the distribution of 113 

pairwise differences of haploid genomes to see how different AGs are from real 114 

genomes (Supplementary Figure 4). Both RBM and GAN models have highly similar 115 

distributions to the distribution of pairwise differences of the real genomes within 116 

themselves. Especially RBM excels at replicating the real peaks, indicating a high 117 

similarity with real genomes. Since GANs and RBMs showed an excellent performance 118 

for this use case, we further explored other characteristics using only these two 119 

models.  120 
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Figure 1. The six first axes of a PCA applied to real (gray) and artificial genomes (AGs) 121 

generated via Bernoulli (green), Markov chain (purple), GAN (blue) and RBM (red) 122 

models. There are 5000 haplotypes for each AG dataset and 5008 (2504 genomes) 123 

for the real dataset from 1000 Genomes spanning 805 informative SNPs. See 124 

Materials & Methods for detailed explanation of the generation procedures. 125 

 126 
 127 
Furthermore, similarly to tSNE and UMAP, RBMs perform a non-linear dimension 128 

reduction of the data and provides a suitable representation of a genomic dataset as 129 

a by-product based on the non-linear feature space associated to the hidden layer 130 

(Supplementary Text). As Diaz-Papkovich et al (Diaz-Papkovich et al. 2019), we found 131 

that the RBM representation differs from the linear PCA ones. Here we plot the 132 

representation corresponding to the selected RBM model and exhibit its rapid evolution 133 

through training (Supplementary Figure 5). 134 

 135 

Supplementary Figure 5 shows that African, East Asian, and to a lesser extent, 136 

European populations stand out on the two first components. The Finnish are slightly 137 

isolated from the other European (similar to Peruvian from American) populations on 138 

the first two components. South Asians are located at the center separated from 139 

Europeans, partially overlapping with American populations, and stand out at 140 

dimension 5 and higher. Interestingly when screening the hidden node activations, we 141 

observed that different populations or groups activate different hidden nodes, each one 142 

Real Bernoulli Markov_w10 GAN RBM
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representing a specific combination of SNPs, thereby confirming that the hidden layer 143 

provides a meaningful encoding of the data (Supplementary Figure 6). 144 

 145 

Reconstructing local high-density haplotype structure: 146 

To evaluate if high quality artificial dense genome sequences can also be created by 147 

generative models, we applied the GAN and RBM methods to a 10K SNP region using 148 

(i) the same individuals from 1000 Genomes data and (ii) 1000 Estonian individuals 149 

from the high coverage Estonian Biobank (Leitsalu et al. 2015) to generate artificial 150 

genomes. PCA results of AGs spanning consecutive 10K SNPs show that both GAN 151 

and RBM models can still capture the relatively toned-down population structure 152 

(Supplementary Figure 7) as well as the overall distribution of pairwise distances 153 

(Supplementary Figure 8). Looking at the allele frequency comparison between real 154 

and artificial genomes, we see that especially GAN performs poorly for low frequency 155 

alleles, due to a lack of representation of these alleles in the AGs (Supplementary 156 

Figure 9). On the other hand, the distribution of the distance of real genomes to the 157 

closest AG neighbour shows that GAN model, although slightly underfitting, 158 

outperforms RBM model, for which an excess of small distances points towards slight 159 

overfitting (Supplementary Figure 10). 160 

 161 

Additionally, we performed linkage disequilibrium (LD) analyses comparing artificial 162 

and real genomes to assess how successfully the AGs imitate short and long range 163 

correlations between SNPs. Pairwise LD matrices for real and artificial genomes all 164 

show a similar block pattern demonstrating that GAN and RBM accurately captured 165 

the overall structure with SNPs having higher linkage in specific regions (Figure 2a). 166 

However, plotting LD as a function of the SNP distance showed that all models capture 167 

weaker correlation, with RBM outperforming the GAN model perhaps due to its slightly 168 

overfitting characteristic (Figure 2b). To further determine the haplotypic integrity of 169 

