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ARTICLE

Dissociating task acquisition from expression
during learning reveals latent knowledge
Kishore V. Kuchibhotla 1,2,9,10, Tom Hindmarsh Sten3,4,8,9, Eleni S. Papadoyannis3,4, Sarah Elnozahy1,

Kelly A. Fogelson1, Rupesh Kumar5, Yves Boubenec5, Peter C. Holland1,2, Srdjan Ostojic 6 &

Robert C. Froemke 3,4,7,10

Performance on cognitive tasks during learning is used to measure knowledge, yet it remains

controversial since such testing is susceptible to contextual factors. To what extent does

performance during learning depend on the testing context, rather than underlying knowl-

edge? We trained mice, rats and ferrets on a range of tasks to examine how testing context

impacts the acquisition of knowledge versus its expression. We interleaved reinforced trials

with probe trials in which we omitted reinforcement. Across tasks, each animal species

performed remarkably better in probe trials during learning and inter-animal variability was

strikingly reduced. Reinforcement feedback is thus critical for learning-related behavioral

improvements but, paradoxically masks the expression of underlying knowledge. We capture

these results with a network model in which learning occurs during reinforced trials while

context modulates only the read-out parameters. Probing learning by omitting reinforcement

thus uncovers latent knowledge and identifies context- not “smartness”- as the major source

of individual variability.
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Assessment of learning and aptitude often requires animals
and humans to report their underlying knowledge at a
given moment, often in specific testing environments or

contexts1. In reinforcement learning paradigms, learning rates are
inferred from behavioral reports2. Self-reporting, however, is
highly sensitive to a variety of contextual factors unrelated to
knowledge of the core task demands3,4, potentially confounding
the interpretation of behavioral performance. Animal models of
learning have gained traction in recent years because they allow
more direct links to be established between behavioral perfor-
mance, computations and algorithms used for learning, and
neural implementations of these algorithms5. The ability to
monitor the activity of the same neurons over many days using
chronic two-photon imaging6 and single-unit electrophysiology7

has further accelerated the exploration of neural mechanisms of
learning. To date, studies focused on acquisition of task knowl-
edge (i.e., learning rate) depend upon measuring expression of
that knowledge by an animal’s own self-report. This is true for
sensorimotor tasks typically used across sensory modalities6,8–13

Moreover, a key tenant of behavioral and systems neuroscience
posits that humans and other animals learn tasks at vastly dif-
ferent rates6,10,14–17. This has led to the idea that inter-animal
variability in performance arises from differences in underlying
learning rate parameters that impact the rate of task acquisi-
tion17–19. While attempts have been made to link learning-related
performance variability to various modulatory factors16,20, these
approaches mostly focus on the acquisition of task-related
contingencies.

Here, we dissociate the acquisition of underlying stimulus-
action associations from context-dependent expression by
manipulating the testing context. We introduce a simple beha-
vioral manipulation, removing access to reinforcement (probe
context), and then measure behavioral performance in two dis-
tinct contexts, one with reinforcement and the other without.
Surprisingly, we identify two parallel learning processes, one
related to the acquisition of task contingencies (revealed in the
probe context) and the other related to the expression of that
knowledge (demonstrated in the reinforced context). Across
tasks, each animal species performed remarkably better in the
probe context during learning and inter-animal variability was
strikingly reduced. In the presence of reinforcement, performance
trajectories were slower and far more variable between individual
animals. As a result, we find that the probe context reveals a
learning trajectory that more faithfully describes the acquisition
of stimulus-action associations while the reinforced context
demonstrates the role of contextual factors in modulating beha-
vioral expression. We capture these results with a network model
in which learning occurs during reinforced trials while context
modulates only the read-out parameters. Reinforcement feedback
is thus critical for learning-related plasticity but simultaneously
can mask the expression of underlying knowledge.

Results
Expression of knowledge during learning is context-dependent.
To determine how context affects the behavioral assessment of
learning, we first trained mice on an auditory go/no-go stimulus
recognition task21 (Fig. 1a). Mice learned to lick for a water
reward provided through a lick tube after hearing a conditioned
stimulus (the ‘target’ tone) and to withhold from licking after
hearing an unrewarded (‘foil’) tone of a different frequency
(Fig. 1b). Similar to a previous report21, animals learned to per-
form the task at expert levels in the reinforced context over the
course of multiple training sessions (Fig. 1c). At expert levels,
mice consistently licked to the target tone (Fig. 1d) and withheld
from licking to the foil tone (Fig. 1d, Supplementary Movie 1).

Over the course of learning, we interleaved the reinforced
context with a smaller number of trials without reinforcement by
removing the licktube (‘probe context’, Fig. 1e). In the probe
context, we removed the licktube for a subset of trials (<40) in
order to test whether absence of reinforcement would change the
self-report of the mice. First, we focused on a trial block early in
learning (trial block 1500–2000) when animals were tone
responsive; i.e., they licked indiscriminately to both target and
foil tones in the reinforced context, but did not lick during the
inter-trial interval (Fig. 1f, ‘reinforced context’, Fig. 1g, Supple-
mentary Movie 2; hits: 96.0 ± 1.4%, false-alarms: 81.0 ± 4.6%).
Surprisingly, when we removed the licktube for the probe trials,
all mice discriminated between the tones by reliably licking to
targets while rarely licking to foils, exhibiting expert performance
despite their variable and often poor performance in the presence
of the licktube (Fig. 1f, ‘probe context’, Fig. 1g, Supplementary
Movie 3, hit rate: 93.0 ± 2.1%, false-alarm rate: 19.0 ± 3.5%). The
improvement of behavioral performance was specific to the probe
context, and did not drive improvements in performance in
reinforced trials immediately following the probing (Fig. 1h–j).
Mice therefore appeared to understand the task contingencies
many days before they expressed this knowledge in the presence
of reinforcement.

We then tracked probe learning trajectories throughout learning
in a subset of mice (Fig. 1k–m). Differences in acquisition versus
expression were particularly acute early in learning (Fig. 1k,
example mouse; Fig. 1l, summary of all mice, reinforced trials to
expert: 4728 ± 647 trials; probe trials to expert: 1765 ± 108 trials;
N= 7 mice, p= 0.0055). Interestingly, behavioral performance in
the probe context more judiciously separated the stages of
associative learning as shown by the hit and false alarm rates
over learning (Fig. 1m). Animals discriminated poorly early in
learning (trials 0–500) in both contexts, with a markedly lower
action rate in the probe context (Fig. 1m, trials 0–500: reinforced
hit rate: 82.3 ± 3.8%, reinforced false-alarm rate: 78.2 ± 2.8%; probe
hit rate: 35.8 ± 7.8%, probe false-alarm rate: 25.1 ± 6.9%, N= 7
mice, F(3, 18)= 33.17, p < 0.001 between contexts, p > 0.05 within
contexts, one-way repeated-measures ANOVA followed by
Tukey’s post-hoc correction; Fig. 1l probe context: d′= 0.3 ± 0.2;
reinforced context: d′= 0.2 ± 0.1; t(6)= 0.7055, p= 0.51, Student’s
paired two-tailed t-test). Moreover, hit and false alarm rates were
equally affected by the presence of reinforcement at this early stage
(ΔTarget= 46.6 ± 6.8%, ΔFoil= 53.1 ± 8.3%, t(6)=−0.988, p=
0.36, Student’s paired two-tailed t-test). As learning progressed in
the probe context, animals first acquired a generalized tone-reward
association. This resulted in a modest increase in both the hit and
false-alarm rates in the probe context (Fig. 1m). Subsequently,
performance in the probe context rapidly improved as the tone-
reward association became increasingly stimulus specific. Overall,
these data show that the acquisition of task knowledge or
contingencies (e.g., some stimuli predict positive outcomes, others
do not) can be dissociated from the expression of that knowledge
(e.g., the decision to lick or not).

