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A new demodulation procedure for a class of multiplexed signals

This paper introduces a set of estimators for a wide class of multiplexed signal. The signals of interest are decomposed on independent periodic signals with a shared frequency. This latter set of signals is as general as possible; that is, not necessarily orthogonal or sinusoidal. By an adequate linear combination of low-pass filters, we extract each of the components of the multiplexed signal with an arbitrary accuracy. Applications of this demodulation procedure include sensorless control of electrical machines using signal injection with the extraction of the ripple. NOMENCLATURE C n Set of continuous functions with continuous first n derivatives M 1 Moving average M k Moving average iterated k times P n nth-order moving average with phase shift compensation P n i Operators for retrieving y i at order ε n PSD Power Spectral Density (s i ) Set of 1-periodic independent signals (S i ) Gram-Schmidt's orthogonalization of (s i ) y Composite signal y i ith-coordinates of y in the basis (s i ) y i ith-coordinates in the orthogonal basis (S i ) ∆ p ϕ pth-order backward difference of ϕ ε Small parameter ζ(t) ζ( t ε ) ν Additive gaussian white noise A B There exists K

independent of z and ε s.t. f (z, ε) ≤ Kε

I. INTRODUCTION

The design of causal filters for extracting information from measured signals with minimum time or phase lag is paramount in control applications. The need is particularly strong in sensorless control of electrical motors by signal injection. This technique, introduced in [START_REF] Jansen | Transducerless position and velocity estimation in induction and salient AC machines[END_REF], [START_REF] Corley | Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds[END_REF] with sinusoidal signals, consists in adding a fast-varying periodic signal to the University, Paris, France {dilshad.surroop, philippe.martin,pierre.rouchon}@mines-paristech.fr 2 D. Surroop and P. Combes are with Schneider Toshiba Inverter Europe, Pacy-sur-Eure, France pascal.combes@se.com control; this creates ripples in the measured currents which carry information about the rotor position. If this information is adequately decoded, it can be used to overcome low-speed observability issues, hence providing an effective means for controlling the motor, which is otherwise difficult. A rigorous analysis of the method with arbitrary injected signals was proposed in [START_REF] Combes | Adding virtual measurements by signal injection[END_REF], with a simple general demodulation procedure; applications to electrical motors can be found in [START_REF] Jebai | Sensorless position estimation and control of permanent-magnet synchronous motors using a saturation model[END_REF], [START_REF] Combes | Obtaining the current-flux relations of the saturated pmsm by signal injection[END_REF]. Therefore, extracting with a good accuracy information from the periodic ripples in a signal is of major importance. The goal of this paper is to provide implementable estimators in a general framework encompassing signal injection. This type of demodulation is also of interest when considering the multiplexing of digital data. For instance, in Orthogonal Frequency-Division Multiplexing (OFDM) technique introduced in [START_REF] Chang | Synthesis of band-limited orthogonal signals for multichannel data transmission[END_REF], sequences of bits are encoded on orthogonal subcarriers; in this case the demodulation procedure consists of a fast Fourier transform [START_REF] Chang | Synthesis of band-limited orthogonal signals for multichannel data transmission[END_REF], [START_REF] Tse | Fundamentals of Wireless Communication[END_REF].

In this paper, we propose a general demodulation procedure for a composite signal that is encoded with known periodic signals. These periodic signals are functionally independent and are fast-varying with respect to the information to be decoded. We show that, with suitable linear combination of iterated moving averages, it is possible to extract all the components in the composite signal with an arbitrary accuracy. The estimators thus defined have a small time lag and are easy to implement on a programmable component.

The outline of the article is as follows: we first give an overview of the results in section II; we then provide detailed proofs in section III; finally, we illustrate in section IV the good behavior of the estimators on a numerical example.

II. OVERVIEW OF THE MAIN RESULTS

We consider a composite signal y of the form

y(t) = N i=0 y i (t)s i t ε + O ∞ (ε n ), (1) 
where the y i 's are at least in C n , with bounded nth-order derivatives y

(n) i ; the s i 's are linearly independent 1-periodic functions, i.e. N i=O λ i s i (τ ) = 0 for all τ implies λ i = 0; ε > 0 is a "small" positive parameter; O ∞ (ε) is the uniform "big O" of analysis. Intuitively speaking, the composite signal y is a combination of the slowly-varying signals y i modulated by the fast-varying signals s i .