AGs, we performed ChromoPainter (Lawson et al. 2012) and Haplostrips (Marnetto 170 

and Huerta-Sánchez 2017) analyses on AGs created using Estonians as the training 171 

data. It was visually impossible to distinguish the difference between real and artificial 172 

genomes in terms of local haplotypic structure with Haplostrips (Supplementary Figure 173 

11). However, majority of the AGs produced via GAN model displayed an excess of 174 

short chunks when painted against 1000 Genomes individuals, whereas RBM AGs 175 

were nearly indistinguishable from real genomes (Supplementary Figure 12). 176 
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Figure 2. Linkage disequilibrium (LD) analysis on real and artificial Estonian genomes. 177 

a) Correlation (r2) matrices of SNPs. Lower triangular parts are SNP pairwise 178 

correlation in real genomes and upper triangular parts are SNP pairwise correlation in 179 

artificial genomes. b) LD as a function of SNP distance. Pairwise SNP distances were 180 

stratified into 50 bins and for each distance bin, the correlation was averaged over all 181 

pairs of SNPs belonging to the bin. 182 

 183 

 184 
 185 
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After demonstrating that our models generated realistic AGs according to the 186 

described summary statistics, we investigated further whether they respected privacy 187 

by measuring the extent of overfitting. We calculated two metrics of resemblance and 188 

privacy, the nearest neighbour adversarial accuracy (AATS) and privacy loss presented 189 

in a recent study (Yale et al. 2019).  AATS score measures whether two datasets were 190 

generated by the same distribution based on the distances between all data points and 191 

their nearest neighbours in each set. When applied to artificial and real datasets, a 192 

score between 0.5 and 1 indicates underfitting, between 0 and 0.5 overfitting (and likely 193 

privacy loss), and exactly 0.5 indicates that the datasets are indistinguishable. By using 194 

an additional real test set, it is also possible to calculate a privacy loss score that is 195 

positive in case of information leakage, negative otherwise, and approximately ranges 196 

from -0.5 to 0.5. Computed on our generated data, both scores support haplotypic 197 

pairwise difference results confirming the underfitting nature of GAN AGs and slightly 198 

overfitting nature of RBM AGs with a small risk of privacy leakage for the latter 199 

(Supplementary Figure 13). 200 

 201 

Since it has been shown in previous studies that imputation scores can be improved 202 

using additional population specific reference panels (Gurdasani et al. 2015; Mitt et al. 203 

2017), as a possible future use case, we tried imputing real Estonian genomes using 204 

1000 Genomes reference panel and additional artificial reference panels with Impute2 205 

software (Howie et al. 2011). Both combined RBM AG and combined GAN AG panels 206 

outperformed 1000 Genomes panel for the lowest MAF bin (for MAF < 0.05, 0.015 and 207 

0.024 improvement respectively) which had 5926 SNPs out of 9230 total (Figure 3). 208 

Also mean info metric over all SNPs was 0.009 and 0.015 higher for combined RBM 209 

and GAN panels respectively, compared to the panel with only 1000 Genomes 210 

samples. However, aside from the lowest MAF bin, 1000 Genomes panel 211 

outperformed both concatenated panels for all the higher bins. This might be a 212 

manifestation of haplotypic deformities in AGs that might have disrupted the imputation 213 

algorithm. 214 

  215 
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Figure 3. Imputation evaluation of three different reference panels based on Impute2 216 

software’s info metric. Imputation was performed on 8678 Estonian individuals (which 217 

were not used in training of GAN and RBM models) using only 1000 Genomes panel 218 

(gray), combined 1000 Genomes and GAN artificial genomes panel (blue) and 219 

combined 1000 Genomes and RBM artificial genomes panel (red). SNPs were divided 220 

into 10 MAF bins, from 0.05 to 0.5, after which mean info metric values were calculated. 221 

Bars in the zoomed section show the standard error of mean.  222 

 223 
 224 
Selection tests: 225 

We additionally performed cross population extended haplotype homozygosity (XP-226 

EHH) and population branch statistic (PBS) on a 3348 SNP region homogenously 227 

dispersed over chromosome 15 to assess if AGs can also be used for selection tests. 228 