Learning studies often focus on single task structures and single
animal models, making it difficult to distill general principles of
learning across species and behavior. In particular, using licking
as the operant response is a potential confound, as the motor
action of licking is used as both the learned motor action and the
consummatory appetitive response. Moreover, head-fixed mice
may use different strategies and/or be particularly sensitive to
reinforcement given their limited ability to forage (due to head-
fixation). For example, freely-moving rodents may engage in
different types of exploratory foraging than head-fixed animals.
To address whether testing context influences performance in
other task structures and other species, we performed additional
studies in mice, rats, and ferrets.
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First, we tested whether separating the motor action from the
consummatory response would retain (or abolish) the dissocia-
tion between task acquisition and expression. In the reinforced
context, head-fixed mice were trained to press a lever in response
to the target tone to gain access to water reward provided through
a licktube (Supplementary Fig. 1a, b). This design added an
additional key feature: the licktube was normally absent in the
reinforced context and was only introduced for a short period to
deliver the water and then immediately retracted. As a result, the
sensory environment in the probe and reinforced contexts were

identical, removing the possibility of the licktube presence in the
reinforced context as an impulsive driver of licking; instead, the
possibility of reinforcement was more abstract. Early in learning
(trial block 1500–2000), we found that mice pressed the lever at
high rates for both the target and foil tones in the reinforced
context (Supplementary Movie 4; Supplementary Fig. 1c, hit
rate= 95.3 ± 3.3%, false-alarm rate= 80.0 ± 7.1%, p= 0.3). In the
probe context, however, we observed a high response rate for the
target tone but a stark reduction in responding to the foil tone,
similar to what we observed in the lick-version of this task

a

Licktube

Optical
beam

Tone

Licking

Reward

Target Foil

b c d

Reinforced
context

Probe
context

e

Probe

f Trial block 1500–2000 (reinforced context)
Ta

rg
et

F
oi

l
Ta

rg
et

F
oi

l

FA

CR

Hit

Hit

g

Tone

Tone

Tone

Tone

100

50

R
at

e 
(%

)

Hit False
alarm

Expert

Trials

2000 4000 6000

d’

4

1

~400 trials/day

20–40 trials/day

100

50

R
at

e 
(%

)

Hit False
alarm

Trial block 1500–2000 (probe context)
100

50

R
at

e 
(%

)

Hit False
alarm

k

Reinf

Probe

Reinforced R R

100

R
at

e 
(%

)

0

3

d’

0

60000

Probe

3

d’

0

Trials

l

m

Trials
60000

Reinforced

100

R
at

e 
(%

)

0

Trials
60000

Probe

Sound

Reinf Probe Reinf

H
it 

ra
te

 (
%

)

100

50

Reinf Probe Reinf

FA
 r

at
e 

(%
)

100

50

Reinf Probe Reinf

d’

2

0

4

h i j

*** ***
ns

*** ***
ns

ns ns
ns

Reinf

60000
Trials

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10089-0 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2151 | https://doi.org/10.1038/s41467-019-10089-0 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(Supplementary Movie 5; Supplementary Fig. 1c, hit rate= 86.5
± 5.4%, false-alarm rate= 37.5 ± 7.8%, p= 0.014). Later in
learning, we observed high hit rates and low false-alarm rates
in both the reinforced and probe contexts (Supplementary
Fig. 1d). This demonstrates a clear dissociation between
acquisition and expression and is similar to our observations in
the previous lick-based version of this task.

Second, we assessed whether task acquisition and expression
were dissociated in freely-moving rats using a different audio-
visual behavioral paradigm. In the reinforced context of this
Pavlovian discrimination task, a tone alone (S+) predicts the
appearance of food in a food cup, whereas a light presented 5 s
before the same tone (S−) reverses the tone’s predictive quality
(i.e., no food is delivered). In the probe context, food was not
delivered to the food cup for either the S+ or S−. This task
benefits from an analog measure of performance: rather than a
binary decision (such as lick or no-lick), responses to each
stimulus type was recorded as the percentage of the food-
sampling window (5 s post-stimulus) rats spent in the food cup.
We found that rats learned this task in the reinforced context
within 8 trial blocks (Fig. 2b, 3–8 trial blocks to expert).
Remarkably, freely-moving rats reliably discriminated in probe
trials much earlier in training than they did in reinforced trials—
all rats spent significantly less time at the food cup following the
S− stimulus than following the S+ stimulus (Fig. 2c). Thus,
paralleling the task-learning in head-fixed mice, probe trials
revealed that rats in this freely-moving task had acquired the
correct stimulus-action associations long before their perfor-
mance in the presence of reinforcement reached expert levels
(Fig. 2d). Animals also performed significantly better in the probe
context even after their performance had reached expert levels in
the reinforced context (Fig. 2e).

Third, we aimed to determine whether dissociation between
acquisition and expression could be observed in a fear
conditioning task, and therefore examined the behavior of rats
in a previous study (Holland and Lamarre, 198422). In this
discrimination task, rats were first trained to press a lever for
sucrose reinforcement, and Pavlovian fear conditioning proce-
dures were subsequently superimposed on this operant lever

pressing baseline. When a tone target stimulus was presented
alone (S+), it was paired with foot shock, but not when it was
presented following a light feature (S−) (Supplementary Fig. 2a).
Fear conditioning was assessed by measuring the suppression of
operant lever press responding during the tone, and discrimina-
tion as the difference in suppression ratio to the S+ and S−. In
this earlier study, Holland and Lamarre22 assessed performance
in reinforced versus probe contexts but did not explicitly compare
the two. We found that—similar to our results with appetitive
conditioning—performance in the probe context was greatly
improved compared with the reinforced context in trained
animals (Fig. 2f). In the probe context, animals did not change
their response to the S+, but significantly increased lever presses
following S− (Supplementary Fig. 2b). Thus, in comparison with
reward learning tasks, animals increased behavioral responses in
the probe context to more accurately discriminate between the
target and foil stimulus.

Fourth, we tested whether the dissociation between reinforced
and probe contexts could be observed in freely-moving animals
when the motor action was distinct from the consummatory
response. In this operant ambiguous-feature discrimination
task23, a single light feature stimulus indicated both that sucrose
reinforcement was available for lever pressing during a target
tone, and that reinforcement was not available during a white
noise stimulus. Thus, the rats were trained with a discrimination
procedure in which lever presses were reinforced during a light+
tone compound, but not during that tone alone, and during a
noise when it was presented alone but not during a compound of
light and noise. Because each stimulus (light, tone, and noise) is
ambiguously related to reinforcement, a more complicated form
of configural learning is required to solve the task. In this task, we
also observed a significant improvement in performance in the
probe compared with the reinforced contexts (Fig. 2g, h).

Finally, we ensured that these results were not specific to rodents,
by performing similar behavioral experiments in two ferrets. Ferrets
are carnivores with gyrencephalic brains and well-differentiated
frontal cortices similar to primates24. We trained two head-fixed
ferrets to discriminate between two click-trains in a go/no-go task
design. Ferrets also performed substantially better in the probe

