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Abstract When simulations are very expensive and many
are required, as for optimization or uncertainty quantifica-
tion, a way to reduce cost is using surrogates. With multiple
simulations to predict the quantity of interest, some being
very expensive and accurate (high-fidelity simulations) and
others cheaper but less accurate (low-fidelity simulations), it
may be worthwhile to use multi-fidelity surrogates (MFS).
Moreover, if we can afford just a few high-fidelity simula-
tions or experiments, MFS become necessary. Co-Kriging,
which is probably the most popular MFS, replaces both low-
fidelity and high-fidelity simulations by a single MFS. A re-
cently proposed linear-regression-based MFS (LR-MFS) of-
fers the option to correct the LF simulations instead of cor-
recting the LF surrogate in the MFS. When the low-fidelity
simulation is cheap enough for use in an application, such
as optimization, this may be an attractive option. In this pa-
per, we explore the performance of LR-MFS using exact
and surrogate-replaced low-fidelity simulations. The prob-
lem studied is a cylindrical dispersal of 100µm diameter
solid particles after detonation and the quantity of interest is
a measure of the amplification of the departure from axisym-
metry. We find very substantial accuracy improvements for
this problem using the LR-MFS with exact low-fidelity sim-
ulations. Inspired by these results we also compare the per-

Los Alamos National Laboratory
New Mexico, 87545, United States
Tel.: +1505-667-1627
E-mail: gisellefernandez@lanl.gov

University of Florida
Florida, 32611, United States

ONERA/DTIS, Université de Toulouse
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Université de Toulouse, CNRS, UPS, INSA, ISAE, Mines Albi, Institut
Clément Ader (ICA)
3 rue Caroline Aigle, Toulouse F-31400, France

formance of co-Kriging to the use of Kriging to correct ex-
act low-fidelity simulations and find a similar accuracy im-
provement when simulations are directly used. For this prob-
lem, further improvements in accuracy are achievable by
taking advantage of inherent parametric symmetries. These
results may alert users of MFS to the possible advantages of
using exact low-fidelity simulations when this is affordable.

Keywords Multi-fidelity · Surrogates · Symmetries ·
Linear Regression · Kriging · Co-Kriging

Nomenclature

δ (x) = discrepancy function
δ̂ (x) =discrepancy function surrogate, also known as addi-
tive correction
ρ = constant scaling factor
yHF(x) = high-fidelity simulation
ŷHF(x) = high-fidelity surrogate
yLF(x) = low-fidelity simulation
ŷLF(x) = low-fidelity surrogate
ŷ ˆadd(x) = multi-fidelity surrogate that uses additive correc-
tion and where the prediction is performed using a low-
fidelity surrogate
ŷ ˆcomp(x) = multi-fidelity surrogate that uses comprehensive
correction and where the prediction is performed using a
low-fidelity surrogate
ŷadd(x) = multi-fidelity surrogate that uses additive correc-
tion and where the prediction is performed using low-fidelity
simulations
ŷcomp(x) = multi-fidelity surrogate that uses comprehensive
correction and where the prediction is performed using low-
fidelity simulations



2 M. Giselle Fernández-Godino et al.

1 Introduction

Kriging, a Gaussian processes based surrogate, is an increas-
ingly popular surrogate in engineering [17]. Co-Kriging [6,
13–15] is commonly known as the extension of Kriging to
include multiple levels of fidelities in the surrogate construc-
tion. It replaces both low-fidelity (LF) and high-fidelity (HF)
simulations with a single multi-fidelity surrogate (MFS). Co-
Kriging approach corrects the LF model using a multiplica-
tive constant plus a discrepancy function between LF and
HF models. Co-Kriging is probably one of the most used
MFS due to it versatility and good performance for a wider
range of applications. Unfortunately, due to its complexity,
co-Kriging is generally used as a black box. A recently pro-
posed linear regression-based multi-fidelity surrogate (LR-
MFS) [22] offers the option of using exact LF simulations
in the MFS. This may offer an advantage if the LF and HF
simulations have local fluctuations that are highly correlated
between the two levels of fidelity. The objective of this paper
is to report on an application which illustrates the usefulness
of LR-MFS. Specifically, that niche is when

1. The low-fidelity (LF) function is cheap enough to evalu-
ate without a surrogate for the intended application (such
as optimization or UQ) so that replacing it with a surro-
gate is an unnecessary extra complication.

2. The discrepancy function correcting the LF predictions
can be modeled accurately enough by global functions,
such as polynomials that are typically used in linear re-
gression.

One advantage of LR-MFS is that it is easy to tailor it to
the application. In our case, taking advantage of symmetry
proved to be very easy. LR-MFS, as co-Kriging, corrects the
LF model using a multiplicative constant plus a discrepancy
function between LF and HF models. A second comparison
was made by using additive Kriging [11], which is using
Kriging surrogate to model the discrepancy between the LF
and HF models using also exact LF simulations. In this ap-
proach, unlike in co-Kriging and LR-MFS, the LF model is
not corrected using a multiplicative factor.

The physical problem studied is a cylindrical two dimen-
sional multiphase explosion. We study multiphase explosion
simulations where the distribution of particles is initially
nominally axisymmetric. A dense layer of solid particles
surrounding a high-energy explosive develops instabilities
after detonation. Conjectures as to the cause of these insta-
bilities include imperfections in the casing, inhomogeneities
in the initial distribution of particles, characteristics of the
particles, and others. It was assumed that the instabilities
are due to initial imperfections in the distribution of parti-
cles. Therefore, in our simulations, the particle volume frac-
tion is perturbed with azimuthal sinusoidal waves and the
distribution of the particles at a later time is studied quan-
tifying the amplification of the departure from axisymme-

try. Two single fidelity surrogates and four regression-based
MFSs (including LR-MFS) to approximate the amplifica-
tion of the particle departure from axisymmetry in a multi-
phase explosion problem are investigated. This comparison
was done for two cases, (i) using second order regression
basis functions and (ii) using fourth order polynomial re-
gression basis functions. LR-MFS, additive Kriging and co-
Kriging performances are also compared. Due to the pres-
ence of symmetries in our problem, we explore options for
reducing the number of simulations used to construct surro-
gates while maintaining the desired accuracy by taking ad-
vantage of parametric symmetries. These symmetries allow
us to obtain free information and, therefore, the possibility
of cheaper or more accurate predictions. The inherent para-
metric symmetries using symmetric basis functions (SBF)
and adding permutation points (APP) [9] while building the
MFS are imposed and compared with the performance of
the MFS without imposing symmetries.