Both XP-EHH and PBS results provided high correlation between the scores of real 229 

and artificial genomes (Figure 4). The peaks observed in real genome scores which 230 

might indicate possible selection signals were successfully captured by AGs. 231 

 232 

Figure 4. Selection tests on chromosome 15. a) Standardized XP-EHH scores of real 233 

and artificial Estonian genomes using 1000 Genomes Yoruba population (YRI) as the 234 
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complementary population. Correlation coefficient between real and GAN XP-EHH 235 

score is 0.902, between real and RBM XP-EHH score is 0.887. b) PBS scores of real 236 

and artificial Estonian genomes using 1000 Genomes Yoruba (YRI) and Japanese 237 

(JPT) populations as the complementary populations. PBS window size is 10 and step 238 

size is 5. Dotted black line corresponds to the 99th percentile. Correlation coefficient 239 

between real and GAN PBS score is 0.923, between real and RBM PBS score is 0.755. 240 

Highest peaks are marked by an asterisk. 241 

 242 

 243 
 244 

 245 

Linking genotypes with phenotypes: 246 

We then explored the possibility of creating AGs with unphased genotype data and 247 

recreating phenotype-genotype associations using generative models. As a proof of 248 

concept, we created GAN AGs via training on 1925 Estonian individuals with 5000 249 

SNPs using unphased genotypes instead of haplotypes. There was an additional 250 

column in this dataset representing eye color (blue or brown). This region 251 

encompasses rs12913832 SNP which is highly associated with eye color phenotype 252 

(Han et al. 2008; Eriksson et al. 2010; Zhang et al. 2013). In our real genome dataset, 253 

nearly 96% of the individuals possessing at least one ancestral allele (A) have brown 254 

eye color while this percentage is 80% in GAN AGs. Similarly, 97% of all blue-eyed 255 

real individuals and 88% of the artificial ones are homozygous for the derived allele 256 

a.

b.

* * *

*
*

*
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(G). No blue-eyed individuals are homozygous for the ancestral alleles in the real 257 

dataset and only 9 individuals out of the 1925 GAN AGs were homozygous ancestral 258 

with blue eyes (Supplementary Table). Chi-square tests based on the contingency 259 

tables were highly significant for both the real and artificial datasets (p-values < 2.2e-260 

16 ; Supplementary Table 1). These results suggest that AGs were able to reproduce 261 

the genotypic-phenotypic association existing in the real dataset. We could not detect 262 

the same association in the RBM AG dataset (see Discussion).   263 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/769091doi: bioRxiv preprint first posted online Sep. 14, 2019; 

http://dx.doi.org/10.1101/769091
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion 264 

In this study, we applied generative models to produce artificial genomes and 265 

evaluated their characteristics. To the best of our knowledge, this is the first application 266 

of GAN and RBM models in population genetics context, displaying overall promising 267 

applicability. We showed that population structure and frequency-based features of 268 

real populations can successfully be preserved in AGs created using GAN and RBM 269 

models. Furthermore, both models can be applied to sparse or dense SNP data given 270 

a large enough number of training individuals. Our different trials showed that the 271 

minimum required number of individuals for training is highly variable, possibly 272 

correlated with the diversity among individuals (data not shown). Since haplotype data 273 

is more informative, we created haplotypes for the analyses but we also demonstrated 274 

that the GAN model can be applied to genotype data too, by simply combining two 275 

haplotypes if the training data is not phased (see Materials & Methods). In addition, we 276 

showed that it is possible to generate AGs with simple phenotypic traits through 277 

genotype data (see Results). Even though there were only two simple classes, blue 278 

and brown eye color phenotypes, generative models can be improved in the future to 279 

hold the capability to produce artificial datasets combining AGs with multiple 280 

phenotypes. The training of the RBM in this case did not work properly. We believe 281 

that it is because the encoding of the phenotype is not well-suited for the RBM. Further 282 

investigation on that part would be out of the scope of this article, but we suspect that 283 

an encoding of the type "one-hot" vector addition of a stronger learning rate for the 284 

weights linked to the phenotype nodes could improve the training. 285 

 286 

One major drawback of the proposed models is that, due to computational limitations, 287 

they cannot yet be harnessed to create whole artificial genomes but rather snippets or 288 

sequential dense chunks. Although parallel computing might be a solution, this might 289 

further disrupt the haplotype structure in AGs. Instead, adapting convolutional GANs 290 

for AG generation might be a possible solution in the future (Radford et al. 2016). 291 

