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Third-order virtual measurements with signal injection

Dilshad Surroop1,2, Pascal Combes2, Philippe Martin1 and Pierre Rouchon1

Abstract— Signal injection was conceptualized in [1] as a
method to make available an extra “virtual measurement”,
hence to simplify the design of a control law in particular when
the system observability degenerates at a steady-state region of
interest. In this paper, we show that the approach of [1] can be
extended to produce yet others virtual measurements, thanks
to an analysis based on third-order averaging.

I. INTRODUCTION

Signal injection is a control technique that has become
widely used for the “sensorless” control of electrical motors
at low velocity since its introduction by [2], [3] (“sensorless”
meaning only the currents are measured, but neither the rotor
position nor its velocity). Its consists in superimposing a fast-
varying signal on the control, which creates some small rip-
ple in the measured currents; this ripple contains information
about the rotor position that can be used to suitably control
the motor. At first sight, the method might seem peculiar to
electrical motors, with a usually somewhat heuristic analysis.
The essence of the method was then conceptualized in [1]
as the creation of new “virtual measurements” which can be
extracted from the actual measured output, hence providing
means to overcome observability degeneracies; the main in-
gredient of the analysis is second-order averaging, following
the ideas introduced in [4]. Developments following these
ideas, with an application to magnetic levitation systems,
can be found in [5], [6].

The purpose of this paper is to extend [1] by showing
that more virtual measurements can be produced with a finer
analysis of the ripple thanks to third-order averaging. To keep
the computations as simple as possible and focus on the
important ideas, we restrict to Single-Input Single-Output
systems with a linear dynamics; nonlinear Multiple-Input
Multiple-Output systems could nevertheless be addressed
along the same lines. More precisely, consider the system

ẋ = Ax+Bu (1a)
y = h(x), (1b)

where (x, y, u) belongs to a compact subset of Rn×R×R,
and A,B are constant matrices; the measured output y =
h(x) is assumed smooth enough (e.g. at least C3). We show
that by superimposing to the control u a periodic signal with
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small period ε, we can make available the so-called virtual
measurements

Y1 = H1(x) := εh′(x)B (2a)

Y2 = H2(x) :=
ε2

2
(h′′(x)B)B (2b)

Y3 = H3(x) := ε2h′(x)AB, (2c)

which can be used in addition to Y0 = H0(x) := h(x) to
control (1a). The contribution with respect to [1] is threefold:
• an analysis of the output ripple by third-order averaging,

with a simpler derivation (section II)
• a much more elaborated procedure to extract the virtual

measurements from the output ripple (section III)
• a numerical simulation demonstrating the method is

indeed effective, even though the output ripple may be
very small and buried into noise (section IV).

II. SIGNAL INJECTION AND THIRD-ORDER AVERAGING

Assume we have designed a suitable control law

u = α
(
η, Y, t

)
η̇ = a

(
η, Y, t

)
,

where η ∈ Rq and Y is the vector (Y0, Y1, Y2, Y3). In other
words, the closed-loop system

ẋ = Ax+Bα
(
η,H(x), t

)
(3a)

η̇ = a
(
η,H(x), t

)
(3b)

has the desired exponentially stable behaviour, where H :=
(H0, H1, H2, H3). We have changed the notation of the state
to (x, η), so as to distinguish between the solutions of (3)
and of (5) below.

Now consider the modified control law

u = α
(
η,H(x), t

)
+ s0

(
t
ε

)
(4a)

η̇ = a
(
η,H(x), t

)
(4b)

H(x) = H
(
x− εBs1

(
t
ε

)
− ε2ABs2

(
t
ε

))
+O∞(ε3), (4c)

where s0 is a 1-periodic function with zero mean, s1 is the
primitive of s0 with zero mean, and s2 the primitive of s1

with zero mean (notice s1 and s2 are also 1-periodic); and
O∞ denotes the uniform “big O” symbol of analysis, namely
f(z, ε) = O∞(ε) if there exists K > 0 independant of z and
ε such that ‖f(z, ε)‖ ≤ Kε. The closed-loop system then
reads

