B Fayad 
  
D Sauzin 
  
KAM tori are no more than sticky

When a Gevrey smooth perturbation is applied to a quasi-convex integrable Hamiltonian, it is known that the KAM invariant tori that survive are "sticky", i.e. doubly exponentially stable. We show by examples the optimality of this effective stability.

Introduction

We are interested in effective stability around invariant quasi-periodic tori of nearly integrable analytic or Gevrey regular Hamiltonian systems. Under generic non degeneracy assumptions on the integrable Hamiltonian, KAM theory (after Kolmogorv Arnold Moser) guarantees the existence of a large measure set of invariant quasi-periodic tori for the perturbed systems. The invariant tori given by KAM theory have Diophantine frequency vectors. To study the diffusion rate of orbits that start near these invariant tori, an important tool is the Birkhoff Normal Forms (or BNF) at an invariant torus, that introduce action-angle coordinates in which the system in small neighborhoods of an invariant Diophantine torus becomes integrable up to arbitrary high degrees in the Taylor series of the Hamiltonian (see for example [START_REF] Birkhoff | Dynamical systems. With an[END_REF] or [START_REF] Siegel | Lectures on celestial mechanics[END_REF]).

Exploiting the Diophantine property of the frequency vector of the invariant torus, it is possible to collect estimates in the successive BNFs and establish exponential stability of the torus, in the sense that nearby solutions remain close to the invariant torus for an interval of time which is exponentially large with respect to some power of the inverse of the distance r to the torus, a power that depends only on the Diophantine exponent τ of the torus in the case of real analytic Hamiltonians, and that involves additionally the degree of Gevrey smoothness in the case of Gevrey smooth Hamiltonians ( [START_REF] Perry | KAM tori are very sticky: Rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow[END_REF], [START_REF] Popov | Invariant tori, effective stability, and quasimodes with exponentially small error terms. I. Birkhoff normal forms[END_REF]).

Combining BNF estimates with Nekhoroshev theory, Giorgilli and Morbidelli proved in [START_REF] Morbidelli | Superexponential stability of KAM tori[END_REF] that for integrable Hamiltonians with a quasi-convex Hessian, the KAM tori of an analytic perturbation of the Hamiltonian are doubly exponentially stable: the exponential stability time exp `r´1{pτ`1q ˘is promoted to exp `exp `r´1{pτ`1q ˘˘. Invariant quasi-periodic tori with this strong form of effective stability are termed sticky.

Stickiness of the invariant tori was later extended in [START_REF] Bounemoura | Superexponential stability of quasiperiodic motion in Hamiltonian systems[END_REF] to a residual and prevalent set of integrable Hamiltonians and to the Gevrey category. It was proved there that generically, both in a topological and measure-theoretical sense, an invariant Lagrangian Diophantine torus of a Hamiltonian system is doubly exponentially stable. Also, for a residual and prevalent set of integrable Hamiltonians, for any small perturbation in Gevrey class, there is a set of almost full Lebesgue measure of KAM tori which are doubly exponentially stable.

Our aim here, is to give examples showing that doubly exponential stability cannot in general be strengthened. Loosely stated our main result is the following Theorem. For arbitrary N ě 3, there exist quasi-convex Hamiltonian systems in N degrees of freedom that can be perturbed in the Gevrey smooth category so that most of the invariant tori of the perturbed system are no more than doubly exponentially stable.

The exact statements will be given in Section 3. The diffusion mechanism we will use in our constructions is the so called Herman synchronized diffusion, that first appeared in [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF] where the speed in Arnol'd diffusion is estimated for a class of nearly integrable system. In [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF], completely integrable systems with twist are considered and it is shown that it is possible to construct perturbations of size ǫ in Gevrey class, that have orbits diffusing in action at an exponential rate in inverse powers of ǫ. The diffusion rate is shown to be almost optimal due to the Nekhoroshev effective stability theory.

Our setting here is quite different, in this that the perturbative parameter is not an extra parameter ǫ but the action variable itself when viewed as the distance r of the diffusive orbit from the invariant torus. In this "singular perturbative setting", the nature of the construction is in fact expected to be different from [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF] since the diffusion rate is at best doubly exponential in an inverse power of r, compared to the simple exponential one can achieve in the Arnol'd diffusion problem treated in [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF].

The new difficulties that arise in the singular perturbative setting, as well as the novel constructions to overcome them will be commented in the next section where the heuristics of our construction are described in detail.

Description of the construction

The construction of the diffusive flows is obtained by suspension from a perturbative construction in the discrete setting of symplectic maps on M " pT ˆRq n » T n ˆRn , where T denotes the torus R{Z and n ě 2. We now explain the main ideas in the discrete construction in the case n " 2. We concentrate on the diffusion rate from the neighborhood of a single invariant torus. We will be dealing with perturbation of a product of two twist maps of the annulus T ˆR, denote them by F 0 and G 0 , F 0 pθ 1 , r 1 q " pθ 1 `ω1 `r1 `Z, r 1 q, G 0 pθ 2 , r 2 q :" pθ 2 `ω2 `r2 `Z, r 2 q. Set T 0 " F 0 ˆG0 : M ý. Observe that T 0 has an invariant torus T 0 " T 2 ˆtp0, 0qu, on which the restricted dynamics is the translation of vector ω " pω 1 , ω 2 q.

Let us explain how to perturb T 0 into a map T that is tangent to T 0 at T 0 and that has pieces of orbits that diffuse away from a neighborhood of T 0 at a doubly exponentially small speed. More precisely, we obtain a sequence ρ n Ñ 0, points z n such that distpz n , T 0 q ă ρ n and times Θ n that are doubly exponentially large in 1{ρ n , such that distpT Θn pz n q, T 0 q and distpT ´Θn pz n q, T 0 q are both doubly exponentially large in 1{ρ n . It will appear clearly from our diffusion mechanism that drifting away from T 0 by an amount ρ n , or by an amount that is doubly exponentially large in 1{ρ n , both require a doubly exponentially large time.

Herman synchronized diffusion

The diffusion mechanism we will use is the Herman synchronized diffusion, that first appeared in [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF]. Let us explain in some words what is the synchronized diffusion. It is based on the following mechanism of coupling of two twist maps of the annulus (the second one being integrable with linear twist): at exactly one point p of a well chosen periodic orbit of period q of the first twist map in M 1 " T ˆR, the coupling consists of pushing the orbits in the second annulus up in M 2 " T ˆR on some fixed vertical ∆ by an amount 1{q that sends an invariant curve whose rotation number is a multiple of 1{q exactly to another one having the same property (due to the linear twist property).

The dynamics of the q th iterate of the coupled map on the line tpu ˆ∆ Ă M 1 ˆM2 will thus drift at a linear speed : after q 2 iterates the point will have moved by 1 in the second action coordinate r 2 , and after q 3 it will have moved by q. The diffusing orbits obtained this way are bi-asymptotic to infinity: their r 2 -coordinates travel from ´8 to `8 at average speed 1{q 2 .

For this mechanism to be implemented with a Gevrey regular small coupling of the two twist maps, it is necessary that the periodic point p be isolated from the rest of the points on its orbit by a distance σ that is greater than the inverse of some power of ln q, since 1{q is the translation amount required from the coupling that must be exclusively localized around p. We call such periodic points "logarithmically" isolated.

Optimal rates in Arnol'd diffusion of [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF] In [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF], only one periodic point is sufficient to have estimates on the Arnol'd diffusion rate in the nearly integrable system. In fact, in [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF], a completely integrable twist map of the annulus such as F 0 is first perturbed to create a hyperbolic saddle point with a saddle connection (a pendulum). Near the separatrix of the pendulum, one can find periodic orbits of arbitrary high period q and isolation σ that is determined by the hyperbolicity of the saddle point. More precisely, with an ǫ perturbation of the integrable twist, the periodic orbits near the separatrix will then have an isolation of order ǫ 1{2 and choosing q exponentially large in the inverse of ǫ allows to use the coupling mechanism with a second completely integrable linear twist to obtain diffusive orbits at exponential rate in the inverse of ǫ.

Doubly exponential diffusion rates in the singular perturbative setting

In our singular perturbative setting, the main obstacles when one attempts to apply the synchronized diffusion mechanism are threefold : 1) the diffusion rate must be calculated from arbitrary small neighborhoods of the invariant torus T 0 , hence many perturbations and many diffusive orbits may enter into play as opposed to the single orbit of [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF]; 2) each perturbation must not affect T 0 and must allow for further perturbations; 3) the Diophantine property on the frequency of T 0 imposes, due to averaging, strong restrictions on the period and the isolation properties of the periodic points that come near the invariant torus.

The main step to prepare for the coupling construction is to be able to perturb F 0 in order to get an annulus map F on the first factor M 1 " T ˆR that is tangent to F 0 at the circle r " 0 (we omit the subscript 1 for r 1 in this paragraph) and that has a sequence of periodic points p n at distance r n from the circle r " 0 and that are σ n isolated from their orbits. Since we will work with perturbations of F 0 that are compactly supported away from r " 0, we cannot expect larger isolation σ n than an exponentially small quantity in the inverse of r n , and the precise exponent involved in this exponential is dictated by the Gevrey regularity α only. According to the above description of how the synchronized diffusion mechanism functions, the period q n of the point p n , that will also determine the order of the diffusion rate, should not be taken smaller than an exponential in the inverse of σ n . Hence, the double exponential in 1 rn !! Let us now suppose that a map F is constructed with such a sequence p n P M 1 , and let us show how to obtain the coupling with the map G 0 which lives on the other factor M 2 " T ˆR. The main idea is to couple F and G 0 separately at each periodic orbit with compactly supported Gevrey regular coupling functions. Indeed, while performing locally the couplings around the product of the orbit of p n with M 2 , we keep the direct product structure of F with G 0 in the products of smaller neighborhoods of the circle T ˆt0u Ă M 1 with M 2 . Thus, the couplings that yield diffusive orbits involving the successive points p n are done inductively without affecting each other.

How to perturb the first factor to get a sequence of isolated periodic points

We turn now to the perturbative techniques that allow to obtain F . We put together two tools. The first one allows us to perturb a periodic circular rotation of period P {Q while fine-tuning the rotation number so as to create circle diffeomorphisms with a σ-isolated periodic point p of arbitrary large period q, where σ is exponentially small in Q for large Q but otherwise independent of q. In particular, we can choose q exponentially large in 1{σ (doubly exponentially large in Q). The second tool is a trick due to M. Herman that allows us to embed the circle dynamics thus obtained inside the phase portrait of a perturbation of a linear twist map of the annulus M 1 . In fact, the periodic map will appear in the neighborhood of the circle of period P {Q of the linear twist. The coupling mechanism will then yield orbits that diffuse at speed 1{q 2 in M 1 ˆM2 . Of course, to conclude we have to require that 1{Q be larger than the distance r Q " |ω 1 ´P {Q| from the circle T ˆt0u to the periodic orbit of the linear twist near which the isolated periodic point p is embedded. At that stage, we could assume ω 1 irrational or Diophantine and then impose that 1{Q be of order ? r Q or larger, depending on the Diophantine exponent of ω 1 , with the hope to refine the estimates on σ and thus on the diffusing time. But, since we want to embed, using Herman's trick, the isolated periodic point in M 1 at distance r without affecting the circle T ˆt0u, we must accept the exponential smallness of the isolation parameter in M 1 to be dictated in the first place by the Gevrey regularity of our compactly supported perturbations, thus absorbing the potential gain stemming from arithmetics. This means that by our technique we cannot tackle the problem of matching the diffusion rate with the doubly exponential stability lower bounds obtained in [START_REF] Morbidelli | Superexponential stability of KAM tori[END_REF][START_REF] Bounemoura | Superexponential stability of quasiperiodic motion in Hamiltonian systems[END_REF], that are of the form exp `exp `r´1 αpτ `1q ˘˘, where α refers to the Gevrey regularity class and τ is the Diophantine exponent of the translation vector.