Another problem arose due to rare alleles, especially for the GAN model. We showed 292 

that nearly half of the alleles become fixed in the GAN AGs in the 10K SNP dataset, 293 

whereas RBM AGs capture more of the rare alleles present in real genomes 294 

(Supplementary Figure 14). A known issue in GAN training is mode collapse (Salimans 295 

et al. 2016), which occurs when the generator fails to cover the full support of the data 296 
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distribution. This failure case could explain the inability of GANs to generate rare 297 

alleles. For some applications relying on rare alleles, GAN models less sensitive to 298 

mode dropping would be a promising alternative (Arjovsky et al. 2017; Lucas et al. 299 

2018). 300 

 301 

An important use case for the AGs in the future might be creating publicly available 302 

versions of private genome banks. Through enhancements in scientific knowledge and 303 

technology, genetic data becomes more and more sensitive in terms of privacy. AGs 304 

might offer a versatile solution to this delicate issue in the future by protecting the 305 

anonymity of real individuals. Our results showed that GAN AGs are possibly 306 

underfitting while, on the contrary, RBM AGs are slightly overfitting, based on 307 

distribution of minimum distance to the closest neighbour (Supplementary Figure 10) 308 

and AATS scores (Supplementary Figure 13a), although we showed how overfitting 309 

could be restrained by integrating AATS scores within our models as a criterion for early 310 

stopping in training (before the networks start overfitting). In the context of the privacy 311 

issue, GAN AGs have a slight advantage since underfitting is preferable. More distant 312 

AGs would hypothetically be harder to be traced back to the original genomes. We 313 

also tested the sensitivity of the AATS score and privacy loss (Supplementary Figure 314 

15). It appears that both scores are affected very slightly when we add only a few real 315 

genomes to the AG dataset from the training set. Although this case is easily detectable 316 

by examining the extreme left tail of the pairwise distribution, it advocates for combining 317 

multiple privacy loss criteria and developing other sensitive measurement techniques 318 

for better assessment of generated AGs. Additionally, even though we did not detect 319 

exact copies of real genomes in AG sets created either by RBM or GAN models, it is 320 

a very complicated task to determine if the generated samples can be traced back to 321 

the originals. Reliable measurements need to be developed in the future to assure 322 

complete anonymity of the source individuals given the released AGs. In particular, we 323 

will investigate whether the differential privacy framework is performant in the context 324 

of large population genomics datasets (Dwork et al. 2006; Torkzadehmahani et al. 325 

2019). 326 

 327 

Imputation results demonstrated promising outcomes especially for population specific 328 

low frequency alleles. However, imputation with both RBM and GAN AGs integrated 329 

reference panels showed slight decrease of info metric for higher frequency alleles 330 
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compared to only 1000 Genomes panel (Figure 3). We initially speculated that this 331 

might be related to the disturbance in haplotypic structure and therefore, tried to filter 332 

AGs based on chunk counts from ChromoPainter results, preserving only AGs which 333 

are below the average chunk count of real genomes. The reasoning behind this was 334 

to preserve most real-alike AGs with undisturbed chunks. Even with this filtering, slight 335 

decrease in higher MAF bins was still present (data not shown). Yet results of 336 

implementation with AGs for low frequency alleles and without AGs for high frequency 337 

ones could be combined to achieve best performance. In terms of imputation, future 338 

improved models can become practically very useful, largely for GWAS studies in 339 

which imputation is a common application to increase resolution. Different generative 340 

models such as MaskGAN (Fedus et al. 2018) which demonstrated good results in text 341 

gap filling might also be adapted for genetic imputation. RBM is possibly another option 342 

to be used as an imputation tool directly by itself, since once the weights have been 343 

learned, it is possible to fix a subset of the visible variables and to compute the average 344 

values of the unobserved ones by sampling the probability distribution (in fact, it is 345 

even easier than sampling entirely new configurations since the fixed subset of 346 

variables will accelerate the convergence of the sampling algorithm). 347 

 348 

Scans for detecting selection are another promising use case for AGs. The XP-EHH 349 

and PBS scores computed on AGs were highly correlated with the scores of real 350 

genomes. In particular, the highest peak we obtained for Estonian genomes was also 351 

present in AGs, although it was the second highest peak in RBM XP-EHH plot (Figure 352 