The details of the physical problem studied can be found
in Section 2. To quantify the particle departure from axisym-
metry, an L2 metric based on energy has been constructed.
An L2 norm is proportional to the root mean of the vector
components squared. The description of the metric can be
found in Section 3. The variables considered are the ampli-
tudes and wavelengths of a trimodal sinusoidal perturbation
which is used as a perturbation in the particle bed of the
problem studied. A variance-based sensitivity analysis has
been carried out to select the most relevant variables for sur-
rogate construction (Appendix A). Details of the variable
selection and the multi-fidelity (MF) design of experiments
are included in Section 4. In Section 5 is described how the
two single-fidelity and the four MFSs used are constructed.
It is also described here the method to impose symmetries
in linear regression-based surrogates. Appendix B shows a
study of why substantial accuracy is obtained from using
LF simulations instead of LF surrogates for the case where
second-order polynomial basis functions are used. In Sec-
tion 6 the performance of the linear regression-based surro-
gates is shown and their performance to additive Kriging and
co-Kriging is compared and, finally we show how imposing
symmetries leads to a computational cost reduction.

2 Physical Problem Description

The physical problem simulated is a two dimensional mul-
tiphase1 detonation. The computational domain is a two di-
mensional slice of a cylinder of diameter 1.20m taken per-
pendicular to the cylinder axis. This was chosen to contain
the blast wave during the entire simulation time of 500µs.
This domain is comprised of a 0.0038m radius inner circle
containing hot, high-pressure gas which is surrounded by an

1 In this case multiphase refers to the phases, gas and particles.
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annular particle bed of outer radius 0.05m. The remainder
of the computational domain, of outer radius 0.6m, contains
ambient air. Except for the inner circle, which contains the
high-pressure gas simulating the products of detonation of
an initially high-energy charge, the rest of the domain is ini-
tially under standard conditions of pressure and temperature.
Figure 1(a) shows a schematic of the computational domain.

The initial conditions for the gas phase are as follows.
The high-energy explosive in the charge (i.e. r ≤ 0.038m)
is taken to be representative of pentaerythritol tetranitrate
(PETN). Using data taken from [7], the gas inside of the
charge is set to an initial density of 1770 kg

m3 and an energy
content of 10.089 GJ

m3 at zero velocity. Outside of the charge,
the gas is initialized at standard atmospheric conditions of
1.203 kg

m3 and 101325Pa at zero velocity. For this work, the
entire gas phase is governed by the ideal gas equations. For
detailed information about the numerical methods of the prob-
lem, refer to [10].

The properties for the particle phase at the initial time
are as follows. The particles are taken to be made entirely of
glass with a density of 2500 kg

m3 and a diameter of 100 µm.
The heat capacity of the particles is 450 J

kg·K . The particles
are initially taken to occupy a volume fraction of 5% in the
annular region 0.0038m ≤ r ≤ 0.05m. The number of com-
putational particles in all of the simulations is 31,250, which
are randomly distributed within the annular region with uni-
form probability. The number of physical particles contained
in each computational particle is given by the superparticle
loading factor. Within each finite volume cell, the superpar-
ticle loading factor of the particles inside the cell is adjusted
such that the cell averaged particle volume fraction (PVF)
within the cell equals the desired PVF. The superparticle
loading factor is maintained constant throughout the life of
the particle. The ratio of the mass of the particle bed to the
initial mass of the charge is 17.9.

The computational domain is divided into two regions
for both LF and HF simulations. For the LF simulation, a
64× 64 cell Cartesian mesh is forced into the inner circle
of the domain which initially contains the high-pressure gas
and an outer polar mesh with 125 and 256 cells in the ra-
dial and azimuthal directions, respectively. This gives a to-
tal of 36,096 computational cells in both regions. The HF
data points are obtained from simulations with a 16 times
finer grid, i.e. 256× 256 cell Cartesian mesh for the inner
grid, and for the outer grid a 500 and 1,024 cells in the ra-
dial and azimuthal directions, respectively. This gives a total
of 577,536 computational cells in both regions. In the LF
simulations are used 31,250 computational particles. In the
HF simulations, the number of computational particles has
been increased accordingly to maintain the same number of
computational particles per cell, in this case, 500,000. The
computational cost of the LF simulations is 96 core hours
while the computational cost of the HF simulations is 3,072

core hours in Quartz’ Lawrence Livermore National Labo-
ratory high performance computer. Therefore the LF to HF
cost ratio is around 3%. For further information about the
grids refer to [10].

The base PVF was set to 5%, which is relatively low,
to avoid the effects of over compacting particles. The outer
annulus contains the blast wave during the entire simula-
tion time, 500 µs. The perturbations imposed to the PVF are
inspired by [1]. The base PVF is perturbed using a super-
position of up to three sinusoidal waves. Equation (1) pro-
vides the mathematical expression of the perturbation while
Eq. (2) provides the associated energy constraint of 0.02 (∼
14%) based on [16]. Note that the PVF perturbation is con-
stant in the radial direction and restricted to the circumfer-
ential direction (θ ).

φ
p(θ) = φ

p
0 [1+A1 cos(k1θ +Φ1)+A2 cos(k2θ +Φ2)

+A3 cos(k3θ +Φ3)], (1)

subject to√
A2

1 +A2
2 +A2

3 = 0.02, (2)

where φ p is the PVF at a given θ (0 ≤ θ ≤ 2π), and φ
p
0 is

the constant base PVF (here 5%). Mode amplitudes (A1, A2
and A3 where 0 < A1,A2,A3 <

√
0.02), phases (Φ1, Φ2 and

Φ3 where 0 ≤ Φ1,Φ2,Φ3 ≤ 2π) and integer wavenumbers
(k1, k2, and k3 where 1 ≤ k1,k2,k3 ≤ 25 ) are the perturba-
tion parameters. Furthermore, without loss of generality, we
can take Φ1 = 0 and only the phase of the other two modes
with respect to the first one matters. Also, Eq. (2) allows us
to write one amplitude in terms of the other two. Therefore
even if we start with nine variables, they can be reduced to a
seven variable problem, A1, A2, k1, k2, k3, Φ2, and Φ3. Fig-
ure 1(b) shows PVF contours for a case where a trimodal
perturbation is imposed.

Figure 2(a) shows the convergence of the shock location
for the three grids described in Table 1 and Table 2, LF, in-
termediate fidelity (IF), and HF. It can be observed that the
shock trajectory results are nearly independent of the grid
resolution. In Figure 2(b) we show the upstream particle
front location as a function of time for the three different
resolutions. The convergence is non-monotonic and time-
dependent. Note that due to the chaotic motion of the parti-
cles, there is statistical variation in the location of upstream
and downstream most particle between different runs of the
same resolution. Based on these results, and the need for a
large number of simulations, the LF grid is deemed accurate
enough to be used as the LF simulation. The relative RMSE
in the shock location and in the particle upstream front of
the LF grid with respect to the HF grid are 2% and 3% re-
spectively. This error was computed using the data points
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(a) Schematic of the computational domain (not to scale).

(b) PVF contours at initial time for the perturbed case where
A1=0.13 A2=0.04 A3=0.05, k1=8, k2=17, k3=15 and Φ1=0
Φ2=2.05 Φ3=4.5.