Fig. 1 Expression of underlying task knowledge is context-dependent. a Behavioral schematic in the reinforced context. b Mice are trained to lick to the
target tone for water and to withhold from licking to the foil tone. c Behavioral sensitivity (d’) over trials in the reinforced context (max d’: 2.7 ± 0.2, N= 14
mice, black line is sigmoidal fit to average). d Hit and false-alarm rates of individual animals at peak performance rates (hit rate: 96.0 ± 0.9%, N= 14 mice;
false-alarm rate: 28.0 ± 2.9%). e Top: same as a. Middle: 20–40 probe trials are interleaved with reinforced training each day, during which the licktube
was removed and no reinforcements available. Bottom: typical daily training structure, 200–300 reinforced trials, 20–40 probe trials, 70–200 reinforced
trials. f Still-frames from a movie in a training session between trials 1500–2000. Reinforced context (licktube present); mouse correctly responding to a
target tone; mouse erroneously responding to a foil tone. Probe context (no licktube present, same session): mouse correctly responding to a target tone in
the probe context with a lick; mouse correctly withholding a response to a foil tone. g Top: average hit rate (95.8 ± 1.4%, N= 14 mice) and false-alarm rate
(81.6 ± 4.6%) across trials 1500–2000 in the reinforced context. Bottom: average hit rate (92.8 ± 2.1%, N= 14 mice) and false-alarm rate (18.7 ± 3.5%) in
the probe context. F(3,39)= 198.05, one-way repeated-measures ANOVA, Tukey’s post-hoc correction, p= 0.84 between hit rates, p < 0.05 for all other
comparisons. h Hit rates remain constant across contexts (Trials 1500–2000, hit rates, pre-reinforced= 91.3 ± 3.21%, probe= 89.1 ± 2.92%, post-
reinforced= 89.7 ± 2.90%, n= 14 animals; F(2,26)= 0.1932, p= 0.851 between pre-reinforced and probe contexts, p= 0.914 between reinforced
contexts, p= 0.973 between post-reinforced and probe contexts, one-way repeated measures ANOVA, Tukey’s post-hoc correction). i False-alarm rate
during probe trials is significantly lower than during the reinforced trials (Trials 1500–2000, pre-reinforced false-alarm rate: 81.9 ± 4.5%, probe false-alarm
rate: 15.5 ± 2.7%, post-reinforced false-alarm rate: 77.7 ± 4.9%, n= 14 animals; F(2,26)= 107.8, p < 0.0001 between reinforced sessions and probe
contexts, p= 0.548 between reinforced contexts, one-way repeated measures ANOVA, Tukey’s post-hoc correction). j Behavioral sensitivity (d’) is
significantly higher during probe trials than in the reinforced sessions (Trials 1500–2000, pre-reinforced d’: 0.40 ± 0.18, probe d’: 2.46 ± 0.18, post-
reinforced d’: 0.53 ± 0.19, N= 14 mice; F(2,26)= 44.56, p < 0.001 between reinforced sessions and probe contexts, p= 0.827 between reinforced
contexts, one-way repeated measures ANOVA, Tukey’s post-hoc correction). k Learning trajectories of an individual animal in the reinforced (black, n= 24
training sessions) and probe (gray, n= 6 training sessions) context. Dots indicate individual training sessions; lines indicate a sigmoidal fit. l Average d’ of a
subset of animals whose learning was tracked in both the reinforced (black, N= 4–7 mice per time bin) and probe (gray, N= 4–7 mice per time bin)
contexts. Dots indicate trial bins; solid lines indicate a sigmoidal fit. Reinforced trials to expert: 4728 ± 647 trials; probe trials to expert: 1765 ± 108 trials;
N= 7 mice, t(6)= 4.359, p= 0.0055.m Average learning trajectories in the reinforced context (left) and probe context (right) (N= 7 mice, magenta= hit
rate, cyan= false-alarm rate, all error bars indicate mean ± s.e.m)
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context much earlier in training as compared with the reinforced
context (Supplementary Fig. 3a–c). Taken together, the dissociation
between acquisition and expression reveals latent knowledge in
mice, rats, and ferrets and across a variety of task designs.

A network model captures the learning dynamics. What com-
putational mechanisms may underlie the dissociation between
learning curves in reinforced and probe trials? Classical reinforce-
ment learning theory describes behavioral learning in terms of two
systems, one that updates values of different stimulus-action asso-
ciations based on the obtained reinforcement, and another that
generates actions in response to stimuli by reading out the values of
the different options. We hypothesized that learning of action
values takes place only during reinforced trials, while the changes
between contexts (reinforced and probe trials) do not change the
learned values of different options, but modulate only the read-out
parameters to consider factors such as impulsivity or exploration.
Such a mechanism would lead to a difference at the level of
behavioral performance between contexts, without any change of
the underlying action values which represent task knowledge.

To test this hypothesis, we focused on a specific network
implementation of reinforcement learning for go/no-go tasks17,25.
We constructed a computational model of reinforcement learning
in which action values were represented at the level of synapses
projecting from a sensory population (S+, S− and S) to output
populations (D and I) (Fig. 3a, gray), while action generation was
governed by the parameters of the upstream readout units
(Fig. 3a, orange). The sensory population consists of two tone-
selective populations representing target (S+) and foil (S−)
stimuli, and one population that is tone-responsive but has no
preference for stimulus-identity, consistent with the functional
organization of auditory cortical networks21,26–29. The sensory
populations project to an inhibitory population (I) and an
excitatory read-out population (D) with plastic synapses in the
decision-making area. This type of model is biologically plausible
and has been found to more accurately characterize rodent
behavioral data than standard reinforcement learning models17.
In our model, the equation by which the readout units processed
information from the sensory population was changed in a
context dependent fashion by way of a single parameter. We fit
the model to our mouse, rat and ferret data and examined
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Fig. 2 Dissociation of acquisition and expression generalizes to freely-moving rats. a Behavioral schematic of the discrimination task. b Discrimination
between stimuli as a function of trial blocks in the reinforced context; gray lines indicate individual animals, black line is the average performance across
animals (peak discrimination: 35.5 ± 3.8%, N= 6 rats). c Left: average time at food cup after S+ stimulus (61.2 ± 4.8%, N= 6 rats) and S− stimulus (50.1 ±
3.5%) across trial blocks 2–5 in the reinforced context. Right: average time at food cup after S+ stimulus (70.1 ± 4.9%, N= 6 rats) and S− stimulus (31.0 ±
3.6%) across trial blocks 2–5 in the probe context. F(3,20)= 15.49, one-way repeated-measures ANOVA followed by Tukey’s post-hoc correction, p=
0.84 between S+ rates, p= 0.39 between reinforced S+ and S− rates, p < 0.05 for all other comparisons. d Average discrimination of animals in the
reinforced and probe contexts over learning. Dots indicate experimental data averaged across rats, lines are the least-squares sigmoidal fit.
e Discrimination of rats fully trained (trial block 8) on the Pavlovian feature-negative discrimination task in a. Rats discriminated significantly more between
the S+ and S− during probe trials (Reinforced discrimination: 33.8 ± 3.4%, N= 6 rats; Probe discrimination: 43.2 ± 3.7%; two-tailed Student’s paired t-test,
t(6)= 2.693, p= 0.036). f Discrimination of rats in a fear-conditioning based discrimination task. All rats discriminated significantly more between stimuli
in the probe context than in the reinforced context (Reinforced discrimination: 25.1 ± 2.4%, N= 8 rats; Probe discrimination: 37.6 ± 3.1%; two-tailed
Student’s paired t-test, t(7)= 7.349, p= 1.56 × 10−4). g Performance of rats in an operant ambiguous feature discrimination in reinforced and probe
contexts of the feature positive portion of task. Rats discriminated significantly better in the probe context than in the reinforced context (Reinforced
discrimination: 59.2 ± 4.0%, N= 7 rats; Probe discrimination: 66.6 ± 3.6%; two-tailed Student’s paired t-test, t(6)= 3.15, p= 0.020). h Performance of rats
on the same task as g on the feature negative discrimination portion (i.e., light+ noise versus noise alone). Rats discriminated significantly better in the
probe context than in the reinforced context (Reinforced discrimination: 40.71 ± 3.7%, N= 7 rats; Probe discrimination: 52.4 ± 5. 7%; two-tailed Student’s
paired t-test, t(6)= 4.534, p= 0.004). All error bars indicate mean ± s.e.m
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whether contextual modulation of the readout could quantita-
tively account for the behavioral learning trajectories (Fig. 3c–f).