4). This peak falls within the range of skin color associated SLC24A5 gene, which is 353 

potentially under positive selection in many European populations (Basu Mallick et al. 354 

2013). 355 

 356 

As an additional feature, training an RBM to model the data distribution gives access 357 

to a latent encoding of data points, providing a potentially easier to use representation 358 

of data (Supplementary Figure 5). Future works could augment our current GAN model 359 

to also provide an encoding mechanism, in the spirit of (Dumoulin et al. 2016 Jun 2), 360 

(Chen et al. 2016) or (Donahue et al. 2016). These interpretable representations of the 361 

data are expected to be more relevant for downstream tasks (Chen et al. 2016) and 362 

could be used as a starting point for various population genetics analyses such as 363 

demographic and selection inference, or yet unknown tasks. 364 
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 365 

Although there are some current limitations, generative models will most likely become 366 

prominent for genetics in the near future with many promising applications. In this work, 367 

we demonstrated the first possible implementations and use of AGs in the forthcoming 368 

field which we would like to name artificial genomics.  369 
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Materials & Methods 370 

Data: 371 

We used 2504 individual genomes from 1000 Genomes Project (1000 Genomes 372 

Project Consortium 2015) and 1000 individuals from Estonian Biobank (Leitsalu et al. 373 

2015) to create artificial genomes (AGs). Additional 2000 Estonians were used as a 374 

test dataset. Another Estonian dataset consisting of 8678 individuals which were not 375 

used in training were used for imputation. Analyses were applied to a highly 376 

differentiated 805 SNPs selected as a subset from (Colonna et al. 2014), 3348 SNPs 377 

dispersed over the whole chromosome 15 and a dense 10000 SNP range/region from 378 

chromosome 15. We also used a narrowed down version of the same region from 379 

chromosome 15 with 5000 SNPs with an additional eye color column for unphased 380 

genotype data using another 1925 Estonians as training dataset. In this set, 958 of the 381 

Estonian samples have brown (encoded as 1) and 967 have blue eyes (encoded as 382 

0). In the data format we used, rows are individuals/haplotypes (instances) and 383 

columns are positions/SNPs (features). Each allele at each position is represented 384 

either by 0 or 1. In the case of phased data (haplotypes), each column is one position 385 

whereas in the case of unphased data, each two column corresponds to a single 386 

position with alleles from two chromosomes. 387 

 388 

GAN Model: 389 

We used python-3.6, Keras 2.2.4 deep learning library with TensorFlow backend 390 

(Chollet 2015), pandas 0.23.4 (McKinney 2010) and numpy 1.16.4 (Oliphant 2007) for 391 

the GAN code. Generator of the GAN model we present consists of an input layer with 392 

the size of the latent vector size 600, one hidden layer with size proportional to the 393 

number of SNPs as SNP_number/1.2 rounded, another hidden layer with size 394 

proportional to the number of SNPs as SNP_number/1.1 rounded and an output layer 395 

with the size of the number of SNPs. The latent vector was set with 396 

numpy.random.normal function setting the mean of the distribution as 0 and the 397 

standard deviation as 1. The discriminator consists of an input layer with the size of 398 

the number of SNPs, one hidden layer with size proportional to the number of SNPs 399 

as SNP_number/2 rounded, another hidden layer with size proportional to the number 400 

of SNPs as SNP_number /3 rounded and an output layer of size 1. All layer outputs 401 

except for output layers have LeakyReLU activation functions with leaky_alpha 402 
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parameter 0.01 and L2 regularization parameter 0.0001. The generator output layer 403 

activation function is tanh and discriminator output layer activation function is sigmoid. 404 