Fig. 1 PVF contours at initial time.

of Figure 2 considering values of t > 0. The differences be-
tween LF and HF simulations in the shock and particle up-
stream front are at least one order of magnitude higher than
the fluctuations in these quantities due to a change of ini-
tial particle location within a cell. In this paper, we use two
levels of fidelity to construct MFSs. The LF simulation cor-
responds to the LF grid while the HF simulation corresponds
to the HF grid. IF grid results were included in Figure 2 and
in Tables 1 and 2 for completeness, however results of IF
grid are not used in this work for the surrogate construction.

3 The Normalized Fourier Effective Perturbation

We are interested in measuring the amplification of the de-
parture from axisymmetry that was introduced as an initial
perturbation. There are several ways to define this perturba-

Table 1 Number of azimuthal and radial divisions for the low-fidelity,
intermediate-fidelity, and high-fidelity grids.

Grid Name
Radial
Divisions

Azimuthal
Divisions

Low-fidelity (LF) 125 256
Intermediate-fidelity (IF) 250 512
High-fidelity (HF) 500 1024

Table 2 Number of cells, number of computational particles, and rela-
tive simulation cost for the low-fidelity, intermediate-fidelity, and high-
fidelity grids.

Grid Name
Number
of Cells

Comp.
Particles

Rel. Sim.
Cost

Low-fidelity (LF) 36,096 31,250 0.03
Intermediate-fidelity (IF) 144,384 125,000 0.25
High-fidelity (HF) 577,536 500,000 1

tion. Here the variation in the particle volume as a function
of θ is chosen. We divide the computational domain into
radial sectors of identical volume. In our problem, the vol-
ume of the sectors remains a constant and equal to hπR2/N,
where N is the number of azimuthal divisions, R = 0.6m is
chosen to be the outer radius of the computational domain,
and h=0.02m is the thickness of the computational domain
in the axial direction. Note that even though the gas proper-
ties are two dimensional and do not vary along the axial di-
rection, particles are distributed within the 3D domain over
this axial thickness. For any simulation time t, the total vol-
ume of all the particles within each of the N radial sectors
defines the variable PV(θ , t). Because of the cylindrical na-
ture of the physical problem, PV is a periodic function in
0≤ θ ≤ 2π . PV(θ , t) can be Fourier transformed as follows

PV(θ , t) =
N/2

∑
k=−N/2

ak exp
(

ik
2π

N
θ

)
, (3)

where ak is the Fourier coefficient corresponding to the kth
Fourier mode. The Fourier coefficients are complex and are
given by

ak =
1
N

N−1

∑
k=0

PV(θ , t)exp
(
−ik

2π

N
θ

)
. (4)

A plot of |ak|2 as a function of the wavenumber k gives us the
energy spectrum of departure from axisymmetry in the pe-
riodic signal PV(θ , t). Figures 3(a) and 3(b) show the spec-
trum of the most amplified trimodal case at the initial time
and at t = 500µs, respectively. The spectra are normalized
by the squared average value |a0|2 and the results are sym-
metric in the wavenumber. In Figure 3(a), besides the con-
stant mean (i.e. k = 0), only the initial modes [k1,k2,k3] =
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(a) Shock location as a function of time.

(b) Upstream front of particles as a function of time.

Fig. 2 Simulation metrics as a function of time for the three different
grids (LF, IF and HF) described in Table 1 and Table 2 based on a
single simulation. The three grids show agreement suggesting that the
LF grid can be used to approximate the results of higher fidelity grids.

[8,17,15], that are imposed by the initial perturbation, have
a non-zero amplitude, while the rest of the modes are zero.
At the final simulated time, t = 500µs, we observe the ini-
tial three modes to still remain dominant and their squared
amplitudes have substantially grown over time (note the log-
arithmic y-axis). However, all the other Fourier modes are
energized as well. This is partly due to nonlinear interaction
between the initial Fourier modes, but also due to circum-
ferential perturbation introduced by the random location and
motion of the particles.

We define the normalized effective PV variation as

F(t = 500µs) =
∑

N−1
k=1 a2

k(t = 500µs)
0.02

. (5)

Note that in the numerator the sum excludes k = 0 and thus
only the non-axisymmetric modes contribute to this mea-
sure. Also, the denominator is the sum of squared ampli-

(a) PV amplitude spectrum squared at the initial time t = 0.

(b) PV amplitude spectrum squared at the final time t = 500µs.

Fig. 3 PV amplitude spectrum squared for [A1,A2,A3] =
[0.130,0.039,0.039], [k1,k2,k3] = [8,17,15], and [Φ1,Φ2,Φ3] =
[0,2.052,4.851]. The spectrum is normalized by |A0|2.

tudes of the three modes of the initial perturbation, which
in the present simulations has been chosen to be equal to
0.02 (Eq. (2)). The denominator is nothing but the initial
value of the numerator for the present set of simulations and
therefore we have normalized the above measure of PV vari-
ation to yield an initial value of F(t = 0) = 1. For example,
for the case presented in Figure 3(b) at 500µs the value of
F(t = 500µs) is 6.25. When we refer to the metric F we will
be actually refereeing to F(t = 500µs) unless we explicitly
state another evaluation time.

Part of the variation in F can be explained in terms of
parametric dependence, but the complex behavior associ-
ated with the metric cannot be fully explained in terms of
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the controlling parameters alone. One of the contributing
factors to the statistical noise is the initial random distribu-
tion of computational particles within the annular region. As
the parameters of the problem are varied, the importance of
these parameters become relevant only if their effect on F
is substantially larger than the statistical noise. The relative
noise is estimated as two times the standard deviation in F
values of 20 realizations normalized by the mean value of
these realizations that were run for a few cases. We deter-
mined that the noise throughout the metric range is constant
and around 5% [10].

4 The Design of Experiments

After exploring and estimating the noise level in the LF sim-
ulations we have performed a sensitivity analysis using the
HF simulations, motivated by the need to construct a DoE
in an as small as possible design space due to the curse of
dimensionality. The purpose is to estimate in a more quan-
titative manner how the seven variables (A1, A2, k1, k2, k3,
φ2 and φ3) affect the metric F and also how they interact
between themselves. For this purpose, a variance based sen-
sitivity analysis using polynomial chaos expansion was per-
formed and the reader can see the details in the Appendix A.
After performing the sensitivity analysis we concluded that
the amplitude variables A1 and A2 do not have a main effect
(low first order index) however the variance caused by their
interactions is very high (high total index). The wavenum-
bers k1, k2 and k3 are the most important variables, they have
a high first order effect and also high importance when in-
teracting with other variables. Lastly, the phase variables φ2
and φ3 turned out to have a negligible first order index and
a negligible total index (less than four orders of magnitude
smaller than the other variables). Therefore phase variables
are ignored from now on considering in this study only the
variables A1, A2, k1, k2, and k3.

Two levels of fidelity to construct MFSs are used. The
level of fidelity is dictated by the grid resolution. The LF and
HF simulations correspond to the LF and HF grid described
in Table 1 and Table 2, respectively. As mentioned before,
each HF and LF simulation cost 96 and 3,072 core hours
in Quartz Lawrence Livermore National Laboratory high-
performance computer, respectively.

