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Abstract

Knowledge of the human visual system helps to develop better computational models of
visual attention. State-of-the-art models have been developed to mimic the visual
attention system of young adults that, however, largely ignore the variations that occur
with age. In this paper, we investigated how visual scene processing changes with age
and we propose an age-adapted framework that helps to develop a computational model
that can predict saliency across different age groups. Our analysis uncovers how the
explorativeness of an observer varies with age, how well saliency maps of an age group
agree with fixation points of observers from the same or different age groups, and how
age influences the center bias tendency. We analyzed the eye movement behavior of 82
observers belonging to four age groups while they explored visual scenes. Explorative-
ness was quantified in terms of the entropy of a saliency map, and area under the curve
(AUC) metrics was used to quantify the agreement analysis and the center bias
tendency. Analysis results were used to develop age adapted saliency models. Our
results suggest that the proposed age-adapted saliency model outperforms existing
saliency models in predicting the regions of interest across age groups.

Introduction

Computational models of human visual attention are becoming increasingly important,
and investigations of these have driven much research by psychologists, neurobiologists
and researchers in computer vision. The problem of predicting a region of a scene that
attracts the observer remains a core challenge in vision research, that can at present be
solved in two ways: using eye-tracking devices, like the TobiiX50 and Eyelink1000 and,
by developing a computational model [1], [2], [3], [4] to mimic human vision for
scene-viewing. Although eye trackers achieve high prediction accuracy, they are not
always an in-hand option [4]. Thus, the use of computational models has gained an
importance in the last few decades.

The era of the development of computational models was heralded by the pioneering
work of Itti et al. [3] based on Treisman’s feature integration theory (FIT) [5], where a
master saliency map is obtained by combining bottom-up feature maps in parallel. A
series of works [6], [7], [8], [9], [10], [11] have since investigated similar issues, where the
major differences laid in the way the features were selected and maps were combined.
Some models integrated the maps linearly whereas others used non-linear techniques to
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combine them [9], [10]. A next set of computational models [12], [13] combined
bottom-up features with top-down factors, such as, the given task [14], human
tendency [15], habituation and conditioning [16], and emotions [17] as these factors are
closely related to visual attention during scene viewing.

In recent years, vision research studies have investigated the role of human’s physical
factors such as age, visual disparity, eye-sight, and gender, in driving human’s attention
during scene viewing. Developmental studies suggest that age-related changes in eye
movement control such as capability to fixate at target improves extensively during
early childhood [18], [19] [20], [21] but more complex aspects of the fixation system,
such as steadiness of fixations and cognitive control continues to develop until
adolescence [19]. It has been also found that the saccades are shorter and less precise in
children than adults [19] and that cognitive control of saccade execution, reaches an
adult-like performance level at around 10–12 years of age [22], [23], [24].

Supporting evidence from developmental studies [25], [26] on scene exploration has
also shown that there are remarkable differences in the scene-viewing behavior of
observers across different age groups. For example, local image features, such as color,
intensity, luminance, etc., were shown to guide fixation landings early in life, while later,
fixation landings are dominated by more top-down processing [25], [26].

In spite of a few studies reporting developmental changes in scene viewing behavior,
there are no studies that have systemically analyzed the gaze landing of observers across
age groups in context of developing an age-adapted computational models. So far, the
computational models have relied on the gaze data collected from adult participants but
due to significant changes in visual skills during the development, it is essential to
include also age factor in computational models.

Thus, computational models that have been developed until now compromise on
prediction accuracy when different age groups are considered. Our study aims to
parameterize the scene viewing tendency across age groups and to develop a new
computational model that includes observer’s age in predicting salient locations for
images. Our work is strategically beneficial, as most conventional models of visual
attention can be easily tuned to age-related changes in scene viewing by following the
recommendations of the results of our analysis.

Our study is divided into two part: the first part consists of quantitative analysis of
the age-related differences in fixation landings during scene viewing, and the second
part consists of, our proposed age-adapted computational model of saliency prediction
based on the analysis results reported in the first part. The framework of the proposed
study is shown in Fig 1.

Fig 1. The framework of our proposed study: It consist of two parts, analysis
part and proposed age-adapted saliency model as shown in figure, 29 years is mean age
of adult observers. The sample image 1 is same for both of the models and it is only
representation of the original image.

Visual saliency models

In the last decade, many of computer vision researchers have used psychophysical
theories and models of attention such as feature integeration theory (FIT) [5] and
Guided search model [27] to create computational models that mimic the adult visual
attention system. In this section we briefly review some of these models according to
the techniques and/or features they use.
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Bottom-up features based models: Itti et al.’s model [3], implemented over FIT
theory is one of the most well-known models, where bottom-up features of a scene are
extracted in parallel by a set of linear center-surrounded operations similar to the visual
receptive field. The graph-based visual saliency model [2] also follows a similar approach
to FIT in generating the activation maps of different feature channels at multiple spatial
scales. Furthermore, these maps are represented as fully connected graph, where the
equilibrium distribution in a Markov chain is treated as the saliency map. However,
these models extract features over a fixed spatial scale, and the age-related changes in
image feature-related viewing [25] are not considered while generating a final saliency
map.

Combination of bottom-up and top-down features: Torralba (2003) [6] and Torralba
(2006) [7] proposed a model using a Bayesian framework that integrates the scene
context with a bottom-up saliency map.