Both discriminator and combined GAN were compiled with Adam optimization 405 

algorithm with binary cross entropy loss function. We set the discriminator learning rate 406 

as 0.0008 and combined GAN learning rate as 0.0001. For 5000 SNP data, the 407 

discriminator learning rate was 0.00008 and combined GAN learning rate was 0.00001. 408 

Training to test dataset ratio was 3:1. We used batch size of 32 and trained all datasets 409 

up to 20000 epochs. We tried stopping the training based on AATS scores. The score 410 

was calculated at 200 epoch intervals. For 805 SNP data, AATS converged very quickly 411 

close to optimum 0.5 score. However, the difference between AAtruth and AAsyn scores 412 

indicates possible overfitting to multiple data points so it was difficult to define a 413 

stopping point. For 10K SNP data, convergence was observed after ~30K epochs (to 414 

around 0.75) and reduced the number of fixed alleles in AGs but the gain was very 415 

minimal (Supplementary Figure 16). Additionally, GAN was prone to mode collapse 416 

especially after 20K epochs which resulted in multiple failed training attempts. 417 

Therefore, we stopped training based on coherent PCA results of AGs with real 418 

genomes. During each batch in the training, when only the discriminator is trained, we 419 

applied smoothing to the real labels (1) by vectoral addition of random uniform 420 

distribution via numpy.random.uniform with lower bound 0 and upper bound 0.1. 421 

Elements of the generated outputs were rounded to 0 or 1 with numpy.rint function. 422 

 423 

RBM Model: 424 

The RBM was coded in Julia (Bezanson et al. 2017), and all the algorithm for the 425 

training has been done by the authors. The part of the algorithm involving linear algebra 426 

used the standard package provided by Julia. Two versions of the RBM were 427 

considered. In both versions, the visible nodes were encoded using Bernoulli random 428 

variables {0,1}, and the size of the visible layer was the same size as the considered 429 

input. Two different types of hidden layers were considered. First with a sigmoid 430 

activation function (hence having discrete {0,1} hidden variables), second with ReLu 431 

(Rectified Linear unit) activations in which case the hidden variables were positive and 432 

continuous (there are distributed according to a truncated gaussian distribution when 433 

conditioning on the values of the visible variables). Results with sigmoid activation 434 

function were worse compared to ReLu so we used ReLu for all the analyses 435 

(Supplementary Figure 17MY). The number of hidden nodes considered for the 436 
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experiment was Nh=100 for the 805 SNP dataset and Nh=500 for the 10k one. There 437 

is no canonical way of fixing the number of hidden nodes, in practice we checked that 438 

the number of eigenvalues learnt by the model was smaller than the number of hidden 439 

nodes, and that by adding more hidden nodes no improvement were observed during 440 

the learning. The learning in general is quite stable, in order to have a smooth learning 441 

curve, the learning rate was set between 0.001 and 0.0001 and we used batch size of 442 

32. The negative term of the gradient of the likelihood function was approximated using 443 

the PCDk method (Brügge et al. 2013), with k=10 and 100 of persistent chains. As a 444 

stopping criterion, we looked at when the AATS score converges to the ideal value of 445 

0.5 when sampling the learned distribution. When dealing with large and sparse 446 

datasets for selection tests, RBM model did not manage to provide reasonable AATS 447 

scores because the sampling is intrinsically difficult for large systems with strong 448 

correlation. In that case, we used coherent PCA results as a stopping criterion. 449 

 450 

Bernoulli Distribution Model: 451 

We used python-3.6, pandas 0.23.4 and numpy 1.16.4 for the Bernoulli distribution 452 

model code. Each allele at a given position was randomly drawn given the derived 453 

allele frequency in the real population.  454 

  455 

Markov Chain Model: 456 

We used python-3.6, pandas 0.23.4 and numpy 1.16.4 for the Markov chain model 457 

code. Allele at the initial position was set by drawing from a Bernoulli distribution 458 

parameterized with the real frequency. Each successive allele was then drawn 459 

randomly according to its probability given the previous sequence window. After the 460 

initial position, the sequence window size increased incrementally up to a predifined 461 

window size (5 or 10 SNPs). 462 

 463 

Chromosome Painting: 464 

We compared the haplotype sharing distribution between real and artificial 465 

chromosomes through ChromoPainter (Lawson et al. 2012). In detail, we have painted 466 

