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ARTICLE

Inferring and validating mechanistic models of
neural microcircuits based on spike-train data
Josef Ladenbauer 1*, Sam McKenzie2, Daniel Fine English 3, Olivier Hagens4 & Srdjan Ostojic 1*

The interpretation of neuronal spike train recordings often relies on abstract statistical

models that allow for principled parameter estimation and model selection but provide only

limited insights into underlying microcircuits. In contrast, mechanistic models are useful to

interpret microcircuit dynamics, but are rarely quantitatively matched to experimental data

due to methodological challenges. Here we present analytical methods to efficiently fit

spiking circuit models to single-trial spike trains. Using derived likelihood functions, we

statistically infer the mean and variance of hidden inputs, neuronal adaptation properties and

connectivity for coupled integrate-and-fire neurons. Comprehensive evaluations on synthetic

data, validations using ground truth in-vitro and in-vivo recordings, and comparisons with

existing techniques demonstrate that parameter estimation is very accurate and efficient,

even for highly subsampled networks. Our methods bridge statistical, data-driven and the-

oretical, model-based neurosciences at the level of spiking circuits, for the purpose of a

quantitative, mechanistic interpretation of recorded neuronal population activity.
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In recent years neuronal spike train data have been collected at
an increasing pace, with the ultimate aim of unraveling how
neural circuitry implements computations that underlie

behavior. Often these data are acquired from extracellular elec-
trophysiological recordings in vivo without knowledge of neu-
ronal input and connections between neurons. To interpret such
data, the recorded spike trains are frequently analyzed by fitting
abstract parametric models that describe statistical dependencies
in the data. A typical example consists in fitting generalized linear
models (GLMs) to characterize the mapping between measured
sensory input and neuronal spiking activity1–5. These approaches
are very useful for quantifying the structure in the data, and
benefit from statistically principled parameter estimation and
model selection methods. However, their interpretive power is
limited as the underlying models typically do not incorporate
prior biophysical constraints.

Mechanistic models of coupled neurons on the other hand
involve biophysically interpretable variables and parameters, and
have proven essential for analyzing the dynamics of neural cir-
cuits. At the top level of complexity for this purpose are detailed
models of the Hodgkin–Huxley type6,7. Comparisons between
models of this type and recorded spike trains have revealed that
multiple combinations of biophysical parameters give rise to the
same firing patterns8,9. This observation motivates the use of
models at an intermediate level of complexity, and in particular
integrate-and-fire (I&F) neurons, which implement in a sim-
plified manner the key biophysical constraints with a reduced
number of effective parameters and can be equipped with var-
ious mechanisms, such as spike initiation10–12, adaptive
excitability13,14, or distinct compartments15,16 to generate
diverse spiking behaviors17,18 and model multiple neuron
types19,20. I&F models can reproduce and predict neuronal
activity with a remarkable degree of accuracy11,21,22, essentially
matching the performance of biophysically detailed models
with many parameters17,23; thus, they have become state-of-
the-art models for describing neural activity in in vivo-like
conditions11,19,20,24. In particular, they have been applied in
a multitude of studies on local circuits25–31, network dynam-
ics32–36, learning/computing in networks37–40, as well as in
neuromorphic hardware systems37,41–43.

I&F neurons can be fit in straightforward ways to membrane
voltage recordings with knowledge of the neuronal input, typi-
cally from in vitro preparations11,17,19,20,24,44,45. Having only
access to the spike times as in a typical in vivo setting however
poses a substantial challenge for the estimation of parameters.
Estimation methods that rely on numerical simulations to max-
imize a likelihood or minimize a cost function46–48 strongly suffer
from the presence of intrinsic variability in this case.

To date, model selection methods based on extracellular
recordings are thus much more advanced and principled for
statistical/phenomenological models than for mechanistic circuit
models. To bridge this methodological gap, here we present
analytical tools to efficiently fit I&F circuits to observed spike
times from a single trial. By maximizing analytically computed
likelihood functions, we infer the statistics of hidden inputs, input
perturbations, neuronal adaptation properties and synaptic cou-
pling strengths, and evaluate our approach extensively using
synthetic data. Importantly, we validate our inference methods
for all of these features using ground truth in vitro and in vivo
data from whole-cell49,50 and combined juxtacellular–
extracellular recordings51. Systematic comparisons with existing
model-based and model-free methods on synthetic data and
electrophysiological recordings49–52 reveal a number of advan-
tages, in particular for the challenging task of estimating synaptic
couplings from highly subsampled networks.

Results
Maximum likelihood estimation for I&F neurons. Maximum
likelihood estimation is a principled method for fitting statistical
models to observations. Given observed data D and a model that
depends on a vector of parameters θ, the estimated value of the
parameter vector is determined by maximizing the likelihood that
the observations are generated by the model, p(D|θ), with respect
to θ. This method features several attractive properties, among
them: (1) the distribution of maximum likelihood estimates is
asymptotically Gaussian with mean given by the true value of θ;
(2) the variances of the parameter estimates achieve a theoretical
lower bound, the Cramer–Rao bound, as the sample size
increases53.

Let us first focus on single neurons. The data we have are
neuronal spike times, which we collect in the ordered set
D := {t1,…,tK}. We consider neuron models of the I&F type,
which describe the membrane voltage dynamics by a differential
equation together with a reset condition that simplifies the
complex, but rather stereotyped, dynamics of action potentials
(spikes). Here, we focus on the classical leaky I&F model54 but
also consider a refined variant that includes a nonlinear
description of the spike-generating sodium current at spike
initiation and is known as exponential I&F model10. An extended
I&F model that accounts for neuronal spike rate adaptation14,17,55

is included in Results section “Inference of neuronal adaptation”.
Each model neuron receives fluctuating inputs described by a
Gaussian white noise process with (time-varying) mean μ(t) and
standard deviation σ (for details on the models see Methods
section “I&F neuron models”).

We are interested in the likelihood p(D|θ) of observing the
spike train D from the model with parameter vector θ. As spike
emission in I&F models is a renewal process (except in presence
of adaptation, see below) this likelihood can be factorized as

pðDjθÞ ¼
YK�1
k¼1

pðtkþ1jtk; μ½tk; tkþ1�; θÞ; ð1Þ

where μ[tk, tk+1] := {μ(t)|t∈[tk, tk+1]} denotes the mean input
time series across the time interval [tk, tk+1]. In words, each factor
in Eq. (1) is the probability density value of a spike time
conditioned on knowledge about the previous spike time, the
parameters contained in θ and the mean input time series across
the inter-spike interval (ISI). Below we refer to these factors as
conditioned spike time likelihoods. We assume that μ[tk, tk+1] can
be determined using available knowledge, which includes the
parameters in θ as well as the observed spike times. Note that we
indicate the parameter μ separately from θ due to its exceptional
property of variation over time.

For robust and rapid parameter estimation using established
optimization techniques we need to compute p(D|θ) as accurately
and efficiently as possible. Typical simulation-based techniques
are not well suited because they can only achieve a noisy
approximation of the likelihood that depends on the realization of
the input fluctuations and is difficult to maximize. This poses a
methodological challenge which can be overcome using analytical
tools that have been developed for I&F neurons in the context of
the forward problem of calculating model output for given
parameters56–60. These tools led us to the following methods that
we explored for the inverse problem of parameter estimation:

● Method 1 calculates the factors of the likelihood (Eq. (1), right
hand side) by solving a Fokker–Planck PDE using suitable
numerical solution schemes (for details see Methods section
“Method 1: conditioned spike time likelihood”). In model
scenarios where the mean input is expected to vary only little
in [tk, tk+1] and contains perturbations with weak effects, for
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example, synaptic inputs that cause relatively small post-
synaptic potentials, we can write μðtÞ ¼ μk0 þ Jμ1ðtÞ with
small |J|, where μk0 may vary between ISIs. This allows us to
employ the first order approximation

pðtkþ1jtk; μ½tk; tkþ1�; θÞ � p0ðtkþ1jtk; θÞ þ J p1ðtkþ1jtk; μ1½tk; tkþ1�; θÞ;
ð2Þ

where θ contains parameters that remain constant within ISIs,
including μk0; J is indicated separately for improved clarity. p0
denotes the conditioned spike time likelihood in absence of
input perturbations and p1 the first order correction. We
indicate the use of this approximation explicitly by
method 1a.

● Method 2 involves an approximation of the spike train by an
inhomogeneous Poisson point process. The spike rate r(t) of
that process is effectively described by a simple differential
equation derived from the I&F model and depends on the
mean input up to time t as well as the other parameters in θ
(for details see Methods section “Method 2: derived spike rate
model”). In this case the factors in Eq. (1), right, are expressed
as

pðtkþ1jtk; μ½tk; tkþ1�; θÞ �

rðtkþ1jμ½t1; tkþ1�; θÞ exp �
Z tkþ1

tk

rðτjμ½t1; τ�; θÞdτ
 !