ẋ = Ax+Bα
(
η,H(x), t

)
+Bs0

(
t
ε

)
(5a)

η̇ = a
(
η,H(x), t

)
(5b)

H(x) = H
(
x− εBs1

(
t
ε

)
− ε2ABs2

(
t
ε

))
+O∞(ε3). (5c)



Theorem 1: Let
(
x(t), η(t)

)
and

(
x(t), η(t)

)
be respec-

tively the solutions of (5) and (3), with initial condi-
tion

(
x(0), η(0)

)
and

(
x(0), η(0)

)
=
(
x(0) − εBs1(0) −

ε2ABs2(0), η(0)
)
. Then for all t ≥ 0,

x(t) = x(t) + εBs1

(
t
ε

)
+ ε2ABs2

(
t
ε

)
+O∞(ε3) (6a)

η(t) = η(t) +O∞(ε3) (6b)
y(t) = H0

(
x(t)

)
+H1

(
x(t)

)
s1

(
t
ε

)
+H2

(
x(t)

)
s2

1

(
t
ε

)
+H3

(
x(t)

)
s2

(
t
ε

)
+O∞(ε3). (6c)

Proof: The proof is an application of higher-order
averaging for differential equations [7, section 2.9], with slow
time dependance [7, section 3.3]: consider the two equations

dX

dσ
(σ) = εf1(X, εσ, σ) +O∞(ε4)

dX̃

dσ
(σ) = εf1(X̃, εσ, σ) + ε3k3(X̃, εσ, σ) +O∞(ε4),

where f1, k3 are T -periodic with respect to their third
variable and k3 has zero-mean with respect to its third
variable; according to [7, theorem 2.9.2], the solutions of
these two equations starting from the same initial condition
are related by

X̃(σ) = X(σ) +O∞(ε3) (7)

on the timescale 1/ε. It is possible to extend this relation
to an infinite timescale, provided that the averaged system
has an exponentially stable equilibrium, and that the initial
condition is in a compact subset of the region of attraction
of this equilibrium, along the lines of [1, lemma 2].

In our case, we first rewrite (5) in the fast timescale
σ := t/ε

dx

dσ
= ε

[
Ax+Bα

(
η,H(x), εσ

)
+Bs0(σ)

]
(8a)

dη

dσ
= εa

(
η,H(x), εσ

)
. (8b)

We introduce the new coordinates (x̃, η̃) such that(
x̃
η̃

)
=

(
x
η

)
− ε

(
Bs1(σ)

0

)
− ε2

(
ABs2(σ)

0

)
. (9)

Notice (5c) simply reads

H(x) = H(x̃) +O∞(ε3).

Differentiating with respect to σ and expanding to third order
yields the system in the new coordinates

˙̃x = ε
[
Ax̃+Bα

(
η̃, H(x̃), εσ

)]
(10a)

+ ε3A2Bs2(σ) +O∞(ε4)
˙̃η = εa

(
η̃, H(x̃), εσ

)
+O∞(ε4). (10b)

By (7), we then get

x̃ = x+O∞(ε3)

η̃ = η +O∞(ε3).

Replacing (x̃, η̃) by (x, η) using transformation (9) in the
two previous equations, we have the desired result

x = x+ εBs1(σ) + ε2ABs2(σ) +O∞(ε3)

η = η +O∞(ε3).

Plugging this expression for x in y = h(x) and Taylor
expanding to second order yields (6c).

The practical use of the theorem is the following. Assume
we can compute a third-order estimate Ŷ of Y from the
knowledge of only the actual measurement y. Using the
relation between x and x, we have

Ŷ = H(x) +O∞(ε3)

= H(x) +O∞(ε3)

The control law with signal injection

u = α
(
η, Ŷ , t

)
+ s0

(
t
ε

)
(11a)

η̇ = a
(
η, Ŷ , t

)
(11b)

is then practically implementable and will control (1) as
desired in average.

