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A new demodulation procedure for a class of
multiplexed signals

Dilshad Surroop1,2, Pascal Combes2, Philippe Martin1 and Pierre Rouchon1

Abstract—This paper introduces a set of estimators for a
wide class of multiplexed signal. The signals of interest are
decomposed on independent periodic signals with a shared
frequency. This latter set of signals is as general as possible;
that is, not necessarily orthogonal or sinusoidal. By an adequate
linear combination of low-pass filters, we extract each of the
components of the multiplexed signal with an arbitrary accuracy.
Applications of this demodulation procedure include sensorless
control of electrical machines using signal injection with the
extraction of the ripple.

NOMENCLATURE

Cn Set of continuous functions with continuous
first n derivatives

M1 Moving average
Mk Moving average iterated k times
Pn nth-order moving average with phase shift

compensation
Pni Operators for retrieving yi at order εn

PSD Power Spectral Density
(si) Set of 1-periodic independent signals
(Si) Gram-Schmidt’s orthogonalization of (si)
y Composite signal
yi ith-coordinates of y in the basis (si)
ỹi ith-coordinates in the orthogonal basis (Si)

∆p
ϕ pth-order backward difference of ϕ
ε Small parameter

ζ̌(t) ζ( tε )
ν Additive gaussian white noise

A . B There exists K > 0 such that A ≤ KB
〈f, g〉

∫ 1

0
f(τ)g(τ)dτ

f2 〈f, f〉
‖f‖∞ sup{|f(t)|; t ∈ R}
O∞(ε) f(z, ε) = O∞(ε) if there exists K > 0

independent of z and ε s.t. ‖f(z, ε)‖ ≤ Kε
I. INTRODUCTION

The design of causal filters for extracting information
from measured signals with minimum time or phase lag is
paramount in control applications. The need is particularly
strong in sensorless control of electrical motors by signal
injection. This technique, introduced in [1], [2] with sinusoidal
signals, consists in adding a fast-varying periodic signal to the
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control; this creates ripples in the measured currents which
carry information about the rotor position. If this information
is adequately decoded, it can be used to overcome low-speed
observability issues, hence providing an effective means for
controlling the motor, which is otherwise difficult. A rigorous
analysis of the method with arbitrary injected signals was
proposed in [3], with a simple general demodulation proce-
dure; applications to electrical motors can be found in [4], [5].
Therefore, extracting with a good accuracy information from
the periodic ripples in a signal is of major importance. The
goal of this paper is to provide implementable estimators in
a general framework encompassing signal injection. This type
of demodulation is also of interest when considering the multi-
plexing of digital data. For instance, in Orthogonal Frequency-
Division Multiplexing (OFDM) technique introduced in [6],
sequences of bits are encoded on orthogonal subcarriers; in
this case the demodulation procedure consists of a fast Fourier
transform [6], [7].

In this paper, we propose a general demodulation procedure
for a composite signal that is encoded with known periodic
signals. These periodic signals are functionally independent
and are fast-varying with respect to the information to be
decoded. We show that, with suitable linear combination of
iterated moving averages, it is possible to extract all the
components in the composite signal with an arbitrary accuracy.
The estimators thus defined have a small time lag and are easy
to implement on a programmable component.

The outline of the article is as follows: we first give an
overview of the results in section II; we then provide detailed
proofs in section III; finally, we illustrate in section IV the
good behavior of the estimators on a numerical example.

II. OVERVIEW OF THE MAIN RESULTS

We consider a composite signal y of the form

y(t) =

N∑
i=0

yi(t)si
(
t
ε

)
+O∞(εn), (1)

where the yi’s are at least in Cn, with bounded nth-order
derivatives y(n)i ; the si’s are linearly independent 1-periodic
functions, i.e.

∑N
i=O λisi(τ) = 0 for all τ implies λi = 0;

ε > 0 is a “small” positive parameter; O∞(ε) is the uniform
“big O” of analysis. Intuitively speaking, the composite signal
y is a combination of the slowly-varying signals yi modulated
by the fast-varying signals si.



The goal is to retrieve the unknown yi’s from the measured
y and the known si’s, with an accuracy of order εn, i.e. we
want to design implementable estimators Pni of yi, such that

Pni (y)(t) = yi(t) +O∞(εn), 0 ≤ i ≤ N.