:
ð3Þ

For each of these methods the likelihood (Eq. (1)) is then
maximized using well-established algorithms (see Methods
section “Likelihood maximization”). Notably, for the leaky I&F
model this likelihood is mathematically guaranteed to be free
from local maxima61 so that any optimization algorithm will
converge to its global maximum, which ensures reliable and
tractable fitting.

The most accurate and advantageous method depends on the
specific setting, as illustrated for different scenarios in the
following sections. Several scenarios further allow to benchmark
our methods against a related approach from Pillow and
colleagues, which also uses the Fokker–Planck equation61,62.
We compared the different methods in terms of estimation
accuracy and computation time. For information on implemen-
tation and computational demands see Methods section “Imple-
mentation and computational complexity”.

Inference of background inputs. We first consider the sponta-
neous activity of an isolated recorded neuron. This situation is
modeled with an I&F neuron receiving a stationary noisy back-
ground input with constant mean μ and standard deviation σ. For
this scenario method 1 is more accurate than method 2 while
similarly efficient, and therefore best suited. The parameters of
interest for estimation are limited to μ and σ, together with the
membrane time constant τm (for details see Methods section “I&F
neuron models”).

An example of the simulated ground truth data, which consists
of the membrane voltage time series including spike times, is
shown in Fig. 1a together with ISI and membrane voltage
histograms. Note that for estimation we only use the spike times.
By maximizing the likelihood the true parameter values are well
recovered (Fig. 1b) and we obtain an accurate estimate of the ISI
density. In addition, we also obtain an accurate estimate for the
unobserved membrane voltage density, which can be calculated
using a slight modification of method 1 in a straightforward way
once the parameter values are determined. Interestingly, the fits
are accurate regardless of whether the membrane time constant
τm is set to the true value (Fig. 1a, b), estimated or set to a wrong

value within a biologically plausible range (Fig. 1c and
Supplementary Fig. 1a).

We next evaluated the estimation accuracy for different
numbers of observed spikes (Fig. 1d). As little as 50 spikes
already lead to a good solution with a maximum average relative
error of about 10%. Naturally, the estimation accuracy increases
with the number of observed spikes. Moreover, the variance of
the parameter estimates decreases as the number of spikes
increases (see insets in Fig. 1d).

To further quantify how well the different parameters can be
estimated from a spike train of a given length, we analytically
computed the Cramer–Rao bound (see Methods section “Calcu-
lation of the Cramer–Rao bound”). This bound limits the
variance of any unbiased estimator from below and is approached
by the variance of a maximum likelihood estimator. For τm fixed
and a reasonable range of values for μ and σ we consistently find
that the variance of the estimates of both input parameters
decreases with decreasing ISI variability (Fig. 1e) and the variance
for μ is smaller than that for σ (Fig. 1d, e). If τm is included in the
estimation, the variance of its estimates is by far the largest and
that for σ the smallest (in relation to the range of biologically
plausible values, Supplementary Fig. 1b, c). Together with the
results from Fig. 1c and Supplementary Fig. 1a this motivates to
keep τm fixed.

Comparisons of our method with the approach from Pillow
et al.62 show clear improvements on estimation accuracy
(Supplementary Fig. 1c) and computation time (Supplementary
Fig. 1d: reduction by two orders of magnitude). Finally, we tested
our method on the exponential I&F model, which involves an
additional nonlinearity and includes a refractory period. For this
model we also obtain accurate estimates (Supplementary Fig. 1e).

We validated our inference method using somatic whole-cell
recordings of cortical pyramidal cells (PYRs)49 and fast-spiking
interneurons (INTs) exposed to injected fluctuating currents. A
range of stimulus statistics, in terms of different values for the
mean μI and standard deviation σI of these noise currents, was
applied and each cell responded to multiple different stimuli
(examples are shown in Fig. 2a; for details see Methods section
“In vitro ground truth data on neuronal input statistics”). We
estimated the input parameters μ and σ of an I&F neuron from
the observed spike train for each stimulus by maximizing the
spike train likelihood.

Model fitting yielded an accurate reproduction of the ISI
distributions (Fig. 2a). Importantly, the estimated input statistics
captured well the true stimulus statistics (Fig. 2b, c). In particular,
estimated and true mean input as well as estimated and true input
standard deviations were strongly correlated for all cells (Fig. 2b,
c). The correlation coefficients between estimated and ground
truth values for INTs are larger than those for PYRs, as reflected
by the concave shape of the estimated μ values as a function of μI.
This shape indicates a saturation mechanism that is not included
in the I&F model. Indeed, it can in part be explained by the
intrinsic adaptation property of PYRs (see Results section
“Inference of neuronal adaptation”). Furthermore, correlation
coefficients are slightly increased for longer stimuli (15 s
compared to 5 s duration) due to improved estimation accuracy
for longer spike trains (Supplementary Fig. 2). Comparison with a
Poisson point process showed that the I&F model is the preferred
one across all cells and stimuli according to the Akaike
information criterion (AIC), which takes into account both
goodness of fit and complexity of a model (Fig. 2d).

Noise injections in vitro mimic in a simplified way the
background inputs that lead to spontaneous neural activity
in vivo, and certain dynamical aspects may not be well captured.
Therefore, we additionally considered spike-train data obtained
from extracellular multi-channel recordings in primary auditory
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cortex of awake ferrets during silence52 (for details see Methods
section “Estimating neuronal input statistics from in vivo data”).
Examples of baseline data in terms of ISI histograms together
with estimation results are shown in Fig. 2e, and estimated
parameter values of the background input for all cells are
visualized in Fig. 2f. The I&F model with fluctuating background
input captures well a range of ISI histograms that characterize the
baseline spiking activity of cortical neurons. Also here the I&F
model appears to be the preferred one compared to a Poisson
process for almost all cells according to the AIC (Fig. 2g).

Inference of input perturbations. We next focus on the effects of
synaptic or stimulus-driven inputs at known times. Specifically,
we consider μ(t)= μ0+ Jμ1(t), where μ0 denotes the background
mean input and μ1(t) reflects the superposition of input pulses
triggered at known times. For this scenario we apply and compare
methods 1a and 2.

For an evaluation on synthetic data we model μ1(t) by the
superposition of alpha functions with time constant τ, triggered at
known event times with irregular inter-event intervals. We
estimate the perturbation strength J as well as τ, which determines
the temporal extent over which the perturbation acts. Estimation
accuracy for a range of perturbation strengths is shown in Fig. 3a,
b. Note that the input perturbations are relatively weak,
producing mild deflections of the hidden membrane voltage
which are difficult to recognize visually in the membrane voltage
time series in the presence of noisy background input (Fig. 3a).
Both methods perform comparably well for weak input
perturbations. As |J| increases the estimation accuracy of method
2 increases, whereas that of method 1a decreases (Fig. 3b) because
it is based on a weak coupling approximation.

We further assessed the sensitivity of our estimation methods
for the detection of weak input perturbations, and considered a
model-free method based on cross-correlograms (CCGs) between
spike trains and perturbation times (Fig. 3c, d) for comparison.
Briefly, detection sensitivity was measured by the fraction of
significant estimates of J and CCG extrema for positive lags,
respectively, compared to the estimated values and CCGs without
perturbations from large numbers of realizations (for details see
Methods section “Modeling input perturbations”). The model-
free approach estimates the probability that the input and the
spike train are coupled, but does not provide additional
information on the shape of that coupling. Both model-based
estimation methods are more sensitive in detecting weak
perturbations than the model-free approach, with method 1a
expectedly performing best (Fig. 3d).

For additional benchmarks we considered the approach from
ref. 62 (Supplementary Fig. 3). We compared estimation accuracy
for the parameters of perturbations (Supplementary Fig. 3a),
background input and the membrane time constant (Supple-
mentary Fig. 3b), detection sensitivity (Supplementary Fig. 3c) as
well as computation time (Supplementary Fig. 3d). Both of our
methods are clearly more accurate in terms of parameter
estimation (Supplementary Fig. 3a, b) and thus, reconstruction
(Supplementary Fig. 3e). As a result, detection sensitivity is
improved (Supplementary Fig. 3c), while computation time is
strongly reduced (Supplementary Fig. 3d).

Using our model we then examined how the statistics of the
background input affect the ability to detect weak input
perturbations. For this purpose we analytically computed the
change in expected ISI caused by a weak, brief input pulse
(Supplementary Fig. 4). That change depends on the time within
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neurons. f Estimates of parameters for the background input together with contour lines of equal spike rate and ISI CV calculated from pISI. g Histogram of
AIC difference between the Poisson and I&F models across all cells and conditions
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the ISI at which the perturbation occurs (Supplementary Fig. 4a).
By comparing the maximal relative change of expected ISI across
parameter values for the background input we found that a
reduction of spiking variability within biologically plausible limits
(ISI CV≳ 0.3) typically increases detectability according to this
measure (Supplementary Fig. 4b).