III. DEMODULATION OF THE VIRTUAL MEASUREMENTS

In this section, we show how to estimate the virtual
measurements from the ripple in the actual measurement.
Consider the composite signal

y(t) = Y0(t) + Y1(t)s1

(
t
ε

)
+Y2(t)s2

1

(
t
ε

)
+ Y3(t)s2

(
t
ε

)
+O∞(ε3),

where Y0, . . . , Y3 are in C3 and Y (3)
0 , . . . , Y

(3)
3 are bounded.

Theorem 2 below states that Y0, . . . , Y3 can be estimated at
third order thanks to periodic low-pass filters.

A. Decomposition on an orthogonal basis

We first rewrite y as a decomposition on the periodic
orthogonal signals (1, s1, s2, S1),

y(t) = Ỹ0(t) + Ỹ1(t)s1

(
t
ε

)
+ Ỹ2(t)S1

(
t
ε

)
+ Ỹ3(t)s2

(
t
ε

)
+O∞(ε3). (12)

The signals 1, s1, s2 are orthogonal (for the scalar product
〈f, g〉 =

∫ 1

0
f(τ)g(τ)dτ ); indeed, 〈1, s1〉 = 〈1, s2〉 = 0 since

s1,s2 have zero mean, and 〈s1, s2〉 = 1
2

∫ 1

0
(s2

1)′(σ)dσ = 0.
S1 is then obtained from s2

1 by Gram-Schmidt orthogonal-
ization,

S1(t) := s2
1(t)− s2

1 −
〈s21,s1〉
s21

s1(t)− 〈s
2
1,s2〉
s22

s2(t).

As a consequence, the “coordinates” Ỹi are

Ỹ0(t) = Y0(t) + s2
1Y2(t)

Ỹ1(t) = Y1(t) +
〈s21,s1〉
s21

Y2(t)

Ỹ2(t) = Y2(t)

Ỹ3(t) = Y3(t) +
〈s21,s2〉
s22

Y2(t).



B. Extraction of the Yi using iterated moving averages

We now turn to the design of the demodulating filters,
which are based on iterated moving averages of the form

M1
ϕ(t) :=

1

ε

∫ t

t−ε
ϕ(σ)dσ

Mk
ϕ(t) :=

1

ε

∫ t

t−ε
Mk−1
ϕ (σ)dσ, k > 1.

We first recall a basic result on finite differences.
Lemma 1: Let ϕ be C3 with ϕ(3) bounded. Then the pth-

order backward difference

∆p
ϕ(t) :=

p∑
i=0

(
p

i

)
(−1)iϕ(t− iε)

satisfies

‖∆p
ϕ(3−p)‖∞ . εp‖ϕ(3)‖∞, p = 0, . . . , 3;

ϕ . ψ means there exists K > 0 such that ϕ ≤ Kψ.
Proof: For simplicity, we just prove as an example the

case p = 2. By the Taylor-Lagrange formula, there exists
t1 ∈ [t− ε, t] and t2 ∈ [t− 2ε, t] such that,

ϕ′(t− ε) = ϕ′(t)− εϕ′′(t) +
ε2

2
ϕ(3)(t1)

ϕ′(t− 2ε) = ϕ′(t)− 2εϕ′′(t) + 2ε2ϕ(3)(t2)

Therefore,

∆p
ϕ′(t) = −ε2ϕ(3)(t1) + 2ε2ϕ(3)(t2);

hence the desired inequality

‖∆p
ϕ′‖∞ ≤ 3ε2‖ϕ(3)‖∞.

This lemma is used to prove the following result, which has
an important role on the filter design.