We found that our model simultaneously captured the learning
curves in the reinforced and probe trials each of the tasks across
mice, rats, and one ferret. This minimal model therefore provided a
parsimonious description of a large and diverse dataset (Fig. 3c–f,
Supplementary Fig. 3d), and validated our hypothesis that changes
between contexts only modulate how the learned values of
stimulus-action associations are read out, but not the values
themselves (Fig. 3b). The model moreover constrained the possible
mechanisms underlying the contextual modulation of the readout.
One possibility was that context modulated only the behavioral
readout via scaling of the readout gain that classically determines
the amount of exploration30,31. This candidate mechanism
accounted poorly for the behavioral data (Supplementary Fig. 5a),
largely because of its symmetry between target and foil stimuli. This
symmetry ensured that if the false-alarm rate was greater than 50%

in the reinforced context in a given session, the false-alarm rate
could not be below 50% in the probe context, inconsistent with the
behavioral data (Supplementary Figs. 4a and 5a, reinforced and
probe). A second possibility was an additive modulation equivalent
to a threshold shift (Supplementary Fig. 4b)31. While this
mechanism provided a better fit to the data, it still did not
simultaneously capture the trajectories in both contexts (Supple-
mentary Fig. 5b, reinforced and probe), as again the readout
function for target and foil trials was affected in a highly correlated
manner (Supplementary Figs. 4b and 5b). A third approach was to
scale independently the drive for no-go or go responses by
modulating either the gain of inhibition (Fig. 3b, Supplementary
Figs. 4c and 5d), or the excitatory drive to the decision unit
(Supplementary Figs. 4d and 5c). Interestingly, selectively scaling
the gain of feed-forward inhibition provided the best fit of
behavioral data with a small number of adjusted parameters for
mice, rats, and ferrets (Fig. 3c, d, Supplementary Figs. 3e, 9f and
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10f). This straightforward mechanism for selectively scaling the no-
go response is absent in classical reinforcement learning models yet
quantitatively describes the dissociation between acquisition and
expression of task knowledge.

One alternative computational explanation in the case of the
head-fixed mice is that the licktube-reward association supersedes
the target-reward association; this would predict continuous or
random licking. However, early in learning, baseline lick rates in
the reinforced context were low, with a robust increase in licking
after the tone (Supplementary Fig. 6a, b). Theoretically, these
effects could also be mediated by a compound association,
whereby the licktube provides an additive drive to lick, bringing
animals closer to an internal response threshold, even if baseline
lick rates are low. If this were the case, for reinforced sessions in
which the hit and false-alarm rates were both below 100%, we
would expect that removal of the licktube would equally reduce
hits and false-alarms (i.e., subtracting the additive drive to lick by
the licktube). This was not the case; our behavioral data show that
false alarm rates were significantly more affected than hit rates by
context switching (Supplementary Fig. 6c, d; ΔTarget= 14.9 ±
18.7%, ΔFoil= 48.6 ± 18.7%, p= 2.79 × 10−5). Moreover, in the
experiments with freely-moving rats, the food cup was always
present with only the reinforcer (i.e., food pellets) either being
present or absent, and in lever-pressing tasks for both mice and
rats the motor action was separated from the consummatory
action. This largely negates the possibility of a compound
association as the likely mechanism.

Testing context strongly drives inter-individual variability.
One challenge in evaluating behavioral data and building robust
learning models is that learning curves appear highly variable
across individual animals16,17 and humans32. Typically, this
variability has been thought to arise from differences in how
quickly animals learn stimulus-action associations; “smarter”
animals make associations faster, represented in formal reinfor-
cement learning models via parameters related to reward-based
plasticity. We examined individual animal learning trajectories in
animals in which we collected both reinforced and probe beha-
vioral performance consistently during learning (N= 7 mice,
N= 6 rats). We found that selective scaling of the decision read-
out could capture parallel behavioral trajectories of individual
mice and rats with high fidelity (Fig. 3d–f, Supplementary Figs 9
and 10). As expected, mice exhibited significant behavioral
variability in how quickly they reached expert levels in the rein-
forced context (Fig. 4a, left panel). Surprisingly, in the probe
context, this variability was strongly suppressed, revealing that
different animals had acquired task knowledge at nearly identical
rapid rates (Fig. 4a, right panel). We quantified this by calculating
the number of trials it took mice to reach expert performance and
the variance of this between animals (Fig. 4b, d′ > 2.0 with false-
alarm rates <50% for 100+ trials). Probe learning trajectories
were stereotyped across animals while reinforced learning tra-
jectories were much more variable (Fig. 4b). For rats, the inter-
animal variability in learning rates was also much lower in the
probe context than in the reinforced context (Fig. 4c, d) further
emphasizing the generalizability of our findings across species.

We tested in our model whether the inter-individual variation
in performance was primarily explained by variability in reward-
based plasticity parameters or variability in contextual scaling of
the decision readout. To do so, we utilized a one-factor-at-a-time
approach to examine how much each parameter could alter the
learning curve versus how much real learning curves differed,
with each parameter constrained by individual animal fits. First,
we established the average parameters required to fit the average
behavioral data (9 parameters). Next, we varied a single

parameter (i.e., cI) within the range corresponding to all of the
individual animal fits, and calculated the resulting error relative to
the average fit for each value of the parameter (RMSE with
respect to average fit). We found the maximum error generated
by this entire range of values (Maximum Model Error). We then
calculated the maximum error within the behavioral data
(Maximum Behavioral Error; RMSE of individual learning
trajectories with respect to average learning trajectories), and
defined explained variation as Maximummodel error

Maximumbehavior error. Finally, we
performed this calculation for each of the model parameters. To
determine how different parameters contributed to the model
error, we divided our parameters into four groups: learning rates
(α, αNR), initial conditions (WE, WI, WSE, WSI), noise (σ), and
inhibitory scaling (cI). To remain conservative in our analysis, the
parameter in each group that explained most variation was
selected to be representative. Interestingly, the contextual scaling
of inhibition could explain nearly all of the variation in
performance in the reinforced context while reward-based
plasticity parameters (learning rates, initial conditions, and noise)
were less explanatory (Fig. 4e, f). Individual performance variance
therefore appears to emerge more from contextual factors than
from differences in underlying rates of associative learning.

Discussion
In the 1930s, Edward Tolman and colleagues elegantly demon-
strated that the introduction of reinforcement can critically
mediate the generation and expression of a “cognitive map”33,34.
Since its inception, Tolman’s cognitive map hypothesis has pro-
foundly impacted how neuroscience and behavioral psychology
think about and approach cognitive behaviors. Here, we show
that this simple yet powerful behavioral manipulation (intro-
duction and removal of reinforcement), which can dissociate
between the acquisition and expression of sensorimotor task
knowledge during learning. Across a wide range of behavioral
tasks and animal species, we demonstrate that the apparent lack
of discrimination between two conditioned stimuli early in
learning can be attributed to contextual factors rather than
underlying knowledge. Access to reinforcement masked the
ability to execute correct stimulus-action associations, which can
be revealed simply by testing animals in a different context where
the reinforcement is absent. This hidden learning appears to be
faster and highly stereotyped across animals, indicating that
apparently-robust inter-individual differences in the presence of
reinforcement are not driven by inter-individual differences in
sensorimotor abilities for these task designs.

In these sensorimotor behaviors, the acquisition of task
knowledge likely operates via reward-based plasticity from a
sensory to decision-making population. These projections rapidly
stabilize and enable discrimination between the action values of
the stimuli. Interestingly, neural data acquired during learning
suggests that perhaps this rapid learning of stimulus-action
associations may be reflected in sensory cortex. In the primary
visual cortex of mice, for example, neural sensitivity to trained
stimuli increases well before behavioral improvements13. These
behavioral measurements, however, were performed in the testing
context suggesting that an alternate measure of behavior, such as
our probe context, may have shown that the neuronal sensitivity
tracks sensorimotor task acquisition (i.e., probe context learning
rate) but precedes task expression (i.e., reinforced context learn-
ing rate) in the testing context. Thus, rapid changes in V1 may
reflect core task learning while performance-correlated neural
changes observed in other studies10,35 reflect a more complex mix
of contextual factors including behavioral state and cost-benefit
considerations. The relative timing of neural changes versus
behavioral improvements has profound implications for neural
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models of learning and the underlying neural implementation,
particularly as it relates to how specific brain structures instruct
versus permit plasticity36,37. Similar re-interpretations of existing
results6,11,12 may help us improve our understanding of the
population-level and single-neuron dynamics during learning
across sensorimotor regions.