We validated our inference approach using whole-cell record-
ings of cortical pyramidal cells that received injections of a
fluctuating current and an additional artificial excitatory post-
synaptic current (aEPSC)50. The fluctuating current was cali-
brated for each cell to produce ~5 spikes/s and membrane voltage
fluctuations of maximal ~10 mV amplitude. aEPSC bumps with 1
ms rise time and 10 ms decay time were triggered at simulated
presynaptic spike times with rate 5 Hz, and their strength varied
in different realizations (for details see Methods section “In vitro
ground truth data on input perturbations”).

We applied methods 1a and 2 to detect these artificial synaptic
inputs based on the presynaptic and postsynaptic spike times
only, and compared the detection performance with that of a
CCG-based method. Specifically, input perturbations were
described by delayed pulses for method 1a (which yields
improved computational efficiency) and alpha functions for
method 2 (cf. evaluation above). We quantified how much data is
necessary to detect synaptic input of a given strength. For this
purpose we computed the log-likelihood ratio between the I&F
model with (J ≠ 0) and without (J= 0) coupling in a cross-
validated setting, similarly to the approach that has been applied
to this dataset previously using a Poisson point process GLM50.
For the model-free CCG method we compared the CCG peak for
positive lags to the peaks from surrogate data generated by
distorting the presynaptic spike times with a temporal jitter in a
large number of realizations. Detection time is then defined
respectively as the length of data at which the model with
coupling provides a better fit than the one without according to
the likelihood on test data50 (Fig. 4a), and at which the CCG peak
crosses the significance threshold (Fig. 4b; for details see Methods
section “In vitro ground truth data on input perturbations”).

All three methods were able to successfully detect most aEPSC
perturbations, and method 2 required the least data for detection
(Fig. 4c; overall reduction in detection time, also compared to the
GLM used previously: Fig. 2F, G in ref. 50 is directly comparable
to Fig. 4a, c). We further considered an alternative detection
criterion for the I&F model, based on surrogate data as used for
the CCG method. This approach thus enables a more direct
comparison. Comparing the detection performance for fixed
recording duration across all perturbation strengths and available
cells shows that method 1a is more sensitive than the CCG
method (success rate 0.86 vs. 0.78, Fig. 4d). We conclude that
both methods, 1a with delayed pulses and 2 with an alpha
function kernel, are well suited to detect weak aEPSCs in this
in vitro dataset, and their sensitivity is increased compared to a
model-free CCG method.

Inference of synaptic coupling. In the previous section we
showed that we can successfully estimate the perturbations in the
spiking of an individual neuron that may be elicited by inputs
from another neuron. We now turn to estimating synaptic cou-
plings in a network. We consider the situation in which we have
observed spike trains of N neurons. We fit these data using a
network model in which each neuron i receives independent
fluctuating background input with neuron-specific mean μi(t) and
variance σ2i , and neurons are coupled through delayed current
pulses which cause postsynaptic potentials of size Ji,j with time
delay di,j, for i, j ∈ {1, …, N}. The mean background input may
vary over time to reflect large amplitude variations in the external

drive (and thus, spiking activity) that are slow compared to the
fast input fluctuations captured by the Gaussian white noise
process. Our aim is therefore to estimate the coupling strengths in
addition to the statistics of background inputs caused by unob-
served neurons.

We collect the observed spike times of all N neurons in the set
D and separate the matrix of coupling strengths J from all other
parameters in θ for improved clarity. Since μi(t) is assumed to
vary slowly we approximate it by one value across each ISI. The
overall mean input for neuron i across the kth ISI can therefore be
expressed as μki þ

PN
j¼1 Ji;j μ

1
j ðtÞ, where Ji;j μ

1
j ðtÞ describes the

synaptic input for neuron i elicited by neuron j taking the delay
di,j into account. The likelihood p(D|θ, J) can be factorized into
conditioned spike time likelihoods, where each factor is
determined by the parameters in θ together with a specific subset
of all coupling strengths and knowledge of the spike times that we
have observed. Assuming reasonably weak coupling strengths,
each of these factors can be approximated by the sum of the
conditioned spike time likelihood in absence of input perturba-
tions and a first order correction due to synaptic coupling (cf. Eq.
(2)) to obtain

pðDjθ; JÞ �
YN
i¼1

YKi�1

k¼1
p0ðtkþ1i jtki ; θÞ þ

XN
j¼1

Ji;j p1ðtkþ1i jtki ; μ1j ½tki ; tkþ1i �; θÞ;

ð4Þ

where tki denotes the kth of Ki observed spike times and θ
contains all parameters, including μki (except for J). Note that the
mean input perturbations μ1j depend on the spike times of neuron
j taking the delay di,j into account. The approximation (4) implies
that an individual synaptic connection on one neuron has a
negligible effect for the estimation of a connection on another
neuron, which is justified by the assumption of weak coupling.
This allows for the application of method 1a, by which the
likelihood can be calculated in an efficient way (for details see
Methods section “Network model and inference details”).

We first evaluated our method on synthetic data for small
(N= 10) as well as larger (N= 50) fully observed networks of
neurons with constant background input statistics. The number
of parameters inferred per network, which include mean and
standard deviation of background inputs, coupling strengths and
delays, excluding self-couplings, amounts to 2N2. The estimated
parameter values show a remarkable degree of accuracy (Fig. 5a, b
left and Supplementary Fig. 5a).

In a more realistic scenario, the N recorded neurons belong to a
larger network that is subsampled through the measurement
process. The unobserved neurons therefore contribute additional,
hidden inputs. In the fitted model, the effect of these unobserved
neurons on neuron i is absorbed in the estimated parameters (μi,
σi) of the background noise. Specifically, the total external input
to neuron i, originating from a large number Mi of unobserved
neurons whose spike trains are represented by independent
Poisson processes with rates rj, can be approximated for
reasonably small coupling strengths with a background noise of
mean μi ¼

PNþMi
j¼Nþ1 Ji;jrj and variance σ2i ¼

PNþMi
j¼Nþ1 J

2
i;jrj. This is

the classical diffusion approximation63. Because of shared
connections from unobserved neurons, the inputs received by
the different observed neurons are in general correlated, with
correlation strengths that depend on the degree of overlap
between the unobserved presynaptic populations. Although the
model we fit to the observed data assumes uncorrelated
background inputs, the effects of input correlations on the
neuronal ISI distributions are approximated in the estimation of
μi and σi.
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To assess the influence of correlations due to unobserved
common inputs, we first fitted our model to data generated from
a network with correlated background inputs. The estimation
accuracy of synaptic strengths is still good in case of weak
correlations of the external input fluctuations (correlation
coefficient c= 0.1 for each pair of observed neurons; Fig. 5b
right). Empirical values for such noise correlations, measured in
experimental studies by the correlation coefficient of pairwise
spike counts on a short timescale, are typically very small36,64,65.

We next tested our method on data generated by explicitly
subsampling networks of randomly connected neurons, and
compared the results with those from two classical approaches: a
model-free CCG method (cf. Results section “Inference of input
perturbations”) and a method based on a Poisson point process
GLM that is well constrained for the synthetic data66 (for details
see Methods section “Network model and inference details”). We
chose a GLM that is tailored to capture the spiking dynamics of
the (ground truth) I&F network model with a minimal number of
parameters.

First, we considered classical networks of 800 excitatory and
200 inhibitory neurons33 with connection probabilities of 0.1 for
excitatory connections, 0.4 for inhibitory connections, and a
plausible range of coupling strengths. Inference results from
partial observations (N= 20) show that the I&F method outper-
forms the other two approaches on accuracy of both estimated
coupling strengths and detection of connections (Fig. 5c–g, for
different recording lengths see Supplementary Fig. 5b).

To gain more insight into the challenges caused by shared
input from unobserved neurons and how they affect the different
methods, we then varied connection probability and delay. We
considered networks with equal numbers of excitatory and
inhibitory neurons to ensure equal conditions for the estimation

of the two connection types (Fig. 5h–k and Supplementary
Fig. 5c–f). For relatively sparse, subsampled networks (connection
probability 0.1, N= 20 observed neurons out of 1000) all three
methods perform well, and the I&F method shows only a slight
improvement in terms of correlation between true and estimated
coupling strengths and detection accuracy (Fig. 5h, for detailed
inference results see Supplementary Fig. 5c). The inference task
becomes increasingly difficult as connectivity increases (connec-
tion probability 0.3, see Fig. 5i and Supplementary Fig. 5d). In this
case the correlations between spike trains of uncoupled pairs of
neurons are clearly stronger on average, particularly at small time
lags, which renders CCGs unsuitable to distinguish the effects of
numerous synaptic connections from uncoupled pairs. As a
consequence, the number of false positives and misclassified
inhibitory connections increases. Hence, the accuracy of the CCG
method is substantially reduced. This also causes strongly
impaired accuracy of the GLM method, especially with respect
to detection of synapses, whereas our I&F method appears to be
much less affected. Increased synaptic delays in such networks
lead to improved inference results for all three methods (Fig. 5j
and Supplementary Fig. 5e). Intuitively, this shifts the effects of
connections in the CCG to larger lag values and thus away from
the peak at zero lag caused by correlated inputs (Fig. 5j left).
Nevertheless, also in this case the I&F method remains the most
accurate one. We further considered small spike train distortions
(using a temporal jitter) to mimic strong measurement noise,
which naturally caused an overall reduction in accuracy but most
strongly affected the CCG method (Fig. 5k and Supplementary
Fig. 5f).