To emphasize the role that arithmetics should play in optimizing the diffusion speed we may ask the following question that is similar to the one raised in [FK18, Question 24] for elliptic fixed points.

Question 1. Give an example of an analytic or Gevrey smooth Hamiltonian that has a non-resonant invariant torus with positive definite twist that is not more than exponentially stable in time.

It follows from [START_REF] Morbidelli | Superexponential stability of KAM tori[END_REF][START_REF] Bounemoura | Superexponential stability of quasiperiodic motion in Hamiltonian systems[END_REF][START_REF] Bounemoura | Double exponential stability for generic real-analytic elliptic equilibrium points[END_REF], that a super Liouville property must be required on the frequency vector of the invariant torus.

Questions on the optimality of the bounds, on analytic perturbations and on the genericity of doubly exponential diffusion

An interesting way to address the question of optimizing the bounds, as well as to aim at analytic constructions, is to look for a single analytic (or Gevrey smooth) perturbation of F 0 that yields a map F that is tangent to F 0 at 0 to some fixed degree, and that has a sequence of periodic orbits p n with isolation properties related to the arithmetics of ω 1 (for instance, with σ n of order e r ´1{pτ 1 `1q n , where τ 1 is such that ω 1 is not τ 1 -Diophantine). But even if such a perturbation of F 0 is possible, it would still be a delicate task to perform an analytic coupling with G 0 since a single analytic intervention to couple the neighborhood of the orbit of any periodic point p n with the second factor will affect the whole map everywhere and we cannot rely on the nice direct product structure of F with G 0 for further perturbations as we do in the Gevrey category. One should probably resort to the theory of normally hyperbolic invariant manifolds to say that some kind of product structure remains valid at the periodic orbits of the points p n . Even then however, the linear character of the twist of the second factor will definitely disappear, which will also bring extra difficulties.

Let us make a last remark concerning the analytic category. In fact, obtaining examples of analytic Hamiltonians having a topologically unstable invariant torus with positive definite twist at the torus is a hard task by itself, let alone the control of the diffusion time that is the object of our investigation here. Real analytic Hamiltonians with unstable invariant tori and elliptic fixed points (with arbitrary frequencies in the case of 4 degrees of freedom) were obtained in [START_REF] Fayad | Lyapunov unstable elliptic equilibria[END_REF][START_REF] Farré | Instability around quasi-periodic motion[END_REF], but these examples do not have positive definite twist.

Finally, besides the analytic question and the question of optimizing the bounds, one can ask whether the upper bounds on the diffusion rates that we obtain in our examples are generic for KAM tori, or for invariant quasi-periodic Diophantine tori in general.

Plan of the paper

Section 3 contains the main statements for symplectomorphisms and for flows. In Section 4, we state the main inductive step of the construction, that yields a diffusive segment of orbit for a perturbation of F 0 ˆG0 linked to one isolated periodic point that will be created on the first factor. In Section 4.1 we explain how the main inductive step is used to result in a diffusive invariant torus. In Section 4.2 we elaborate on this to get simultaneously a large measure set of invariant tori that are diffusive.

Sections 5 and 6 contain the proof of the main inductive step. Section 5 is devoted to the perturbation of F 0 in order to get the map F with isolated periodic points. In Section 5.1, we show how to perturb circular rotations to obtain a periodic orbit with the required isolation estimate and with arbitrary large period. In Section 5.2 we show how this periodic orbit can be imbedded in a perturbation of F 0 . Section 6 introduces the coupling lemma of F with G 0 and shows how to use it to get diffusion using the isolated periodic point of F .

In Section 7 we provide the suspension trick that allows to transfer the results from the discrete case of symplectomorphisms to the continuous time context of Hamiltonian flows.

In the Appendix we collect and prove some necessary Gevrey estimates for maps and for flows that are used all along the paper.

Statements

Notations on diffusive dynamics and Gevrey functions

We use the notation

Epνq " E C,γ pνq :" e e Cν ´γ for ν ą 0, (3.1)
for some choice of C, γ ą 0 that we will explicit later. We will say informally that "Epνq is doubly exponentially large for small ν". Notice that

Epνq " Epλνq µ as ν Ñ 0, for every λ ą 1 and µ ą 0.

(3.2) Definition 3.1. Given a transformation T (or a flow) on a metric space pM, dq and ν ą 0, we say that:

• A point z of M is ν-diffusive if there exist an initial condition ẑ P M and a positive integer (or real) t such that dpẑ, zq ď ν, t ď Epνq and dpT t ẑ, zq ě Ep2νq.

• A subset X of M is ν-diffusive if all points in X are ν-diffusive.

• A subset X of M is diffusive if there exists a sequence ν n Ñ 0 such that X is ν ndiffusive for each n.

In the latter cases, we also say that T is ν-diffusive on X, resp. diffusive on X.

Our goal is to construct examples of diffusive dynamics in the context of near-integrable Hamiltonian systems and exact-symplectic maps. The requirement dpT t ẑ, zq ě Ep2νq might seem exaggerated at first look, but, as mentioned earlier, there will be no essential difference in the order of magnitude of the time needed to diffuse by an amount ν or by an amount as large as Ep2νq.

We will also use a variant of the above definition: we say that a point or a set is νdiffusive-˚or diffusive-˚if the corresponding property holds with the function E replaced by E ˚pνq :" E `ν{|ln ν| ˘" exp `νγCν ´γ ˘for ν P p0, 1q.

(3.3)

Notice that, as ν Ñ 0, Epνq ! E ˚pνq ! e e C 1 ν ´γ1 for any γ 1 ą γ and C 1 ą 0.

We will deal with Gevrey smooth functions and maps in several real variables. Periodicity may be required with respect to some of these variables, in which case we will consider that each of the corresponding variables is an angle, which lives in T :" R{Z.

Recall that, given a real α ě 1, Gevrey-α regularity is defined by the requirement that the partial derivatives exist at all (multi)orders ℓ and are bounded by CM |ℓ| |ℓ|! α for some C and M ; when α " 1 this simply means analyticity, but we shall take α ą 1 throughout the article. Upon fixing a real L ą 0 which essentially stands for the inverse of the previous M , one can define a Banach algebra G α,L pKq Ă C 8 pKq when K is a Cartesian product of closed Euclidean balls and tori; the elements of G α,L pKq are the "uniformly Gevrey-pα, Lq" functions on K. In the non-compact case of a Cartesian product R N ˆK with K as above, we define

G α,L pR N ˆKq Ă G α,L pR N ˆKq Ă C 8 pR N ˆKq,
where the smaller space is a Banach algebra, with norm . α,L , consisting of uniformly Gevrey-pα, Lq functions on R N ˆK, while G α,L pR N ˆKq is a complete metric space, with translation-invariant distance d α,L , obtained by covering R N by an increasing sequence of closed balls and considering the Fréchet space structure accordingly. Details are given in Appendix A.1.

Hamiltonian flows

Let n ě 2. We work in T n ˆRn , with coordinates pθ 1 , . . . , θ n , r 1 , . . . , r n q, or in T n`1 ˆRn`1 , with coordinates pθ 1 , . . . , θ n , τ, r 1 , . . . , r n , sq. We use the standard symplectic structures ř n j"1 dθ j ^dr j or ř n j"1 dθ j ^dr j `dτ ^ds, so that it is equivalent to consider a nonautonomous Hamiltonian hpθ, r, tq on T n ˆRn which depends 1-periodically on the time t or a Hamiltonian of the form Hpθ, τ, r, sq " s`hpθ, r, τ q on T n`1 ˆRn`1 . Given an arbitrary ω P R n , we will be interested in non-autonomous 1-periodic perturbations of

h 0 prq :" pω, rq `1 2 pr, rq (3.4)
or, equivalently, in certain autonomous perturbations of the integrable Hamiltonian H 0 pr, sq :" s `h0 prq (3.5) for which we denote by T pr,sq the invariant torus T n`1 ˆtpr, squ associated with any r P R n and s P R (it carries the quasi-periodic motion 9 θ " ω `r, 9 τ " 1).

Theorem 3.1. Let α ą 1 and L ą 0 be real. For any ǫ ą 0 there is h P G α,L pT n ˆRn ˆTq such that

(1) d α,L ph 0 , hq ă ǫ,

(2) the Hamiltonian vector field generated by H :" s `hpθ, r, τ q is complete and, for every s P R, the torus T p0,sq Ă T n`1 ˆRn`1 is invariant and diffusive for H. Here the exponent implied in (3.1) is γ " 1 α´1 .

Note that if ω is Diophantine then, for any h satisfying (1) of Theorem 3.1, we know from [MG95, BFN17] that T p0,sq is doubly exponentially stable (because H 0 is quasi-convex). More precisely, it holds that for any initial condition that is at distance ρ from T p0,sq , the orbit will stay within distance 2ρ from T p0,sq during time exp `exp `r´1 αpτ `1q ˘˘, where τ is the Diophantine exponent. Theorem 3.1 shows that we cannot expect in general a stability better than doubly exponential. Observe that we do not recover however the factor 1{p1`τ q in the exponent governing our lower bound on the diffusion time.

Note also that we know from [START_REF] Morbidelli | Superexponential stability of KAM tori[END_REF] and [START_REF] Bounemoura | Superexponential stability of quasiperiodic motion in Hamiltonian systems[END_REF] that, for H such that d α,L pH 0 , Hq ă ǫ, we have a set of invariant tori that are doubly exponentially stable and fill a set whose complement has measure going to 0 as ǫ Ñ 0 (for r in the unit ball for example). Our next result gives an example where most of these tori are no more than doubly exponentially stable.

Theorem 3.2. Let α ą 1 and L ą 0 be real. For any ǫ ą 0, there exist h P G α,L pT n ˆRn ˆTq and a closed set X ǫ Ă r0, 1s with LebpX ǫ q ě 1 ´ǫ, such that (1) d α,L ph 0 , hq ă ǫ,

(2) the Hamiltonian vector field generated by H :" s `hpθ, r, τ q is complete and, for each r P pX ǫ `Zq ˆRn´1 and s P R, the torus T pr,sq Ă T n`1 ˆRn`1 is invariant and diffusive-˚for H. Here the exponent implied in (3.3) is γ " 1 α´1 .