The circuit mechanism of reward-based plasticity of sensor-
imotor projections is a critical area for future exploration.
Dopaminergic neurons have been implicated in calculating
reward prediction error38 yet whether and how these signals
propagate to sensory cortices remains unclear. One possibility
involves the entrainment of a neuromodulatory system with
broader cortical projection patterns, such as cholinergic projec-
tion neurons in the basal forebrain39. Recent work in trained
animals suggests that the cholinergic projection systems signals
reinforcement feedback in a phasic manner40. Future studies will
explore how phasic cholinergic signals are involved in learning-
related plasticity and the forms of behavioral changes
documented here.

Our model further suggests that task expression is influenced
by contextual scaling of the decision-making population. What
contextual factors might be responsible for this? Some context-
dependent responses may be maladaptive; for example, impul-
sivity or anxiety may hasten the response function by reducing
inhibition under motivated conditions. Interestingly, animals
responded more quickly in the reinforced context (Supplemen-
tary Fig. 7) suggesting that impulsivity may be one such con-
textual factor. Others may be adaptive such as increased foraging
and exploration early in learning in the presence of reinforce-
ment, which in the case of our mouse task would drive an
increase in false alarm rate. Computing the reward rate shows
that non-discriminant licking in the reinforced context to both
target and foil tones maximizes reward at early stages of training
(Supplementary Fig. 8). Thus, both adaptive and maladaptive
factors may contribute to context-dependent expression.

What might be the neural implementation of this contextual
scaling? The state-dependent nature of the behavioral transitions
and the potential role of inhibition suggest that neuromodulation,
e.g., acetylcholine or noradrenaline, may be involved. Moreover,
prefrontal mechanisms of top-down control may also play a role
in stabilizing behavior in the presence of reinforcement. Beha-
viorally isolating the underlying learning rates and drivers of
variability, however, will be critical if we want to link behavioral
output, the computational algorithms that enable this output, and
the relevant neural implementations4,41.

More broadly, the dissociation between knowledge and expres-
sion has critical implications for how we understand the distributed
computations that enable learning. The possibility that acquisition
and expression rely on different physiological mechanisms may
help us isolate the root causes of under-performance and variability
in learning rates. This dissociation may be particularly relevant
when reward, motivation, stress, and arousal are high and inter-
mingled. Regardless, behavioral and theoretical dissociation of
acquisition and expression of knowledge in learning now provides
us with a conceptual framework to better explore the neural basis of
individual variability. The possibility of distinct mechanisms
between acquisition and expression may help us identify the neural
basis for performance variability across a wide range of behavioral,
perceptual, cognitive, and intelligence testing contexts, including
possibly in humans.

Methods
Animals. All mice procedures were approved under a New York University
IACUC protocol and a Johns Hopkins University IACUC protocol. Male and
female mice of mixed sex were used at 8–16 weeks of age. Multiple strains were
used (C57/BL6, PV-cre, ChAT-ChR2). Behavior was a quantitative assessment with

no treatment groups, and animals were thus not randomly assigned into experi-
mental groups. The care and experimental treatment of rats was conducted
according to the National Institutes of Health’s Guide for the Care and Use of
Laboratory Animals, and the protocol for “Experiment 1” was approved by an
IACUC at Duke University. “Experiment 2” was conducted at the University of
Pittsburgh before the establishment of IACUCs. All rats were male Long-Evans rats
tested around 90 days of age. All experimental procedures involving ferrets con-
formed to standards specified and approved by the French Ministry of Research
and the ethics committee for animal experimentation n°5. Blinding of experi-
menters was not relevant for this study as behavior was assessed quantitatively
based on objective, measured criteria.

Behavioral training: head-fixed mice. All behavioral events (stimulus delivery,
reward delivery, inter-trial-intervals) were monitored and controlled by a custom-
written MATLAB (MathWorks) program interfacing with an RZ6 auditory pro-
cessor (Tucker-Davis Technologies), and an infrared beam for lick detection.
Training was initiated after surgery for head-fixation and at least 7 days of water
restriction in adult mice (8–16 weeks of age, mixed sex, mixed background strain).
Training was conducted during the day and began with habituation to head-
fixation, which was followed by 1–2 water-sampling sessions while animals were
immobilized in a Plexiglas tube facing a licktube. The licktube was typically placed
at the maximal distance away from the mouse to discourage compulsive licking.
Animals were then immediately placed in the complete behavioral paradigm with
minimal shaping. Task training began with a 200–400 trials in the reinforced
behavioral context, where we used a go/no-go auditory discrimination task with the
target and foil stimuli set at 9.5 kHz or 5.6 kHz (stimuli-salience pairing randomly
assigned, 0.75 octave spacing). Target versus foil trials were pseudo-randomly
ordered, each of which consisted of a pre-stimulus period (1.25 s), stimulus period
(100 ms), delay (50 ms), response period (1.75 s), and an inter-trial interval (ITI)
with variable duration as described below.

Tones were presented to animals under two different behavioral contexts. In the
‘reinforced context’, a licktube delivering water was positioned within tongue reach
(0.5–1.0 cm). In this context, mice only received water for correct licks to the target
tone during the response period. Incorrect licks during the response window to the
foil tone (a false-alarm) resulted in a mild negative punishment consisting of an
extended ITI. Animals were not punished if they licked during any other time
epoch (i.e., if animals licked in the pre-stimulus period, tone presentation or delay
period, the trial continued with the standard ITI). This enabled us to confirm that
animals were actively increasing lick rate for target tones during hit trials and
reducing lick rate for foil tones during correct reject trials. This measurement
confirmed that both the target and foil tone had behavioral effects on the animal;
without this, animals could take a single-tone strategy (i.e., learn to lick only for the
target tone or withhold licking for the foil tone). Hit trial ITIs were 4–5 s (to enable
licking for full reward), miss trials were not punished and had an ITI of 2–3 s, false-
alarm trials were punished with an ITI lasting 7–9 s, and correct rejects
immediately moved to the next trial with an ITI of 2–3 s. In the second context, the
‘probe context’, the licktube was removed from the behavioral space by an
automated actuator, such that it was out of sight and whisker reach. Target and foil
trials were again presented in a pseudo-random order, but did not correlate to the
presence of potential rewards or punishments. We continued to monitor behavioral
responses made during the response period following stimulus presentation, but
trial durations were not dependent on such behavioral responses (ITI ~2–3 s).

Each day, animals were typically trained on two blocks of trials in the reinforced
context (100–300 each, total of ~400 reinforced trials per day), and one randomly
interleaved block of probe trials (20–40 trials). Importantly, because mice were not
presented with any direct incentives to execute behavioral responses in the probe
contexts, the number of trials in probe blocks could not be further extended, as this
caused rapid cessation of behavioral responses. Utilizing the short probe blocks,
behavioral responses (hit rate and false-alarm rates) in the probe context (i.e., in
the absence of reinforcement) begun to decline after 60–150 total passive trials
across 3–6 days of training, as animals learned that the absence of the licktube
indicated an absence of reinforcement. For a subset of mice (N= 4), we introduced
probe blocks more sparsely (~1 probe block per 1500 reinforced trials) to ensure
that the decline of behavioral responses in the probe context occurred
independently from the training in the reinforced context.