Our quantity of interest is the amplification of the parti-
cle departure from axisymmetry. For this purpose, the metric
F , described in Section 3 by Eq. (5), is computed. The surro-
gates were constructed with the variables A1, A2, k1, k2, and
k3 using up to 1,415 LF simulations and up to 711 nested
HF simulations. The validation data points are 92 additional
HF data points due to the fact that increasing the number of
validation points has proven not to change substantially the
value of the calculated errors (less than 2%).

Knowing the correlation between the LF and HF simu-
lations gives us an idea of what can be expected from the
surrogate performance. A high correlation between the HF
data points and the LF data points should lead to a good
MFS performance. Otherwise, using MFSs may be not only
poor but harmful. That is, with low correlation, the MFS
may be less accurate than a surrogate built using only HF
training data points. The correlation coefficient between the
711 HF data points and the corresponding LF data points
for the metric F is 0.92, which indicates a high correlation.
The estimated relative RMSE between the LF and HF simu-
lations is 2% for the shock location and 3% for the particle
upstream front. The noise in these quantities associated with
each simulation is negligible compared with the differences
between them, i.e. the shock and the particle upstream front
location do not change substantially for different initial loca-
tion of particles. Moreover, they do not change substantially
if the perturbations applied are different.

The algorithm used to obtain the training data points
is a nested design of experiments in seven variables based
on Latin hypercube sampling (LHS) technique [21]. Nested
data points are those computed using the same variables but
using different fidelities. The original DoE had 800 HF data
points and 1,600 LF data points, however, we eliminate rep-
etitions in the value of the wavenumbers for the same data
point. This was done to avoid the presence of bimodal or sin-
gle modal perturbations in our samples, 185 of the 1600 LF
data points and 89 of the 800 HF data points were unimodal
or bimodal, and they were eliminated. Finally, we computed
711 HF simulations and 1,415 LF simulations without rep-
etition. The bounds in the variables are 0 < Ai <

√
0.02

for i = 1,2 and 1 ≤ k j ≤ 25 for j = 1,2,3. The wavenum-
bers, k j, are by definition integers, therefore, the LHS data
were rounded to the nearest integer for these variables. Af-
ter normalizing the data points between 0 and 1, the Eu-
clidean distance between points was computed as a measure
of how well distributed are the data points in the design of
experiments. The minimum Euclidean distance between two
points is 0.05 (the minimum possible is 0), while the max-
imum distance is 1.90 (maximum possible is

√
5). The 92

HF validation data points were obtained using LHS.

5 The Linear Regression Surrogates Used

In this section, we show how the data points are used to build
single-fidelity surrogates and MFSs. We also describe how
the parametric symmetries inherent to our problem can be
used to reduce the error if we can afford only few HF data
points.
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5.1 The single-fidelity surrogates

The LF and HF single-fidelity surrogates were constructed
using the classical linear regression approach [18] for two
cases, (i) using as basis functions monomials up to a second
order polynomial, and (ii) using as basis functions monomi-
als up to a fourth order polynomial. Regression was chosen
due to its good performance filtering the noise. This reflects
the objective of the paper to explore the niche of LR-MFS
for this application.

5.2 The multi-fidelity surrogates

The MFSs were built also using the regression approach but
combining more than one fidelity. Four different MF ap-
proaches were studied, and they are discussed below. The
MFSs were constructed using second-degree polynomials
and also fourth degree polynomials as basis functions. The
surrogates that use second order polynomials as basis func-
tions were built using MATLAB regress function, while the
surrogates that use fouth order polynomials basis functions
were built using MATLAB polyfitn function. Given a low-
fidelity simulation, yLF(x), and a high-fidelity simulation,
yHF(x), their surrogates are denoted as ŷLF(x) and ŷHF(x),
respectively. In general, we use .̂ to denote a surrogate. The
additive correction approach, ŷ ˆadd , assumes that the relation-
ship between yLF(x) and yHF(x) is

ŷ ˆadd(x) = ŷLF(x)+ δ̂ (x), (6)

where ŷLF is the regression-based single-fidelity surrogate
built using the 1,415 LF data points, and δ̂ is the surrogate
constructed using as training data points the difference be-
tween the yHF(x) and yLF(x) functions at the nested training
data points (in this case up to 711 training data points). In
other words δ̂ is the surrogate of δ , the discrepancy func-
tion between yHF and yLF

2. The comprehensive approach
can be written as

ŷ ˆcomp = ρ ŷLF(x)+ δ̂ (x), (7)

where ρ is a constant. In this paper, the comprehensive sur-
rogate was constructed using LR-MFS [22] which basically
consists of adding to the HF surrogate, ŷHF , constructed us-
ing classical linear regression an extra basis function that
depends on the LF simulation evaluated at the HF training
data points. The approach is explained below. Lets us con-
sider the surrogate ŷ,

ŷ = ρ ŷLF(x)+
n

∑
i=1

ξi(x)bi, (8)

2 The multiplicative correction approach is an MFS option that is not
included in this paper, however the reader can refer to [11] if interested.
This MFS is constructed using as training points the quotient between
yHF (x) and yLF (x) functions at the nested training data points.

where ξi(x) denotes the ith monomial basis function, bi is
the ith linear regression coefficient to be determined, and n
is the number of linear regression coefficients to be deter-
mined. The error between the HF simulation, yHF , and the
surrogate prediction, ŷ, at the point x j can be written as

e j = yHF(x j)− ŷ(x j)

= yHF(x j)−ρ ŷLF(x)−
n

∑
i=1

ξi(x j)bi, (9)

which in vector form we write as

e = y−Xb, (10)

where

e =

e1
...

em

 ,y =

y1
...

ym

 ,

X =

 ŷLF(x1) ξ1(x1) . . . ξn(x1)
...

...
. . .