Finally, we would like to note that the connectivity is not the
only determinant of noise correlations in random networks; an
increase of coupling strengths also caused increased spike train
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correlations for uncoupled pairs (Supplementary Fig. 6). For
rather sparse networks (connection probability 0.1) the benefit of
stronger couplings outweighs that disadvantage for inference
(Supplementary Fig. 6a). However, for slightly increased
connectivity (connection probability 0.2) the noise correlations
are strongly amplified, leading to an increase in mainly false
positives and misclassified inhibitory connections (Supplemen-
tary Fig. 6b, in comparison to Fig. 5i and Supplementary Fig. 5d).

In sum, our approach yields accurate inference results for
subsampled networks as long as the correlations between the
hidden inputs, due to shared connections from unobserved
neurons, are not too large. In particular, it outperforms classical
CCG-based and GLM-based methods.

We validated our inference of synaptic coupling using
simultaneous extracellular recordings and juxtacellular stimula-
tions of hippocampal neuronal ensembles in awake mice51.

Following the approach developed in ref. 51, we estimated
connectivity by applying the I&F method to spontaneous,
extracellularly recorded spiking activity, and assessed the
accuracy of our estimates by comparison with ground truth data.
Ground truth connectivity was obtained by evoking spikes in
single PYRs juxtacellularly using short current pulses, while
recording extracellular spike trains of local INTs (for an example
see Fig. 6a). Ground truth values for the presence and absence of
synaptic connections were derived from spike train CCGs using
the evoked presynaptic spikes, taking into account co-modulation
caused by common network drive (for details see Methods section
“In vivo ground truth data on synaptic connections”).

An important aspect of these data is that spontaneous activity
appeared to be highly nonstationary, so that the spike trains of
the recorded neurons were typically co-modulated. To infer
synaptic couplings from the spontaneous spike trains with our
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model-based approach, we accounted for network co-modulation
in two ways: (1) through small temporal perturbations of the PYR
spike times, used to compute coupling strength z-scores; (2)
through estimated variations of the background mean input for
the (potentially postsynaptic) INTs, that is, μki in Eq. (4) varied
between ISIs. These variations were inferred from the instanta-
neous spike rate, which typically varied at multiple timescales
over the duration of the recordings that lasted up to ~2 h
(Fig. 6a). We, therefore, estimated the variations of mean input at
three different timescales separately and inferred synaptic
couplings for each of these (see Methods section “In vivo ground
truth data on synaptic connections”).

Although spontaneous activity was highly nonstationary, our
inference of the connectivity appeared to be very accurate.
Comparisons with ground truth estimates demonstrated
accuracy of up to 0.95 (for the intermediate timescale variant;
Fig. 6c). Moreover, reducing the number of spikes used for
inference did not lead to an appreciable decrease of reproduc-
tion accuracy (Supplementary Fig. 7a). Nevertheless, using
instead a model-free CCG method on the spontaneous spike
trains yielded comparable detection accuracy (Supplementary
Fig. 7b, for an example CCG see Fig. 6b). This fact and the
observation that the timescale affects detection performance
only weakly (cf. Fig. 6c) may be explained by the large signal-to-
noise ratio in this dataset (Supplementary Fig. 7c), as the focus
in ref. 51 was on strong connections. We would also like to
remark that a GLM-based method was previously applied and
compared to the CCG-based method on these data51, resulting
in similar detection accuracy at strongly increased computa-
tional demands (200–400 s GPU computing time for a GLM fit,
depending on the recording length, vs. 20 ms CPU computing
time for the CCG analysis).

Inference of neuronal adaptation. We next extend the model
neurons to account for spike rate adaptation—a property of many
types of neurons, including pyramidal cells67–69. It can be
observed by a gradual change in spiking activity following an
immediate response upon an abrupt change of input strength, as
shown in Fig. 7a, d. This behavior is typically mediated by a
calcium-activated, slowly decaying transmembrane potassium
current, which rapidly accumulates when the neuron spikes
repeatedly69,70. In the extended I&F neuron model14,55 this
adaptation current is represented by an additional variable w that
is incremented at spike times by a value Δw, exponentially decays
with slow time constant τw in between spikes, and subtracts from
the mean input, acting as a negative feedback on the membrane
voltage (Fig. 7a, see Methods section “Modeling spike rate
adaptation”).

In contrast to classical I&F neurons, in the generalized model
with adaptation, spiking is not a renewal process: given a spike
time tk the probability of the next spike depends on all previous
spike times. That dependence is however indirect, as it is
mediated through the effective mean input μ(t)−w(t) across the
ISI [tk, tk+1]. This effective mean input can be explicitly expressed
using the parameter values in θ together with the observed spike
times, and then inserted in Eq. (1) for estimation. Here, method 1
is best suited and can be applied efficiently by exploiting the fact
that w varies within ISIs in a rather stereotyped way (for details
see Methods section “Modeling spike rate adaptation”).

We first evaluated the inference method using simulated
ground truth data for constant statistics of the background inputs
(cf. Results section “Inference of background inputs”). An
example of the membrane voltage and adaptation current time
series is depicted in Fig. 7b. The true values for the adaptation
parameters (the strength Δw and time constant τw) are well
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recovered and we obtain an accurate estimate of the adaptation
current as it evolves over time. Here, too, the estimation accuracy
depends on the number of observed spikes (Fig. 7c) and relative
errors are on average less than 10% for 500 spikes.

Comparisons of our method with the approach from ref. 62 on
simultaneous inference of adaptation and background input
parameters show clear improvements in terms of estimation
accuracy (Supplementary Fig. 8a, b, d) and computation time
(Supplementary Fig. 8c).

To validate our inference method for adaptation parameters,
we used the recordings of neurons stimulated by noise currents
that we examined in Results section “Inference of background
inputs”. Several cells, predominantly PYRs, exhibited clear spike
rate adaptation (for an example see Fig. 7d). Accordingly, the
adaptive I&F model yielded a clearly improved fit compared to
the nonadaptive model for all but one PYRs as shown by the AIC
(Fig. 7e; for details see Methods section “In vitro ground truth
data on neuronal input statistics”). On the other hand, for all
except one INTs the nonadaptive model turned out to be the
preferred one, which is consistent with the observation that INTs
generally exhibit little spike rate adaptation compared to PYRs71.

We examined the mean input estimates from the adaptive
model in comparison to the nonadaptive model for the neurons
where the adaptive model was preferred (Fig. 7e, f). For all of
those cells, including adaptation increased the correlation
coefficient between estimated and empirical mean input. The
remaining room for improvement of this correlation for PYRs

indicates that there are likely multiple adaptation mechanisms
(with different timescales) at work71. Note that the intrinsic
adaptation current effectively subtracts from the mean input (but
does not affect the input standard deviation). Indeed, the
presence of adaptation in the model insignificantly affects the
correlation coefficient between estimated and empirical input
standard deviation (Supplementary Fig. 9). This can be explained
by the fact that the adaptation variable varies slowly compared to
the membrane voltage and typical mean ISI (estimated τw > 4τm
on average); therefore, it affects the ISI mean more strongly than
its variance which is predominantly influenced by the fast input
fluctuations (parameter σ).

Discussion
We presented efficient, statistically principled methods to fit I&F
circuit models to single-trial spike trains, and we evaluated and
validated them extensively using synthetic, in vitro and in vivo
ground truth data. Our approach allows to accurately infer hid-
den neuronal input statistics and adaptation currents as well as
coupling strengths for I&F networks. We demonstrated that (1)
the mean and variance of neuronal inputs are well recovered even
for relatively short spike trains; (2) for a sufficient, experimentally
plausible number of spikes, weak input perturbations triggered at
known times are detected with high sensitivity, (3) coupling
strengths are faithfully estimated even for subsampled networks,
and (4) neuronal adaptation strength and timescale are accurately
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inferred. By applying our methods to suitable electrophysiological
datasets, we could successfully infer the statistics of in vivo-like
fluctuating inputs, detect input perturbations masked by back-
ground noise, reveal intrinsic adaptation mechanisms, and
reconstruct in vivo synaptic connectivity.

Previously several likelihood-based methods related to ours
have been proposed, considering uncoupled I&F neurons
with61,62,72 or without adaptation73,74 for constant73 or time-
varying61,62,72,74 input statistics. All of these methods employ
the Fokker–Planck equation and numerically calculate the
spike train likelihood with high precision73 or using
approximations61,62,72,74. We benchmarked our methods against
that from61,62, which was applicable to the estimation of single
neuron parameters and for which an efficient implementation is
available (cf. Supplementary Methods Section 3). Our methods
clearly outperformed the previous one in terms of estimation
accuracy as well as computation time, owing to optimized
numerical discretization/interpolation schemes (method 1) and
effective approximations (method 2). Notably, our methods
extend these previous approaches, centered on inference for
single leaky I&F models, to the estimation of synaptic coupling in
networks of generalized I&F neurons.