Lemma 2: Let ϕ be in C3 with ϕ(3) bounded, and ζ0 be
a 1-periodic function with zero mean. Then,

‖M3
ϕζ̌0
‖∞ . ε3‖ϕ(3)‖∞‖ζ3‖∞,

with ζj+1 the zero-mean primitive of ζj , and ζ̌(t) := ζ( tε ).
Proof: Integrating by parts three times and using the

periodicity of ζj gives

Mϕζ̌0
(t) = ∆1

ϕ(t)ζ1
(
t
ε

)
− ε∆1

ϕ′(t)ζ2
(
t
ε

)
+ ε2∆1

ϕ′′(t)ζ3
(
t
ε

)
− ε2

∫ t

t−ε
ϕ(3)(σ)ζ3

(
σ
ε

)
dσ. (13)

We now dominate the last two terms: clearly,∣∣∣∣ε2

∫ t

t−ε
ϕ(3)(σ)ζ3

(
σ
ε

)∣∣∣∣ ≤ ε3‖ϕ(3)‖∞‖ζ3‖∞;

lemma 1 applied to the third term yields∣∣ε2∆1
ϕ′′(t)ζ3

(
t
ε

)∣∣ . ε3‖ϕ(3)‖∞‖ζ3‖∞.

Notice that if ‖f‖∞ ≤ K then ‖Mp
f ‖∞ ≤ K; therefore

applying M1 and M2 to these two terms yields the same
bounds.

Consider next the second term of (13); its moving average
is

−εM∆1
ϕ′ ζ̌2

(t) = −ε∆2
ϕ′ζ3

(
t
ε

)
+ ε

∫ t

t−ε
∆1
ϕ′′(σ)ζ3

(
σ
ε

)
dσ.

Using again lemma 1, the two terms of the right-hand side
are similarly dominated by ‖ϕ(3)‖∞‖ζ3‖∞, and so are their
moving averages.

Finally, consider the first term of (13). Its moving average
is

M∆1
ϕζ̌1

(t) = ∆2
ϕ(t)ζ2

(
t
ε

)
− ε∆2

ϕ′(t)ζ3
(
t
ε

)
+ ε

∫ t

t−ε
∆1
ϕ′′(σ)ζ3

(
σ
ε

)
dσ.

Likewise, by lemma 1, the last two terms of the right-hand
side are also dominated by ‖ϕ(3)‖∞‖ζ3‖∞, and so are their
moving average; as for the first term, integrating by parts its
moving average yields

M∆2
ϕζ̌2

(t) = ∆3
ϕ(t)ζ3

(
t
ε

)
−
∫ t

t−ε
∆2
ϕ′(σ)ζ3

(
σ
ε

)
dσ.

Using lemma 1 to the right-hand side ends the proof.
We then recover the Ỹi from linear combination of shifted
M3
y thanks to the following lemma.
Lemma 3: Let ϕ be in C3 with ϕ(3) bounded. Define

Pϕ(t) :=
17

4
M3
ϕ(t)− 5M3

ϕ(t− ε) +
7

4
M3
ϕ(t− 2ε),

Then the operator ϕ→ Pϕ is the identity up to third order,

Pϕ(t) = ϕ(t) +O∞(ε3).
Proof: Again, consider first a single moving average

of ϕ. Doing a change of variable in the integral and com-
puting the Taylor expansion of ϕ gives

1

ε

∫ t

t−ε
ϕ (σ)dσ =

1

ε

∫ ε

0

ϕ(t− σ)dσ

=
1

ε

∫ ε

0

[
ϕ(t)− σϕ′(t) +

σ2

2
ϕ′′(t)

]
dσ +O∞(ε3)

= ϕ(t)− ε

2
ϕ′(t) +

ε2

6
ϕ′′(t) +O∞(ε3).

We iterate the previous calculations to get the expressions
of M2

ϕ and M3
ϕ,

M2
ϕ(t) = Mϕ(t)− ε

2
Mϕ′(t) +

ε2

6
Mϕ′′(t) +O∞(ε3)

+ϕ(t)− εϕ′(t) +
7

12
ϕ′′(t) +O∞(ε3)

M3
ϕ(t) = ϕ(t)− 3

2
εϕ′(t) +

15

12
ε2ϕ′′(t) +O∞(ε3).