These estimators are described in the general case in
section III. In the simpler case of orthogonal si’s —i.e.
〈si, sj〉 = 0 for i 6= j, where 〈f, g〉 =

∫ 1

0
f(τ)g(τ)dτ denotes

the usual scalar product—, they read for n = 1, 2, 3

P 1
i (y)(t) =

1

s2i
M1(ysi)(t), (2a)

P 2
i (y)(t) =

1

s2i

[
2M2(ysi)(t)−M2(ysi)(t− ε)

]
, (2b)

P 3
i (y)(t) =

1

s2i

[17

4
M3(ysi)− 5M3(ysi)(t− ε)

+
7

4
M3(ysi)(t− 2ε)

]
, (2c)

where s2j = 〈sj , sj〉 and the Mk’s are iterated moving averages
(see nomenclature). The accuracy of the estimators improves
with the order of the iterated moving averages, namely

P 1
i (y)(t) = yi(t) +O∞(ε)

P 2
i (y)(t) = yi(t) +O∞(ε2)

P 3
i (y)(t) = yi(t) +O∞(ε3).

III. THE DEMODULATION PROCEDURE

This section details the design of the estimators Pni in the
general case, together with a proof of their accuracies.

A. Orthonogalization of the si’s

The design of the filter relies on the decomposition of
y on an orthogonal basis (see lemma 2), which can be
constructed using Gram-Schmidt orthogonalization process.
For this, define S0 = s0 and, for 1 ≤ i ≤ N ,

Si := si −
i−1∑
j=0

〈si, Sj〉
S2
j

Sj . (3)

The set (Si) is orthogonal for this scalar product, and
span(Si) = span(si). The coordinates ỹi of y on the new
basis (Si) satisfy ỹN = yN and, for 1 ≤ i ≤ N ,

ỹN−i(t) = yN−i(t) +

N∑
j=N−i+1

〈sj , SN−i〉
S2
N−i

yj(t). (4)

The expression of y in this orthogonal basis is then

y(t) =

N∑
i=0

ỹi(t)Si
(
t
ε

)
+O∞(εn).

B. Two preliminary results

In this section, M1(ϕ) denotes the moving average of ϕ
with a window length of ε, and Mk(ϕ) its k-times iteration.
Namely, let M0(ϕ) := ϕ and

Mk(ϕ)(t) :=
1

ε

∫ t

t−ε
Mk−1(ϕ)(σ) dσ, k ≥ 1.

We first recall a basic lemma on finite differences.
Definition 1: Let ϕ be a continuous function. We define its

pth-order (p ∈ N) backward difference by

∆p(ϕ)(t) :=

p∑
i=0

(
p

i

)
(−1)iϕ(t− iε).

Lemma 1: Let ϕ be Cn with ϕ(n) bounded. Then the pth-
order backward difference of ϕ(n−p) satisfies the following
inequality

‖∆p(ϕ(n−p))‖∞ . εp‖ϕ(n)‖∞, p = 0, . . . , n.

Proof: For t ≥ 0 and 1 ≤ i ≤ p, by Taylor-Lagrange’s
formula, there exists ti ∈ [t− iε, t] such that

ϕ(n−p)(t− iε) =

p−1∑
k=0

(−iε)kϕ
(n−p+k)(t)

k!
+ (−iε)pϕ

(n)(ti)

p!
.

So the pth-order backward difference of ϕ(n−p) satisfies

∆p(ϕ(n−p))(t) =

p−1∑
k=0

(−ε)kϕ
(n−p+k)(t)

k!

p∑
i=0

(
p

i

)
(−1)iik

+
(−ε)p
p!

p∑
i=0

(
p

i

)
(−1)iipϕ(n)(ti).

Since for 0 ≤ k ≤ p− 1,
∑p
i=0

(
p
i

)
(−1)iik = 0, we obtain

‖∆p(ϕ(n−p))‖∞ ≤ εp‖ϕ(n)‖∞
p∑
i=0

(
p

i

)
ip

p!
.

We use this lemma to prove the following result, which is
of major importance in the filter design.