In the absence of likelihoods, methods for parameter fitting
typically involve numerical simulations and distance measures
that are defined on possibly multiple features of interest46–48,75,76.
Evolutionary algorithms46,47,75, brute-force search48 or more
principled Bayesian techniques76 are then used to minimize the
distances between observed and model-derived features. While
these likelihood-free, simulation-based methods can be applied to
more complex models they exhibit disadvantages: the distance
measures usually depend on additional parameters and their
evaluation depends on the particular realization of noise or ran-
domness considered in the model. Optimization can therefore be
exceedingly time-consuming. Furthermore, the principled,
likelihood-based tools for model comparison (such as AIC and
log-likelihood ratio) are not applicable in this case.

Here, we directly estimated synaptic coupling strengths for
leaky I&F networks with fluctuating external inputs from
observed spike trains. Our method is conceptually similar to those
presented in77,78, but does not rely on an approximation of the
spike train likelihood that assumes vanishing77 or small78

amplitudes of input fluctuations. Strongly fluctuating inputs are
typically required to produce in vivo-like spiking statistics.

Our approach outperformed a straightforward, model-free
method based on CCGs as well as an approach based on a phe-
nomenological, point process GLM66. This does not imply that
GLM-based methods are generally less accurate in inferring
synaptic connectivity: point process GLMs are flexible models
which can be designed and optimized to fit the observed spike
trains well2,3,79,80. However, that approach is prone to overfitting
unless strong constraints or regularization are enforced3,5,66,80,81.
An advantage of our approach in this respect is that the basic
mechanistic principles included in I&F models provide a natural
regularization and reduce the number of model parameters,
which strongly reduces the risk of overfitting. Note that our
method 2 is essentially based on mapping I&F models to sim-
plified, constrained GLM-like models57,58,82.

Alternative approaches to infer connectivity from spike trains,
other than those addressed above, have employed models of
sparsely and linearly interacting point processes83, or have been
designed in a model-free manner51,84,85, for example, using
CCGs51,84 similarly to our comparisons. A general challenge in
subsampled networks arises from pairwise spike train correlations
at small time lags generated by shared connections from unob-
served neurons, regardless of whether a direct connection is
present. These spurious correlations impair our ability to

distinguish the effects of synaptic connections from those caused
by correlated inputs, especially when coupling delays are small.
One of the benefits of our approach is that it includes an explicit,
principled mechanism to account for the effects of unobserved
neurons, which are absorbed in the estimated statistics of the
fluctuating background inputs. Correlated fast input fluctuations
are not directly modeled, their effects are compensated for in the
estimation of the background input parameters, whereas shared
input dynamics on a longer timescale are explicitly captured by
slow variations of the mean input for each neuron. This facilitates
the isolation of pairwise synaptic interactions from common
drive.

Several related studies have focused on a theoretical link
between network structure and correlated spiking activity recor-
ded from a large number of neurons, without attempting to
explicitly estimate synaptic connections86–93. Of major relevance
in this regard is the extent to which effective interactions among
observed neurons are reshaped by coupling to unobserved
neurons79,94. Current methods to estimate coupling strengths
from observed spike trains may be further advanced using these
theoretical insights.

Throughout this work we assumed that the mean input tra-
jectory across an ISI can be determined using available knowledge
(that is, the model parameters and observed spike times). In
Results section “Inference of synaptic coupling” we extracted the
variations of the mean input from estimates of the instantaneous
neuronal spike rate at different timescales (cf. Fig. 6). A useful
extension may be to consider a separate stochastic process that
governs the evolution of the mean input, allowing to extract the
most appropriate timescale from the data95, which in turn could
benefit the estimation of synaptic couplings using our approach.

I&F neurons are a popular tool for interpreting spiking activity
in terms of simple circuit models (see, e.g., refs. 25–31). Such
approaches typically start by hypothesizing a structure for the
underlying circuit based on available physiological information,
and then examine the behavior of the resulting model as a
function of the critical biophysical parameters. The model is then
validated by qualitatively comparing the model output with
experimental data. Specifically, the model activity is required to
resemble key features of the experimental data in an extended
region of the parameter space. If that is not the case, the model is
rejected and a different one is sought.

An important benefit of this approach is that it provides a
mechanistic interpretation and understanding of recorded activity
in terms of biological parameters in a neural circuit. A major
limitation is, however, that it typically relies on a qualitative
comparison with the data to select or reject models. The methods
presented here open the door to a more quantitative, data-driven
approach, in which this class of spiking circuit models can be
evaluated and compared based on their fitting performance (cf.
Figs. 2d, g, 4a, c, and 7e for such comparisons) as is routinely the
case for more abstract statistical models (see, e.g., ref. 4).

Methods
I&F neuron models. We consider typical I&F models subject to fluctuating inputs.
The dynamics of the membrane voltage V are governed by

dV
dt
¼ f ðVÞ þ μðtÞ þ σξðtÞ ð5Þ

if VðtÞ � Vs then VðtÞ  Vr; ð6Þ
where μ is the mean input, σ the standard deviation of the input, ξ a (unit)
Gaussian white noise process, i.e., 〈ξ(t)ξ(t+ τ)〉= δ(τ) with expectation 〈⋅〉, Vs is
the threshold (or spike) voltage and Vr the reset voltage. For the leaky I&F model
the function f is given by

f ðVÞ :¼ � V
τm

; ð7Þ
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where τm denotes the membrane time constant. It should be noted that for the
methods used in this paper f can be any arbitrary real-valued function. For
example, in the exponential I&F model, used for Supplementary Fig. 1e, f is a
nonlinear function that includes an exponential term (for details see Supplemen-
tary Methods section 1). The parameter values are Vs= 30 mV, Vr= 0 mV, τm=
20 ms, μ= 1.75 mV/ms, σ= 2.5 mV/

ffiffiffiffiffiffi
ms
p

if not stated otherwise in figures or
captions.

It is not meaningful to estimate all model parameters: a change of Vs or Vr in
the leaky I&F model can be completely compensated in terms of spiking dynamics
by appropriate changes of μ(t) and σ. This can be seen using the change of variables
~V :¼ ðV � VrÞ=ðVs � VrÞ. Consequently, we may restrict the estimation to μ(t), σ,
τm and set the remaining parameters to reasonable values.

Method 1: conditioned spike time likelihood. It is useful to express the factors in
Eq. (1), the conditioned spike time likelihoods, in terms of the ISI probability
density pISI,

pðtkþ1jtk; μ½tk; tkþ1�; θÞ ¼ pISIðskjμISI½0; sk�; θÞ; ð8Þ
where sk := tk+1− tk is the length of the kth ISI and μISI is the mean input across
that ISI given by μISI[0, sk]= μ[tk, tk+1]. The technical advantage of this change of
variables becomes most obvious for constant μ. In this case the density function pISI
needs to be computed only once in order to evaluate the spike train likelihood, Eq.
(1), for a given parametrization μ, θ.

Given a spike at t= t0 the probability density of the next spike time is equal to
the ISI probability density pISI(s) where s := t− t0 ≥ 0 denotes the time since the last
spike. This quantity can be approximated by numerical simulation in an intuitive
way: starting with initial condition V(t0)= Vr one follows the neuronal dynamics
given by Eq. (5) in each of n realizations of the noise process until the membrane
voltage crosses the value Vs and records that spike time ti in the ith realization. The
set of times {ti} can then be used to compute pISI, where the approximation error
decreases as n increases. We can calculate pISI analytically in the limit n → ∞ by
solving the Fokker–Planck partial differential equation (PDE)96,97 that governs the
dynamics of the membrane voltage probability density pV (V, s),

∂pV
∂s
þ ∂qV

∂V
¼ 0; ð9Þ

qV :¼ ½f ðVÞ þ μISIðsÞ�pV �
σ2

2
∂pV
∂V

ð10Þ

with mean input μISI(s)= μ(t), subject to the initial and boundary conditions

pV ðV ; 0Þ ¼ δðV � VrÞ; ð11Þ

pV ðVs; sÞ ¼ 0; ð12Þ

lim
V!�1

qV ðV; sÞ ¼ 0: ð13Þ
The ISI probability density is then given by the probability flux at Vs,

pISIðsjμISI½0; s�; θÞ ¼ qV ðVs; sÞ: ð14Þ
In the field of probability theory pISI is also known as first passage time density.