Similar to the Bayesian framework, the SUN model of saliency prediction [8]
combines bottom-up features represented as self-information with top-down information,
where top-down information is represented either by Difference of Gaussian (DoG) or
independent component analysis (ICA) features extracted from images. A boolean map
based model [28] was recently developed based on Gestalt psychological studies [15], and
outperformed other state-of-the-art models on saliency related datasets. However, these
models do not take into account developmental studies reporting that bottom-up
processing is dominating during early development while the influences of top-down
processing increase with increasing age [25] [29] [30] [31].

Patch based models: Patch based dissimilarity measures are another line of approach
where saliency is estimated in terms of dissimilarity among neighbouring patches. A
patch-based saliency estimation method [9] computes the saliency for each patch by
measuring the average distance of regional covariance among neighbouring patches.
First-order image statistics such as difference of mean value is also incorporated with
this algorithm to obtain better results.

Another patch based method [10] was proposed to estimate the saliency of each
patches by measuring the spatially-weighted dissimilarity among them, where the image
patches were represented in reduced dimensional space by applying principal component
analysis (PCA). These models are not suitable for age-adapted prediction of salient
locations as the optimal patch size is selected for the highest prediction accuracy over
the eye tracking data collected for adult participants only.

Models based on Supervised Learning on Eye tracking datasets: Supervised
learning-based models using eye-tracking data collected from adults constitute another
technique to build computational models. [4] Proposed a model that simply learns to
predict saliency from an eye-tracking dataset containing over 1003 images viewed by 15
adults.

Some of the eye-tracking datasets used for these learning methods are listed in Table
1. It can be seen from the table that the participants of these eye-tracking experiments
across all datasets were adults (aged 18 to 50 years).

Table 1. Saliency benchmark dataset

Dataset Images Observers Age Duration(s)
MIT300 [32] 300 39 18-50 3
FiWI [33] 149 11 21-25 5
NUSEF [34] 758 25 18-35 5
DOVES [35] 101 29 27 5
Toronto [36] 120 20 18-22 4
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Materials and methods

Eyetracking data

Subjects and stimuli

We analyzed the eye-tracking dataset collected in [26]. The eye-tracking data was
obtained for 82 observers from different age groups. All observers had normal or
corrected-to-normal vision. Participants were assigned to 4 different groups: four-six
years, six-eight years, eight-ten years, and adults (mean age, 29 years). We use 4 years,
6 years, 8 years, and adults to refer these groups in order. The study was conducted in
conformity with the Code of Ethics of the World Medical Association (Declaration of
Helsinki) and approved by the Ethics Committee of the University of Paris Descartes.
All participants or their parents in case of children gave written informed consent prior
to participation.

The age group assignment was made based on the findings of previous
developmental studies suggesting that eye-movement control changes rapidly at the
beginning i.e. during childhood, and later more slowly ( [37] [38] [39] [23] [24] [19]).
These previous findings were also replicated in our analysis results, where we found that
the explorativeness, agreement score, and center bias tendency changes significantly
during 4 to 10 years of age and gets mature after the age of 8-10 years. These results
motivated us to investigate the children age groups in relatively smaller intervals to
quantify the significant changes in scene viewing behavior and subsequently reflecting
these changes in the age-adapted saliency model.

The experiment was conducted on images of 1024× 764 pixels. The images were
taken from children’s books and movies, and characterized to have eventful backgrounds.
Our choice of images might be less interesting for adults than children. However, we
decided to use these images since they were suitable for children and they can also be
used in eye-gaze study in adults [40], [41], [42]. Paintings [40] and artificial
stimulus [41], [42] have been used in these studies to revel the eye movement behavior in
adults. These supporting studies provided us an evidence of the suitability of the image
type used in the proposed study.

Further, to avoide stimulus related bias and to maintain the motivation of our
participants, a segment recognition test was performed during the experiment. In which
after the presentation of the image (10s) an image segment was presented at the center
of the screen during 5 seconds; in 50 % of the cases the image segment was valid.
Participants had to determine if the segment was part of the previous scene or not by
pressing a button. The results of the task performance reported in [26] suggested the
high level of engagement for the selected stimuli for all age groups including adult
observers, which also confirms the age appropriateness of our selected stimuli.

Apparatus and Procedure

The remote eye-tracking system EyeLink 1000 with a sampling rate of 500 Hz was used
to measure eye gaze, and provided us with the raw data that was sampled to obtain
fixations and saccades. The spatial resolution of eye tracker was below 0.01◦, and spatial
accuracy more than 0.5◦. The random fixations and noise were discarded by processing
the raw data by fixation detection algorithm supplied by SR research (EyeLink).

During eye tracking experiment pictures were presented at a distance of 60 cm from
a screen at a resolution of 1024× 728, a five point calibration and validation was
performed before starting the viewing task and subjects were asked to explore the scene
which was presented for 10 seconds. After this time, the scene was replaced by an image
segment and participants had to determine if the segment was part of previous scene or
not.
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Data Representation

For each image fixation landings of all observers were used to generate two maps for
different age groups: a human fixation map and a human saliency map. The human
fixation map was created as a binary representation of fixation locations, and the
human saliency map was obtained by convolving a Gaussian filter across the fixation
locations, as in [4]. The visualizations of human fixation and human saliency maps are
shown in Fig 2. These maps were used to analyze eye-movement behavior.