Finally, we compute the shifted triple moving average for
k = 0, 1, 2. This yields M3

ϕ(t)

M3
ϕ(t− ε)

M3
ϕ(t− 2ε)

 =

1 − 3
2

15
12

1 − 5
2

39
12

1 − 7
2

75
12


︸ ︷︷ ︸

D

 ϕ(t)

εϕ′(t)

ε2ϕ′′(t)

+O∞(ε3)



Fig. 1. x1 and estimate Ŷ3/ε2 (top); x2 (middle); x3 and estimate Ŷ2/ε2

(bottom).

Fig. 2. Difference between x (signal injection) and xi (ideal control).

Let α =
(
1 0 0

)
D−1 =

(
17/4 −5 7/4

)
. This yields

the desired conclusion

Pϕ(t) = αDϕ(t) = ϕ(t) +O∞(ε3).

Combining the three lemmas, we estimate the Yi.
Theorem 2: Considering the operator P defined in

lemma 3, we have an estimate for each of the Yi, namely

Ŷ2(t) := 1

S2
1

PyŠ1
(t) (14a)

= Y2(t) +O∞(ε3)

Ŷ3(t) := 1

s22
Pyš2(t)− 〈s

2
1,s2〉
s22

Ŷ2(t) (14b)

= Y3(t) +O∞(ε3)

Ŷ1(t) := 1

s21
Pyš1(t)− 〈s

2
1,s1〉
s21

Ŷ2(t) (14c)

= Y1(t) +O∞(ε3)

Ŷ0(t) := Py(t)− s2
1Ŷ2(t) (14d)

= Y0(t) +O∞(ε3).

Fig. 3. Control (top) and measured output (bottom)

Proof: Let first determine the estimate for Y2. Com-
puting PyŠ1

, we get

PyŠ1
(t) = P

Ỹ0Š1
(t) + P

Ỹ1š1Š1
(t) + P

Ỹ2(Š2
1−S2

1)
(t)

+P
Ỹ2S2

1
(t) + P

Ỹ3š2Š1
(t) +O∞(ε3).

Since P is a linear combination of shifted M3 and S1, s1S1,
s2S1 and S2

1 − S2
1 have zero mean, we have by lemma 2

PyŠ1
(t) = P

Ỹ2S2
1
(t) +O∞(ε3).

Consequently, using lemma 3, we have the following esti-
mate for Ỹ2 (which is equal to Y2)

Ŷ2(t) = 1

S2
1

PyŠ1
(t) = Y2(t) +O∞(ε3).

Let compute Ŷ3. The same calculations for Pyš2 provide

Pyš2(t) = s2
2Ỹ3(t) = s2

2

(
Y3(t) +

〈s21,s2〉
s22

Y2(t)
)
,

that is, by definition of Ŷ3 (14b)

Ŷ3(t) = Y3(t) +O∞(ε3).

Following the previous lines, we get the estimates Ŷ0, Ŷ1.

IV. A WORKED EXAMPLE

We illustrate the interest of the method on the system

ẋ1 = x2 (15a)
ẋ2 = x3 (15b)
ẋ3 = u+ d (15c)

y = x1x2 +
x3

3

3
, (15d)

where d is an unknown disturbance. We would like x1 to
track the reference xref1 while rejecting the disturbance, with
a time response of about a few time units. We want to operate
around steady state, i.e. near states of the form (xss1 , 0, 0)
and inputs such that uss + dss = 0. Notice the system is
not first-order observable around steady state because of the



Fig. 4. Zoom on Fig. 2.

Fig. 5. Zoom on Fig. 3.

very degenerate output y, which makes the control problem
far from obvious. Nonetheless, the virtual measurements are

Y1 = ε
(
x2 x1 x2

3

)0
0
1

 = εx2
3

Y2 =
ε2

2

(
0 0 1

)0 1 0
1 0 0
0 0 2x3

0
0
1

 = ε2x3

Y3 = ε2
(
x2 x1 x2

3

)0
1
0

 = ε2x1

hence first-order observability is restored thanks to Y2

and Y3, without even considering y and Y1. Notice third-
order averaging is paramount, since the virtual measurement
Y1 stemming from second-order averaging is still degenerate.