100 randomly selected “real” and “artificial” Estonians (recipients) against all the 1000 467 

Genome Project phased data (donors). The nuisance parameters -n (348.57) and -M 468 

(0.00027), were estimated running 10 iterations of the expectation-maximization 469 

algorithm on a subset of 3,800 donor haplotypes.  470 
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 471 

Haplostrips: 472 

We used Haplostrips (Marnetto and Huerta-Sánchez 2017) to visualize the haplotype 473 

structure of real and artificial genomes. We extracted 500 individuals from each sample 474 

set (Real, GAN AGs, RBM AGs) and considered them as different populations. Black 475 

dots represent derived alleles, white dots represent ancestral alleles. The plotted SNPs 476 

were filtered for a population specific minor allele frequency >5%; haplotypes were 477 

clustered and sorted for distance against the consensus haplotype from the real set. 478 

See the application article for further details about the method.  479 

 480 

Nearest Neighbour Adversarial Accuracy (AATS) and Privacy Loss 481 

We used the following equations for calculating AATS and privacy loss scores (Yale et 482 

al. 2019):  483 

𝐴𝐴"#$"% = 	
1
𝑛*𝟏(𝑑./(𝑖) > 𝑑..

3

456

(𝑖))	 484 

𝐴𝐴783 = 	
1
𝑛*𝟏(𝑑/.(𝑖) > 𝑑//

3

456

(𝑖)) 485 

𝐴𝐴./ = 	
1
2 (𝐴𝐴"#$: +	𝐴𝐴783) 486 

𝑃𝑟𝑖𝑣𝑎𝑐𝑦	𝐿𝑜𝑠𝑠 = 	𝑇𝑒𝑠𝑡	𝐴𝐴./ − 𝑇𝑟𝑎𝑖𝑛	𝐴𝐴./ 487 

 488 

where 𝑛 is the number of real samples as well as of artificial samples; 𝟏 is a function 489 

which takes the value 1 if the argument is true and 0 if the argument is false; 𝑑./(𝑖) is 490 

the distance between the real genome indexed by i and its nearest neighbour in the 491 

artificial genome dataset; 𝑑/.(𝑖) is the distance between the artificial genome indexed 492 

by i and its nearest neighbour in the real genome dataset; 𝑑..(𝑖) is the distance of the 493 

real genome indexed by i to its nearest neighbour in the real genome dataset; 𝑑//(𝑖) 494 

is the distance of the artificial genome indexed by i to its nearest neighbour in the 495 

artificial genome dataset. An AATS score of 0.5 is optimal whereas lower values 496 

indicate overfitting and higher values indicate underfitting. For a better resolution for 497 

the detection of overfitting, we also provided AAtruth and AAsyn metrics identified in the 498 

general equation of AATS. If AATS ≈ 0.5 but AAtruth ≈ 0 and AAsyn ≈ 1, this means that 499 

the model is not overfitting in terms of a single data point but multiple ones. In other 500 
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words, the model might be focusing on small batches of similar real genomes to create 501 

artificial genomes clustered at the center of each batch. 502 

 503 

Selection Tests: 504 

We used scikit-allel package for XP-EHH (Sabeti et al. 2007) and PBS (Yi et al. 2010) 505 

tests. We used 1000 Estonian individuals (2000 haplotypes) with 3348 SNPs which 506 

were homogenously dispersed over chromosome 15 for the training of GAN and RBM 507 

models. For XP-EHH, Yoruban (YRI, 216 haplotypes) population from 1000 Genomes 508 

data was used as the complementary population. For PBS, Yoruban (YRI, 216 509 

haplotypes) and Japanese (JPT, 208 haplotypes) populations from 1000 Genomes 510 

data were used as complementary populations. PBS window size was 10 and step 511 

size was 5, resulting in 668 windows. 216 real and 216 AG haplotypes were compared 512 

for the analyses.  513 
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