Fig 2. Map generation: The process of generating human fixation map and human
saliency maps of an image for age groups. OBn stands for the nth observer of an age
group. The images used in this figure are similar but not identical to the original image,
and is therefore for illustrative purposes only.

Analysis

To quantify the age-related differences in scene-viewing of observers we selected fixation
landing locations as a main attribute to analyse. The reason for this selection relies on
the fact that existing saliency models consider fixation location as a key gaze attribute
in predicting salient regions. We developed measures to quantify three aspects of
viewing behavior: (1) explorativeness, (2) agreement in explored locations within and
between age groups, and (3) center bias, each of these contributes to the detailed
understanding of how gaze distribution changes for scene viewing with age. The
selection of these aspects was based on previous studies in adults showing that the
accuracy of saliency prediction in computational models improves when fixation spread,
agreement between observers, and center bias tendency are included [4], [8], [43].

The explorativeness was measured using an explorativeness index that indicates the
spread of fixation locations. Agreement within and between age groups was estimated
by using an agreement score that reflects how well the observers within same age group
or of different age groups agrees in terms of explored locations. The last parameter,
center bias was which reveals the age-related differences in center bias tendency.

Explorativeness

To evaluate eye movement behavior during scene exploration across age groups, we
conducted an explorativeness analysis. To quantify the explorativeness of observers in a
group we calculated first-order entropy of the human saliency map. The selection of
human saliency map for explorativeness study is based on the fact that we observed a
human saliency map differs between age groups. For the ith image of group g it is
computed as following:

H(Ugi ) =
∑
l

hUg
i
(l) ∗ log(L / hUg

i
(l)) (1)

Where Ugi is the human saliency map of the ith image from all observers in a group
g for which entropy is calculated and hUg

i
(l) is the histogram entry of intensity value l

in image Ugi , and L is the total number of pixels in Ugi .
In the context of viewing behavior, a higher entropy corresponds to a more

exploratory viewing behavior by the observer, as their saliency points are more
scattered in the given scene. Conversely, a lower entropy corresponds to less exploratory
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behavior. The average behavior of each age group over all images was analyzed based
on the average entropy.

Agreement analysis

Explorativeness falls short of checking for similarity of explored regions within age
groups and between age groups. For instance explorativeness score is unable to answer
questions such as: Do observers belonging to the same age group explore the same
spatial regions of the image? And is there any agreement among observers in terms of
explored regions across age groups? It should be noted that poor agreement of fixation
landings between adults and children leads to imprecise prediction when using saliency
models that are originally developed for adults. This motivated us to conduct an
agreement analysis.

The area under the curve (AUC) is the most commonly used metric in the literature
for discrete ground truth saliency maps, and we choose it for our analysis. The
AUC-based measure analyzed how well the human saliency map of fixation points of all
observers of an age group could be used to find the pooled fixation locations of all
observers from the group, as well as observers from different groups. The age group of
which the saliency map was used became the source group, and the group for which the
fixation locations were being used as target group. Thus, under the intra-age group
agreement analysis, the source and target belonged to the same group, and for inter-age
group analysis, the source age group was different from the target group.

For this analysis, the human saliency map of the source group was first thresholded
to T levels covering different percentages of the most salient areas of the image. To
evaluate how well these thresholded maps agreed with the fixation points of the
observers in the target group, we then made use of the AUC metrics. This required us
to lay down a general formulation of inter-age group metrics - True positive rate (TPR)
and false positive rate (FPR) for observers from the source group gs to find fixation
points for observers from the target group gt. The intra-age group metric is a special
case of inter-age group metrics, when gs = gt, i.e., within same group. Thus,

TPRgsgtUn
(Ii) =

TP gsgtUn
(Ii)

TP gsgtUn
(Ii) + FNgsgt

Un
(Ii)

(2)

FPRgsgtUn
(Ii) =

FP gsgtUn
(Ii)

TP gsgtUn
(Ii) + FNgsgt

Un
(Ii)

(3)

Where the TPR for the ith image is the extent to which the fixation points of
observers in group gt agree to the nth thresholded saliency map Un of observers from
source group gs. Similarly, FPR deals with non-fixation points that have been
considered fixation points. The TPR and FPR for all T -thresholded saliency maps of an
image were combined into a vector of T dimension. The area under the ROC curve
plotted between TPR and FPR gave us the AUC-score, and an average of these scores
across all stimuli of the dataset provided the agreement score of the group.

For a given image, agreement score tells us how accurately the fixation locations of
all observers in the group were covered under the differently thresholded saliency maps
of observers from the same or different age groups. We can visualize the intra-age and
inter-age group agreement analysis in Fig 3.

Center bias

The term “center bias” has been studied using the eye-tracking techniques, and it
reflects the human tendency of looking at the center of a given image [44]. Several
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Fig 3. Agreement analysis visualization: The heat map visualizes agreement
behavior in predicting the target fixation points by source saliency map and the ROC
calculates the quantitative value of the agreement score. (a) Intra-age group: target
fixation points of 4 years by source saliency map of 4 years. (b) Intra-age group: target
fixation points of adults by source saliency map of adults. (c) Inter-age group: target
fixation points of 4 years by source saliency map of adults. (d) Inter-age group: target
fixation points of adults by source saliency map of 4 years.

studies have established the existence of the center bias, but only a few scholars have
considered the center bias in their computational models [4] [11].