...
ŷLF(xm) ξ1(xm) . . . ξn(xm)

 ,b =


ρ

b1
...

bn

 , (11)

where m is the number of HF data points used to train the
surrogate. The unknown coefficients are then determined, as
in the classical linear regression approach, by minimizing
the square sum of errors as

minimize
b

eT e. (12)

An advantage of the LR-MFS approach is that the ŷLF(x)
can be easily replaced by yLF(x) if the LF simulation is
cheap enough. However, this option is not usually avail-
able for more complex surrogates like co-Kriging due to the
fact that a surrogate is constructed internally based on the
LF training data points. Therefore, the two approaches pre-
sented above (Eqs. (6) and (7)) were also constructed using
yLF(x) instead of ŷLF(x). That is, the additive correction,
Eq. (6) becomes

ŷadd(x) = yLF(x)+ δ̂ (x). (13)

Similarly, for the comprehensive approach (Eq. (7)) we have

ŷcomp = ρyLF(x)+ δ̂ (x), (14)

where ρ is a constant. Note that δ̂ (x) coefficients in Eqs. (6)
and (13) are the same. Also, δ̂ (x) coefficients, and ρ are
identical in Eqs. (7) and (14). These are calculated based on
the HF simulation data and LF simulation data at the com-
mon points and the difference relies on the surrogate evalu-
ation.
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5.3 Imposing Symmetries

The metric F depends on the amplitudes A1,A2,A3 and the
wave numbers k1,k2,k3. Note that in our problem the or-
der of the perturbation mode does not matter, therefore, the
simulation output of the data points (A1,A2,A3,k1,k2,k3),
(A2,A1,A3,k2,k1,k3), (A3,A2,A1,k3,k2,k1), etc. are the iden-
tical. Consequently, each simulated data point gives five ex-
tra symmetry points to be used to train the surrogate. In
this paper we used two techniques for imposing symmetries
(i) Adding permutation points (APP) is to simply add the
permutation points as training data points and (ii) Symmet-
ric basis functions (SBF) is to modify the surrogate basis
functions making them symmetric. These two approaches
are proposed in [9]. Although APP approach is straight for-
ward, SBF needs a more detailed explanation. Therefore, in
order to illustrate the SBF technique we include the follow-
ing example. Let us consider the linear regression surrogate
prediction ŷ of the function y which can be written as

ŷ(x) = ∑
i

biξi(x), (15)

where ξi are the linear regression basis functions, x is the
vector of the function variables, and bi are the coefficients
to be determined. Now, let us assume that linear regression
basis functions are the monomials of a pth-degree polyno-
mial. For simplicity, let us consider then a three variable
function y(x1,x2,x3) to be of interest where y(x1,x2,x3) =

y(x1,x3,x2) = y(x2,x1,x3) and so on. If we approximate y
using a third degree polynomial, Eq. (15) can be written as

ŷ(x) = b11+b2x1 +b3x2 +b4x3 +b5x1x2 +b6x1x3

+b7x2x3 +b8x2
1 +b9x2

2 +b10x2
3 +b11x1x2x3

+b12x2
1x2 +b13x1x2

2 +b14x2
1x3 +b15x1x2

3

+b16x2
2x3 +b17x2x2

3 +b18x3
1 +b19x3

2 +b20x3
3. (16)

In order to include the parametric symmetries in surrogates
modifying the linear regression basis functions we can rewrite
Eq. (16) as

ŷ(x) = b̃11+ b̃2(x1 + x2 + x3)+ b̃3(x1x2 + x1x3 + x2x3)

+ b̃4(x2
1 + x2

2 + x2
3)+ b̃5x1x2x3 + b̃6(x2

1x2 + x1x2
2 + x2

1x3

+ x1x2
3 + x2

2x3 + x2x2
3)+ b̃7(x3

1 + x3
2 + x3

3), (17)

where

b̃1 = b1

b̃2 = b2,b3,b4

b̃3 = b5,b6,b7

b̃4 = b8,b9,b10

b̃5 = b11

b̃6 = b12,b13,b14,b15,b16,b17

b̃7 = b18,b19,b20

(18)

Note that while Eq. (16) has 20 coefficients to be de-
termined, Eq. (17) has only seven. This same analysis can
be easily extended to higher order polynomials and a larger
number of variables.

As noted in [9], the SBF and APP approaches give the
same results for single-fidelity surrogates. For the MF case,
this will still apply if we replace the LF simulation with an
LF surrogate. However, if the LF simulations are used di-
rectly, as in Eq. (14), there is no mechanism that enforces
symmetry on the LF simulations if we do not add the sym-
metry points.

6 Results

In this section, regression-based single-fidelity surrogates
and MFSs (additive correction, LR-MFS, additive Kriging
and co-Kriging) performances are compared. In addition,
imposing symmetries in LR-MFS proved to reduce cost and/or
accuracy.

6.1 The Linear Regression-based Surrogate Performance

The performance of the two single-fidelity surrogates (Sec-
tion 5.1) and the four MF approaches (Section 5.2) used
are summarized in Figure 4, where the relative RMSE as
a function of the number of HF data points used to train
the surrogates is shown. Figure 4 shows results of regres-
sion surrogates using up to second order polynomial basis
functions. The relative RMSE is calculated based on 92 val-
idation points. Note that the minimum amount of HF data
points required to train the second order surrogates is 22,
which is the number of coefficients of a quadratic polyno-
mial in five variables plus the extra coefficient for the LF
basis function needed to construct the comprehensive MFSs,
ycomp and ŷcomp. The LF surrogate is not trained with the HF
data points, therefore, its performance is constant and it is
included in the plot as a constant relative RMSE line only
for graphical comparison. We have also included the rela-
tive RMSE in the LF simulation at the HF validation points.
The HF surrogate is only trained with HF data points and, as
Figure 4 shows, as the number of training points increases
the performance improves.

For the comprehensive MFS, ŷcomp (Eq. (14)), by con-
struction, the number of LF data points is the same as HF
data points, therefore, as the number of HF data points in-
creases, the number of LF data points also increases.

In Figure 4, the MFSs that use the LF surrogate, ŷ ˆadd
and ŷ ˆcomp, have a performance similar to the HF surrogate,
ŷHF . The additive and comprehensive MFSs, ŷadd and ŷcomp,
can attain errors that are three times lower. Their perfor-
mance levels off at roughly a relative RMSE of 6%. The best
performance is achieved by the comprehensive MFS, ŷcomp,
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built using the LF simulation, yLF . Note also that for ap-
proximations that use surrogates (ŷHF , ŷ ˆadd and ŷ ˆcomp), after
adding 100 HF data points, the performance does not change
substantially. This is because for the regression, basis func-
tions up to a quadratic polynomial were chosen for both,
the correction and the LF surrogate. If the chosen function
would have been more complex or the order of the poly-
nomial would have been higher as will be shown in Fig-
ure 5, the number of points required until reaching a plateau
would have been higher. Note that the computational cost
also would have been higher. In Table 3 the relative RMSE

Fig. 4 RMSE for the metric F as a function of the number of HF data
points used to train the surrogates. The surrogates are built using up
to second-order polynomial basis functions. The relative RMSE was
calculated using 92 validation data points.

for the metric F using the maximum number of HF data
points available (711) is shown. The coefficient of determi-
nation, R2, was added to the table to show the proportion
of the variance of the dependent variable that is predicted
by the independent variables. Note that the coefficient was
only computed for the case that uses the maximum num-
ber of HF data points. Summarizing, the factors that make
ŷadd and ŷcomp to work better than ŷ ˆadd and ŷ ˆcomp are: (i)
the noise due to the initial random location of particles is
smaller than the fluctuations due to changes in the variables.
Therefore, the used second order polynomials are not only
filtering the noise, but also filtering meaningful information
of the physical model. (ii) One of the variables is discrete
(the wavenumbers can take only integer values in simula-
tions) therefore from one data point to the other the fluctua-
tions are substantial, generating spikes that the second-order

3 The relative RMSE of the LF function at the validation points is
0.214

Table 3 Relative RMSE and coefficient of determination (R2) for the
metric F using 1,415 LF training points and 711 HF training points for
each of the surrogates considered using up to second order polynomial
basis functions.