Both theorems will be proved in Section 7 by suspension of analogous results which deal with exact-symplectic map and which we state in the next section. In fact, the union T n`1 ˆpX ǫ `Zq ˆRn of all the tori mentioned in Theorem 3.2 will be shown to be itself diffusive-˚with exponent γ " 1 α´1 . As mentioned in Section 2, the unstable orbits which we will construct to prove our diffusiveness statements are in fact bi-asymptotic to infinity: we will see that their r 2coordinates travel from ´8 to `8.

Exact-symplectic maps

Let ω " pω 1 , ω 2 q P R 2 . Recall that T " R{Z. We set M 1 :" T ˆR and M 2 :" T ˆR and define F 0 : M 1 ý and G 0 : M 2 ý by F 0 pθ 1 , r 1 q :" pθ 1 `ω1 `r1 `Z, r 1 q, G 0 pθ 2 , r 2 q :" pθ 2 `ω2 `r2 `Z, r 2 q, (3.6) and we set

T 0 :" F 0 ˆG0 : M 1 ˆM2 ý (3.7)
Using the identification M 1 ˆM2 » T 2 ˆR2 , we call T 0 the torus T 2 ˆtp0, 0qu. This torus is invariant by T 0 and the restricted dynamics on it is the translation of vector ω. More generally we set T pr 1 ,r 2 q :" T 2 ˆtpr 1 , r 2 qu for any pr 1 , r 2 q P R 2 .

We say that a function is flat at a point or on a subset, if it vanishes together with all its partial derivatives of all orders there. Our first result for the discrete case is that one can find a Gevrey perturbation of the integrable twist map T 0 that is flat at the torus T 0 (which thus stays invariant) and for which this invariant torus is diffusive.

From now on, when a function H on a symplectic manifold generates a complete Hamiltonian vector field, we denote by Φ H the time-1 map of the flow (note that t Þ Ñ Φ tH is then the continuous time flow generated by H). Thus, endowing M 1 ˆM2 » T 2 ˆR2 with the symplectic form dθ 1 ^dr 1 `dθ 2 ^dr 2 , we can write

T 0 " Φ ω 1 r 1 `ω2 r 2 `1 2 pr 2 1 `r2 2 q .
(3.8)

Theorem 3.3. Let α ą 1 and L ą 0 be real. For any ǫ ą 0 there exist u P G α,L pM 1 q and v P G α,L pM 1 ˆM2 q such that (1) u and v are flat for r 1 " 0,

(2) u α,L ` v α,L ă ǫ,
(3) T 0 is invariant and diffusive for T :" Φ v ˝Φu ˝T0 , with exponent γ " 1 α´1 in (3.1).

Here, when we write Φ u with a function u : M 1 Ñ R, we view u as defined on M 1 ˆM2 (and independent of the variables θ 2 and r 2 ) and thus mean Φ u : M 1 ˆM2 ý.

Our next result is a strengthening of Theorem 3.3, in which we find a perturbation that keeps invariant most of the tori of T 0 while insuring that they do become diffusive.

We will see that, since the construction of u and v is completely local, one can insure that in addition they are 1-periodic in r 1 . If now X Ă r0, 1s is a closed set and if u and v are flat for r 1 P X, then all the tori of the form T pr 1 ,r 2 q , r 1 P X `Z, that are invariant by T 0 , are also invariant by T " Φ v ˝Φu ˝T0 and carry the same translation dynamics of vector ω `pr 1 , r 2 q. If moreover u and v are such that there are diffusive orbits for T on sufficiently dense scales in the neighborhood of the tori T pr 1 ,r 2 q , r 1 P X `Z, then all these tori will be diffusive. This is the content of the next result, in which we also control the measure of the complement of the invariant tori (in bounded regions).

Theorem 3.4. Let α ą 1 and L ą 0 be real. For any ǫ ą 0 there exist u P G α,L pM 1 q and v P G α,L pM 1 ˆM2 q that are 1-periodic in r 1 , and a closed set X ǫ Ă r0, 1s with LebpX ǫ q ě 1 ´ǫ, so that (1) u and v are flat for r 1 P X ǫ `Z.

(2) u α,L ` v α,L ă ǫ,

(3) for each pr 1 , r 2 q P pX ǫ `Zq ˆR, the torus T pr 1 ,r 2 q is invariant and diffusive-˚for

T :" Φ v ˝Φu ˝T0 , with exponent γ " 1 α´1 in (3.3).
In fact, in (3), the union T ˆpX ǫ `Zq ˆM2 of all these tori will be shown to be itself diffusive-˚for T with exponent γ " 1 α´1 . Remark 3.1. As immediate corollaries, we get multidimensional versions of Theorems 3.3 and 3.4, in T n ˆRn with any n ě 3, simply by taking direct product of the previous discrete systems with factors of the form Φ ω i r i `1 2 r 2 i , i ě 3: identifying T n ˆRn with M 1 ˆ¨¨¨ˆM n , where M i :" T ˆR for each i, and setting T 0 :" Φ h 0 : T n ˆRn ý (with the same h 0 as in (3.4)-this is thus a generalization of (3.8)), the statements of Theorems 3.3 and 3.4 hold verbatim with this new interpretation of T 0 except that, in condition (3) of Theorem 3.4, T pr 1 ,r 2 q is to be replaced with T n ˆtru for arbitrary r P pX ǫ `Zq ˆRn and the functions u and v are to be viewed as functions on T n ˆRn .

Remark 3.2. To prove the above discrete-time diffusiveness statements, we will exhibit orbits pT k ẑq kPZ which satisfy the first requirement of Definition 3.1, dpT t ẑ, zq ě Ep2νq with a certain positive integer t ď Epνq, for smaller and smaller positive values of ν. We will see that, in fact, they even satisfy dpT jt ẑ, zq ě |j|E C,γ p2νq for all j P Z and are thus bi-asymptotic to infinity, and more precisely their r 2 -coordinates grow linearly by an exact amount 1{q after q iterates, where q " t 1{3 is integer.

The main building brick : localized diffusive orbits

We now fix real numbers α ą 1 and L ą 0 once for all. We also fix ω P R 2 and work with

T 0 " Φ ω 1 r 1 `ω2 r 2 `1 2 pr 2 1 `r2
2 q : M 1 ˆM2 ý as in Section 3.3. To prove Theorems 3.3 and 3.4, and then the continuous time versions of these, we will use the following building brick, where we use the notation Vpr, νq :" T ˆpr ´ν, r `νq Ă T ˆR for any r P R and ν ą 0.

Proposition 4.1. Let γ :" 1 α´1 and b :" 1 4 . There exists c " cpα, Lq such that, for any ν ą 0 small enough and r P R, there exist u P G α,L pM 1 q and v P G α,L pM 1 ˆM2 q such that (1) u " 0 on Vpr, νq c and v " 0 on Vpr, νq c ˆM2 ,

(2) u α,L ` v α,L ď e ´cν ´γ , (3) the set Vpr, νq ˆM2 is invariant and `3ν, τ, τ b ˘-diffusive for T :" Φ v ˝Φu ˝T0 , where τ :" E 3cγ,γ pνq.

In Condition (3) of the statement, we have used a refinement of Definition 3.1: we say that a subset X of M is pν, τ, Aq-diffusive for T if, for every point z of X, there exist ẑ P M and t integer such that dpẑ, zq ď ν, t ď τ and dpT t ẑ, zq ě A.

The proof of Proposition 4.1 is in Sections 5 and 6. (The reader will see that our choice of b " 1 4 is quite arbitrary: any positive number less than 1 3 would do.)

4.1 Proof that Proposition 4.1 implies Theorem 3.3

We are given ǫ ą 0 and, without loss of generality, we can assume that ǫ is small enough so that we can apply Proposition 4.1 for every n ě 1 with the following values of ν and r:

ν n :" pcγq 1{γ 10 ´nǫ, rpnq :" 2ν n .

We thus obtain u n P G α,L pM 1 q, supported in Vpr pnq , ν n q, and v n P G α,L pM 1 ˆM2 q, supported in Vpr pnq , ν n q ˆM2 , which also satisfy Conditions (2) and (3) of Proposition 4.1.

Observe that for any two different values of n the supports are disjoint (because rpnq ´νn ą rpn`1q `νn`1 ). Since e x ą x and e ´x ă x ´1 for all x ą 0, (

we have

e ´cν ´γ n " `e´cγν ´γ n ˘1{γ ă `cγν ´γ n ˘´1{γ " pcγq ´1{γ ν n , (4.2) 
hence the formulas u :" ř 8 n"1 u n and v :"

ř 8
n"1 v n define functions u P G α,L pM 1 q and v P G α,L pM 1 ˆM2 q with u α,L ` v α,L ď ř e ´cν ´γ n ă ǫ. Moreover, since the u n 's, v n 's and all their partial derivatives vanish for r 1 " 0, the same is true for u and v. The functions u and v thus satisfy properties (1)-(2) of Theorem 3.3. We claim that T " Φ v ˝Φu ˝T0 also satisfies property (3) of Theorem 3.3. Indeed, the disjointness of the supports implies that T coincides with Φ vn ˝Φun ˝T0 on Vpr pnq , ν n q ˆM2 . Now, for each z P T 0 and n ě 1, we can pick z P Vpr pnq , ν n q ˆM2 such that dpz, zq ă 2ν n , and then, by (3) of Proposition 4.1, we can find ẑ P Vpr pnq , ν n qˆM 2 and t ď τ n :" E 3cγ,γ pν n q such that dpẑ, zq ď 3ν n and dpT t ẑ, zq ě τ b n . We get dpẑ, zq ď 5ν n and τ n " E C,γ p5ν n q if we use C :" 3cγ ¨5γ in the definition (3.1) of the doubly exponentially large function E C,γ . Then, dpT t ẑ, zq ą τ b n ´2ν n ą 1 2 τ b n " E C,γ p10ν n q by (3.2), hence T is 5ν n -diffusive on T 0 for every n large enough.

Proof that Proposition 4.1 implies Theorem 3.4

We are given ǫ ą 0 and, without loss of generality, we can assume ǫ ď 1. Let γ :" 1 α´1 and let c be as in Proposition 4.1.