The center bias greatly influences our viewing behavior but to the best of our
knowledge no study has investigating the age related differences in tendencies toward
center bias. In order to reveal differences in center bias across age groups we first
computed the center map by taking average of all the saliency maps across age group.
Finally, the center bias for each age group is measured by measuring the euclidean
distance between the centroid of the center-map and the center pixel of the image. We
have also used the center map as a saliency map to predict fixation locations of different
age groups. The average prediction performance of the center map for the fixations of
different age groups were measured by using AUC matrices developed in agreement
analysis section.

We have also investigated the role of contrast bias by following the study reported
in [45]. The result suggested that the image contrast plays an important role in gaze
landings but the statistical analysis results showed no significant difference between the
age groups. Considering that we have only reported age-related changes center bias
tendency in this study.

Results and Discussion

Explorativeness

When participants of 4 years and adults age groups observed the same set of images of
our dataset, the set of least explored scenes were found to be different among observers
belonging to different age groups. Thus, exploratory behavior depends on the observer‘s
age.

The results of the explorativeness suggested that:

1. Explorativeness increased monotonically with age, r(29) = 0.99, p < 0.001
(Spearman correlation). This illustrated in Fig 4(b), which plots the entropy of all
images for each age group. The histograms of entropy of all images for different
age groups are illustrated in Fig 4(a).

2. One-way ANOVA analysis showed that explorativeness varied significantly among
the age groups, F (3, 29) = 15.8, p < 0.001. Bonferroni correction based Post-hoc
test indicated that explorativeness scores of 4 and 6 years age groups were
significantly lower than the scores of 8 years and adult groups, all p < 0.01.
However, no difference was found between 8 years and adults age groups,
suggesting that from the age of eight years explorativeness behavior is adult-like.

Previously, it has been shown that the spread of the fixation landing i.e. entropy on
the saliency map [46] decreases when the image resolution decreases i.e. change in the
level of detail responded by changing in the gaze pattern. Thus, our findings suggest
that during scene exploration children older than 8 years of age and adults tended to
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direct their gazes at different level of details in a given scene. On the contrary, be-
ing less explorative, children tended to direct their gazes towards fewer details of the scene.

Fig 4. Explorativeness results: (a) The histogram of entropy indicates that there is
a shift from left to right for 4 year to adult age group. (b) Entropy plotted in sorted
order for different age groups over all the stimuli.

Agreement analysis

The main results from the intra-age and inter-age group agreement analysis are as
follows:

Intra-age group agreement analysis:

1. There was a negative correlation between intra-age group agreement and
observers’ age revealing a high intra-age group agreement between children,
r(29) = −0.88, p < 0.001 (see Fig 5(a)).

2. One-way ANOVA test suggested that the age impacted on agreement score,
F (3, 29) = 65.8, p < 0.01, As shown in Fig 5(a), Bonferroni correction based
Post-hoc showed that the average agreement score of the 4 years age group was
highest and significantly different from all other age groups (p < 0.001). The score
started to decrease as observer’s age increased up to 8 years age by showing 8
years old and adults had significantly less intra-age group agreement than 6 years
olds, p < 0.01.

Similar to the explorativeness results, the agreement score suggested that
scene-viewing tendency matures at the age of eight. This can be understood by the fact
that 8 years and adults were the most explorative, and there salient regions may not be
consistent with one another at higher level of the details.

Inter-age group agreement analysis:

1. Table 2 shows that the agreement scores of inter-age group analysis was lower
than those of intra-age group analysis for all ages. Thus, it was even more evident
that the age has an impact on visual behavior as the same age group maps
predicted the fixations more precisely.

2. The most important contribution of the inter-age analysis was that the saliency
map of adult subjects showed the poorest performance in predicting the fixation
points of the other age groups as shown in Table 2: Agreement score of adults
predicting all others (4, 6, 8 years) was significantly less than the agreement scores
of diagonal colored boxes of the Table 2 (prediction by same age groups).
Spearman’s correlation based post-hoc analysis indicated significant differences in
performance of adults predicting 4 year, 6 year, and 8 years than the prediction by
the same age-group, p < 0.01.

Thus, ignoring the age factor and using conventional models developed and learned
over adults can not give optimal performance for other age groups. This calls for the
modification of existing models to make them adapt to age. Fig 5(b) shows the
comparison of agreement score for saliency maps of 4 years and adults in finding the
target fixations of different age groups.
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Table 2. Agreement score: Average agreement score of human saliency map of
observers from the source group in predicting fixation points of target age group.

XXXXXXXXXXXXSource
Target

4 years 6 years 8 years adult

4 year 0.9148 0.8756 0.8695 0.8683
6 year 0.8463 0.9003 0.8509 0.8493
8 year 0.8150 0.8269 0.8870 0.8343
adult 0.8122 0.8265 0.8340 0.8910

Fig 5. Agreement analysis between observers within age group and across
age groups: (a) Intra-age group agreement scores, which reflects that kids agree more
in explored locations than younger adults. (b) Agreement analysis results for the source
saliency map of 4 years and adults in finding the target fixation of different age groups.