Surrogate Rel. RMSE (F)3 R2(F)

ŷLF 0.221 0.78
ŷHF 0.147 0.62
ŷ ˆadd 0.143 0.66
ŷ ˆcomp 0.146 0.92
ŷadd 0.072 0.66
ŷcomp 0.056 0.92

polynomial filters as noise. (iii) We use a second order poly-
nomial as basis functions of linear regression. When more
complex basis functions (as higher order polynomials) are
used the performance between using calculations or surro-
gates becomes closer. This is explored further next by using
quartic polynomials and in the next section that examines
using Kriging for the discrepancy function. (iv) The corre-
lation between HF and LF is high. (v) The percentage of LF
influence in LR-MFS is more than 90% in almost the entire
range (see Appendix B).

Next we explore the use of quartic polynomials. These
have 126 coefficients and required substantially more data
points for good conditioning of the design matrix. Figure 5
shows the same results shown in Figure 4 but including poly-
nomial basis functions up to fourth order. What we observe
from the figure is: (i) with quartic polynomials and more
than 200 HF points, there is no benefit in using MFS, since
no MFS significantly improves on the single fidelity surro-
gate. (ii) The benefit in using exact LF simulations is re-
versed, and using the LF surrogate is better, reflecting the
noise filtering benefit of the surrogate. (iii) The comprehen-
sive approaches, ŷ ˆcomp and ŷcomp, perform poorly for less
than 400 HF points, which we traced to ill conditioning and
poor selection of ρ .

Combined the lessons of these two figures are that if we
can afford a small number of HF simulations, the second
order polynomials and exact LF simulations for the MFS
are a good way to go. When more than 200 HF simulations
are available, single fidelity HF surrogate is the best option.

6.2 Comparison with HF Kriging, Additive Kriging and
Co-Kriging

The good accuracy obtained with second order LR-MFS when
exact LF simulations are used, raises the question of whether
similar gains are available with Kriging. In this section we
study the performance of three variants of Kriging. HF Krig-
ing (single fidelity Kriging surrogate using only HF data
points), additive Kriging (MF version of Kriging where the
LF simulations, and not the LF surrogate, are corrected with
a Kriging surrogate of the discrepancy) and co-Kriging (MF
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Fig. 5 RMSE for the metric F as a function of the number of HF data
points used to train the surrogates. The surrogates are built using up
to fourth-order polynomial basis functions. The relative RMSE was
calculated using 92 validation data points.

version of Kriging, where an LF surrogate multiplicative
correction factor and a discrepancy function are trained in-
ternally). Co-Kriging is an MFS commonly used as a black
box and therefore cannot be used to correct the exact LF
simulations. However, we can use additive Kriging which is
basically described by Eq. (13) where the additive correc-
tion, δ̂ , is the Kriging surrogate constructed using as train-
ing data points the difference between yHF(x) and yLF(x)
built using the Python library Surrogate Modeling Toolbox
(SMT) [4]. Here the LF simulations are corrected using the
discrepancy function δ̂ . Co-Kriging [14] was aslo built us-
ing the SMT Python library.

Figure 6 shows the relative RMSE of the metric F for
two single-fidelity surrogates and four MFS. The single-fidelity
surrogates included are HF Kriging and ŷHF (using fourth
order basis functions). The MFS included are two surrogates
built using co-Kriging, one using additive Kriging, and one
using ŷcomp (using second order basis functions). The differ-
ence between the two co-Kriging surrogates is the amount
of LF points used for training.

For a low number of HF points (≤ 100), additive Krig-
ing clearly outperforms the others, while co-Kriging and
ŷcomp (quadratic polynomial) are comparable and ŷHF (quar-
tic polynomial) could not be fit. For 150 < HF points < 250,
ŷcomp and additive Kriging perform the best, while for more
than 250 HF points, ŷHF outperforms the others. The excel-
lent performance of additive Kriging for very small number
of HF points indicates the potential of using exact LF sim-
ulations when the number of HF simulations is severely re-
stricted. Indeed, with 30 LF points and 30 HF points (train-

Fig. 6 Relative RMSE error of the metric F as a function of the HF
data points used to train HF Kriging, additive Kriging, co-Kriging,
ŷcomp (second order basis functions) and ŷHF (fourth order basis func-
tions). The plot is presented in log-log scale.

ing cost of 31 HF simulations), additive Kriging achieves
similar performance to co-Kriging with 100 HF points and
711 LF points (training cost of 121 HF simulations). This
difference will offset up to 3,000 evaluations of the additive
Kriging for an application such as optimization. An impor-
tant conclusion that can be extracted from Figure 6 is that
on our application, MFSs are useful for low number of HF
points, in this case less than 250.

6.3 Using Symmetries to Further Reduce the Number of
HF Points

LR-MFS works better if only few HF points are needed.
In this section, we go further and the amount of HF points
needed is reduced by using the parametric symmetries asso-
ciated with our problem [9]. After identifying that the quadratic
MF comprehensive surrogate using yLF for prediction (i.e.
ŷcomp) works better than the approaches ŷLF , ŷHF , ŷadd , ŷ ˆadd ,
and ŷ ˆcomp, for the chosen metric, symmetries to improve its
performance are imposed. As mentioned in Section 5.3 we
have implemented two approaches, APP and SBF. Figure 7
presents the relative RMSE error resulting of adding permu-
tation points (ŷAPP

comp), and also the results of modifying re-
gression basis functions to impose symmetries (ŷSBF

comp). The
relative RMSE error resulting from ŷcomp is also included in
the figure for direct comparison.

Figure 7 shows that for a low number of HF points (≤
200 HF data points) it is clear that imposing symmetries of-
fers a higher error reduction. An outstanding performance is
achieved by ŷAPP

comp which reduces the relative RMSE to less
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than 6% using less than 30 HF points. This is 50% of the
error of ŷcomp for the same number of HF points. The rest of
the surrogates in the figure, ŷcomp and ŷAPP

comp, achieve an error
less than 6% only after using more than 150 HF points, this
is a five-fold cost reduction. Although ŷSBF

comp error reduction
for low number of HF data points is not as impressive as
ŷAPP

comp, it allows an error of 7% with less than 30 HF points.
ŷcomp needs at least 80 HF points for achieving this level
of error, which represents a three-fold cost reduction. Note
also, that if the LR-MFS with symmetries saves us 100 HF
calculations (3,072× 100 core hours), it allows additional
3,200 LF simulations (3,072×100/96) for carrying UQ or
optimization.

Fig. 7 RMSE for the metric F as a function of the number of HF data
points used to train the quadratic surrogates using ŷcomp, ŷAPP

comp, and
ŷSBF

comp. The plot is presented in log-log scale.