The goal is to retrieve the unknown y i 's from the measured y and the known s i 's, with an accuracy of order ε n , i.e. we want to design implementable estimators P n i of y i , such that

P n i (y)(t) = y i (t) + O ∞ (ε n ), 0 ≤ i ≤ N.
These estimators are described in the general case in section III. In the simpler case of orthogonal s i 's -i.e. s i , s j = 0 for i = j, where f, g = 1 0 f (τ )g(τ )dτ denotes the usual scalar product-, they read for n = 1, 2, 3

P 1 i (y)(t) = 1 s 2 i M 1 (ys i )(t), (2a) 
P 2 i (y)(t) = 1 s 2 i 2M 2 (ys i )(t) -M 2 (ys i )(t -ε) , (2b) 
P 3 i (y)(t) = 1 s 2 i 17 4 M 3 (ys i ) -5M 3 (ys i )(t -ε) + 7 4 M 3 (ys i )(t -2ε) , (2c) 
where s 2 j = s j , s j and the M k 's are iterated moving averages (see nomenclature). The accuracy of the estimators improves with the order of the iterated moving averages, namely

P 1 i (y)(t) = y i (t) + O ∞ (ε) P 2 i (y)(t) = y i (t) + O ∞ (ε 2 ) P 3 i (y)(t) = y i (t) + O ∞ (ε 3 ).

III. THE DEMODULATION PROCEDURE

This section details the design of the estimators P n i in the general case, together with a proof of their accuracies.

A. Orthonogalization of the s i 's

The design of the filter relies on the decomposition of y on an orthogonal basis (see lemma 2), which can be constructed using Gram-Schmidt orthogonalization process. For this, define S 0 = s 0 and, for 1 ≤ i ≤ N ,

S i := s i - i-1 j=0 s i , S j S 2 j S j . (3) 
The set (S i ) is orthogonal for this scalar product, and span(S i ) = span(s i ). The coordinates y i of y on the new basis (S i ) satisfy y N = y N and, for 1

≤ i ≤ N , y N -i (t) = y N -i (t) + N j=N -i+1 s j , S N -i S 2 N -i y j (t). ( 4 
)
The expression of y in this orthogonal basis is then

y(t) = N i=0 y i (t)S i t ε + O ∞ (ε n ).

B. Two preliminary results

In this section, M 1 (ϕ) denotes the moving average of ϕ with a window length of ε, and M k (ϕ) its k-times iteration. Namely, let M 0 (ϕ) := ϕ and

M k (ϕ)(t) := 1 ε t t-ε M k-1 (ϕ)(σ) dσ, k ≥ 1.
We first recall a basic lemma on finite differences. Definition 1: Let ϕ be a continuous function. We define its pth-order (p ∈ N) backward difference by

∆ p (ϕ)(t) := p i=0 p i (-1) i ϕ(t -iε).
Lemma 1: Let ϕ be C n with ϕ (n) bounded. Then the pthorder backward difference of ϕ (n-p) satisfies the following inequality

∆ p (ϕ (n-p) ) ∞ ε p ϕ (n)
∞ , p = 0, . . . , n.

Proof: For t ≥ 0 and 1 ≤ i ≤ p, by Taylor-Lagrange's formula, there exists

t i ∈ [t -iε, t] such that ϕ (n-p) (t -iε) = p-1 k=0 (-iε) k ϕ (n-p+k) (t) k! + (-iε) p ϕ (n) (t i ) p! .
So the pth-order backward difference of ϕ (n-p) satisfies

∆ p (ϕ (n-p) )(t) = p-1 k=0 (-ε) k ϕ (n-p+k) (t) k! p i=0 p i (-1) i i k + (-ε) p p! p i=0 p i (-1) i i p ϕ (n) (t i ).
Since for 0 ≤ k ≤ p -1,

p i=0 p i (-1) i i k = 0, we obtain ∆ p (ϕ (n-p) ) ∞ ≤ ε p ϕ (n) ∞ p i=0 p i i p p! .
We use this lemma to prove the following result, which is of major importance in the filter design.