Here is a definition that we will use from now on: we say that a subset Y of a metric space X is ν-dense if, for every z P X, there exists z P Y such that dpz, zq ď ν. a) We first define a fast increasing sequence of integers by

N 1 :" rexpp4κ{ǫqs, N i :" N i´1 Q exp `exp `CpN i´1 ln N i´1 q γ ˘˘U for i ě 2, (4.3)
where κ :" maxt1, pcγq ´1{γ u and C :" maxt6cγ, 1{γu. We also set νi :"

1 N i , ν i :" νi |ln νi | " 1 N i ln N i , τ i :" E 3cγ,γ pν i q.
According to Lemma B.1 in the appendix, one has

2ν i N i " 2 ln N i ď 2 ´2i`1 ǫ{κ ă 1. (4.4) b)
We now construct a sequence pY i q iě1 of mutually disjoint subsets of R{Z such that, for each i ě 1, (i) Y i is a disjoint union of at most N i open arcs Y pi,jq , (ii) each of these open arcs can be written Y pi,jq " pr pi,jq ´νi , r pi,jq `νi q mod Z, with

r pi,jq P r0, 1q, (iii) Y i is νi -dense in pR{Zq ´Ů 1ďi 1 ďi´1 Y i 1 , (iv) pR{Zq ´Ů 1ďi 1 ďi Y i 1 is a disjoint union of N i closed arcs of equal length.
To do so, we start with r p1,jq :" j´1 N 1 for j " 1, . . . , N 1 and define the arcs Y p1,jq and the set Y 1 by (i)-(ii) (the disjointness requirement results from 2ν 1 N 1 ă 1). We then go on by induction and suppose that, for a given i ě 1, (i)-(iv) hold for i 1 " 1, . . . , i. As a consequence of (i)-(ii) and (4.4), we have

LebpY i 1 q ď 2ν i 1 N i 1 ď 2 ´i1 ǫ{κ ď 2 ´i1 for i 1 " 1, . . . , i. (4.5) 
We observe that M i`1 :" N i`1 N i is an integer ě 3. Inside each closed arc mentioned in (iv), we can place M i`1 ´1 disjoint open arcs of length 2ν i`1 so that the complement is made of M i`1 closed intervals of equal length. Indeed, on the one hand 2ν i`1 pM i`1 ´1q ă 2ν i`1 N i`1 {N i ă 2 ´i´1 {N i , on the other hand, the common length of the closed arcs of (iv) is

µ i " 1 N i ´1 ´i ÿ i 1 "1
LebpY i 1 q ¯ą 2 ´i´1 {N i by (4.5). Labelling all the new open arcs as Y pi`1,jq , where j runs through a set of N i pM i`1 1q ă N i`1 indices, and calling Y i`1 their union, we get the desired properties (note that Y i`1 is µ i M i`1 -dense in each closed arc mentioned in (iv), and

µ i M i`1 ă 1 N i M i`1 " νi`1 ).
c) Now, for each i and j, we apply Proposition 4.1 with r " r pi,jq just constructed and ν " ν i (assuming ǫ small enough so that the ν i 's are small enough to allow us to do so).

We obtain Gevrey functions u pi,jq and v pi,jq supported in Vpr pi,jq , ν i q and Vpr pi,jq , ν i q ˆM2 , with u pi,jq α,L ` v pi,jq α,L ď ξ i , where ξ i :" e ´cν ´γ i ă κν i (incorporating (4.2)), so that Vpr pi,jq , ν i q ˆM2 is invariant and `3ν i , τ i , τ b i ˘-diffusive for Φ v pi,jq ˝Φu pi,jq ˝T0 . We set u pi,jq per pθ 1 , r 1 q :" ř kPZ u pi,jq pθ 1 , r 1 `kq and v pi,jq per pθ 1 , r 1 , θ 2 , r 2 q :" ř kPZ v pi,jq pθ 1 , r 1 `k, θ 2 , r 2 q so as to get functions which are 1-periodic in r 1 and have the same Gevrey norms.

Consider the finite sums u i :" ř j u pi,jq per and v i :"

ř j v pi,jq
per for each i ě 1: the disjointness of the supports implies that

T i :" Φ v i ˝Φu i ˝T0 is `3ν i , τ i , τ b i ˘-diffusive on T ˆỸ i ˆM2 , (4.6)
where Ỹi is the lift of Y i in R. Finally, let u :" ř i u i and v :" ř i v i . These are well-defined Gevrey functions which are 1-periodic in r 1 because

u i α,L ` v i α,L ď N i ξ i ă N i κν i " κ ln N i ď 2 ´i´1 ǫ for each i ě 1 (4.7)
(by (4.4)), hence the series over i are convergent in Gevrey norm, with u α,L ` v α,L ă ǫ.

d)

We claim that T :" Φ v ˝Φu ˝T0 satisfies Theorem 3.4 with

X ǫ :" ´R ´ğ iě1
Ỹi ¯X p0, 1q.

To prove this claim, firstly we note that Leb `r0, 1s ´Xǫ ˘" ř i LebpY i q ď ǫ by (4.5), and X ǫ is closed because Ỹ1 contains 0 and 1.

Secondly the functions u and v vanish with all their partial derivatives for r 1 P X ǫ because the functions u pi,jq per and v pi,jq per and all their partial derivatives do. Lastly, by virtue of the previous point, for each pr 1 , r 2 q P pX ǫ `Zq ˆR the torus T pr 1 ,r 2 q is invariant for T , thus it only remains for us to show that the union T ˆpX ǫ `Zq ˆM2 of these tori is diffusive-˚with exponent γ " 1 α´1 . In view of the definition of X ǫ , it is sufficient to show that, for i large enough,

Z i :" M 1 ˆM2 ´ğ 1ďi 1 ďi´1 T ˆỸ i 1 ˆM2 is 2ν i -diffusive-˚for T with exponent γ. (4.8)
We will prove this with the constant C :" 3 γ`1 cγ in the definitions (3.1) and (3.3) of the functions E " E C,γ and E ˚" E C,γ , as a consequence of the fact that, for i large enough,

Z i is p2ν i , τ i , 1 2 τ b i q-diffusive for T . (4.9)
Indeed, τ i " E 3cγ,γ pν i q " Ep3ν i q " E `3ν i |ln νi | ˘! E `2ν i |ln νi |´ln 2 ˘" E ˚p2ν i q by (3.2), and 1 2 τ b i " E `4ν i |ln νi |´ln 4 ˘" E ˚p4ν i q still by (3.2), hence (4.9) implies (4.8).

e) To prove (4.9), let z P Z i . We set W i :" TˆỸ i ˆM2 . By property (iii) of the construction of Y i , we can find z P W i such that dpz, zq ď νi , and (4.6) then yields ẑ P W i and t ď τ i such that dpẑ, zq ď 3ν i and dpT t i ẑ, zq ě τ b i . We have |ln νi | " ln N i ą 3 by virtue of (4.4), hence 3ν i ă νi and dpẑ, zq ď 2ν i . Since u 1 , . . . , u i´1 , v 1 , . . . , v i´1 and all their partial derivatives vanish on W i , the restriction of T to W i coincides with that of Ti :" Φ v i `gi ˝Φu i `fi ˝T0 , where f i :"

ÿ i 1 ąi u i 1 , g i :" ÿ i 1 ąi v i 1 . (4.10)
Comparing the definition T i in (4.6) and that of Ti in (4.10), we observe that the first t points on the T i -orbit of ẑ are close to the first t points on its T -orbit (which is the same as its Ti -orbit). More precisely, (4.7) yields

u i α,L ` f i α,L ` v i α,L ` g i α,L ď ÿ i 1 ěi N i 1 ξ i 1 ď 2 ´iǫ,
hence we can use Corollary A.3 from the appendix for i large enough, obtaining

d `T t i pẑq, T t i pẑq ˘ď 3 τ i C 1 ` f i α,L ` g i α,L from (A.11), where C 1 " C 1 pα, Lq, but f i α,L ` g i α,L ď ÿ i 1 ěi`1 N i 1 ξ i 1 ď 2N i`1 ξ i`1 ď 2 ¨3´τ i
by the first part of (4.7) and (B.2)-(B.3), whence dpT t i ẑ, T t i ẑq ď 2C 1 ď 1 2 τ b i ´dpz, zq and thus dpT t ẑ, zq " dp T t i ẑ, zq ě 1 2 τ b i for i large enough, and we conclude that z is p2ν i , τ i , 1 2 τ b i qdiffusive for T . The proof of (4.9) is thus complete.

5 Isolated periodic points for twist maps of the annulus Definition 5.1. Given a real σ ą 0 and a discrete dynamical system in a metric space, we say that a periodic point is σ-isolated if it lies at a distance ě σ of the rest of its orbit.

The goal of this section is to prove the following statement, which will be instrumental in the proof of Proposition 4.1, where a perturbation of F 0 is obtained that has an isolated periodic point in M 1 .

Proposition 5.1. Let γ :" 1 α´1 . There exists c " cpα, Lq with the following property: if we are given real numbers ν and σ with ν ą 0 small enough and 0 ă σ ď expp´2cν ´γ q, then, for any integer ℓ ě 6{ν and for any r P R, there exists u P G α,L pM 1 q such that (1) u " 0 on Vpr, νq c , (2) u α,L ď 1 2 expp´cν ´γ q,

(3) F :" Φ u ˝F0 : M 1 ý has a σ-isolated periodic point z 1 P Vpr, 3ν{4q of period q P rℓ, 3ℓ{νs, (4) the set tF s pz 1 q | s P N, 2{ν ď s ď 6{νu is 2ν-dense in Vpr, νq.

The interest of the statement is that, although σ is required to be exponentially small, it can be kept independent of ℓ, even if we choose ℓ, and thus q, doubly exponentially large.

The proof will start with the construction of a circle map with an isolated periodic point.

Circle diffeomorphisms with isolated periodic points

We start by constructing a circle diffeomorphism with an isolated periodic point. For any

Q P N ˚we denote by ∆ Q a function in C 8 pTq satisfying ∆ Q is 1 Q -periodic, 0 ď ∆ Q ď 1, ∆ Q p0q " 0, ∆ Q " 1 on " 1 4Q , 3 4Q ‰ .
(5.1)

Since α ą 1, every space G α,L 1 pTq contains such a function, and one can choose it so that

∆ Q α,L 1 ď L 1α exppc Q γ q (5.2)
with c " cpα, L 1 q independent of Q according to Lemma A.5 in the appendix (take e.g.

∆ Q pθq :" ř Q j"1 η 2Q `2j´1 2Q 
`θ˘a nd c :" L 1´α `1 γ `2γ c 1 pα, L 1 q with the notation of Lemma A.5, using the inequalities L 1´α ď e L 1´α and 1 ď Q ď e

1 γ Q γ ).
Proposition 5.2. Let Q P N ˚and P P Z be coprime and let σ P `0, 1 maxp´∆ 1 Q q ˘. Then, for every ℓ P N ˚, there exist an integer q " q ℓ pQ, P q and a real δ " δ ℓ pσ, Q, P q such that • ℓ ď q ď ℓQ and 0 ă δ ď 1 ℓQ ,

• the point 1 2Q `Z is periodic of period q and σ-isolated for the circle map

θ P T Þ Ñ f σ,δ pθq :" θ `P Q `δ `σ∆ Q pθq mod Z. (5.3) If moreover ℓ ě 2Q, then the set tf s σ,δ p 1 2Q `Zq | s P N, Q ď s ď 2Q ´1u is 1 Q -dense in T.
Proof. a) We define q " q ℓ pQ, P q by writing ℓP `1 ℓQ " p q with q P N ˚and p P Z coprime.

Since 1 is the only common divisor of ℓ and ℓP `1, we must have ℓP `1 " pD, Q " q 1 D, q " ℓq 1 (5.4) with D P N ˚and p ^q1 " 1, hence ℓ ď q ď ℓQ.

The condition 0 ă σ ă 1 maxp´∆ 1 Q q ensures that 1 `σ∆ 1 Q stays positive hence, for every δ P R, the formula F σ,δ pxq :" x `P Q `δ `σ∆ Q pxq defines an increasing diffeomorphism of R such that F σ,δ px`1q " F σ,δ pxq`1. Formula (5.3) then defines a diffeomorphism f σ,δ of T, a lift of which is F σ,δ . We will tune δ so as to get the rotation number of f σ,δ equal to p{q.

b) To study the dynamics of F σ,δ and particularly the orbit of x 0 :" 1 2Q , we perform the change of variable X " Qx and set X 0 :" 1 2 and G σ,δ pXq :" QF σ,δ pX{Qq " X `P `δQ `σQ∆ Q pX{Qq, Gσ,δ pXq :" X `δQ `σQ∆ Q pX{Qq.