Average performance in the reinforced condition was measured by segmenting
performance into discrete blocks, such that we averaged all false-alarm and hit rates
recorded in blocks of 100 trials. A similar process was utilized for measurements of
average performance in the probe context, but because of the smaller number of
probe blocks, block sizes were adjusted to ensure that probe blocks from at least
two animals were incorporated into each measurement (max 500 trials/block). For
individual animals, reinforced performance was again averaged in blocks of 100
trials, and probe performance was averaged across individual probe sessions. For
analysis of probe learning trajectories, we only included probe blocks up until the
hit rate reached a peak value, as behavioral responses in the probe context were
subsequently diminished because of the absence of a positive reinforcer. Behavioral
sensitivity (d′) to the task-relevant tones was calculated as the z-scored hit rate
minus the z-scored false-alarm rate. To avoid infinite values during sensitivity
calculations rates of zero and one were corrected by 1

2N and 1� 1
2N, respectively,

where N is the number of trials in each measurement.
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Behavioral training: rats. The subjects (N= 7) of the Pavlovian serial feature
negative discrimination task (Fig. 2a) were male Long-Evans rats (Charles River
Laboratories, Raleigh, NC, USA). Rats were housed individually in a colony room
with a 4:10 h light-dark cycle. After one week of acclimation to the vivarium with
ad libitum access to food and water, rats were food-restricted such that their
weights reached and were maintained at 85% of their free-fed weights. Beginning
three days before the first day of food restriction, all rats were handled, weighed,
and fed daily until the end of the experiment. For all rats, daily behavioral testing
sessions began 7 days after the beginning of food restriction, and were conducted
during the light portion of the light-dark cycle. The rats were tested at about
90 days of age. The animal protocols were approved by an IACUC at Johns
Hopkins University.

For the Pavlovian serial feature negative discrimination task, the behavioral
training apparatus consisted of eight individual chambers (22.9 × 20.3 × 20.3 cm)
with stainless steel front and back walls, clear acrylic sides, and a floor made of
0.48-cm stainless steel rods spaced 1.9 cm apart. A food cup was recessed in a 5.0 ×
5.0 cm opening in the front wall, and photocells at the front of the food cup
recorded time spent in the cup. Grain pellets were delivered to the food cups by
pellet feeders (Coulbourn H14-22, Allentown, PA, USA). A jeweled 6-W signal
lamp was mounted 10 cm above the food cup; illumination of this panel light
served as the visual stimulus. Each chamber was enclosed inside a sound
attenuating shell. An audio speaker and 6-W house light were mounted on the
inside of each shell.

All rats were first trained to eat grain pellets (45 mg, Formula 5TUM, Test Diets,
Richmond, IN, USA) from the food cups, in a single 64-min session, which
included 16 un-signaled deliveries of 2 pellets each. In this and all subsequent
session, events were delivered at random inter-trial intervals (ITIs, mean: 4 min,
range: 2 to 6 min). Then, the rats received a single 64-min pre-training session,
which included 16 reinforced trials; each trial consisted of a 5-s presentation of a
78 dB SPL, 1500 Hz square wave tone followed immediately by the delivery of 2
grain pellets. Finally, the rats received eight 64-min daily training sessions, each
including 4 reinforced trials (S+; as before) and 12 foil trials (S−), in which a 5-s
illumination of the panel light was followed, after a 5-s empty interval, by the 5-s
tone, but no food delivery. The trials occurred in random order, changed daily.
Four hours before each of training sessions 2–8, and 20 h after session 8, rats
received a probe test, which comprised two light-tone and 2 tone-alone trials. No
food was delivered in these tests. Responses to each stimulus type was recorded as
the percentage of the food-sampling window (5 s post-stimulus) rats spent in the
food cup. Performance, or discrimination, was recorded as the raw difference rats
spent in the food cup following the S+ versus S− stimulus. Expert performance
levels was defined as a discrimination >25% for at least 1 day of training, 16 trials.

The operant ambiguous feature discrimination task (“Experiment 1”; Fig. 2a–e)
and the fear conditioning (conditioned suppression) in feature-negative
discrimination task (“Experiment 2”; Fig. 2b) have been previously described in
detail22,23. The subjects of Experiment 1 (N= 7) were male Long-Evans rats
(Charles River Laboratories, Raleigh, NC, USA) and the subjects of Experiment 2
were 4 males and 4 female Sprague–Dawley rats (bred at the University of
Pittsburgh). The rats in Experiment 1 received sham lesions of the hippocampus
(Gallagher and Holland23) prior to training procedures. Rats were individually
housed in a colony room with a 12:12 h light-dark cycle. All rats were carefully
food-restricted to maintain 85% of their free-feeding weights, as described above.
The care and experimental treatment of rats was conducted according to the
National Institutes of Health’s Guide for the Care and Use of Laboratory Animals,
and the protocol for Experiment 1 was approved by an IACUC at Duke University.
Experiment 2 was conducted at the University of Pittsburgh before the
establishment of IACUCs. The training apparatus for these experiments was
identical to the chamber-divided box described above, with sucrose solution being
delivered to the food cup via solenoid valves. A 2.5 × 2.5 cm response lever was
mounted 2 cm left of the food cup.

Experiment 1 was designed to assess performance in a discrete-trial operant
ambiguous feature discrimination. A single light feature stimulus indicated both
that sucrose reinforcement was available for lever pressing during a tone target
stimulus and that reinforcement was not available during a white noise stimulus.
Thus, the rats were trained with a discrimination procedure in which lever presses
were reinforced during a light+ tone compound, but not during that tone alone,
and during a noise when it was presented alone but not during a compound of light
and noise. Rats were first trained to consume sucrose reinforcement from the food
cups and to press the lever. In the initial session, they first received 20 response-
independent 0.3-mL deliveries of 6.4% (v/v) sucrose (the reinforcer used
throughout this experiment) on a variable-time 1-min schedule. Each lever press
was reinforced during that 20-min period and during the remaining 40 min of the
session. In the next session, lever presses were reinforced, but there were no
response-independent sucrose presentations; each rat was allowed to remain in its
chamber until it had made about 50 lever presses. All subsequent training sessions
were 60 min in duration.

The next 5 sessions were designed to establish lever pressing during the two
reinforced stimuli, light (PT+) and a white noise stimulus (N+). During each of
these sessions, there were 30 15 s presentations of a 73 dB SPL white noise (N) and
30 15 s presentations of a compound that comprised a 74 dB SPL 1500 Hz tone and
the illumination of the panel light (PT). In the first 2 sessions, each lever press
made during one of these cues was followed by sucrose delivery. In the remaining

sessions (of both this and subsequent phases), reinforcement was available only
during the final 5 s of each reinforced cue. During all sessions throughout this
experiment, trial sequences were generated randomly for each session. Inter-trial
intervals were randomized daily, with the constraint that the range of intervals was
from 0.5 to 2.0 times the mean interval (60 s).

Next, discrimination training began, in which illumination of the panel light (P)
indicated the availability of reinforcement during the tone (T) and the
nonavailability of reinforcement during the noise (N). All rats received four kinds
of trials in each of the 20 discrimination sessions. Reinforced PT+ and N+ trials
were identical to those received previously. In addition, there were 15-s
presentations of the tone alone (T−), and of a compound of the panel light and the
noise (PN−). In each of sessions 1–10 there were 15 of each trial type, randomly
intermixed, and in each of sessions 11–20 there were 10 N+, 10 PT+, 20 PN−, and
20 T− trials. After the 20 discrimination sessions, a single non-reinforced probe
test was given, which included 12 presentations of each of these trial types, plus 12
15-s presentations of P alone, to assess conditioning established to that stimulus.

Experiment 2 was designed to assess learning of a serial feature negative
discrimination in a conditioned suppression experiment. Rats were first trained to
press a lever for sucrose reinforcement feature. Pavlovian fear conditioning
procedures were then superimposed on this operant lever pressing baseline. When
an auditory stimulus (pure tone) was presented alone, it was paired with foot
shock; when it was presented following a visual stimulus (light flash), no shock was
delivered. Fear conditioning was assessed by measuring the suppression of operant
lever pressing during the tone. Rats were first trained to consume the sucrose
reward (0.3 ml of 8% v/v sucrose solution) from the food cup in 2 60-min sessions.
In each of these sessions, there were 60 sucrose deliveries delivered on a variable-
time 60-s schedule. Next, a single lever press training session was given, in which
each lever press was followed by sucrose delivery; each rat was removed from the
chamber after approximately 50 presses. Then, to establish strong operant baseline
lever-press responding, the rats received a single session in which lever presses were
reinforced on a variable-interval 60-s schedule, followed by 4 sessions in which
lever-pressing was reinforced on a variable-interval 120-s schedule. These and all
subsequent sessions were 90 min in duration. No other stimuli were delivered.