With Y3 = ε2x1 and Y2 = ε2x3, the system is completely
linear and can therefore be easily controlled. We design a

Fig. 6. Control (top) and measured output (bottom) with noise

classical controller-observer design, with observer ˙̂x1

˙̂x2

˙̂x3

 =

x̂2

x̂3

u

+ L

(
Y3/ε

2 − x̂1

Y2/ε
2 − x̂3

)
and integral controller

u = −k1x̂1 − k2x̂2 − k3x̂3 − kIηI
η̇I = Y3 − xref1 .

The 3× 2 matrix L and (k1, k2, k3, kI) are chosen such that
the eigenvalues of the observer are (−13.98,−1.57± 1.59i)
and those of the controller are (−1.20±1.77i,−2.00±0.58i),
which ensures a time response of a few time units and
a reasonable robustness; the observer is faster than the
controller, in accordance with Loop Transfer Recovery (at the
plant input). Setting η := (x̂1, x̂2, x̂3, ηI)

T , this controller-
observer reads

u = −Kη

η̇ = Mη +Nxref1 (t) + L

(
Y3/ε

2

Y2/ε
2

)
.

Following section II, this yields the implementable control
law for (15a)–(15c), which is a particular case of (11),

u = −Kη + s0( tε )

η̇ = Mη +Nxref1 (t) + L

(
Ŷ3/ε

2

Ŷ2/ε
2

)
,

where Ŷ2 and Ŷ3 are obtained from the actual measure-
ment (15d) by the demodulation procedure of section III.
The injected signal s0 is a square wave of amplitude 1 and
frequency 100, which ensures the oscillation is fast with
respect to the time constants of the closed-loop system;
n := 2 is used in the demodulating filter.

The test scenario is the following: at t = 0 the system
starts at rest at the origin, with the reference xref1 set to 0; at
t = 20, a step disturbance d of magnitude −0.25 is applied;
for 40 ≤ t ≤ 140, xref1 is a slow (filtered) ramp with



Fig. 7. x1 and estimate Ŷ3/ε2 (top); x2 (middle); x3 and estimate Ŷ2/ε2

(bottom).

slope 10−3, meaning the system must slowly move while
nearly first-order unobservable; finally, at t = 180, xref1 is a
filtered step so as to quickly return to 0.

Without noise on the actual output y, the performance
is excellent: the reference is tracked and the disturbance
is rejected (Fig. 1). In fact the system behaves nearly as
in the ideal situation where it is controlled directly from
x1, x3 without signal injection (Fig. 2); the ripple is visible
on x3 because it is directly affected by the input, but is much
smaller on x1, x2, as anticipated by the averaging analysis.
A zoomed view for 37.3 ≤ t ≤ 37.5 gives a better insight
of the signals: Fig. 4 illustrates (6a); Fig. 5(top) shows the
square wave in the control signal; Fig. 5(bottom) shows the
ripple in the actual output is really tiny near steady state, with
a strange form caused by the nonlinearity of this output.

With a measured output ym corrupted by noise, one thus
might fear the ripple is much too small to be useful; this is
not the case since the demodulation process is essentially a
low-pass filter. Indeed, the system performs as desired (Fig.
7 and 8), even though the output ripple is buried into noise
(Fig. 6). The measurement noise used in the simulation is
a band-limited white noise with noise power 1× 10−18 and
sample time 1× 10−5.

V. CONCLUSION

We have shown that it is possible to produce “virtual
outputs” thanks to the injection of fast-varying periodic

Fig. 8. Difference between x (signal injection) and xi (ideal control).

probing signal. These virtual measurements can be used to
simplify the design of a feeedback law, in particular when
the system observability degenerates. The analysis relies on
third-order averaging, and significantly extends the approach
of [1]. For simplicity, we have restricted to Single-Input
Single-Output systems with linear dynamics; in a future work
we will generalize the approach to nonlinear Multi-Input
Multi-Output systems.
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