Lemma 2: Let ϕ be in Cn such that ϕ(n) is bounded, and
ζ0 be a 1-periodic function with zero-mean. Then

‖Mn
(
ϕζ̌0
)
‖∞ . εn‖ϕ(n)‖∞‖ζn‖∞,

with ζj+1 the zero-mean primitive of ζj and ζ̌(t) := ζ( tε ).
Proof: By induction, let’s prove the following identity for

0 ≤ m ≤ n

Mm(ϕζ̌0) =

m∑
i=0

(
m

i

)
(−ε)iM i

(
∆m−i(ϕ(i))ζ̌m

)
. (5)

This expression is valid for m = 0. Assume now it is true for
m ≤ n− 1. Applying a single moving average to each of the
terms in (5) and computing an integration by parts gives, for
0 ≤ i ≤ m,

M1M i
(
∆m−i(ϕ(i))ζ̌m

)
= M iM1

(
∆m−i(ϕ(i))ζ̌m

)
= M i

(
∆m−i+1(ϕ(i))ζ̌m+1

)
− εM i+1

(
∆m−i(ϕ(i+1))ζ̌m+1

)
.
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Fig. 1. Bode magnitiude plot of P 1 (blue), P 2 (orange) and P 3 (green)

Summing these terms, and applying Pascal’s formula, we
obtain the expected expression for Mm+1(ϕζ̌0)

Mm+1(ϕζ̌0) =

m∑
i=0

(
m

i

)
(−ε)i

×
[
M i
(
∆m−i+1(ϕ(i))ζ̌m+1

)
−εM i+1

(
∆m−i(ϕ(i+1))ζ̌m+1

)]
=

m+1∑
i=0

(
m+ 1

i

)
(−ε)iM i

(
∆m−i+1(ϕ(i))ζ̌m+1

)
,

which concludes the induction. Besides, according to lemma 1,

‖∆n−i(ϕ(i))ζ̌n‖∞ . εn−i‖ϕ(n)‖∞‖ζn‖∞, 0 ≤ i ≤ n.

This inequality holds when applying M i to the backward
differences. That is

‖M i
(
∆n−i(ϕ(i))ζ̌n

)
‖∞ . εn−i‖ϕ(n)‖∞‖ζn‖∞.

Using (5) with m = n, we eventually obtain

‖Mn(ϕζ̌0)‖∞ . εn‖ϕ(n)‖∞‖ζn‖∞.

C. Design of the estimators

The direct application of lemma 2 to yŠi i = 1, . . . , N gives

Mn
(
yŠi
)

=

N∑
j=0

Mn
(
ỹjŠjŠi

)
+O∞(εn)

= Mn
(
yi(Š

2
i − S2

i ) + yS2
i

)
+O∞(εn)

= S2
iM

n(ỹi) +O∞(εn),

since for j 6= i, ŠjŠi and S2
i − S2

i have zero mean. The
orthogonality is used to isolate ỹi from the other signals. Now
we seek an estimate of ỹi using only Mn(yŠi). For this, we
consider a linear combination of shifted Mn; a general result
is the following theorem.

Theorem 1: Let ϕ be in Cn such that ϕ(n) is bounded. There
exists (αni )0≤i≤n−1 (specified in the proof) such that

Pn(ϕ)(t) :=

n−1∑
i=0

αniM
n(ϕ)(t− iε) = ϕ(t) +O∞(εn).
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Fig. 2. The three components of y: y0 (blue),y1 (orange) and y2 (green)

Proof: Let first compute Mn(ϕ). For a single moving
average, and considering the Taylor expansion of ϕ, we have

M1(ϕ)(t) =
1

ε

∫ ε

0

ϕ(t− σ) dσ

=
1

ε

∫ ε

0

[
n−1∑
i=0

(−σ)i

i!
ϕ(i)(t)

]
dσ +O∞(εn)

=

n−1∑
i=0

εia10,iϕ
(i)(t) +O∞(εn),

where a10,i satisfy, for 0 ≤ i ≤ n− 1,

a10,i :=
(−1)i

(i+ 1)!
.

Let compute M2 from the previous expression of M1

M2(ϕ)(t) =

n−1∑
i1=0

εi1a10,i1M
1(ϕ(i1))(t) +O∞(εn)

=

n−1∑
i1=0

εi1a10,i1

n−1−i1∑
i2=0

(−1)i2

(i2 + 1)!
ϕ(i1+i2)(t) +O∞(εn)

=

n−1∑
i=0

εi1a20,iϕ
(i)(t) +O∞(εn),

with a20,i defined for 0 ≤ i ≤ n− 1 by

a20,i :=

i∑
j=0

(−1)i−j

(i− j + 1)!
a10,j .