Center bias

As shown in Fig 6, age-related differences in bias towards the center map across age
groups suggested that the 4 years age group had the highest bias among all age groups.
It decreased with increasing age, where adult-like observation behavior was exhibited at
8 years of the age. The results of One way ANOVA analysis indicated the significant
age-impact on the center-map bias, F (3, 29) = 8.15, p < 0.03. Further, post-hoc
analysis indicated that both adults and 8 year were significantly different from 4 years
and 6 years age groups, p < 0.01, similarly, 4 and 6 years also shown significant different
with each other p < 0.03. The highest euclidean distance for adults suggested the lowest
center bias in adults among the age groups (168, 182, 181, and 226 are the euclidean
distance in pixels for children, adult and elderly participants).

Fig 6. Age-based changes in center bias tendency across age groups.

A framework for the age-adapted model

Here, we briefly summarize our three main findings that helped us to build the
age-adapted computational model:

1. Results of Explorativeness analysis indicate that children (4 and 6 years)
exhibited the least explorative behavior among the age groups. Age associated
variation in explorativeness indicates that observers of different age groups viewed
different levels of detail within a scene. This helped us to choose the scales of
features extracted from the images to generate a master saliency map. The
features scale selection should be such that they are capable of representing
age-based variations at the level of detail of the observer.

2. The intra-age group agreement score was higher than inter-group agreement
scores for various combinations of groups. This suggests that while training the
model, it is advisable to train the model of a particular age group by using the
fixation-map data of the same age group rather than the generalized fixation map
data of adults.
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3. The magnitude of the center bias was different among age groups. Thus, while
including the center bias in age-adapted saliency model, we need to consider the
age-related differences in center bias tendency.

The saliency model adapted to age

As we mentioned before, several computational models for visual saliency have been
developed in past work to provide important insights into the underlying mechanisms of
the human visual attention system. All existing models predict regions of interest in
images by considering the gaze behavior of adults. Thus, these models are optimized to
predict fixations of adults, but at the same time, prediction accuracy of these models
are not optimal for other age groups. Given a framework of age-adapted saliency model
from our analysis result, provides us an opportunity to optimize the prediction
performance of the existing models for observers of other age groups as well.

In the proposed work, our age-adapted framework was tested with two types of
computational models, the itti’s model [3] and the patch based model [9]. We chose
these models carefully in light of the fact that they had different modeling architectures.
We verified that the proposed age-adapted framework was generalizable, and could be
applied to any type of existing model as, most of them follow the same basic structure
with minor variations. Instead of using these models in present form we applied some
changes to improve the overall prediction performance of these models. The changes
applied to the models were following:

1. The Itti’s model [3], where different visual features are extracted over multiple
scales of the input image and a saliency map is obtained by linearly integrating
these feature maps into one. We modified the resulting saliency map by applying
a weighting factor for the center bias. The proposed age-adapted framework was
incorporated with this model by applying the multi-scale feature subset selection
with a different set of optimal weights of feature integration learned over our age
specific gaze dataset.

2. The aim of the patch-based model is to detect the saliency of the scene based on
dissimilarity among neighbouring patches. We modified the existing model by
representing a patch with a feature matrix obtained from SVD decomposition.
The age-adapted framework was applied by varying patch size and the
age-adapted weighting factor for the center bias.

The selection of these models relies on the fact that most of the bottom-up
computational models follow this basic structure.

Age-adapted multi-scale feature subset selection and
optimization based model

Most existing bottom-up models follow the basic multi-scale feature selection
architecture proposed by Itti et al [3]. In these models, we observe the following basic
structure: (a) Basic visual features such as color, intensity, and orientation, are
extracted over multiple scales of the image, where each scale represents a different level
of detail in the scene. (b) All features are investigated in parallel, to obtain the
conspicuity map for each feature channel. (c) These features are integrated to obtain
the saliency map.

There are three concerns in developing an age-adapted model over this basic
structure of saliency prediction - First, we need to choose the appropriate set of feature
scales for different age groups, as our results suggest that different age groups tend to
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explore different levels of detail in scenes. Second, we need to include the center bias in
the proposed model by considering the fact that the strength of the center bias varies
with observer age. Third, we need to combine the extracted features over an optimized
set of weights for different age groups. This optimization is achieved through a
supervised way of learning weights for different age groups.

(a) Multi-scale feature subset selection: Proposed S
We used the multi-scale feature extraction technique proposed in the famous Itti et

al.’s saliency model [3]. The different scales represented the different levels of detail in
scenes, from finer details to coarser object-level details. As stated earlier for more
explorative observers, all levels of details were important whereas for the less
explorative observers, only coarser-level details were important.

Observers from different age groups showed different levels of explorativeness. Thus,
to make our model adapt to age-related differences in scene viewing behavior, we
focused on a feature scale selection mechanism, where we identified the subsets of the
feature maps that best represented the different levels of details viewed by the observers
of different age groups.

We now discuss the steps to extract features for our age-adapted saliency model. For
an input image, eight spatial scales were first developed using a Gaussian pyramid. The
features were then extracted using the “center-surround” operations with the same
settings as in [3] to yield six intensity maps Ii, 12 color maps - six for RGi and six for
BYi each and 24 orientation maps - Oi(θ) i.e., sets of six maps computed for four
orientation θ ∈ {0, 45, 90, 135}. The 6 maps for different feature represents different
level of detail in scene. The Feature maps were then combined into three “conspicuous
maps”, Ī for intensity, C̄ for color, and Ō for orientation. However, as stated above,
unlike Itti et al.’s model, this point-wise combination was not conducted over all six
maps; we also chose subsets of six maps for each age group. The point wise combination
of feature map was:

Ī =

6⊕
i=s

N (Ii) (4)

C̄ =

6⊕
i=s

[N (RGi) +N (BYi)] (5)

Ō =
∑

θ∈{0,45,90,135}

6⊕
i=s

N (Oi(θ)) (6)

where N represents the normalization and s is the starting index from where maps were
taken.