Lemma 2: Let ϕ be in C n such that ϕ (n) is bounded, and ζ 0 be a 1-periodic function with zero-mean. Then

M n ϕ ζ0 ∞ ε n ϕ (n) ∞ ζ n ∞ ,
with ζ j+1 the zero-mean primitive of ζ j and ζ(t) := ζ( t ε ). Proof: By induction, let's prove the following identity for

0 ≤ m ≤ n M m (ϕ ζ0 ) = m i=0 m i (-ε) i M i ∆ m-i (ϕ (i) ) ζm . ( 5 
)
This expression is valid for m = 0. Assume now it is true for m ≤ n -1. Applying a single moving average to each of the terms in [START_REF] Combes | Obtaining the current-flux relations of the saturated pmsm by signal injection[END_REF] and computing an integration by parts gives, for Summing these terms, and applying Pascal's formula, we obtain the expected expression for M m+1 (ϕ ζ0 )

0 ≤ i ≤ m, M 1 M i ∆ m-i (ϕ (i) ) ζm = M i M 1 ∆ m-i (ϕ (i) ) ζm = M i ∆ m-i+1 (ϕ (i) ) ζm+1 -εM i+1 ∆ m-i (ϕ (i+1) ) ζm+1 .
M m+1 (ϕ ζ0 ) = m i=0 m i (-ε) i × M i ∆ m-i+1 (ϕ (i) ) ζm+1 -εM i+1 ∆ m-i (ϕ (i+1) ) ζm+1 = m+1 i=0 m + 1 i (-ε) i M i ∆ m-i+1 (ϕ (i) ) ζm+1 ,
which concludes the induction. Besides, according to lemma 1,

∆ n-i (ϕ (i) ) ζn ∞ ε n-i ϕ (n) ∞ ζ n ∞ , 0 ≤ i ≤ n.
This inequality holds when applying M i to the backward differences. That is

M i ∆ n-i (ϕ (i) ) ζn ∞ ε n-i ϕ (n) ∞ ζ n ∞ .
Using [START_REF] Combes | Obtaining the current-flux relations of the saturated pmsm by signal injection[END_REF] with m = n, we eventually obtain

M n (ϕ ζ0 ) ∞ ε n ϕ (n) ∞ ζ n ∞ .

C. Design of the estimators

The direct application of lemma 2 to y Ši i = 1, . . . , N gives

M n y Ši = N j=0 M n y j Šj Ši + O ∞ (ε n ) = M n y i ( Š2 i -S 2 i ) + yS 2 i + O ∞ (ε n ) = S 2 i M n ( y i ) + O ∞ (ε n ),
since for j = i, Šj Ši and S 2 i -S 2 i have zero mean. The orthogonality is used to isolate y i from the other signals. Now we seek an estimate of y i using only M n (y Ši ). For this, we consider a linear combination of shifted M n ; a general result is the following theorem.

Theorem 1: Let ϕ be in C n such that ϕ (n) is bounded. There exists (α n i ) 0≤i≤n-1 (specified in the proof) such that Proof: Let first compute M n (ϕ). For a single moving average, and considering the Taylor expansion of ϕ, we have

P n (ϕ)(t) := n-1 i=0 α n i M n (ϕ)(t -iε) = ϕ(t) + O ∞ (ε n ).
M 1 (ϕ)(t) = 1 ε ε 0 ϕ(t -σ) dσ = 1 ε ε 0 n-1 i=0 (-σ) i i! ϕ (i) (t) dσ + O ∞ (ε n ) = n-1 i=0 ε i a 1 0,i ϕ (i) (t) + O ∞ (ε n ),
where a 1 0,i satisfy, for 0 ≤ i ≤ n -1,

a 1 0,i := (-1) i (i + 1)! . Let compute M 2 from the previous expression of M 1 M 2 (ϕ)(t) = n-1 i1=0 ε i1 a 1 0,i1 M 1 (ϕ (i1) )(t) + O ∞ (ε n ) = n-1 i1=0 ε i1 a 1 0,i1 n-1-i1 i2=0 (-1) i2 (i 2 + 1)! ϕ (i1+i2) (t) + O ∞ (ε n ) = n-1 i=0 ε i1 a 2 0,i ϕ (i) (t) + O ∞ (ε n ), with a 2 0,i defined for 0 ≤ i ≤ n -1 by a 2 0,i := i j=0 (-1) i-j (i -j + 1)! a 1 0,j .
Iterating this process, we have the following expression