Iterating this process, we have the following expression

Mn(ϕ)(t) =

n−1∑
i=0

εian0,iϕ
(i)(t) +O∞(εn),

where an0,i is defined, for 0 ≤ i ≤ n− 1, by induction as

an0,i =

i∑
j=0

(−1)i−j

(i− j + 1)!
an−10,j .
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Now consider shifted Mn. Still by Taylor’s expansion,

Mn(ϕ)(t− kε) =

n−1∑
i=0

εian0,iϕ
(i)(t− kε) +O∞(εn)

=

n−1∑
i=0

εiank,iϕ
(i)(t) +O∞(εn),

with ank,i defined, for 0 ≤ k, i ≤ n− 1, by

ank,i =

i∑
j=0

(−k)i−j

(i− j)! a
n
0,j .

We define Mn(ϕ)(t) = (Mn(ϕ)(t− kε))0≤k≤n−1, An =

(ank,i)0≤k,i≤n−1 and Φ(t) = (εiϕ(i))0≤i≤n−1. Then from the
previous calculations we have

Mn(ϕ)(t) = AnΦ(t) +O∞(εn).

We assume An is invertible. Defining αn = (αni )0≤i≤n−1
such that αnAn =

(
1 0 . . . 0

)
, we get

αnM(t) = ϕ(t) +O∞(εn).

Now defining the operator Pn as follows, we finally have

Pn(ϕ) := αnM(ϕ)(t) =

n−1∑
i=0

αniM
n(ϕ)(t− iε)

= ϕ(t) +O∞(εn).

Combining these lemmas and theorem, we determine an
expression of the estimate of each of the yi (0 ≤ i ≤ N )

Corollary 1: Consider y satifying (1), where yi (0 ≤ i ≤
N ) are Cn with y(n)i bounded. Consider also the operator Pn
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Fig. 4. Signals s0,s1,s2 and S2 computed with Gram-Schmidt’s process

defined in lemma 1. We define the operator Pni such that it
retrieves yi up to the nth-order in ε. Namely, for 1 ≤ i ≤ N ,

PnN (y) :=
1

S2
N

Pn(ySN ) = yN (t) +O∞(εn),

PnN−i(y) :=
1

S2
N−i

Pn(ySN−i)−
N∑

j=N−i+1

〈sj , SN−i〉
S2
N−i

Pnj (y)

= yN−i(t) +O∞(εn).

Proof: According to lemmas 2 and 1, since SiSj has zero
mean for i 6= j, we have

Pn(yŠi) =

N∑
j=0

Pn(yjŠjŠi)(t) +O∞(εn)

= S2
i ỹi +O∞(εn).

With the relation given by Gram-Schmidt (4), we have the
desired result.

D. Sensitivity to noise

In practical applications, the measurement y is always
corrupted by noise. Consider here the signal y as in (1) with
an additional gaussian white noise ν with a Power Spectral
Density PSD[ν]

y(t) =

N∑
i=0

yi(t)si(
t
ε ) + ν +O∞(εn).

This introduces an additive white noise νni in the expression
of the estimate Pni (y) of yi. Specifically, the PSD of νnN is

PSD[νN ](ω) =
1

S2
N

2 PSD[SNν](ω)|Hn(ω)|2,
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where Hn is the transfer function of Pn whose expression is

Hn(ω) := sincn
(εω

2

)
exp

(−nεω
2

) n−1∑
k=0

αnk exp (−kεω) .

Along the lines of [3], since SN and ν are independent,
SNν behaves as a gaussian white noise with PSD[SNν] =
S2
NPSD[ν]. The Bode plots of Hn, given in figure 1, show that

the PSD of the noise is slightly amplified at low frequencies
as n increases.

The PSD of νnj (j ≤ N ) can be computed in a similar
manner. We define s = (si)0≤i≤N and S = (Si)0≤i≤N . Gram-
Schmidt’s process yields s = BS where B = (bij)0≤i,j≤N is
the transition matrix defined by

bij =


〈si,Sj〉
S2
j

if j ≤ i
0 otherwise.

Writing B−1 = (βij)0≤i,j≤N , we thus have for 0 ≤ j ≤ N

Pnj (y) =

N∑
i=j

βij

S2
i

Pn(ySi).

Consequently the PSD of νj is

PSD[νj ](ω) = PSD

[( N∑
i=j

βij

S2
i

Si
)
ν

]
(ω)|Hn(ω)|2.