We developed six cases by varying s to 1,2,3,4,5, and 6. If s = 1, the subset of
feature scale starting from scale 1 (finer) to scale 6 (coarser) had to be combined.
Similarly if s = 6, only the feature scale 6 was used. Without using the trend toward
explorativeness found in the analysis section, we evaluated the model over all such
possible subsets for all groups, and defined the subset for each age that best represented
the gaze levels (finer to coarser) of the observers in a given age group.

As shown in prediction results in Table 3, children age groups (4 years, 6 years, and
8 years) are performing better than adults in the existing settings which makes use of
all scales (1∼6). However, the prediction accuracy of children age groups are not
optimized on the existing scale (1 ∼ 6). The predictive performance of children get
optimized if used coarser scales and ignore finer ones (as in Table 3, scale 5 ∼ 6, 4 ∼ 6,
and 3 ∼ 6 are optimized scale selection for 4 year, 6 year, and 8 year age groups
respectively) while for adults, prediction accuracy was highest if we chose all scales
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(similar to [3]). It is interesting to note that this result is consistent with our earlier
results, i.e., children are less explorative than adults and, hence, require only coarser
scales to predict their fixations. Age related differences in center bias tendency was also
incorporated in this model by including a differently weighted center-map as explained
in age-adapted model for center bias section.

Table 3. Average prediction accuracy (AUC-score) by multi-scale feature
subset selection: where as a∼b means from scale a to scale b are selected (Proposed
S). Scale 6 is the coarsest level and scale 1 is the finest
PPPPPPPPPAge

Scale
1∼6 2∼6 3∼6 4∼6 5∼6 6∼6

4 year 0.7074 0.7180 0.7288 0.7280 0.7381 0.7366
6 year 0.6839 0.6940 0.6978 0.7183 0.7044 0.7071
8 year 0.6640 0.6655 0.6722 0.6664 0.6572 0.6566
adult 0.6628 0.6573 0.6541 0.6512 0.6470 0.6495

(b) Training and Testing: Feature Combination Optimization: Proposed
S+I+C

In this section we proposed another modification in existing models based on our
second recommendation reported in a framework for age-adapted model section. The
choice of linear integration of feature maps used in previous section was ill-suited
because different features contribute differently to the final saliency map. Some
state-of-the art models addressed [4] this by learning the optimal weights of feature
integration in a supervised manner. These optimal weights are, however, not suitable
for our age-adapted mechanism, as they are learned only over eye-tracking data
collected for adults. To fit this into our scenario, we learn these optimal weights over
features extracted from age-specific subsets of the dataset.

We divided the dataset into a training set with 20 images and a test set with the
remaining images. Color, intensity, and orientation features were extracted for the
training images. We then selected P strongly positive and negative samples, each
corresponding to the top and least-rated salient locations of the human saliency map of
all observers generated from ground truth eye-tracking data.

Our agreement analysis result suggests that intra-age group fixation point prediction
was better than inter-age group performance. In other words, the fixation points of the
observers were better predicted by the saliency maps of observers of the same group
rather than those of observers of other groups. Thus, the P positive and negative
samples to be chosen were age group specific, i.e., the positive and negative samples for
all age groups were differently chosen for training.

We fixed value P to 10; choosing more samples only involved adding redundancy
and yielded no performance improvement. For a given set of features and labels
(positive and negative samples) for an age group, liblinear SVM was used to learn the
model parameters to predict salient locations on the training images. Thus, we obtained
model parameters for predefined features over all age groups.

For a given test image, we first collected its features as described in the multi-scale
feature selection mechanism, and further predicted saliency values at each pixels as,

Sg(Ii) = wgX
T (Ii) + bg (7)

Where wg and bg are model parameters learned for each age group g and X(Ii) is
feature vector for the ith test image, this vector is composed of intensity (Ī), color (C̄),
and orientation (Ō) features. Based on the saliency values we classified the local pixel
as salient or not.
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Integrating the feature maps over the optimally set weights learned over the
age-specific dataset suggests further improvement in prediction accuracy for all age
groups including adults, as shown in Table 4. Age-related differences in center bias
tendency were also considered while evaluating the performance of the proposed model.
The method of incorporating center bias in the age-adapted model is explained in
following section. The improvement in prediction performance for our proposed S and
proposed S+I+C model is shown in Fig 7.

Table 4. Average prediction accuracy by combining scale based subset selection,
nonlinear integration and age-adapted center bias (Proposed S+I+C).
PPPPPPPPPAge

Scale
1∼6 2∼6 3∼6 4∼6 5∼6 6

4 year 0.7387 0.7409 0.7374 0.7414 0.7434 0.7388
6 year 0.7203 0.7218 0.7155 0.7201 0.7295 0.7160
8 year 0.6766 0.6833 0.6698 0.6590 0.6655 0.6728
adult 0.6646 0.6637 0.6613 0.6549 0.6533 0.6585

(c) Age-adapted model for center bias
Humans have the tendency to observe at the center of a given scene. This behavior

can be incorporated with existing saliency models by simply defining saliency to include
weight factor C, which is inversely propositional to the distance to the center of the
pixel under consideration.