Pavlovian fear conditioning began with two 90-min sessions designed to establish
conditioned suppression to the target cue to be used in discrimination training and
another cue to be used in a transfer test. Each session included one 1-min
presentation of an intermittent (2 Hz) 1500-Hz tone and one 1-min presentation of a
white noise, each reinforced with a 0.5-s, 0.5-mA shock. During the first 45min of the
next session the rats received 3 non-reinforced presentations of a 1-min illumination
of the house light as a pretest of responding to that feature cue. Discrimination
training began in the last 45 min of that session. The rats received a single 1-min tone
presentation that is rewarded and 3 non-rewarded presentations of a serial compound
consisting of a 1-min presentation of the house-light followed by the 1-min tone.
During the remaining 47 discrimination training sessions, the rats received two
rewarded tone presentations and six non-rewarded presentations of the light-tone
compound. The trial sequences were randomized and changed daily; the inter-trial
intervals averaged 11min, ranging from 6 to 18min. Finally, all rats received a non-
reinforced probe test which examined responding to the tone and noise excitors and
to serial compounds of those excitors with the light (2 presentations each of the tone,
the noise, the light+ tone compound and the light+ noise compound). No shocks
were delivered during this test regardless of stimulus identity. Because the light+
noise trials were unique to the probe test, we present data only for the tone and light
+ tone trials. The measure of conditioning was a standard suppression ratio42

computed by dividing the lever-press response rate during CS presentations by the
sum of response rates during CS presentations and for 2min prior to CS
presentations. Discrimination performance was measured by constructing a difference
score, suppression during the tone on light+ tone compound trials minus
suppression on tone-alone trials.

For both Experiments 1 and 2, we examined only performance in the reinforced
and non-reinforced contexts at the end stages of training, as probe trials were not
conducted over the entire course of training.

Behavioral training: ferrets. All experimental procedures conformed to standards
specified and approved by the French Ministry of Research and the ethics com-
mittee for animal experimentation n°5. Adult female ferrets were housed in pairs in
normal outside light cycle vivarium. After headpost implantation, ferrets were
habituated to head-fixed holder for a week. They were then trained until they
reached performance criterion. Two adult female ferrets were trained to dis-
criminate 1.1 s-long click trains in different paradigms (one on low versus high rate
click train discrimination and the other on regular versus irregular click train) in a
Go/No-Go task under appetitive reinforcement. The first ferret was trained to
discriminate between a high-frequency (24 Hz) foil stimulus and a low-frequency
(4 Hz) target stimulus, with a response window of 1.85 s following the stimulus
presentation, and performance was tracked in both contexts throughout learning.
The second ferret was trained to discriminate between a 12 Hz irregular click-train
(foil) and a 12 Hz regular click-train (target), with a response window of 0.8 sec
following stimulus presentation. Performance on probe versus reinforced trials
were only assessed at an early stage of training (trial 1–1150). Animals were
rewarded with water (0.2 mL) for licking a waterspout in the response window.
Licks during the foil response window were punished with a timeout, as well as
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licks during the earlier part of the target click train (Early Window). We present
and model only the learning trajectory of the first ferret, but we note that average
behavioral performance was similar across animals.

All sounds were synthesized using a 100 kHz sampling rate, and presented
through a free-field speaker that was equalized to achieve a flat gain. Clicks were
mono-polar, rectangular pulses of 1ms duration with amplitude set at 70 dB SPL.
Behavior and stimulus presentation were controlled by custom software written in
Matlab (MathWorks). Target and foil stimuli were preceded by an initial silence
lasting 0.2 s (Ferret 1) and 0.5 s (Ferret 2) followed by the 1.1 s-long click trains. On
each session, foil and target stimuli were randomly presented and kept constant
through training.

Reinforcement learning model. We constructed a decision-making model that
implements reinforcement-driven learning of stimulus-action associations17, with a
readout function that can be contextually modulated. The core model consisted of a
sensory coding population which sends excitatory projections to a decision-making
population through feed-forward inhibition (Fig. 3a). The sensory population
consists of two tone-selective populations representing target (S+) and foil tones
(S−), and one additional population that is tone-responsive but has no preference
for targets or foils (S), consistent with the functional organization of auditory
cortical networks21,26–29. The non-selective sensory population (S) captures any
generalized stimulus-action associations, and greatly improves model performance.
The three sensory populations projected to inhibitory (I) and excitatory popula-
tions (D) with plastic synapses in the decision-making area. The strengths of these
synapses changed through reward-driven plasticity on a trial-by-trial basis; in
reinforcement learning terms, the synaptic weights here represented the action
values of the stimuli. The excitatory decision-making unit read out and compared
the values of the two actions (Go and No-Go) by computing total synaptic input,
i.e., the difference between direct excitation for a Go response, and feed-forward
inhibition that promotes a No-Go response. This total input corresponded to a
decision variable, which the decision-making unit transformed into an action
through a noisy all-or-none activation function.

Sensory representations were assumed fixed during learning, and thus this layer
formally reduces to a binary 3D vector x ¼ ½S Sþ S�� (i.e., the sensory
representation layer can be represented as [1 0 1] during a foil trial). The
instantaneous strengths of the projections from the sensory layer to the decision
layer are determined by two 3D weight vectors, WD ¼ ½wD=S wD=Sþ wD=S�� and
WI ¼ ½wI=S wI=Sþ wI=S��. We assumed that initial weights from the two tone
–selective units were identical, but allowed the initial weights from the non-
selective population to be independently determined. The inhibitory unit provides
graded linear feed-forward inhibition to the decision unit. The decision unit reads
out the utility values of the two possible actions, Go or No-go, by computing its net
synaptic input. The probability of generating a Go decision is given by

Pð y ¼ 1jxÞ ¼ 1
1þ expð� WDxT �WIxTð Þσ�1Þ ð1Þ

where σ is a parameter that regulates the stochasticity of behavioral decision
making, analogous to the temperature parameter in canonical reinforcement
models. We denote by y the output of the decision unit, with y= 1 for a Go and
y= 0 for a No-Go.

Synaptic weights from the sensory to the decision-making layer were updated at
the end of each trial on the basis of the obtained reinforcement. Because of the
relatively slower change in false-alarm rates than hit rates, we allowed the synaptic
changes following rewarded and non-rewarded trials to have different learning
rates α and αNR. To account for the learning delay observed in many individual
animals, we followed Bathellier et al.17 and utilized a multiplicative learning rule in
which the learning rates are multiplied by synaptic strengths, so that strong
synapses are updated more rapidly than weak synapses (Supplementary Fig. 11a).
This multiplicative rule enabled the model to capture both exponential and
sigmoidal learning trajectories, and predicts that the initial weights between the
sensory representation layer and the decision circuitry regulates the general shape
of learning trajectories for individual animals17. An additive model failed to
account for the learning trajectories of individual animals (Supplementary
Fig. 11b). Taken together, synaptic weights are strengthened and weakened
according the following learning rules:

Rewarded trials :
δ~WD;j ¼ αWD;j R� κ�1 WDx

T �WIx
Tð Þð Þy

δ~WI;j ¼ �αWI;j R� κ�1 WDx
T �WIx

Tð Þð Þy
ð2Þ

Unrewarded trials :
δ~WD;j ¼ αNRWD;j R� κ�1 WDx

T �WIx
Tð Þð Þy

δ~WI;j ¼ �αNRWI;j R� κ�1 WDx
T �WIx

Tð Þð Þy
ð3Þ

where R represents the reward (−1 if not rewarded, 1 if rewarded), κ is a parameter
that regulates the asymptotic weights of each synapse, and y is a Hebbian term that
requires co-activation of pre-synaptic and post-synaptic terminals for synaptic
modifications, as it does not provide any update if the decision neuron does not
activate. During stochastic runs of the model, the target and foil stimuli were
generated pseudorandomly with equal probability.