Following the previous calculations, we finally have

PSD[νj ](ω) =

N∑
i=j

β2
ij

S2
i

× PSD[ν](ω)|Hn(ω)|2.
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IV. A NUMERICAL EXAMPLE

We now assess the previously described behaves well on a
numerical example.

A. Description of the scenario

As an example, consider the composite signal

y(t) = y0(t)s0( tε ) + y1(t)s1( tε ) + y2(t)s2( tε ) +O∞(ε3),

where y0, y1, y2 are at least C3 with y
(3)
i bounded, and

s0, s1, s2 are 1-periodic and independent. Specifically, con-
sider the three functions y0, y1, y2

y0(t) = 2 sin(t)− 1.5 sin( t2 ),

y1(t) = cos(t)− 1.2 sin( tπ ),

y2(t) = 1.4 cos2( t3 ),

shown in figure 2. The set of signals s0, s1, s2 illustrated in
figure 4a are defined on t ∈ [0, 1] by

s0(t) = 1, s1(t) = cos(2πt), s2(t) =

{
1 if 1

4 ≤ t ≤ 3
4

0 otherwise.

The first step is to orthogonalize the set (s0, s1, s2) with Gram-
Schmidt’s process as described by (3). Define S0 = s0; since
〈1, s1〉 = 0, define also S1 = s1. For S2, we have 〈s2, S0〉 =
1
2 , 〈s2, S1〉 = − 1

π and S2
1 = 1

2 . Therefore, S2 satisfies

S2(t) = s2(t)− 1

2
s0(t) +

2

π
s1(t).
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with ε = 0.1

The coordinates of y in this new basis are, using (4)

ỹ2(t) = y2(t),

ỹ1(t) = y1(t)− 2

π
y2(t),

ỹ0(t) = y0(t) +
1

2
y2(t).

The two signals s2 and S2 are represented in figure 4b. The
composite signal y can thus be rewritten as follows

y(t) = ỹ0(t)S0( tε ) + ỹ1(t)S1( tε ) + ỹ2(t)S2( tε ) +O∞(ε3).

Now we specify the expressions of the estimators Pni for
n = 1, 2, 3 and i = 0, 1, 2. For this, we compute the matrices
An as defined in (6)

A1, = 1 A2 =

(
1 −1
1 −2

)
, A3 =

1 −3/2 5/4
1 −5/2 13/4
1 −7/2 25/4

 .

Solving αnAn = (1, 0, . . . 0) gives the values of the coeffi-
cients (αni ). It follows the expressions (2) for Pn (n = 1, 2, 3).
Finally, corollary 1 provides the expression for each yi

Pn2 (y) :=
1

S2
2

Pn(yŠ2),

Pn1 (y) :=
1

S2
1

Pn(yŠ1) +
2

π
Pn2 (y),

Pn0 (y) :=
1

S2
0

Pn(yŠ0)− 1

2
Pn2 (y).
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Fig. 8. RMS error en2 for n = 1, 2, 3 as a function of ε

B. Discussion of the numerical results

The simulations have been done in the time range t ∈
[0, 10] s with ε = 0.1, which is small enough compared to
the rate of variation of the functions y0, y1 and y2. We first
retrieve y2 using Pn2 . This estimate is then used to compute
the estimation of y1 and y0 in accordance with the previous
process. Figure 5 shows the function y2 and its estimate Pn2 (y)
computed for n = 0, 1, 2. The difference between y2 and its
estimates Pn2 (y) is illustrated in figure 6. It appears that the
orders of magnitiude of these differences are consistent with
the inequality provided by lemma 2: the amplitude Pn2 (y)−y2
is approximately in εn. The initialization period of the filter
is nε, which explains the large error made by the estimators.

This estimate P 2
n(y) is then used to retrieve y1 (notice that it

can be used to retrieve y0 as well). The order of approximation
of y1 is still the same, as can be observed in figure 7.

We repeat this simulation for different values of ε, and

compute the RMS error en2 =
√∫ 10

5
|y2(τ)− Pn2 (τ)|2 dτ (we

restrict the computation of the error on t ∈ [5, 10] to avoid the
initialization part of the filters). Figure 8 shows the evolution
of the L2 error as a function of ε in log scale. The slope of
en in log scale is equal to n in accordance to corollary 1.
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