C(i) = 1− d(c, pi)/D (8)

where d(c, pi) is the distance between the pixel under consideration pi and center pixel c
and D is the maximum distance used as a normalization factor. Further center bias C(i)
is updated based on the results of analysis reflect the age-related variations. wkC(i) is
the updated center bias weight factor, where wk is the strength of the center bias
tendency for different age groups.

Age-adapted patch based saliency model: Proposed P

Another approach that we choose to verify the generalizability of our age-adapted
framework is the patch-based model for saliency prediction [9]. This technique follows
the given basic structure: (a) Image is first divided into patches of the same size. (b)
The set of features are extracted from these patches. (c) Finally, the spatial
dissimilarity among neighbouring patches is evaluated to generate the saliency map.

As pointed out earlier, we do not use this model as is, but introduce some
modifications. For this, we represent different features extracted from a patch by using
the subset of eigenvalues obtained after SVD decomposition of the feature matrix. We
elaborate this before explaining how to render this newly constructed model
age-adapted.

(i) SVD decomposition based representation of features
We first construct the feature matrix. The first step in feature matrix construction is

to extract non-overlapping patches of size t× t from a given image I of size M ×N .
Thus, the total number of patches np = M ×N/t× t. Further, each patch is
represented by a column vector of features fi, where i indexes the patch. fi is obtained
by combining three color of features (L∗, a∗, b∗) and two intesity features (Ix, Iy). This
generates a feature vector for each patch that appears as [L1, L2, ...., Lt, a1, a2, ...., at,

b1, b2, ...., bt, Ix1
, Ix2

, ..Ixt
, Iy1 , Iy2 , ..., Iyt ]. Finally, feature matrix X,

X = [f1, f2, ...., fnp ] for the entire image is obtained by combining the feature vectors of
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all patches
Once the feature matrix representation is ready, we generate the covariance matrix

representation of feature matrix X, C = X ′XT . Principle component analysis was used
to diagonalizes covariance matrix C by solving the following eigen vector problem:

λV = CV (9)

where V are the eigen vectors of C and λ represents the corresponding eigenvalues. The
eigenvectors are ranked in descending order of eigen values. Choosing d eigenvectors
corresponding to the d largest eigenvalues gives us the basis along the directions of
maximum variance in features. Thus, the resultant matrix can be represented as
E = [V1, V2, ..Vd]

T .
(ii) Saliency measurement
In the final step, saliency can be measured based on the dissimilarity between

patches, which can be simply defined as Euclidean distance between patches in reduced
dimension.

S(Ri) = ω(i)

L∑
j=1

∑d
s=1 |xsi − xsj |

1 + dist(pi, pj)
(10)

where i, j are the ith and jth patches of an image and ω(i) can be defined as a weight
factor to adjust the center bias.

Similarly to the previous model, the age-adapted framework is incorporated into this
model by selecting a different subset of patch sizes for different age groups and
incorporating the age-adapted center bias. We can select patch sizes from the set
{64, 32, 16, 8}, which varies from coarser to finer scale. The result of this model is
shown in Table 5. As expected, all scales are suitable for adults, whereas children are
more sensitive to fewer scales.

Table 6 lists the fixation prediction accuracies of some famous existing saliency
models executed unaltered for our age specific gaze dataset over observers of different
age groups. From Fig 7 and Table 6, it is clear that our modification of Itti’s model and
patch-based models that leverage the age-adapted framework outperformed existing
models. Our modified age-adapted algorithms improves the prediction performance for
adult observers as well. We believe that difference in the fixation prediction accuracies
was evidence for the fact that our algorithm not only personalizes saliency models to
achieve optimal performance according to the observer’s age group but also improves
the prediction performance of adults.

Table 5. Average prediction accuracy by proposed patch based method, scale 1,2,3,4
are correspond to a, 16, 8 patch sizes respectively (Proposed P).

PPPPPPPPPAge
Scale

1∼4 2∼4 3∼4 4∼4

4 year 0.7678 0.7767 0.7773 0.7772
6 year 0.7400 0.7483 0.7480 0.7482
8 year 0.7195 0.7279 0.7272 0.7269
adult 0.7212 0.7113 0.7208 0.7188

Fig 7. Comparison of age-adapted proposed saliency models with baseline models of
computational attention system.
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Table 6. Comparison table of our proposed (S+I+C and P models) age-adapted
models with available computational models of saliency prediction.
PPPPPPPPPAge

Model
S+I+C P Itti’s [3] GBVS [2] Judd’s [4] Patch [9]

4 year 0.7434 0.7773 0.6218 0.7184 0.7296 0.7306
6 year 0.7295 0.7483 0.6147 0.6969 0.7033 0.7003
8 year 0.6833 0.7279 0.6027 0.6722 0.6721 0.6706
adult 0.6646 0.7212 0.6062 0.6707 0.6660 0.6649

Conclusion and discussion

In the first part of the study we analyzed the impact of age on scene viewing of
observers belonging to four different age groups from 4 years of age to adults. In the
second part, the results of our analyses were used to upgrade two existing models of
saliency prediction to make them age-adapted. The analyses were focused on analyzing
the age-impact on three basic aspects of gaze distribution behavior: explorativeness,
agreement within and between age-groups, and center bias tendency. Selection of these
three factors were of particular relevance to the current study as the prior knowledge of
gaze distribution behavior of adult observers were used previously in developing more
accurate saliency models for adults [43] [4].