M n (ϕ)(t) = n-1 i=0 ε i a n 0,i ϕ (i) (t) + O ∞ (ε n ),
where a n 0,i is defined, for 0 ≤ i ≤ n -1, by induction as 

a n 0,i = i j=0 (-1) i-j (i -j + 1)! a n-1 0,j .
M n (ϕ)(t -kε) = n-1 i=0 ε i a n 0,i ϕ (i) (t -kε) + O ∞ (ε n ) = n-1 i=0 ε i a n k,i ϕ (i) (t) + O ∞ (ε n ), with a n k,i defined, for 0 ≤ k, i ≤ n -1, by a n k,i = i j=0 (-k) i-j (i -j)! a n 0,j . We define M n (ϕ)(t) = (M n (ϕ)(t -kε)) 0≤k≤n-1 , A n = (a n k,i ) 0≤k,i≤n-1 and Φ(t) = (ε i ϕ (i) ) 0≤i≤n-1 .
Then from the previous calculations we have

M n (ϕ)(t) = A n Φ(t) + O ∞ (ε n ). We assume A n is invertible. Defining α n = (α n i ) 0≤i≤n-1 such that α n A n = 1 0 . . . 0 , we get α n M(t) = ϕ(t) + O ∞ (ε n ).
Now defining the operator P n as follows, we finally have

P n (ϕ) := α n M(ϕ)(t) = n-1 i=0 α n i M n (ϕ)(t -iε) = ϕ(t) + O ∞ (ε n ).
Combining these lemmas and theorem, we determine an expression of the estimate of each of the y i (0 ≤ i ≤ N )

Corollary 1: Consider y satifying [START_REF] Jansen | Transducerless position and velocity estimation in induction and salient AC machines[END_REF], where y i (0 4. Signals s 0 ,s 1 ,s 2 and S 2 computed with Gram-Schmidt's process defined in lemma 1. We define the operator P n i such that it retrieves y i up to the nth-order in ε. Namely, for 1 ≤ i ≤ N ,

≤ i ≤ N ) are C n with y (n) i bounded. Consider also the operator P n 0 2 4 6 8 10 -1 0 1 Time (s) S 0 S 1 s 2 (a) s 0 = S 0 , s 1 = S 1 , s 2 0 2 4 6 8 10 -0.5 0 0.5 1 Time (s) S 2 s 2 (b) s 2 and S 2 = s 2 -1 2 + 2 π s 1 Fig.
P n N (y) := 1 S 2 N P n (yS N ) = y N (t) + O ∞ (ε n ), P n N -i (y) := 1 S 2 N -i P n (yS N -i ) - N j=N -i+1 s j , S N -i S 2 N -i P n j (y) = y N -i (t) + O ∞ (ε n ).
Proof: According to lemmas 2 and 1, since S i S j has zero mean for i = j, we have

P n (y Ši ) = N j=0 P n (y j Šj Ši )(t) + O ∞ (ε n ) = S 2 i y i + O ∞ (ε n ).
With the relation given by Gram-Schmidt (4), we have the desired result.

D. Sensitivity to noise

In practical applications, the measurement y is always corrupted by noise. Consider here the signal y as in [START_REF] Jansen | Transducerless position and velocity estimation in induction and salient AC machines[END_REF] with an additional gaussian white noise ν with a Power Spectral Density PSD[ν]

y(t) = N i=0 y i (t)s i ( t ε ) + ν + O ∞ (ε n ).
This introduces an additive white noise ν n i in the expression of the estimate P n i (y) of y i . Specifically, the PSD of ν n N is where H n is the transfer function of P n whose expression is

PSD[ν N ](ω) = 1 S 2 N 2 PSD[S N ν](ω)|H n (ω)|
H n (ω) := sinc n ω 2 exp -nεω 2 n-1 k=0 α n k exp (-kεω) .
Along the lines of [START_REF] Combes | Adding virtual measurements by signal injection[END_REF], since S N and ν are independent, S N ν behaves as a gaussian white noise with PSD[S N ν] = S 2 N PSD[ν]. The Bode plots of H n , given in figure 1, show that the PSD of the noise is slightly amplified at low frequencies as n increases.