Note that also Gσ,δ is an increasing diffeomorphism of R for each δ P R. For every ℓ P N

ẘe have Gℓ σ,0 pX 0 q ă X 0 `1 " Gℓ 0, 1 ℓQ pX 0 q ď Gℓ σ, 1 ℓQ pX 0 q
(the left inequality holds because X 0 ă 1 and 1 is a fixed point of Gσ,0 ; the right inequality holds because σQ∆ Q pxq ě 0 for all x). Therefore, since δ Þ Ñ Gℓ σ,δ pX 0 q is continuous and increasing, we can define δ :" δ ℓ pσ, Q, P q as the unique solution of the equation Gℓ σ,δ pX 0 q " X 0 `1 and we know that 0 ă δ ℓ pσ, Q, P q ď 1 ℓQ .

c) We now fix δ to be this value δ ℓ pσ, Q, P q and check that it satifies the desired properties. First, notice that 4σQ ă 1 (5.5) (because ∆ Q p3{4Qq " 1 and ∆ Q p1q " 0, hence the mean value theorem implies maxp´∆ 1 Q q ě 4Q). Let us denote the full orbits of X 0 " 1 2 under G σ,δ and Gσ,δ by X j :" G j σ,δ pX 0 q, Xj :" Gj σ,δ pX 0 q, j P Z.

We have X 0 " X0 ă X1 ă ¨¨¨ă Xℓ´1 ă Xℓ " X 0 `1. In fact, X 0 `σQ ă X1 ă ¨¨¨ă Xℓ´1 ă X 0 `1 ´σQ.

(5.6) Indeed, ∆ Q pX 0 {Qq " 1 hence X1 " X 0 `σQ `δQ, and either Xℓ´1 ě X 0 `1 ´1 4 , in which case X 0 `1 " Gσ,δ p Xℓ´1 q " Xℓ´1 `σQ`δQ ą Xℓ´1 `σQ, or Xℓ´1 ă X 0 `1´1 4 ă X 0 `1´σQ by (5.5).

Since ∆ Q is 1 Q -periodic, we have Gσ,δ pX `1q " Gσ,δ pXq`1 and the pattern (5.6) repeats 1-periodically: for every m P Z, Xℓm " X 0 `m and X 0 `m `σQ ă Xℓm`s ă X 0 `m `1 ´σQ for s " 1, . . . , ℓ ´1.

Since ∆ Q is 1 Q -periodic,
we have G j σ,δ pXq " Gj σ,δ pXq `jP for every j P Z, hence X j " Xj `jP and, for every m P Z, X ℓm " X 0 `mpℓP `1q " X 0 `mpD (5.7)

X 0 `Mm,s `σQ ă X ℓm`s ă X 0 `Mm,s `1 ´σQ for s " 1, . . . , ℓ ´1, (5.8) 
with M m,s :" mpℓP `1q `sP .

d) Going back to the variable x " X{Q, we see that the orbit px j q jPZ of x 0 under F σ,δ satisfies

x ℓm " x 0 `mp q 1 and x 0 `Mm,s Q `σ ă x ℓm`s ă x 0 `Mm,s `1 Q ´σ (5.9)
for m P Z and 1 ď s ă ℓ (thanks to (5.4) and (5.7)-(5.8)). In particular, x q " x 0 `p, hence it induces a q-periodic orbit of type p{q for f σ,δ . The σ-isolation property amounts to distpx j , x 0 `Zq ě σ for 1 ď j ă q " ℓq 1 . This holds because either j " ℓm with 1 ď m ă q 1 and the first part of (5.9) entails

x ℓm ´x0 P Q ´Z with distpx ℓm ´x0 , Zq ě 1 q 1 ě 1 Q ą 4σ by (5.5), or j " ℓm `s with 1 ď s ă ℓ and the second part of (5.9) yields x j ´x0 P p

Mm,s Q `σ, Mm,s`1 Q ´σq, but p Mm,s Q , Mm,s`1 Q q X Z " H, hence distpx j ´x0 , Zq ą σ.
e) We now suppose ℓ ě 2Q and prove the 1 Q -density statement. If P " 0, then Q " 1 (because of the assumption P ^Q " 1) and there is nothing to prove. We thus suppose P ‰ 0. Using the second part of (5.9) with 1 ď s ď 2Q ´1 ă ℓ and m " 0, since M 0,s " sP , we get

x 0 `sP Q ă x s ă x 0 `sP Q `1 Q for s " Q, . . . , 2Q ´1.
(5.10)

Since P ^Q " 1, the Q arcs " x 0 `sP Q , x 0 `sP Q `1 Q ˘mod Z
are mutually disjoint and cover T; each of them has length 1 Q and, according to (5.10), contains a point of tx s `Z | s " Q, . . . , 2Q ´1u " tf s σ,δ px 0 `Zq | s " Q, . . . , 2Q ´1u. This set is thus 1 Q -dense in T.

Herman imbedding trick of circle diffeomorphisms into twist maps

We will have to imbed the circle dynamics of Proposition 5.2 into the annulus via a perturbation of the twist map F 0 . For this we will use the celebrated technique introduced by

Herman in [START_REF] Herman | Sur les courbes invariantes par les difféomorphismes de l'anneau, Volume 1, With an appendix by A. Fathi[END_REF] to imbed circle dynamics as restricted dynamics on an invariant graph by a twist map.

Recall that trivial examples of symplectic maps of the annulus are given by Φ h pθ, rq " `θ `h1 prq `Z, r ˘, Φ w pθ, rq " `θ, r ´w1 pθq ˘, (5.11)

where the function h " hprq does not depend on the angle θ P T, and the function w " wpθq does not depend on the action r. In particular,

hprq " ω 1 r `1 2 r 2 ñ Φ h " F 0 .
(5.12)

Proposition 5.3. Suppose that we are given a circle diffeomorphism of the form

θ P T Þ Ñ f pθq " θ `h1 `r `ǫpθq ˘mod Z,
where h " hprq and ǫ " ǫpθq are smooth functions and r P R. Then the equation ´w1 " ǫ ´ǫ ˝f ´1, (5.13) determines a smooth function w " wpθq up to an additive constant, and the annulus map

Φ w ˝Φh : pθ, rq Þ Ñ `θ `h1 prq `Z, r ´w1 pθ `h1 prqq ˘(5.14)
leaves invariant the graph `θ, r `ǫpθq ˘| θ P T ( , with induced dynamics θ Þ Ñ f pθq on it.

Proof. Let us check that the right-hand side of (5.13) has zero mean value:

xǫ ˝f ´1y " ż T ǫ `f ´1`θ˘˘d θ " ż T ǫpθqf 1 pθq dθ and f 1 pθq " 1 `d dθ " h 1 `r `ǫpθq ˘‰,
hence xǫy ´xǫ ˝f ´1y " ´şT ǫpθq d dθ " h 1 `r `ǫpθq ˘‰ dθ " ş T ǫ 1 pθqh 1 `r `ǫpθq ˘dθ " 0, since this is the mean value of the derivative of the periodic function h `r `ǫpθq ˘. Consequently, any primitive of ǫ ´ǫ ˝f ´1 induces a smooth function on T. Now, consider an arbitrary point pθ, rq " `θ, r `ǫpθq ˘on the graph mentioned in the statement. Its image by Φ w ˝Φh is pθ 1 , r 1 q :" `θ `h1 prq `Z, r ´w1 pθ 1 q ˘. We have θ 1 " θ `h1 `r `ǫpθq ˘`Z " f pθq and r 1 " r `ǫpθq ´w1 pθ 1 q " r `ǫ ˝f ´1pθ 1 q ´w1 pθ 1 q " r `ǫpθ 1 q.

Let us have a look at the solutions of (5.13) in the case of Gevrey data, with h as in (5.12), i.e. h 1 prq " ω 1 `r: Lemma 5.4. Let L 1 ą L. Suppose f pθq " θ `ω1 `r `ǫpθq mod Z for all θ P T, and ǫ " δ `ǫ˚, where r, δ P R and ǫ ˚P G α,L 1 pTq satisfies ǫ ˚ α,L 1 ď ǫ i with ǫ i " ǫ i pα, L, L 1 q as in Lemma A.4. Then f is a circle diffeomorphism and Equation (5.13) has a solution w such that w α,L ď p1 `2L α q ǫ ˚ α,L 1 .

(5.15)

Proof. We can write f " pId `ωq ˝pId `ǫ˚q with ω :" ω 1 `r `δ. By Lemma A.4, we obtain that Id `ǫ˚i s a diffeomorphism of R, which (because of periodicity) can be viewed as the lift of a circle diffeomorphism. Hence f is a circle diffeomorphism and the right-hand side of (5.13) is g :" ǫ ´ǫ ˝f ´1 " ǫ ˚´ǫ ˚˝f ´1 " ǫ ˚´ǫ ˚˝pId `ǫ˚q ´1 ˝pId ´ωq.

Lemma A.4 yields ǫ ˚˝pId `ǫ˚q ´1 α,L ď ǫ ˚ α,L 1 , which easily implies g α,L ď 2 ǫ ˚ α,L 1 . Now, we already know that g has zero mean value, and a solution to (5.13) can be defined by the formula wpθ `Zq " ´ż θ 0 gpθ 1 q dθ 1 for θ P p´1 2 , 1 2 s.

One has w C 0 pTq ď 1 2 g C 0 pTq and, for each k ě 0,

L pk`1qα pk `1q! α w pk`1q C 0 pTq " L pk`1qα pk `1q! α g pkq C 0 pTq ď L α ¨Lkα k! α g pkq C 0 pTq , whence w α,L ď p 1 2
`Lα q g α,L and the conclusion follows.

Proof of Proposition 5.1 a)

We start with an elementary fact.

Lemma 5.5. Suppose x and ν are real, with ν ą 0 small enough. Then there exist Q P N ånd P P Z coprime such that |x ´P {Q| ă ν{2 and 1 ă 2 ν ă Q ă 3 ν .

Proof. For ν ą 0 small enough, thanks to the Prime Number Theorem, we can pick a prime number Q in p2ν ´1, 3ν ´1q (e.g. Q " p k with k :" X 5ν ´1{2|ln ν| \ , where p k " k ln k is the kth prime number). The interval pQx ´Qν 2 , Qx `Qν 2 q has length ą 2, hence it contains at least two consecutive integers, one of which is not a multiple of Q and can be taken as P .