In method 1a we consider the first order approximation (2) for weak
perturbations of the mean input, μðtÞ ¼ μk0 þ Jμ1ðtÞ with small |J| during the kth
ISI. In this case the kth spike time likelihood is expressed as

pISIðskjμISI½0; sk�; θÞ � p0ISIðskjθÞ þ J p1ISIðskjμ1ISI½0; sk�; θÞ ð15Þ

μISI½0; sk� ¼ μ0ISI þ J μ1ISI½0; sk�; ð16Þ
where μ1ISI½0; sk� ¼ μ1½tk; tkþ1� and θ contains parameters that remain constant
within ISIs, including μ0ISI ¼ μk0.

Numerical solution schemes to compute pISI (method 1) or p0ISI and p1ISI
(method 1a) in accurate and efficient ways are provided in Supplementary Methods
section 2. It should be noted that these functions do not need to be computed for
each observed ISI separately; instead, we pre-calculate them for a reasonable set of
trajectories μISI[0, smax], where smax is the largest observed ISI, and use interpolation
for each evaluation of a spike time likelihood.

Method 2: derived spike rate model. Method 2 requires the (instantaneous) spike
rate r(t) of the model neuron described by Eqs. (5) and (6), which can be calculated
by solving a Fokker–Planck system similar to Eqs. (9–13),

∂pV
∂t
þ ∂qV

∂V
¼ 0; qV :¼ ½f ðVÞ þ μðtÞ�pV �

σ2

2
∂pV
∂V

; rðtÞ ¼ qV ðVs; tÞ; ð17Þ

subject to the conditions

pV ðVs; tÞ ¼ 0; lim
V!�1

qV ðV; tÞ ¼ 0; ð18Þ

lim
V&Vr

qV ðV; tÞ � lim
V%Vr

qV ðV ; tÞ ¼ qV ðVs; tÞ; ð19Þ

where Eq. (19) accounts for the reset condition (6). The steady-state solution of this
system (for constant mean input) can be conveniently calculated56. Obtaining the
time-varying solution of Eqs. (17–19) is computationally more demanding and can
be achieved, e.g., using a finite volume method as described in Supplementary
Methods section 2 (see ref. 57).

As an efficient alternative, reduced models have been developed to approximate
the spike rate dynamics of this Fokker–Planck system by a low-dimensional
ordinary differential equation (ODE) that can be solved much faster57–59,98. Here,
we employ a simple yet accurate reduced model from ref. 57 (the LNexp model,
based on ref. 58) adapted for leaky I&F neurons with constant input variance σ2.
This model is derived via a linear–nonlinear cascade ansatz, where the mean input
is first linearly filtered and then passed though a nonlinear function to yield the
spike rate. Both components are determined from the Fokker–Planck system and
can be conveniently calculated without having to solve Eqs. (17)–(19) forward in
time: the linear temporal filter is obtained from the first order spike rate response
to small amplitude modulations of the mean input and the nonlinearity is obtained
from the steady-state solution57,58. The filter is approximated by an exponential
function and adapted to the input in order to allow for large deviations of μ. This
yields a one-dimensional ODE for the filter application,

dμf
dt
¼ μðtÞ � μf

τμðμf jθÞ
; ð20Þ

where μf is the filtered mean input and τμ is the (state dependent) time constant.
The spike rate is given by the steady-state spike rate of the Fokker–Planck system
evaluated at μ= μf,

rðtÞ ¼ r1ðμf jθÞ: ð21Þ
In order to efficiently simulate this model we pre-calculate τμ and r∞ for a
reasonable range of mean input values and use look-up tables during time
integration. Note that this model is based on the derivation in ref. 58 with filter
approximation scheme proposed in ref. 57, which leads to improved accuracy of
spike rate reproduction for the sensitive low input regime57. For a given mean
input time series μ[t0, t] we calculate r(t|μ[t0, t],θ) using the initial condition
μf(t0)= μ(t0).

Likelihood maximization. We maximized the logarithm of the likelihood (log-
likelihood),

argmaxθ log pðDjθÞ ¼ argmaxθ
XK�1
k¼1

log pðtkþ1jtk; μ½tk; tkþ1�; θÞ ð22Þ

for individual neurons, using Eq. (1), and similarly for networks using the loga-
rithm of Eq. (4). Optimization was performed using a simplex algorithm99 as
implemented in the Scipy package for Python. It should be noted that our method
is not restricted to this algorithm; alternative, gradient-based optimization tech-
niques, for example, may likely lead to reduced estimation times.

We would further like to remark that maximizing the likelihood p(D|θ) within
plausible limits for the parameter values is equivalent to maximizing the posterior
probability density for the parameters given the data, p(θ|D), without prior
knowledge about the parameters except for the limits (i.e., assuming a uniform
prior distribution of θ).

Calculation of the Cramer–Rao bound. We computed the Cramer–Rao bound for
the variance of parameter estimates in Results section “Inference of background
inputs”. This bound is approached by the variance of a maximum likelihood
estimator as the number of realizations increases. Let θ denote the vector of
parameters for estimation (contained in θ), e.g., θ= (μ, σ, τm)T. In case of a single
(non-adapting) model neuron with constant input moments the Cramer–Rao
bound for the variance of estimates of θi from spike trains with K spikes is then
given by ½IðθÞ��1i;i =ðK � 1Þ, where IðθÞ is the Fisher information matrix per ISI
defined by

IðθÞi;j :¼ �
Z 1
0

pISIðsjμ½0; s�; θÞ
∂2

∂θi∂θj
log pISIðsjμ½0; s�; θÞds: ð23Þ

Modeling input perturbations. In Results section “Inference of input perturba-
tions” we consider input perturbations of the form μ(t)= μ0+ Jμ1(t), where μ1(t) is
described by the superposition of alpha functions with time constant τ, triggered at
times ~t1; ¼ ;~tL ,

μ1ðtÞ ¼
XL
l¼1

Hðt �~tlÞ
t �~tl
τ

exp 1� t �~tl
τ

� �
; ð24Þ

with Heaviside step function H. The alpha functions are normalized such that their
maximum value is 1 when considered in isolation. As an alternative we also
considered delayed delta pulses instead of alpha kernels

μ1ðtÞ ¼
XL
l¼1

δðt �~tl � dÞ; ð25Þ
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where d denotes the time delay. The perturbation onset (trigger) times were gen-
erated by randomly sampling successive separation intervals ~tlþ1 �~tl from a
Gaussian distribution with 200 ms mean and 50 ms standard deviation.

In Fig. 3 and Supplementary Fig. 3, we quantified the sensitivity to detect weak
input perturbations using our estimation methods (1a and 2) in comparison with a
detection method based on the generated data only. For a given parametrization Nr

spike trains were simulated using different realizations of neuronal input noise and
perturbation onset times. Detection sensitivity was quantified by comparing the
inferred perturbation strengths from data generated with (J ≠ 0) and without (J=
0) perturbations.

For the I&F-based methods it was calculated by the fraction of Nr= 50
estimates of J for true J > 0 (J < 0) that exceeded the 95th percentile (fell below the
5th percentile) of estimates without perturbation. The model-free reference method
was based on CCGs between the spike trains and perturbation times (in other
words, spike density curves aligned to perturbation onset times). For each
realization one such curve was calculated by the differences between spike times
and the perturbation onset times using a Gaussian kernel with 3 ms standard
deviation. Detection sensitivity was assessed by the fraction of Nr= 300 CCGs for
which a significant peak (for J > 0) or trough (for J < 0) appeared in the interval [0,
100 ms]. Significance was achieved for true J > 0 (J < 0) if the curve maximum
(minimum) exceeded the 95th percentile (fell below the 5th percentile) of maxima
(minima) in that interval without perturbation.

Network model and inference details. In Results section “Inference of synaptic
coupling” we consider networks of Ntot coupled leaky I&F neurons from which the
spike trains of N ≤Ntot neurons have been observed. These networks are given by

dVi

dt
¼ � Vi

τm
þ μiðtÞ þ

XNtot

j¼1
Ji;jμ

1
j ðtÞ þ σ iηiðtÞ; ð26Þ

μ1i ðtÞ ¼
XKi

k¼1
δðt � tki � di;jÞ; ð27Þ

if ViðtÞ � Vs thenViðtÞ  Vr; ð28Þ
for i ∈ {1, …, Ntot}, where Ji,j denotes the coupling strength between presynaptic
neuron j and postsynaptic neuron i, tki is the kth of Ki spike times of neuron i, and
di,j is the delay. ηi describes the fluctuations of external input received from
unobserved neurons,

ηiðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
1� c
p

ξiðtÞ þ
ffiffi
c
p

ξcðtÞ; ð29Þ
where ξi, ξc are independent unit Gaussian white noise processes, i.e., 〈ξi(t)ξj(t+ τ)〉=
δijδ(τ), i, j ∈ {1, …, Ntot, c}, and c is the input correlation coefficient. We
considered uncorrelated or weakly correlated external input fluctuations, i.e.,
c= 0 or c= 0.1. Note that the input variation for neuron i caused by (observed or
unobserved) neuron j across the interval ½tki ; tkþ1i �, denoted by Ji;jμ

1
j ½tki ; tkþ1i � (as

used in Eq. (4)), is determined by the spike times of neuron j that occur in the
interval ½tki � di;j; t

kþ1
i � di;j�. For simulated data we chose identical delays across

the network, but this is not a restriction of our inference method (see below).
Coupling strengths were uniformly sampled in [−0.75, 0.75] mV (Fig. 5a, b and
Supplementary Fig. 5a), otherwise excitatory/inhibitory connections were ran-
domly generated with specified probabilities and coupling strengths were then
uniformly sampled with mean ±0.5 mV (Fig. 5c–k and Supplementary Fig. 5b–f)
or mean ±1 mV (Supplementary Fig. 6), respectively. Autapses were excluded, i.e.,
Ji,i= 0. Network simulations for Fig. 5c–k, Supplementary Figs. 5b–f and 6 were
performed using the Python-based Brian2 simulator100.