7 Conclusion

In this paper, various surrogates were constructed to predict
the metric F that measures the amplification of the depar-
ture from axisymmetry of the particle cloud after a multi-
phase explosion. Low-fidelity and high-fidelity simulations
were used to construct low-fidelity, high-fidelity, and multi-
fidelity surrogates. The performance of the surrogates has
been studied and compared. First, linear regression surro-
gates with monomial basis functions up to a quadratic poly-
nomial were used. It was found that, for the studied prob-
lem with the chosen surrogate and basis functions, (i) multi-
fidelity surrogates that use low-fidelity surrogates for pre-
diction perform similarly to the high-fidelity surrogate, (ii)
multi-fidelity surrogates that use low-fidelity simulations for

prediction performed substantially better. This is due to the
complex behavior of both low-fidelity and high-fidelity func-
tions, and the high degree of correlation between them which
allows correcting the low-fidelity function with a low-order
polynomial. The multi-fidelity surrogates whose predictions
were performed using low-fidelity simulations (instead of
low-fidelity surrogates) achieved a performance in terms of
relative RMSE close to 5%. This is not true when basis func-
tions up to fourth order polynomial are used, but instead we
observed that with quartic polynomials and more than 200
HF points, there is no benefit in using MFS, since no MFS
significantly improves on the single fidelity surrogate. The
benefit in using exact LF simulations is reversed, and using
the LF surrogate is better, reflecting the noise filtering bene-
fit of the surrogate. The regression-based comprehensive ap-
proaches, i.e. linear regression surrogates that include both,
additive and multiplicative corrections, performs poorly for
less than 400 HF points, which we traced to ill conditioning
and poor selection of ρ .

The superior performance of using exact LF simulations,
motivated us to try the same approach for Kriging. Co-Kriging,
which replaces the LF simulations with a surrogate, was
compared to additive Kriging, which corrects the LF sim-
ulations with a Kriging discrepancy function. Similar large
gains were observed.

Taking advantage of the parametric symmetries avail-
able in our problem, we imposed them using two approaches.
LR-MFS built with and without taking advantage of symme-
tries were compared. We found that if symmetries are used,
an accuracy of≈ 5% (noise level) is achieved using less than
30 high-fidelity data points, instead of 150 high-fidelity data
points needed if symmetries are not used, reducing the simu-
lation cost roughly five times. This way, the very small num-
ber of required high-fidelity simulations would allow the use
of the low-fidelity simulations instead of the low-fidelity sur-
rogates for applications requiring several thousands of eval-
uations of the multi-fidelity surrogate.

A Appendix: Identification of the significant variables

A.0.1 Methodology

The objective of this appendix is to present the sensitivity analysis of
the quantity of interest studied in the paper (the normalized effective
Fourier effective perturbation described in Section 3) with respect to
the variables used to parametrized the PVF perturbation and described
in Section 2 by Eq. (1). We recall that this perturbation is modeled by,

φ
p(θ) = φ

p
0 [1+A1 cos(k1θ +Φ1)+A2 cos(k2θ +Φ2)

+A3 cos(k3θ +Φ3)],

with the constraint, √
A2

1 +A2
2 +A2

3 = 0.02.
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Moreover as the variables Φ1, Φ2, Φ3 are used to model the phase shift,
one can arbitrary set Φ1 = 0 and consider the phase shift with respect to
the first mode. As a consequence the problem counts seven independent
variables concatenated into the vector X = {A1,A2,k1,k2,k3,Φ2,Φ3}.
The quantity of interest can thus be expressed as,

F = M (X)

in which the mapping M involves the numerical resolution of the
multi-phase explosion and the post processing of the solution as ex-
plained in Section 2 and Section 3.

The methodology used to study the sensitivity of the quantity of
interest F to the input parameters X is to perform a global sensitiv-
ity analysis by computing variance based sensitivity indices. Conse-
quently it is assumed that X is a vector of seven independent random
variables (the probability distribution will be discussed in the follow-
ing) and F is a random variable of unknow probability distribution.
Then the approach proposed in [20] and improved in [2] for the compu-
tation of sensitivity indices (Sobol’ indices [19]) by sparse polynomial
chaos expansion (PCE) [3] is applied. Assuming that F is a second
order random variable, it can be shown [5] that,

F =
∞

∑
i=0

Ciφi(X)

where {φi}i∈N is a polynomial basis orthogonal with respect to the
probability distribution of X and Ci are unknown coefficients.
Sparse PCE consists in the construction of a sparse polynomial basis
{φi}α∈A , where α = (α1, · · · ,αn) is a multi index used to identify the
polynomial acting with the power αi on the variable Xi and A is a set
of indices α . In practice A is a subset of the set B which contains all
the indices α up to a dimension d, i.e. card(B) = (d+n)!

d!n! . Objective
of sparse approach is to find an accurate polynomial basis {φi}α∈A
such that card(A ) << card(B). In the present case this is achieved
by Least Angle Regression, i.e. unknown coefficients Ci are computed
by iteratively solving a mean square problem and selecting, at each
iteration, the polynomial which is the most correlated with the residual
(see [3] for details).
Finally one gets the following approximation,

F ≈ F̂ = ∑
α∈A

Cα φα (X)

from which the sensitivity index can be derived. Indeed the orthogo-
nality of the polynomial basis {φi}α∈A allows to write the expectation
and the variance in the following form,

E[F̂ ] =C0
Var[F̂ ] = ∑α∈A C2

α E[φ 2
α (X)]

In addition, the idea pointed out in [20] is to identify the PCE with the
ANOVA decomposition, from which one can show that, the first order
sensitivity index of the variable Xi reads,

Ŝi =
∑α∈Li C

2
α E[φ 2

α (X)]

Var[Ŷ ]

where Li =
{

α ∈A , ∀ j 6= i α j = 0
}

, i.e. only the polynomials acting
exclusively on the variable Xi are considered.
The total sensitivity index is also available by,

ŜTi =
∑α∈L+i

C2
α E[φ 2

α (X)]

Var[Ŷ ]

where L+
i = {α ∈A , αi 6= 0}, i.e. all the polynomials acting on the

variable Xi are considered (allows to consider interactions between Xi
and the other variables).

One can note that the approximation of the sensitivity index ob-
tained by sparse PCE relies on an accurate approximation of the surro-
gate response by the sparse PCE, however, the link between the accu-
racy of the PCE approximation and the accuracy of the approximated
sensitivity index is not straightforward. In order to access the quality of
the sensitivity index computed by PCE, a bootstrap approach proposed
in [8] is set up and detailed in the next section.

A.0.2 Application to the high fidelity computation of
normalized Fourier effective perturbation

The probabilistic surrogate of the seven independent input parameters
is detailed in Table 4. Uniform distributions are assumed for each com-
ponent of the random vector X and variability ranges are defined, which
basically define the domain of interest for the sensitivity analysis.