We now define L 1 :" 2L, c :" maxt3 γ`1 c, 2 γ`1 c 1 u with c " cpα, L 1 q as in (5.2) and c 1 " c 1 pα, Lq as in Lemma A.5, and suppose that we are given ν, σ, ℓ, r as in the statement of Proposition 5.1, with ν small enough so as to be able to apply Lemma 5.5. Applying Lemma 5.5 with x " ω 1 `r, we get a rational P {Q such that P ^Q " 1 and 1 ă 2{ν ă Q ă 3{ν and P Q " ω 1 `r with |r ´r| ă ν{2.

b) Let us choose a function ∆ " ∆ Q P G α,L 1 pTq satisfying (5.1)-(5.2) and apply Proposition 5.2. We can do so since 2c ě 3 γ c, hence 0 ă σ ď e ´2cν ´γ ă e ´cQ γ ď 1 maxp´∆ 1 q by (5.2). We get an integer q and a real δ satisfying q P rℓ, ℓQs Ă rℓ, 3ℓ{νs,

0 ă δ ď 1 ℓQ ă ν 2ℓ ď ν 2 12 ,
so that 1 2Q `Z is a σ-isolated periodic point of period q for the circle map f defined by

θ P T Þ Ñ f pθq :" θ `P Q `δ `ǫ˚p θq mod Z with ǫ ˚:" σ∆.
Moreover, since ℓ ě 6{ν ě 2Q and

1 Q ă ν 2 , the set tf s p 1 2Q `Zq | s P N, 2{ν ď s ď 6{νu is ν 2 -dense in T.
c) We are in the situation of Lemma 5.4, with

ǫ ˚ α,L 1 ď σL 1α e c Q γ ď L 1α e ´p2c´3 γ cqν ´γ ď L 1α e ´5c 3 ν
´γ which is less than ǫ i pα, L, L 1 q for ν small enough, thus Equation (5.13) with ǫ :" δ `ǫ˚a nd h 1 " Id `ω1 has a solution w P G α,L pTq such that

w α,L ď p1 `2L α q ǫ ˚ α,L 1 ď p1 `2L α qL 1α e ´5c 3 ν
´γ .

Proposition 5.3 now tells us that the annulus map F :" Φ w ˝F0 : M 1 ý leaves invariant the graph G :" `θ, r `ǫpθq ˘| θ P T ( , with f : T ý as induced dynamics on G. In particular, z 1 :" `1 2Q `Z, r `ǫp 1 2Q q ˘P T ˆR is a σ-isolated periodic point of period q for F , with all its orbit contained in G. Notice that, for ν small enough, ǫ C 0 pTq ď δ ` ǫ ˚ C 0 pTq ď ν 2 {12 `L1α e ´5c 3 ν ´γ ď ν{4, hence G Ă Vpr, ν{4q Ă Vpr, 3ν{4q and t F s pz 1 q | s P N, 2{ν ď s ď 6{νu is 2ν-dense in Vpr, νq.

d) The only shortcoming of the perturbation Φ w is that it is not supported on the strip Vpr, νq, but this is easy to remedy: we will multiply w by a function which vanishes outside Vpr, νq without modifying the dynamics in Vpr, ν{4q. Note that Vpr, ν{4q Ă Vpr, ν{2q Ă Vpr, νq.

Let us thus pick η P G α,L pRq such that ηprq " 1 for all r P rr ´ν{4, r `ν{4s and ηprq " 0 whenever |r ´r| ě ν{2. According to Lemma A.5, we can achieve η α,L ď exp `2γ c 1 ν ´γ (using, in fact, a non-periodic version of Lemma A.5, with p " 2 ν ). We now set upθ, rq :" ηprqwpθq for all pθ, rq P T ˆR.

One can check that u satisfies conditions (1) and (2) of Proposition 5.1 for ν small enough, because then w α,L ď 1 2 e ´3c 2 ν ´γ , while η α,L ď e c 2 ν ´γ . Since F :" Φ u ˝F0 and F coincide on G (in fact on all of Vpr, ν{4q), requirements (3) and (4) are also fulfilled.

6 Coupling lemma and synchronized diffusion à la Herman

Coupling lemma

The following "coupling lemma" due to M. Herman was already used in [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF], [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF], [START_REF] Lazzarini | Measure and capacity of wandering domains in Gevrey near-integrable exact symplectic systems[END_REF] to construct examples of unstable near-integrable Hamiltonian flows.

Lemma 6.1. Let M and M 1 be symplectic manifolds. Suppose we are given two maps, F : M ý and G : M 1 ý, and two Hamiltonian functions f : M Ñ R and g : M 1 Ñ R which generate complete vector fields and define time-1 maps Φ f and Φ g . Suppose moreover that z ˚P M is F -periodic, of period q, and that f pz ˚q " 1, df pz ˚q " 0 (6.1) f pF s pz ˚qq " 0, df pF s pz ˚qq " 0 for 1 ď s ď q ´1. (6.2)

Then f b g generates a complete Hamiltonian vector field and the maps T :" Φ f bg ˝pF ˆGq : M ˆM 1 ý and ψ :" Φ g ˝Gq : M 1 ý satisfy T nq`s pz ˚, z 1 q " `F s pz ˚q, G s ˝ψn pz 1 q ˘(6.3) for all z 1 P M 1 and n, s P Z such that 0 ď s ď q ´1.

We have denoted by f b g the function pz, z 1 q Þ Ñ f pzqgpz 1 q, and by F ˆG the map pz, z 1 q Þ Ñ pF pzq, Gpz 1 qq.

Proof. See [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF].

6.2 Proof of Proposition 4.1 a) Given r P R and ν ą 0 small enough, we apply Proposition 5.1 with σ :" e ´2cν ´γ (where c " cpα, Lq is provided by Proposition 5.1) and an integer ℓ ě 6{ν that we will specify later.

We thus get a function u P G α,L pM 1 q and a map F " Φ u ˝F0 : M 1 ý satisfying properties (1)-(4) of Proposition 5.1. We call z p0q 1 the σ-isolated periodic point mentioned in property (4), the period of which is an integer q P rℓ, 3ℓ{νs.

Let f :" η z p0q 1 ,σ be defined by Lemma A.6. Observe that f , F and z ˚" z p0q 1 satisfy conditions (6.1)-(6.2) of Lemma 6.1 because z p0q 1 is a σ-isolated periodic point.

b)

We now define g : M 2 Ñ R by the formula gpr 2 , θ 2 q " ´1 2πq sinp2πθ 2 q. According to (5.11), we have Φ g pθ 2 , r 2 q " `θ2 , r 2 `1 q cosp2πθ 2 q ˘for all pθ 2 , r 2 q P M 2 . In particular, Φ g p0 `Z, r 2 q " `0 `Z, r 2 `1 q ˘for all r 2 P R.

On the other hand, (3.6) gives G s 0 pθ 2 , r 2 q " `θ2 `spω 2 `r2 q `Z, r 2 ˘for all s P Z. Therefore ψ :" Φ g ˝Gq 0 satisfies ψ n p0 `Z, ´ω2 q " p0 `Z, ´ω2 `n q q for all n P Z, whence

G s 0 ˝ψn `zp0,0q 2 ˘" z pn,sq 2 
with z pn,sq 2

:" ´sn q `Z, ´ω2 `n q ¯for all n, s P Z. (6.4) c) Let v :" f b g. We now apply Lemma 6.1 with the above functions f and g and the maps F and G 0 , taking z ˚" z p0q 1 . In view of (6.3)-(6.4), we get

T nq`s `zp0q 1 , z p0,0q 2 
˘" `F s pz p0q 1 q, z pn,sq 2 ˘for all n, s P Z such that 0 ď s ď q ´1, (6.5) with T " Φ v ˝pF ˆG0 q " Φ v ˝Φu ˝pF 0 ˆG0 q. Notice that, for ν small enough, we have σ ă ν{4, hence f " 0 on Vpr, νq c , thus v satisfies condition (1) of Proposition 4.1, and we already knew that u also did.

We have u α,L ď 1 2 expp´cν ´γ q with c " cpα, Lq stemming from Proposition 5.1. We can also achieve v α,L ď 1 2 expp´cν ´γ q by choosing appropriately ℓ. Indeed, calling K the Gevrey-pα, Lq norm of the function θ Þ Ñ 1 2π sinp2πθq and using q ě ℓ and (A.15), we get v α,L ď K q η z,ν α,L ď K ℓ exppc 2 σ ´γ q, where c 2 " c 2 pα, Lq stems from Lemma A.6. Therefore, the condition q ě ℓ ě L :" 2Ke cν ´γ e c 2 σ ´γ (6.6) is sufficient to ensure that u and v satisfy condition (2) of Proposition 4.1. We will finetune our choice of ℓ later, when considering the "diffusion speed" of the T -orbit described by (6.5).

d)

We note that Vpr, νqˆM 2 is invariant by T because it is invariant by T 0 as well as by Φ tu and Φ tv for all t P R in view of the condition on the supports of u and v. Let b :" 1 4 . To get condition (3) of Proposition 4.1 and thus complete its proof, we will require the following Lemma 6.2. The set `F s pz p0q 1 q, z pn,sq 2 ˘| n, s P Z, 2 ν ď s ď 6 ν ( is 3ν-dense in Vpr, νq ˆM2 if (6.6) holds and ν is small enough.

Taking Lemma 6.2 for granted, we now show how to choose ℓ so as to make Vpr, νq ˆM2 `3ν, τ, τ b ˘-diffusive for T with τ :" E 3cγ,γ pνq.

Given arbitrary z P Vpr, νq ˆM2 , Lemma 6.2 yields n and s integer such that ẑ :" `F s pz p0q 1 q, z pn,sq 2 ˘" T nq`s `zp0q 1 , z p0,0q 2 ˘is 3ν-close to z. For any m ě 1, comparing the last coordinates of ẑ and T mq pẑq " `F s pz p0q 1 q, z pn`m,sq 2 ˘, namely ´ω2 `n q and ´ω2 `n`m q , we see that dpT mq pẑq, ẑq ě m{q, hence dpT q 3 pẑq, zq ě q ´3ν with ℓ ď q ď 3ℓ ν . (6.7)

Let µ :" e cν ´γ " σ ´1{2 . The number L of (6.6) is 2Kµ e c 2 µ 2γ ď µ 2 e c 2 µ 2γ ă e pc 2 `1 γ qµ 2γ

and pc 2 `1 γ qµ 2γ ď bµ 3γ provided ν is small enough, and then

L ă e b e Cν ´γ with C :" 3cγ. (6.8) Since b ă 1 3 , we can satisfy (6.6) by choosing ℓ :" t ν 3 e 1 3 e Cν ´γ u and we then have q 3 ď p3ℓ{νq 3 ď e e Cν ´γ " E C,γ pνq.

On the other hand, q ´3ν ě ℓ ´3ν ě e b e Cν ´γ " E C,γ pνq b for ν small enough. We thus get property (3) of Proposition 4.1 from (6.7). The proof of that Proposition is thus complete up to the proof Lemma 6.2.

Proof of Lemma 6.2

We keep the notations and assumptions of Section 6.2 and give ourselves an arbitrary z " pz 1 , z 2 q P Vpr, νqˆM 2 . We look for integers n and s such that d ``F s pz p0q 1 q, z pn,sq 2 ˘, pz 1 , z 2 q ˘ď 3ν and 2 ν ď s ď 6 ν . By property (4) of Proposition 5.1, we can choose the integer s so that d `F s pz p0q 1 q, z 1 ˘ď 2ν, 2 ν ď s ď 6 ν .