Our method fits an I&F network, described by Eqs. (26)–(29) with c= 0 for the
N observed neurons (i.e., i ∈ {1, …, N}) to the spike train data by maximizing the
likelihood (4). In the fitted model the effects of unobserved neurons are absorbed
by the parameters μi(t) and σi, where μi(t) is discretized in an event-based way: the
background mean input for neuron i during its kth ISI is represented by a constant
value μki (cf. Eq. (4)). In Fig. 5, Supplementary Figs. 5 and 6 μi(t) was assumed to be
constant over time, whereas in Fig. 6 and Supplementary Fig. 7 it varied between
ISIs; for details on the estimation of these variations see Methods section “In vivo
ground truth data on synaptic connections”.

The logarithm of the spike train likelihood (4) (cf. Methods section “Likelihood
maximization”) was optimized in the following way, justified by the assumption of
weak coupling. First, the parameters of the background input, μki and σi, were
estimated for each neuron in isolation (all Ji,j= 0). Consequently, effects of
observed and unobserved neurons are reflected by these estimates. Then, the
coupling strength Ji,j and delay di,j were estimated given μki and σi for each i,j-pair.
These two steps were performed in parallel over (postsynaptic) neurons. We
estimated couplings in a pairwise manner to save computation time, assuming that
the transient effects of an individual synaptic connection on the spiking probability
of a neuron are negligible for the estimation of other synaptic connections. This is
justified for weak coupling and network activity where synchronous spikes across
the network occur sparsely.

We then corrected for a potential systematic bias in the estimated coupling
strengths of a network in Fig. 5, Supplementary Figs. 5 and 6 as follows. We
perturbed all presynaptic spike times by a temporal jitter (random values uniformly
sampled in the interval [−10, 10] ms) to mask any of the transient effects caused by
synaptic connections, and re-estimated the coupling strengths for multiple such
realizations for each postsynaptic neuron i given μki and σi. The averaged bias that
was estimated across the network from this procedure was then subtracted from
the original estimates.

For comparison we used a method that fits a point process GLM to the data.
From the class of GLM-based approaches2,3,80 we chose one that is well suited for
reconstruction from spike train data generated by an I&F network as specified
above and for which an efficient implementation is available66. In the GLM
network model the incoming spike trains, after incurring transmission delays, are
filtered by a leaky integrator with a time constant and a (constant) baseline activity
parameter for each neuron. The resulting membrane potential is passed through an
exponential link function, which transforms it into the time-varying rate of a
Poisson point process that generates the output spike train of the neuron. The spike
train is also fed back as an input to the neuron itself to model refractory, post-spike
properties. The coupling terms in the GLM and I&F networks are equivalent: both
models use delayed delta pulses.

Using maximum likelihood estimation this GLM method inferred N2+ 3N
parameters per network with N neurons: the coupling strengths (including self-
feedback) as well as time constant, baseline parameter and delay, one for each
neuron. Note that for the simulated data only one (global) delay value was used for
all connections in a network. Hence, the GLM method estimated fewer parameters
compared to the I&F method (which inferred 2N2 parameters). For details on the
elaborate inference technique, which includes regularized optimization and cross-
validation, and an available Python implementation using the library Cython for
accelerated program execution we refer to ref. 66.

In the model-free, CCG-based method a connection strength was estimated by
the z-score of the extremum in the spike train CCG across positive lags for each
pair of neurons. Note that the lag denotes the time since a presynaptic spike.
z-scores were obtained using estimates from surrogate data generated by
perturbing the presynaptic spike times by a temporal jitter (random values between
−10 ms and 10 ms) in a large number of realizations.

For each of the three methods detailed in this section we assessed detection
performance in the following way. A discrimination threshold Jthresh for the
presence or absence of connections was applied to estimated coupling strengths Ĵi;j .
Accordingly, the presence of a connection (i,j-pair) was assured by the condition
ĵJi;jj> Jthresh. The true positive rate (sensitivity) was given by the number TP of

connections for which the estimation satisfied ĵJi;jj> Jthresh and a true connection
was present (|Ji,j| > 0), divided by the number P of true connections. The true
negative rate (specificity) was given by the number TN of connections for which
ĵJi;jj � Jthresh and a true connection was absent (Ji,j= 0), divided by the number N
of absent connections. Receiver operating characteristic (ROC) curves were
generated from sensitivity and specificity as a function of Jthresh. Accuracy (ACC)
and balanced accuracy (BACC) are defined as ACC= (TP+ TN)/(P+N) and
BACC= (TP/P+ TN/N)/2, respectively.

Modeling spike rate adaptation. In Results section “Inference of neuronal
adaptation” we consider an extended I&F neuron model that includes an additional
adaptation (current) variable w that is incremented at spike times, slowly decays,
and counteracts the input to the neuron14,55: Eqs. (5) and (6) where the mean input
μ(t) is replaced by an effective mean input μ(t)− w(t), with

dw
dt
¼ � w

τw
; ð30Þ

if VðtÞ � Vs then wðtÞ  wðtÞ þ Δw: ð31Þ
Here, τw is the adaptation time constant and Δw denotes the spike-triggered
increment.

For known spike times, contained in set D, the effective mean input can be
written as μ(t)− Δwμ1(t|D,τw), where μ1 between spike times tk and tk+1 is
explicitly expressed by

μ1ðtjD; τwÞ ¼
Xk
i¼1

Hðt � tiÞexp �
t � ti
τw

� �
; ð32Þ

t ∈ [tk, tk+1], with Heaviside step function H, assuming the adaptation current just
prior to the first spike is zero, wðt�1 Þ ¼ 0. This means, for given parameters μ, Δw,
τw the effective mean input time series is determined by the observed spike train
(up to tk).

Note that in general the mean input perturbations caused by adaptation vary from
spike to spike, μ1(tk|D, τw) ≠ μ1(tl|D,τw) for tk ≠ tl ∈ D. To efficiently evaluate the
likelihood p(D|θ) via method 1 (using Eqs. (1) and (8)) we calculate pISI(s|μISI[0, s],θ)
with μISI(s)= μ(s)−w0 exp(−s/τw), s ≥ 0 for a reasonable range of values for w0 and
interpolate to obtain pISI(sk|μISI[0, sk],θ) with μISI[0, sk]= μ[tk, tk+1]−Δw μ1[tk, tk+1]
using Eq. (32). Methods 1a and 2 are less well suited for this scenario because the
adaptation variable can accumulate to substantial values, thereby opposing the
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assumption of weak variations of the mean input; moreover, the spike train of an
adapting neuron deviates strongly from a Poisson process.

Implementation and computational complexity. We have implemented our
methods for parameter estimation (1, 1a, and 2) using the Python programming
language and applying the libraries Scipy101 for optimization and Numba102 for
low-level machine acceleration. The code for representative estimation examples
from Results sections “Inference of background inputs” to “Inference of neuronal
adaptation” is available at GitHub: https://github.com/neuromethods/inference-
for-integrate-and-fire-models. Computation times for example inference problems
are summarized in Supplementary Table 1.

In vitro ground truth data on neuronal input statistics. We used somatic whole-
cell current clamp recordings from primary somatosensory cortex in acute brain
slices (for details see ref. 49). Layer 5 PYRs were recorded in wild-type mice49,
fast-spiking layer 5 INTs were selected among the fluorescing cells of a GAD67-
GFP transgenic line103. Only cells with an access resistance ≤25MΩ (PYR: 18.3 ±
1.5 MΩ, n= 7; INT: 19.5 ± 4.0 MΩ, n= 6) and a drift in the resting membrane
potential ≤7.5 mV (PYR: 3.2 ± 3.0 mV, n= 7; INT: 3.1 ± 3.7 mV, n= 6)
throughout the recording were retained for further analysis. Seven PYRs and six
INTs were stimulated with a fluctuating current I(t) generated according to an
Ornstein–Uhlenbeck process

dI
dt
¼ μI � I

τI
þ

ffiffiffiffi
2
τI

s
σIξðtÞ; ð33Þ

where τI denotes the correlation time, μI and σI are the mean and standard
deviation of the stationary normal distribution, i.e., limt!1IðtÞ � N ðμI ; σ2I Þ, and
ξ is a unit Gaussian white noise process. Somatic current injections lasted 5 s and
were separated by inter-stimulus intervals of at least 25 s. Different values for μI
and σI were used and each combination was repeated three times. The correlation
time was set to 3 ms. Spike times were defined by the time at which the mem-
brane voltage crossed 0 mV from below, which was consistent with a large
depolarization rate dV/dt > 10 mV/ms49. An absolute refractory period of 3 ms
was assumed.