To account for the distinct learning trajectories in the reinforced context and
the probe context, we extended the original model and introduced a 2D binary
context vector~s, indicating whether the licktube was present [1 0] or absent [0 1].
For the inhibitory scaling model, feed-forward inhibition was scaled during
reinforced trials during by the 2D vector~cI ¼ ½cI reinforcedð Þ1�, such that:

P y ¼ 1j~xð Þ ¼ 1
1þ exp � WDxT � ðcIsTÞðWIxTÞð Þσ�1ð Þ ð4Þ

effectively shifting the decision-making unit’s readout from its baseline state during
the reinforced context. Other models tested were subject to similar context
dependent switches applied as follows:

Gainmodulation : P y ¼ 1j~xð Þ ¼ 1
1þ expð�ðcGsTÞ WDxT �WIxTð Þσ�1Þ ð5Þ

Threshold shift : P y ¼ 1j~xð Þ ¼ 1
1þ expð� WDxT �WIxT þ cTsTð Þσ�1Þ ð6Þ

Excitatory scaling : P y ¼ 1j~xð Þ ¼ 1
1þ expð� ðcEsTÞðWDxTÞ �WIxTð Þσ�1Þ ð7Þ

Note that gain modulation is effectively equivalent to a modulation of the noise
parameter. Throughout training, we probed the model after every 100 reinforced
trials (~s ¼ ½10�) for its behavior across 100 probe (~s ¼ ½01�) trials. Because mice
received no positive reinforcer during the probe context trials, we assumed that
synaptic weights were not updated during these probe trials. This assumption
allows probing to, theoretically, progress indefinitely to assess the baseline (non-
scaled) behavior of the model, without altering the synaptic weights representing
task knowledge. This allowed us to sample from the model during both behavioral
contexts over the entire extent of learning.

Modeling of rat behavioral data. To generalize our model to the behavior of freely
moving rats in a task without a binary choice point, we simply altered the readout
function to yield a continuum of possible values for the percentage of time spent in
the food cup. Rather than having the readout function yield the probability of a ‘Go’
response, we took this same value to indicate the percentage of time spent at the food
cup. For example, when the original readout function yielded a probability of a ‘Go’
response as 65%, we converted this to mean 65% of time spent at the food-cup. The
readout function in the rat behavioral task can thus be written as:

T ¼ 1
1þ expð� WDxT �WIxTð Þσ�1Þ ð8Þ

where T is the percentage of the trial spent in the food cup. This thus preserves most
aspects of the original model (with the exception of being slightly less stochastic),
including the readout function serving as a measure of the animal’s bias toward one
response given the stimulus.

Model fitting. All simulations and fitting procedures were performed in MATLAB.
All tested models were fitted to data in both contexts simultaneously. To increase
computational efficiency, we constructed a coarse-grained version of our model by
assuming slow variations in the synaptic weights. During fitting, the model weights
were updated in chunks of 10 trials, with stochasticity solely arising from the target
and foil ratios in the given block. Trial ratios were pseudo-randomly drawn from a
normal distribution (μ= 0.5, σ= 0.1; <0.5= F, >0.5= T). During each trial block, the
reinforced-context performance was calculated given the synaptic weights preceding
the given block, and synaptic weights subsequently updated on the basis of the
probability of false-alarm and hit trials during the given 10 trials. For example:

δWD
Sþ ¼ αWD

Sþ R� κ�1 WD
Sþ þWD

S
�WI

Sþ �WI
S

�� ��
nTPðy ¼ 1jWD;WIÞ ð9Þ

where nT represents the number of target-tone trials in the given trial block, which is
weighted by the probability of the model “licking” to the target tone given the current
weights. The model was tested for the hit and false-alarm rates in the probe context.
These approximations closely replicated the behavior of the fully stochastic model
across a large number of runs, but required significantly less computational power.
For each model, we minimized the Root Mean Square (RMS) error between the
model performance and the behavioral S+ and S− response rates in both the rein-
forced and the probe context using Bayesian adaptive direct search (BADS43). BADS
alternates between a series of fast, local Bayesian optimization steps and a systematic,
slower exploration of a mesh grid.

To ensure a robust model fit to the acquisition and context-dependent
expression of task knowledge, we excluded a small number of reinforced context
training blocks during which a robust but temporary decline in satiety and/or
motivation was observed. These were defined as training blocks during which false-
alarm rates and hit rates both decreased by >30% with respect to the preceding and
proceeding training blocks (2 training blocks total across 7 animals). Additionally,
one probe training block was excluded during model fitting because an insufficient
number of trials for robust analysis (10 trials total). All other probe training blocks
consisted of at least 20 trials and were included in analysis. For every trial after the
peak hit rate was reached in the probe context, we assumed each animal achieved
perfect discrimination based on our evidence from three animals in which the
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asymptotic hit rate was 92 ± 4% and the false-alarm rate was 3 ± 3%. This
assumption served a twofold function: firstly, it allowed the model to ignore the
cessation of behavioral responses in the probe context; secondly, it effectively
penalized the model for adopting a strategy in which it assumed that perfect
expression of task knowledge could not be achieved in the probe context, despite
continued training. To allow the model to center its average performance around
the generalized learning trajectories, we applied a light lowpass filter to behavioral
learning trajectories during fitting, with filter coefficients equal to 0.20 and 0.33 in
the reinforced and probe context, respectively.

Analysis of model results. Decision variables were generated from the average
synaptic weights of stochastic models on a trial-by-trial basis, and serve to highlight
the effects of contextual factors. The trajectories of these variables illustrate the
decision read-out function as training progresses, and are separated into target and
foil trials. For example, the instantaneous value of each trajectory is thus defined as
WDx

T �WIx
T in the probe context. Error rates of each tested model were

quantified as the sum of the RMS error between the model and behavioral learning
trajectories across both behavioral contexts. For comparison, we ran stochastic
models 200 times to capture the full extent of variance arising from random tone
selection and noise in the decision read-out function.

To understand which of our parameter most strongly contributed to inter-
individual variation observed in the reinforced context, we utilized a one-factor-at-
a-time approach to examine how much each parameter could alter the learning
curve versus how much real learning curves differed. First, we established the
average parameters required to fit the average behavioral data (9 parameters). Next,
we varied a single parameter (i.e., cI) within the range corresponding to all of the
individual animal fits (i.e., cI= 0.07–0.48) and calculated the resulting error relative
to the average fit for each value of the parameter (RMSE with respect to average
behavior). We found the maximum error generated by this entire range of values
(Maximum Model Error). We then calculated the maximum error within the
behavioral data (Maximum Behavioral Error; RMSE of individual learning
trajectories with respect to average learning trajectories), and defined explained
variation as Maximummodel error

Maximum behavior error. Finally, we performed this calculation for each of
the model parameters (α, αNR, σ, κ, WE, WI, WSE, WSI, and cI). To determine how
different parameters contributed to the model error, we divided our parameters
into four groups: learning rates (α, αNR), initial conditions (WE, WI, WSE, WSI),
noise (σ), and inhibitory scaling (cI). To remain conservative in our analysis, the
parameter in each group that explained most variation was selected to be
representative.

Quantification and statistical analysis. All statistical analyses were performed in
MATLAB or GraphPad Prism 7. Data sets were tested for normality, and appro-
priate statistical tests applied as described in the text (for example, t-test for nor-
mally distributed data, Fischer’s exact test for categorical observations, Mann
Whitney U-test for non-parametric data, Friedman test with Dunn post hoc test for
non-parametric data with repeated measurements, Geisser-Greenhouse correction
for violations of sphericity). All statistical tests used were two-tailed. Model-
variance designed to reflect the stochasticity of behavioral decision making was
drawn from a standard normal distribution, and all model comparisons thus
assumed normality. Shaded regions surrounding behavioral line-plots indicate ± s.
e.m. unless otherwise stated. Shaded regions surrounding model line-plots indicate
± st.d. unless otherwise stated. Experimenters were not blind to the conditions of
the experiments during data collection and analysis.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All behavioral data that underlies the findings of this study, as well as all code related to
the modeling work, is available at: http://froemkelab.med.nyu.edu/sites/default/files/
Data_NatComms.zip.
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