On the other hand, writing z 2 " pθ 2 `Z, r 2 q with θ 2 , r 2 P Z, we see from (6.4) that the last coordinate of z pn,sq 2 will be ν-close to r 2 if and only if |n ´qpω 2 `r2 q| ď νq. Let us denote by n ˚the integer nearest to qpω 2 `r2 q, thus |n ˚´qpω 2 `r2 q| ď 1 2 . To conclude, it is sufficient to take n of the form n " n ˚`m with m integer such that |m| ď νq ´1 2 and dist ˆspn ˚`mq q , θ 2 `Z˙ď ν. (6.9) Indeed, we will then have d ``F s pz p0q 1 q, z pn,sq 2 ˘, pz 1 , z 2 q ˘ď ? 4ν 2 `ν2 `ν2 ă 3ν.

The second part of (6.9) is equivalent to dist ´m, qθ 2 s ´n˚`q s Z ¯ď νq s . Let

I :" " ´pνq ´1 2 q, νq ´1 2 ı , J :" " x 2 ´νq s , x 2 `νq s ı with x 2 " qθ 2 s ´n˚.
The whole of (6.9) is thus equivalent to ‰ , which has length s∆{q " 2νs ´2ν ´s{q ě 4 ´2ν ´6{pνLq (using q ě L). That length is ě 1 for ν small enough and the interval then contains at least one integer k ˚. Diminishing ν if necessary, we then have | k˚q s `J| " 2νq{s ě ν 2 L{3 ě 1, hence we can find m P p k˚q s `Jq X Z Ă I X Z, thus solution to (6.10) or, equivalently, to (6.9).

Continuous time

In Sections 4-6, we have proved Theorems 3.3 and 3.4, providing examples of discrete systems of the form Φ v ˝Φu ˝Φh 0 : T n ˆRn ý with diffusive invariant tori (using Remark 3.1). We will now deduce Theorems 3.1 and 3.2 by a "suspension" device adapted from [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF].

Definition 7.1. Given an exact symplectic map T : T n ˆRn ý, we call suspension of T any non-autonomous Hamiltonian which depends 1-periodically on time h : T n ˆRn ˆT Ñ R, for which the flow map between the times t " 0 and t " 1 exists and coincides with T .

Lemma 7.1. Let h 0 : r P R n Þ Ñ pω, rq `1 2 pr, rq as in Section 3.2. Suppose that u and v are C 8 functions on T n ˆRn which generate complete Hamiltonian vector fields. Let ψ, χ P C 8 pr0, 1sq be such that Then the formula hpθ, r, tq :" h 0 prq `ψptqu `θ `p1 ´tqpω `rq `Zn , r ˘`χptqv `θ `p1 ´tqpω `rq `Zn , r ˘(7.2) defines a function on T n ˆRn ˆr0, 1s which uniquely extends by periodicity to a C 8 function on T n ˆRn ˆT and, when viewed as a non-autonomous time-periodic Hamiltonian, is a suspension of Φ v ˝Φu ˝Φh 0 .

Proof. Let ϕ P C 8 pr0, 1sq have support Ă r0, 1 3 s and ş 1 0 ϕptq dt " 1. We observe that (7.2) entails, for all pθ, r, tq P T n ˆRn ˆr0, 1s, hpθ, r, tq " h 0 prq `ψptqu `θ `φptqpω `rq `Zn , r ˘`χptqv `θ `φptqpω `rq `Zn , r ˘, (7.3) where φptq :" ş t 0 `ϕpt 1 q ´1˘d t 1 extends to a 1-periodic C 8 function. This takes care of the first statement.

Let z 0 P T n ˆRn and let zptq " `θptq, rptq ˘denote the maximal solution of the initial value problem dz dt " X h pz, tq, zp0q " z 0 . Defining θ ˚ptq :" θptq `φptq `ω `rptq ˘and z ˚ptq :" `θ˚p tq, rptq ˘, we compute The flow map of X h between the times t " 0 and t " 1 3 is thus a reparametrization of the flow of X h 0 : t P " 0, 1 3 ‰ ñ z ˚ptq " Φ h 0 `şt 0 ϕpt 1 q dt 1 ˘, whence z ˚`1 3 ˘" Φ h 0 pz 0 q since ş 1{3 0 ϕpt 1 q dt 1 " 1. Similarly, z ˚`2 3 ˘" Φ u `z˚`1 3 ˘˘since ş 2{3 1{3 ψpt 1 q dt 1 " 1, and z ˚p1q " Φ v `z˚`2 3 ˘˘, since ş 1 2{3 χpt 1 q dt 1 " 1. We thus get z ˚p1q " Φ v ˝Φu ˝Φh 0 pz 0 q, which yields the desired result because z ˚p1q " zp1q.

Notice that, if T " Φ v ˝Φu ˝Φh 0 satisfies properties (1) and (3) of Theorem 3.3, resp. Theorem 3.4, then any suspension of T of the form (7.3) satisfies property (2) of Theorem 3.1, resp. Theorem 3.2. The invariance of the torus T pr,sq with r " 0, resp. r P pX ǫ `Zq ˆRn´1 , stems from the vanishing of B θ h and B t h for r 1 " 0, resp. r 1 P X ǫ `Z.

Lemma 7.2. Consider the mapping S ω : pθ, r, tq P T n ˆRn ˆT Þ Ñ `θ `p1 ´tqω `Zn , r ˘P T n ˆRn .

Let α ě 1 and Λ ą 0 be real, and Λ 1 ě Λ ´1 `max 1ďiďn |ω i | 1{α ¯. Then w P G α,Λ 1 pT n ˆRn q ñ w ˝Sω P G α,Λ pT n ˆRn ˆTq and w ˝Sω α,Λ ď w α,Λ 1 .

Proof. One can check that, for every pp, q, sq P N n ˆNn ˆN, B p θ B q r B s t pw ˝Sω q " p´1q s ÿ mPN n s.t. |m|"s ω m 1 1 ¨¨¨ω mn n pB p`m θ B q r wq ˝Sω , whence, with the notation Ω :" max

1ďiďn |ω i |,
w ˝Sω α,Λ ď ÿ p,q,mPN n Ω |m| Λ |p`q`m|α p! α q! α |m|! α B p`m θ B q r w C 0 pT n ˆRn q " ÿ ℓ,qPN n A ℓ Λ |ℓ`q|α q! α B ℓ θ B q r w C 0 pT n ˆRn q with A ℓ :" p!m! ¯α " 1 ℓ! α p1 `Ω1{α q |ℓ|α , hence w ˝Sω α,Λ ď ÿ ℓ,qPN n p1 `Ω1{α q |ℓ|α Λ |ℓ`q|α ℓ! α q! α B ℓ θ B q r w C 0 ď Λ |ℓ`q|α 1 ℓ! α q! α B ℓ θ B q r w C 0 " w α,L 1 .

Lemma 7.3. Consider an interval I Ă r0, 1s and the mapping R I : pθ, r, tq P T n ˆRn ˆI Þ Ñ `θ `p1 ´tqr `Zn , r, t ˘P T n ˆRn ˆI.

Let α ě 1 and Λ ą 0 be real, and Λ ě L max 2 3{α , 2 1{α L ( . Then w P G α,Λ pT n ˆRn ˆIq ñ w ˝RI P G α,L pT n ˆRn ˆIq and d α,L p0, w ˝RI q ď w α,Λ .

Proof. Let L j :" 2 ´j´1 α L and R j :" 2 j for each j P N ˚, as in Appendix A.1. We also set K j :" T n ˆBR j ˆI, so G α,L pT n ˆRn ˆIq " Ş jě1 G α,L j pK j q. A simple adaptation of [MS03, Remark A.1] shows that, if φ P G α,L j pIq and L α j `pR j `Lα j q φ α,L j ,I ´Rj φ C 0 pIq ď Λ α , (7.4) then the composition with the mapping R : pθ, r, tq P T n ˆRn ˆI Þ Ñ `θ `φptqr `Zn , r, t ˘P T n ˆRn ˆI has the property w P G α,Λ pK j q ñ w ˝R P G α,L j pK j q and w ˝R α,L j ,K j ď w α,Λ . (7.5)

Taking φptq :" 1 ´t, since our interval I is Ă r0, 1s, we have φ C 0 pIq ď 1 and φ α,L j ,I " φ C 0 pIq `Lα j , hence the left-hand side of (7.4) equals L α j `Rj L α j `Lα j ` φ C 0 pIq `Lα j ˘ď L α j pL α j `Rj `2q ď L 2α `4L α ď 1 2 Λ α `1 2 Λ α and (7.5) allows us to conclude, in view of (A.4).

Proof of Theorems 3.1 and 3.2

In both cases, we are given α ą 1, L ą 0 and ǫ ą 0. Let Λ 1 :" Λ ´1 `max 1ďiďn |ω i | 1{α ¯, Λ :" L max 2 3{α , 2 1{α L ( .

Since α ą 1, we can pick ψ, χ P G α,Λ pTq satisfying (7.1).

Let us apply the multidimensional version of Theorem 3.3 or Theorem 3.4 (cf. Remark 3.1) with parameters Λ 1 instead of L and ǫ 1 :" ǫ max 1, ψ α,Λ , χ α,Λ ( instead of ǫ. We thus get u, v P G α,Λ 1 pT n ˆRn q and, in the second case, X ǫ 1 Ă r0, 1s, such that u α,Λ 1 ` v α,Λ 1 ă ǫ 1 and any suspension of Φ v ˝Φu ˝Φh 0 satisfies property (2) of Theorem 3.1, resp. Theorem 3.2.

ÿ

  p,mPN n s.t. p`m"ℓΩ |m| p! α |m|! α . Now, A ℓ ď ř p`m"ℓ Ω |m| p! α m! α ď ´ř p`m"ℓ Ω |m|{α
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By Lemma 7.1, we can choose the suspension to be h :" h 0 `ũ ˝Rr 1 3 , 2 3 s `ṽ ˝Rr 2 3 ,1s with ũpθ, r, tq :" ψptqpu ˝Sω qpθ, r, tq, ṽpθ, r, tq :" χptqpv ˝Sω qpθ, r, tq.

Lemma 7.2 and (A.2) give ũ α,Λ ď ψ α,Λ u α,Λ 1 , ṽ α,Λ ď χ α,Λ v α,Λ 1 , whence ũ α,Λ ` ṽ α,Λ ă ǫ. Then, since the distance d α,L is translation-invariant, d α,L ph 0 , hq ď d α,L `0, ũ ˝Rr 1 3 , 2 3 s ˘`d α,L `0, ṽ ˝Rr 2 3 ,1s ˘ď ũ α,Λ ` ṽ α,Λ by Lemma 7.3 and we are done.

Appendix A Gevrey estimates

We fix real numbers α ě 1 and L ą 0.

A.1 Gevrey functions and Gevrey maps

Here we adapt definitions and facts taken from [START_REF] Marco | Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems[END_REF], [START_REF] Marco | Wandering domains and random walks in Gevrey near-integrable Hamiltonian systems[END_REF] and [START_REF] Fayad | Attracted by an elliptic fixed point[END_REF].

The Banach algebra G α,L pR M ˆKq of uniformly Gevrey-pα, Lq functions

Let N ě 1 be integer. We will deal with real functions of N variables defined on R M ˆK, where M ě 0 and K Ă R N ´M is a Cartesian product of closed Euclidean balls and tori.