For each neuron we fitted a leaky I&F model with and without adaptation
(cf. Methods sections “I&F neuron models” and “Modeling spike rate adaptation”).
Note that the injected current I(t) can be well approximated by a Gaussian white
noise process as considered in our model because of the small correlation time τI. In
Results section “Inference of background inputs” we estimated the input parameters
μ and σ for nonadaptive model neurons from each 5-s long spike train recording as
well as from each combined 3 × 5-s long recording (using the three repetitions with
identical stimulus parameters which effectively yielded 15 s long stimuli). To
exclude onset transients (i.e., increased spike rate upon stimulus onset) we used the
central 90% of ISIs for each stimulus, ensuring that ISIs lasted >5ms. For
comparison we considered a Poisson process with constant rate. In Results section
“Inference of neuronal adaptation” we additionally estimated the adaptation
parameters Δw and τw per neuron across all available stimuli in the combined 15 s
stimulus setting. Here we used all ISIs (including the short ones at stimulus onset) in
order to unmask adaptation effects. Parameter estimation was accomplished using
method 1. To compare the quality of the models and avoid over-fitting we used the
AIC53,104, given by 2Nθ− 2maxθ log p(D|θ), where Nθ denotes the number of
estimated parameters (θ is a subvector of θ) for a particular model. For the adaptive
I&F model Nθ= 4, for the nonadaptive I&F model Nθ= 2, and for the Poisson
model Nθ= 1. The preferred model from a set of candidate models is the one with
the smallest AIC value.

Estimating neuronal input statistics from in vivo data. We used single unit spike
trains from extracellular recordings of two adult female ferrets in an awake,
spontaneous state. The animals were listening to acoustic stimuli separated by
periods of silence lasting 0.4 s which we used for model fitting. Neural activity from
primary auditory cortex was recorded using a 24 channel-electrode and spikes were
sorted using an automatic clustering algorithm followed by a manual adjustment of
the clusters (for details see ref. 52). Spike trains with >50 ISIs during silence periods
were considered for fitting. Seventy-one single units passed that threshold in each
of two behavioral conditions (passive listening vs. engaged in a discrimination
task). Model neurons were fit in either behavioral condition separately, resulting in
142 sets of estimated parameters. We employed the leaky I&F model (Eqs. (5) and
(6)) with constant background input mean μ. For robust estimation we used the
central 95% of ISIs, ensuring that ISIs lasted >2.5 ms. For comparison we con-
sidered a Poisson process with constant rate and compared the quality of the
models using the AIC.

In vitro ground truth data on input perturbations. We used whole-cell
recordings of pyramidal neurons in slices of rat visual cortex. Ten neurons were
stimulated with an input current that consisted of transient bumps reflecting an
aEPSC immersed in background noise (for details see ref. 50: experiment 1). The
background noise was generated as in Methods section “In vitro ground truth
data on neuronal input statistics” with τI= 5 ms, μI tuned to maintain ~5 spikes/

s, and σI adjusted to produce membrane voltage fluctuations with ~15–20 mV
peak-to-peak amplitude. aEPSC traces were generated by convolving a simulated
presynaptic spike train with a synaptic kernel described by the difference of two
exponentials (rise time 1 ms, decay time 10 ms). Presynaptic spikes were gener-
ated by a gamma renewal process (shape 2, scale 2.5) with 5 spikes/s on average;
aEPSC amplitudes triggered by a single spike ranged from 0.1 σI to 1.5 σI. Current
was injected in segments of 46 s length with at least 10 repetitions per aEPSC
strength (except for one cell). The first and last 3 s of each segment were dis-
carded from the analysis, as in ref. 50.

Using only the presynaptic and postsynaptic spike times, we fitted an I&F
neuron where input perturbations were described using delta pulses or alpha
functions (cf. Methods section “Modeling input perturbations”). For the former
model we applied method 1a, for the latter method 2. Similarly to ref. 50 we defined
detection time as the minimal total length of spike train data for which the model
with input perturbations (J ≠ 0) yields a larger likelihood on test data compared to
the respective model without input perturbations (J= 0); this was indicated by a
positive log-likelihood ratio on test data from 10-fold cross-validation. In addition,
we assessed detection performance on a fixed amount of data that consisted of five
consecutive segments (i.e., 200 s recording duration), where adjacent five-segment
blocks shared one segment. Coupling strength z-scores were computed using
estimates from surrogate data generated by perturbing the presynaptic spike times
by a temporal jitter (cf. Methods section “Network model and inference details”) in
a large number of realizations.

In vivo ground truth data on synaptic connections. We used combined
juxtacellular–extracellular recordings of neuronal ensembles from the hippocampal
CA1 region in awake mice (for details see ref. 51). Neurons were separated into
PYRs and INTs according to their spike waveform and spiking statistics. Spikes
were evoked in single PYRs by short current pulses (50–100 ms) applied at intervals
of variable length using juxtacellular electrodes while recording extracellular spikes
of local INTs. PYR spikes which occurred during a stimulus were considered as
evoked, and those which occurred at all other times were considered as sponta-
neous. All spikes that occurred during sharp-wave ripple events were discarded
from the analyses and we only considered INTs that fired at least 3 spikes/s on
average. A total of 78 PYR-INT pairs were included for estimation of synaptic
couplings.

For each INT we fitted a leaky I&F neuron receiving background input and
(potential) synaptic input from the recorded PYR such that each presynaptic spike
causes a delayed postsynaptic potential with delay d and size J (cf. Eqs. (26–29)
with c= 0, where we omit the indices i, j here for simplicity).

To account for changes in background input statistics over the recording
duration, which lasted up to ~2 h, and to reflect low-frequency network co-
modulation induced by common network drive, the background mean input was
allowed to vary over time. The parameters to be estimated are thus μ(t), J, d, and
σ. Estimation consisted of three steps. First, we inferred the statistics μ(t) and σ
of background inputs for J= 0 in the following way. We computed the empirical
instantaneous spike rate r(t) of the INT from the observed spike train via kernel
density estimation using a Gaussian kernel with width σG ∈ {0.1, 0.5, 1} s. The
estimated empirical spike rate varies over time much slower than the timescale at
which changes of mean input translate to changes of spike rate in the I&F model.
This justifies the approximation r(t) ≈ r1(μ(t)|θ) (cf. Methods section “Method
2: derived spike rate model”), which allowed us to efficiently evaluate the spike
train likelihood for fixed σ by applying method 1 with mean input assumed
constant within each ISI, given by μðtÞ ¼ r�11 ðrðtÞjθÞ (at the center between
consecutive spike times). The likelihood was then maximized with respect to σ.
Given the parameters for the background inputs (one value of μ per ISI and one
for σ) we next maximized the likelihood of the full model in the second step with
respect to J and d using method 1a. In the third step we assessed the significance
of synaptic coupling estimates using surrogate data, similarly as in the previous
section. We perturbed the presynaptic spike times by a small temporal jitter
(random values between −5 and +5 ms) and re-estimated J and d. This was
repeated 100 times and z-scores were computed from the estimated coupling
strengths. Notably, since spike times are shifted by only small values, effects due
to network co-modulation which occurs on a slower timescale are preserved in
the surrogate data. In this way we obtained a coupling strength z-score for each
PYR-INT pair and for each of the three values of σG.

We validated our results against ground truth connection labels obtained from
juxtacellular evoked activity using a model-free method based on spike train
CCGs51 (for details see Supplementary Methods section 4). Based on these labels
we computed ROC curves as well as ACC and BACC (cf. Methods section
“Network model and inference details”) using a classification (z-score) threshold
value Jzthresh. Accordingly, the presence of an estimated connection was assured by
the condition Ĵ z > Jzthresh, where Ĵ z denotes the connection strength (z-score)
estimate for a given PYR-INT pair. Note that the ground truth labels indicate
excitatory connections (positives) and absent connections (negatives).

To test the validity of our approach we estimated connectivity using only the
first evoked PYR spikes of each stimulation pulse, which are maximally decoupled
from network co-modulation, and compared the results with the ground truth
labels. This assessment yielded excellent agreement, with ACC and BACC values of
up to 0.97 and 0.95, respectively (for σG= 0.1 s).
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
No experimental data were collected for this study. The study involved available datasets
from previous experimental studies with ethical approval granted. These datasets are
available either online https://doi.org/10.6084/m9.figshare.1144467 or from the authors
on reasonable request.

Code availability
Python code for our methods and estimation examples are available under a free license
at https://github.com/neuromethods/inference-for-integrate-and-fire-models.
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