The PSD of ν n j (j ≤ N ) can be computed in a similar manner. We define s = (s i ) 0≤i≤N and S = (S i ) 0≤i≤N . Gram-Schmidt's process yields s = BS where B = (b ij ) 0≤i,j≤N is the transition matrix defined by

b ij =    si,Sj S 2 j if j ≤ i 0 otherwise. Writing B -1 = (β ij ) 0≤i,j≤N , we thus have for 0 ≤ j ≤ N P n j (y) = N i=j β ij S 2 i P n (yS i ).
Consequently the PSD of ν j is

PSD[ν j ](ω) = PSD N i=j β ij S 2 i S i ν (ω)|H n (ω)| 2 .
Following the previous calculations, we finally have 

PSD[ν j ](ω) = N i=j β 2 ij S 2 i × PSD[ν](ω)|H n (ω)|

IV. A NUMERICAL EXAMPLE

We now assess the previously described behaves well on a numerical example.

A. Description of the scenario

As an example, consider the composite signal y(t) = y 0 (t)s 0 ( t ε ) + y 1 (t)s 1 ( t ε ) + y 2 (t)s 2 ( t ε ) + O ∞ (ε 3 ), where y 0 , y 1 , y 2 are at least C 3 with y

(3) i bounded, and s 0 , s 1 , s 2 are 1-periodic and independent. Specifically, consider the three functions y 0 , y 1 , y 2 y 0 (t) = 2 sin(t) -1.5 sin( t 2 ), y 1 (t) = cos(t) - The first step is to orthogonalize the set (s 0 , s 1 , s 2 ) with Gram-Schmidt's process as described by [START_REF] Combes | Adding virtual measurements by signal injection[END_REF]. Define S 0 = s 0 ; since 1, s 1 = 0, define also S 1 = s 1 . For S 2 , we have s 2 , S 0 = 

1 D

 1 . Surroop, P. Martin and P. Rouchon are with the Centre Automatique et Systmes, MINES ParisTech, PSL Research

Fig. 1 .
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 22 Fig.2. The three components of y: y 0 (blue),y 1 (orange) and y 2 (green)
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 3 Fig. 3. The composite signal y
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 5 Fig.5. y 2 (red) and its estimation at order one P 1 2 (y) (blue), two P 2 2 (y) (orange) and three P 3 2 (y) (green) with ε = 0.1
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 6 Fig. 6. P n 2 -y for n = 1 (blue), 2 (orange), 3 (red) with ε = 0.1

  1.2 sin( t π ), y 2 (t) = 1.4 cos 2 ( t 3 ), shown in figure 2. The set of signals s 0 , s 1 , s 2 illustrated in figure 4a are defined on t ∈ [0, 1] by s 0 (t) = 1, s 1 (t) = cos(2πt), s 2 (

(b) Zoom on (a) Fig. 7. y 1 and its estimation at order one P 1 1 (y), two P 2 1 (y) and three P 3 1 (y) with ε = 0.1

The coordinates of y in this new basis are, using (4)

The two signals s 2 and S 2 are represented in figure 4b. The composite signal y can thus be rewritten as follows

Now we specify the expressions of the estimators P n i for n = 1, 2, 3 and i = 0, 1, 2. For this, we compute the matrices A n as defined in ( 6)

Solving α n A n = (1, 0, . . . 0) gives the values of the coefficients (α n i ). It follows the expressions (2) for P n (n = 1, 2, 3). Finally, corollary 1 provides the expression for each y i The simulations have been done in the time range t ∈ [0, 10] s with ε = 0.1, which is small enough compared to the rate of variation of the functions y 0 , y 1 and y 2 . We first retrieve y 2 using P n 2 . This estimate is then used to compute the estimation of y 1 and y 0 in accordance with the previous process. Figure 5 shows the function y 2 and its estimate P n 2 (y) computed for n = 0, 1, 2. The difference between y 2 and its estimates P n 2 (y) is illustrated in figure 6. It appears that the orders of magnitiude of these differences are consistent with the inequality provided by lemma 2: the amplitude P n 2 (y)-y 2 is approximately in ε n . The initialization period of the filter is nε, which explains the large error made by the estimators.

This estimate P 2 n (y) is then used to retrieve y 1 (notice that it can be used to retrieve y 0 as well). The order of approximation of y 1 is still the same, as can be observed in figure 7.

We repeat this simulation for different values of ε, and compute the RMS error e n 2 = 10 5 |y 2 (τ ) -P n 2 (τ )| 2 dτ (we restrict the computation of the error on t ∈ [START_REF] Combes | Obtaining the current-flux relations of the saturated pmsm by signal injection[END_REF]10] to avoid the initialization part of the filters). Figure 8 shows the evolution of the L 2 error as a function of ε in log scale. The slope of e n in log scale is equal to n in accordance to corollary 1.