We define the uniformly Gevrey-pα, Lq functions on R M ˆK by

We have used the standard notations |ℓ| "

x N , and N :" t0, 1, 2, . . .u. The space G α,L pR M ˆKq turns out to be a Banach algebra, with

for all f and g, and there are "Cauchy-Gevrey inequalities": if 0 ă L 0 ă L, then

When necessary, we use the notation . α,L,R M ˆK instead of . α,L to keep track of the domain to which the norm relates.

The metric space G α,L pR M ˆKq When M ě 1, instead of restricting ourselves to uniformly Gevrey-pα, Lq functions on R M ˆK, we may cover the factor R M by an increasing sequence of closed balls and consider a Fréchet space accordingly. For technical reasons, we choose the sequences

and set

(A.4) Clearly, G α,L pR M ˆKq Ă G α,L pR M ˆKq but the inclusion is strict, and the larger space is a complete metric space for the distance d α,L .

This construction is needed in Section 7 only. In the rest of this appendix, we focus on uniformly Gevrey functions and maps on R N (with M " N and no factor K).

Composition with uniformly Gevrey-pα, Lq maps

For N ě 1 integer, we define

This is a Banach space.

We also define N α,L pf q :" ÿ

Lemma A.0. Let L 0 P p0, Lq. There exists ǫ c " ǫ c pα, L, L 0 , N q such that, for any f P G α,L pR N q and F " pF r1s , . . . ,

The proof is in Appendix A of [START_REF] Fayad | Attracted by an elliptic fixed point[END_REF].

A.2 Comparison estimates for Gevrey flows

In Section 4.2, we use comparison estimates for the flows of two nearby Gevrey Hamiltonian systems. We prove them here, building upon some facts which are proved in [START_REF] Fayad | Attracted by an elliptic fixed point[END_REF] about the flows of Gevrey vector fields.

Lemma A.1 (General case). Suppose that 0 ă L 0 ă L and N ě 1. Then there exists ǫ f " ǫ f pα, L, L 0 , N q ą 0 such that, for every vector field X P G α,L pR N , R N q with X α,L ď ǫ f , the time-1 map Φ of the flow generated by X satisfies

and, if we are given another vector field

Proof. The first part of the statement is exactly Part (i) of Lemma A.1 from [START_REF] Fayad | Attracted by an elliptic fixed point[END_REF]. There, the flow t P r0, 1s Þ Ñ Φptq was obtained by considering the functional ξ Þ Ñ Fpξq defined by

Fpξqptq :"

Using an auxiliary L 1 P pL 0 , Lq and Lemma A.0, it was shown that, if X α,L ď ǫ f small enough, then F maps into itself

(which is a closed ball in a Banach space) and has a unique fixed point, none other than ξ ˚ptq :" Φptq ´Id.

In that proof, F was shown to be K-Lipschitz, with K :" max i,j B x j X ris α,L 1 . We can ensure K ď 1 2 by diminishing ǫ f if necessary and using (A.3). Then, for any ξ 0 P B, the fixed point ξ ˚is the limit of the sequence of iterates pF k pξ 0 qq kPN and ξ ˚´ξ 0 ď 2 Fpξ 0 q ´ξ0 . Now, suppose we also have X α,L ď ǫ f . The time-t map of X is thus Φptq " Id `ξ ˚ptq, with ξ˚fi xed point of F : B ý. Lemma A.0 yields Fpξq ´Fpξq " ż t 0 p X ´Xq ˝`Id `ξpτ q ˘dτ ď X ´X α,L for any ξ P B, thus we can compare the fixed points ξ ˚and ξ˚b y writing the former as the limit of the sequence pF k pξ 0 qq kPN with ξ 0 :" ξ˚; we get

which yields the desired result.

Lemma A.2 (Hamiltonian case). Suppose that 0 ă L 0 ă L and n ě 1. Then there exist ǫ H , C 0 ą 0 such that, for every u P G α,L pR 2n q with u α,L ď ǫ H ,

and, given another ũ P G α,L pR 2n q with ũ α,L ď ǫ H ,

Proof. Let L 1 :" pL 0 `L1 q{2. Any u P G α,L pR 2n q generates a Hamiltonian vector field X u which, according to (A.3) with p " 1, satisfies

Similarly, X ũ ´Xu α,L 1 ď pL´L 1 q ´α ũ´u α,L . Thus, with ǫ H :" pL´L 1 q α ǫ f pα, L 1 , L 0 , 2nq and C 0 :" 2pL ´L1 q ´α, we get

Corollary A.3 (Iteration of maps of the form Φ v ˝Φu ˝T0 ). Suppose that n ě 1.

Then there exist ǫ d , C 1 ą 0 such that, for every u, v, ũ, ṽ P G α,L pR 2n q such that

and for every z P R 2n , the orbits of z under the maps T :" Φ v ˝Φu ˝T0 and T :" Φ ṽ ˝Φũ ˝T0 satisfy

Proof. For any u, v, ũ, ṽ P G α,L pR 2n q and z, z P R 2n , the maps T :" Φ v ˝Φu ˝T0 and T :" Φ ṽ ˝Φũ ˝T0 satisfy dist `T pzq, T pzq ˘ď dist `Φv pΦ u pT 0 pzqqq, Φ v pΦ u pT 0 pzqqq dist `Φv pΦ u pT 0 pzqqq, Φ v pΦ ũpT 0 pzqqq dist `Φv pΦ ũpT 0 pzqqq, Φ ṽ pΦ ũpT 0 pzqqq ď pLip Φ v qpLip Φ u qpLip T 0 q distpz, zq `pLip Φ v q Φ ũ ´Φu C 0 pR 2n q ` Φ ṽ ´Φv C 0 pR 2n q .

On the one hand, Lip T 0 " 2. On the other hand, for any L 0 ą 0, the Lipschitz constant of a map Ψ such that Ψ ´Id P G α,L 0 pR 2n , R 2n q is bounded by 1 `LippΨ ´Idq ď 1 L´α 0 Ψ ´Id α,L 0 (using the mean value inequality, (A.1) and (A.5)). Applying Lemma A.2 with L 0 " L{2, we can thus choose ǫ d so that assumption (A.10) entails

whence dist `T pzq, T pzq ˘ď 3 distpz, zq `η with η :" p3{2q 1{2 C 0 ` ũ ´u α,L ` ṽ ´v α,L ˘.

Iterating this, we get dist `T k pzq, T k pzq ˘ď 3 k pdistpz, zq `1 2 ηq ´1 2 η for all k P N, thus we can conclude by choosing C 1 :" 1 2 p3{2q 1{2 C 0 .

A.3 A Gevrey inversion result

In Section 5.2, we use the following Lemma A.4. Suppose L ă L 1 . Then there exists ǫ i " ǫ i pα, L, L 1 q such that, for every ǫ P G α,L 1 pRq, if ǫ α,L 1 ď ǫ i , then Id `ǫ is a diffeomorphism of R and pId `ǫq ´1 " Id `ǫ with ǫ α,L ď ǫ α,L 1 , (A.12)

g ˝pId `ǫq ´1 α,L ď g α,L 1 for any g P G α,L 1 pRq. (A.13)

Proof. Let L 1 :" pL `L1 q{2. We use Lemma A.0 and define

Given ǫ P G α,L 1 pRq such that ǫ α,L 1 ď ǫ i , the functional

is well defined (because ǫ α,L 1 ď ǫ c pα, L 1 , L, 1q and ǫ P G α,L 1 pRq), maps B into itself (we even have Fpf q ď ǫ α,L 1 ), and is K-Lipschitz with K :" ǫ 1 α,L 1 (using also (A.2) and the mean value inequality). But (A.3) yields ǫ 1 α,L 1 ď pL 1 ´L1 q ´α ǫ α,L 1 ď 1 2 , which implies that F is a contraction, and also that Id `ǫ is a diffeomorphism of R (since its derivative stays ě 1{2). The unique fixed point ǫ of F in B is pId `ǫq ´1 ´Id, which yields ǫ α,L ď ǫ α,L 1 ď ǫ c pα, L 1 , L, 1q and hence (A.13) by another application of Lemma A.0.

A.4 Gevrey functions with small support

From now on we suppose α ą 1. We quote without proof Lemma 3.3 of [MS04]:

Lemma A.5. There exists a real c 1 " c 1 pα, Lq ą 0 such that, for each real p ą 2, the space G α,L pTq contains a function η p which takes its values in r0, 1s and satisfies

The proof can be found in [MS04, p. 1633]. This easily implies Lemma A.6. There exists a real c 2 " c 2 pα, Lq ą 0 such that, for any z P T ˆR and ν ą 0, there is a function η z,ν P G α,L pT ˆRq which takes its values in r0, 1s and satisfies η z,ν " 1 on Bpz, ν{2q, η z,ν " 0 on Bpz, νq c and η z,ν α,L ď exppc 2 ν ´1 α´1 q.

(A.15)

Here, for arbitrary ν ą 0, we have denoted by Bpz, νq the closed ball relative to . 8 centred at z with radius ν.

Appendix B Some estimates on doubly exponentially growing sequences

According to (4.3), the increasing sequence pN i q iě1 is defined by

where 0 ă ǫ ď 1, κ ě 1 and C :" maxt6cγ, 1{γu, with c, γ ą 0. Here, we show a few inequalities which are used in Section 4.2. Recall that ν i :" 1 N i ln N i and ξ i :" e ´cν ´γ i .

Lemma B.1. One has ln N i ě 4 i κ{ǫ for every i ě 1, (B.1)

Proof. We have lnpN 1 q ě 4κ{ǫ and, by virtue of (4.1), N 1 ě 4κ{ǫ ě 4. Now, for i ě 2, since γ C ě 1, we have

and (4.1) yields lnpN i q ě N i´1 ln N i´1 ě 4 ln N i´1 , whence (B.1) follows.

We have ln 1 N i ξ i " cpN i ln N i q γ ´ln N i and, since lnpN i q ! pN i ln N i q γ , cΛ γ i ě ln 1 N i ξ i ě cpΛ i { ? 3q γ for i large enough, where Λ i :" N i ln N i " 1{ν i .

Inequality (B.2), being equivalent to ln 1 N i`1 ξ i`1 ě ln 1 N i ξ i `ln 2 for i large enough, thus results from pΛ i`1 { ? 3q γ ě Λ γ i `ln 2 c (which holds for i large enough because N i`1 ě 3N i , hence Λ i`1 " N i`1 ln N i`1 ą 3Λ i ).

Let C :" 3cγ. Inequality (B.3), being equivalent to ln 1 N i`1 ξ i`1 ě pln 3qE C,γ p1{Λ i q for i large enough, results from Λ γ i`1 ě 3 γ{2 ln 3 c E C,γ p1{Λ i q, which holds since E C,γ p1{Λ i q " P exp `exppCΛ γ i q ˘T and Λ γ i`1 " N γ i pln N i`1 q γ Q exp `γ expp CΛ γ i q ˘U, N γ i pln N i`1 q γ ě 3 γ{2 ln 3 c and γ expp CΛ γ i q ě exppCΛ γ i q for i large enough since C ą C.