Table 4 Probabilistic surrogate of seven independent input parameters

Variable Distribution
Lower
Boundary

Upper
Boundary

A1 Continuous uniform 0
√

0.02
A2 Continuous uniform 0

√
0.02

k1 Discrete uniform 1 25
k2 Discrete uniform 1 25
Φ2 Continuous uniform 0 2π

Φ3 Continuous uniform 0 2π

Then, a design of experiments of 711 points is drawn by LHS in
order to estimate the sensitivity index by sparse PCE. Maximum order
of the polynomials is set to d = 4. In order to assess the accuracy of
the obtained sensitivity index, the following bootstrap procedure is pro-
posed. Among the 711 points, 611 are used as a training set to compute
the PCE approximation (least angle regression approach) and 100 are
used as a validation set. The training and validation set are randomly
chosen among the 711 points. The bootstrap approach consists in re-
peating B times this procedure changing each time the training and the
validation set. This leads to B different PCE approximations and thus
to a sample of B sensitivity indices. This sample is further used to es-
timate the coefficient of variation of the sensitivity index estimators
obtained by sparse PCE. Moreover, for each bootstrap sample, the rel-
ative L2 norm of the relative error (ε2) is computed on the validation
set as well as the coefficient of determination (R2) computed on the
training set.

ε
2 =
||F̂validation−Fvalidation||2

||Fvalidation||2

R2 =
||F̂train−E[Ftrain]||2

||Ftrain−E[Ftrain]||2

Over the B bootstrap repetitions the estimated mean values are E[ε2]≈
1.54×10−3 and E[R2]≈ 9.74×10−1 and the coefficients of variation
are, cvε2 ≈ 1.57×10−1 and cvR2 ≈ 1.86×10−3. These first results al-
lowed to be confident in the accuracy of the PCE approximation. Note
that the relatively large coefficient of variation cvε2 should be consid-
ered with respect to its very low mean value. Concerning the sensitivity
index, Table 5 presents the first order and total index with the mean val-
ues and coefficient of variation estimated by bootstrap.

First of all the results presented in Table 5 show that when a sensi-
tivity index has a significant value (values highlighted in bold font) its
estimation is quite accurate as the coefficient of variation is relatively
low (less than 3%). One can also note that for low values of sensitivity
indices the coefficients of variation are quite large, however, as these
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Table 5 Estimation of the first order sensitivity index and total sensi-
tivity index estimated by sparse PCE, mean values and coefficient of
variation estimated by bootstrap with B = 500 repetitions.

variable E[Ŝi] cvŜi
E[ŜTi ] cvŜTi

A1 3.05×10−4 5.14×10−1 2.58×10−1 1.50×10−2

A2 1.45×10−4 1.11 2.74×10−1 1.70×10−2

k1 1.38×10−1 2.1×10−2 2.91×10−1 1.88×10−2

k2 1.40×10−1 2.1×10−2 2.92×10−1 1.89×10−2

k3 1.69×10−1 2.2×10−2 4.39×10−1 1.16×10−2

Φ2 1.34×10−4 1.10 1.37×10−3 4.60×10−1

Φ3 6.20×10−5 1.31 1.01×10−3 4.55×10−1

sensitivity indices are, at least, two orders of magnitude lower than
the significant ones their poor estimation is not detrimental for the pur-
pose of sensitivity analysis. With respect to the results of the sensitivity
analysis, one can conclude that the variance of the quantity of interest
is mainly driven by the first five variables namely A1, A2, k1, k2, k3. It
is also interesting to note the strong interaction between the amplitude
variables (that have almost no first-order effect) with the wavenumbers
which is consistent with the shape of the perturbation (in Eq. (1) the in-
teractions between A1, k1 and A2, k2 clearly appear) and the constraint
on the amplitude (Eq. (2)) which explains the interaction between A1,
A2 and k3 and justify that ŜTk3

has the highest value.
Based on this result it has been decided to consider only the five

variables A1, A2, k1, k2, k3 for the construction of the surrogate of the
quantity of interest F .

B Appendix: Percentage contribution of low-fidelity and
high-fidelity data in LR-MFS using up to second order
polynomial basis functions

The contribution of the LF data points to the MFSs is studied in or-
der to understand why the performance of the surrogates that use yLF
instead of the LF surrogate, ŷLF , for prediction, worked overwhelm-
ingly better for the metric F . First, notice that in our case n = 21 in
Eq. (8), which is the number of coefficients of a quadratic polynomial
in five variables. Also, note that for prediction we can choose between
using yLF or ŷLF , however for training purposes yLF is used. There-
fore ρ and δ̂ (x) coefficients in Eq. (7) and in Eq. (14) are identical.
Equation (8) shows explicitly the contribution of each surrogate, HF
and LF, to the comprehensive MF approximation using the ŷLF , how-
ever, we can choose to use yLF , i.e. the LF simulations directly, instead.
The first term represents the contribution of the LF simulation, ρ ŷLF (x)
(using LF surrogate) or ρyLF (x) (using LF simulations), to the MFS.
The second term, ∑

p
1=1 Xi(x)bi, represents the contribution of the HF

simulation to the MFS.
Figure B1 shows the mean contribution in percentage of the LF

and HF information to the comprehensive MFS predicted using yLF ,
i.e. ŷcomp. Using yLF or ŷLF for predicting the MF comprehensive cor-
rection gives the same LF and HF mean contributions, therefore, only
one plot was included. The mean contribution was calculated averaging
the contribution of each of the 92 validation points. The contribution
of the LF model is defined as ρ ŷLF , while the contribution of the HF
model is defined as ∑

p
1=1 Xi(x)bi. A negative percentage indicates, in

this case, that the contribution has negative sign. Values higher than
100% indicates that the mean of the contribution is higher than the
metric value in average, i.e. calculating the term ρ ŷLF for each of the
validation points and then taking the average. Therefore, ρ does not
need to be higher than one, instead, the term ρ ŷLF needs to be higher
than one on average. Naturally, the sum of the LF and HF contributions
adds to 100%. For more than 50 HF data points, the contribution is

Fig. B1 Mean contribution of the LF (ρ ŷLF (x)) and of the HF
(∑p

1=1 Xi(x)bi surrogates from Eq. (8)) to the comprehensive MFS
(ŷcomp) prediction (using LF simulations) in percentage as a function of
the HF data points used. The plots are presented in a linear-log scale.
A negative percentage indicates that the contribution has negative sign.
Values higher than 100% indicates that the mean of the contribution is
higher than the metric value in average.

dominated by the LF information (≈ 85%). This helps to explain why
when the LF simulation output is used directly (without constructing a
surrogate) the improvement is substantial in Figure 4. That is, for met-
ric F the results of the MF comprehensive prediction using yLF , ŷcomp,
performs substantially better than the ones that use the LF surrogate,
ŷ ˆcomp. When the source of LF is changed for prediction instead of a
surrogate, the results change drastically, which is expected due to the
high correlation between HF and LF simulations (0.92).
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