A significant impact of age was observed on explorativeness of observers belonging to
four different age groups (4, 6, 8 years and adults). Our results showed that
explorativeness increased monotonically with age, and adult-like behavior was achieved
at the age of 8 years. These results support previous studies comparing explorative
performance in young and old adults suggesting that explorativeness change with
age [47] [48] and add new evidence about how explorativeness changes during childhood.
Our results of higher explorativeness in 8 year-olds and adults agree with previous
studies showing that young adults have the highest level of explorativeness. In [49] the
authors manipulated the size of the region on which subjects focused their attention to
reveal the scope of visual attention between adult and elderly participants. The result
showed that elderly participants preferred to attend smaller space than young adults. In
the same line [48], [47], and [50] used a task-based study to reveal the possible changes
over age in scope of attention. The findings showed that older adults required more
time shift the attention to other locations than young adults, suggesting the restricted
scope of attention in older adults. However, all of these previous studies investigated the
scope of attention in adults and older observers, except the one study reported in [25]
which showed the comparable level of exploratory tendency in children of 7-9 years with
adults. This result supports our finding that adult-like explorativeness achieved at 8
years of age. Altogether, these findings indicate that explorativeness increases with
increasing age and the adult-like explorativeness is reached around 8 year of age.

Our result of concerning the agreement score within the age groups showed that
observers of 8 years and adults age group had the lowest agreement with each other.
This can be explained by previous study in [43] where the fixation density map of an
adult subject was used to predict the fixation density map of other subjects. The result
showed a lower inter-similarity score suggesting the lower agreement between adult
observers. Comparing the results of explorativeness and agreement analysis, it is
interesting to note that the trend followed by the intra-group agreement analysis was
opposite to that exhibited by the explorativeness analysis. This makes sense: as
explorativeness decreases, observers tends to focus on lesser details of the scene [46],
mostly the ones that were the salient areas of an image. This suggests that the fixation
points of the observers of the least explorative age group would mostly be consistent
with one another, and would be mostly localized at salient locations and, hence, the
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agreement score would be high.
All the age groups showed significant effect of center bias tendency in scene viewing.

However, children of 4 years of age had the highest center bias among different age
groups, whereas the adults exhibited lowest center bias tendency for the same set of
images. In previous studies center bias tendency has been reported only in adult
observers [4] [43], but in our study we provide novel evidence that the strength of the
center bias tendency varies across different age groups. One possible explanation is that
the center bias is driven by the content of the scene i.e. bottom-up saliency as
computed by different saliency models [1, 3–5,34]. The higher center bias in children
observers can be inferred from the previous studies in [25] [26] which found that
bottom-up saliency maps dominated more to the fixation landings in children than
adult observers, suggesting higher center bias in a children than adults.

Based on the analysis results of our study we concluded that ignoring the age factor
and using existing models developed for adults in predicting gaze behavior of other age
groups cannot give the optimal prediction accuracy. This motivated us for the
development of an age-adapted saliency model. Our results allowed us to develop a
more accurate age-adapted model of saliency prediction. The prediction accuracy of the
proposed model outperformed the existing stat-of-the-art saliency models for all the age
groups including adult observers. Instead of applying age-adapted recommendations
directly to [3] [9], we applied several modifications which improved the prediction
performance also for adult observers. The present study provides the first systematic
approach for quantitatively analyzing the age-related differences in scene viewing
behavior with prospective of the development of an age-adapted computational model of
visual attention. Additionally, we verified that our proposed framework of age-adapted
saliency model is generalizable, and could be applied many other existing model of
saliency prediction to make them age-adapted.
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37. Aring E, Grönlund MA, Hellström A, Ygge J. Visual fixation development in
children. Graefe’s Archive for Clinical and Experimental Ophthalmology.
2007;245(11):1659–1665.

38. Fukushima J, Akao T, Kurkin S, Kaneko CR, Fukushima K. The
vestibular-related frontal cortex and its role in smooth-pursuit eye movements
and vestibular-pursuit interactions. Journal of Vestibular Research. 2006;16(1,
2):1–22.

39. Ygge J, Aring E, Han Y, Bolzani R, HellstrÖm A. Fixation stability in normal
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Supporting information

S1 File. Saliency map of stimuli-I for 4 years, 6 years, 8 years, and adults age group.

S2 File Saliency map of stimuli-II for 4 years, 6 years, 8 years, and adults age group.

S3 File Saliency map of stimuli-III for 4 years, 6 years, 8 years, and adults age group.

S4 File Saliency map of stimuli-IV three for 4 years, 6 years, 8 years, and adults age
group.

S5 File Saliency map of stimuli-V four for 4 years, 6 years, 8 years, and adults age
group.

S6 File Saliency map of stimuli-VI five for 4 years, 6 years, 8 years, and adults age
group.

S7 File Saliency map of stimuli-VII for 4 years, 6 years, 8 years, and adults age group.

S8 File Saliency map of stimuli-VIII three for 4 years, 6 years, 8 years, and adults age
group.

S9 File Saliency map of stimuli-IX four for 4 years, 6 years, 8 years, and adults age
group.

S10 File Saliency map of stimuli-X five for 4 years, 6 years, 8 years, and adults age
group.
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