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Abstract—We revisit higher-order averaging and ripple com-
putation for DC-DC converters in Continuous Conduction Mode,
following the modern treatment of periodic averaging theory. We
give a much simpler treatment of second-order averaging and
ripple computation than usually found in the power electronics
literature. We also extend it to third-order averaging, thus
significantly improving the accuracy of the approximations,
which is useful in particular when the switching frequency is
not very high.

Index Terms—DC-DC converters, ripple analysis, higher-order
averaging.

I. INTRODUCTION

A switched electronic system such as a DC-DC converter
is difficult to analyze and to some extent to simulate. This is
due to the fact that the underlying mathematical model is a
“composite” differential system, with one subsystem for each
configuration of the switches. A now standard analysis tool is
“plain” (i.e., first-order) averaging, which consists in approx-
imating this composite system by a single one describing the
“averaged” behavior, see e.g. [1, section 16.2]. Unfortunately,
first-order averaging is often not accurate enough, because
it doesn’t capture the ripple, which may be fairly important
unless the switching frequency is very high. In this case, it
is nevertheless possible to obtain a better approximation by
computing the ripple thanks to second-order averaging, see
in particular [2]–[8]. The approach, based on the so-called
Krylov–Bogoliubov–Mitropolsky method of averaging [9], is
considered quite complicated, hence less widely used as plain
averaging.

In this paper, we revisit higher-order averaging and ripple
computation for DC-DC converters in Continuous Conduction
Mode (CCM), following a more modern treatment of periodic
averaging theory as presented e.g. in [10, section 2.9]. The
contribution with respect to the power electronics literature is
mainly two-fold:

• a much simpler approach to second-order averaging and
computation of the corresponding ripple

• the extension to third-order averaging along the same
lines, with more complicated but still reasonably simple
calculations. This yields better approximations than the
second-order case, which can be useful for instance
when a great accuracy is needed or when the switching
frequency is low.

As a by-product, the asymptotic accuracy of the approximation
obtained by averaging is clearly stated, which is usually not
done in the power electronics literature.

The paper runs as follows: section II presents the general
model of a DC-DC converter which is considered, together
with some preliminary material; section III summarizes the
modern theory of higher-order periodic averaging, and applies
it to the DC-DC converter; finally, section IV illustrates the
interest of the approach with numerical simulations of an ideal
boost converter.

We list below some definitions and basic facts used through-
out the paper:
• if f is a T -periodic function, its mean is the constant f

defined by f := 1
T

∫ T
0
f(σ)dσ

• if f is a T -periodic function with zero mean, any primi-
tive of f is also T -periodic (this is not true if f 6= 0)

• if f is a T -periodic function with zero mean, its (unique)
primitive with zero mean is the T -periodic function f1
defined by

f1(τ) =

∫ τ

0

f(σ)dσ − 1

T

∫ T

0

∫ τ

0

f(σ)dσdτ

• O is the “Big-O” notation of analysis: if α and β are two
functions, α(ε) = O

(
β(ε)

)
means |α(ε)| ≤ C |β(ε)| for

some positive constant C when ε→ 0.

II. GENERAL MODEL OF A DC-DC CONVERTER

A. Putting a DC-DC converter into standard form

A DC-DC converter in CCM can generally be modeled by
a differential system of the form

dx

dt
= (A1x+ a1)q(t) + (A2x+ a2)

(
1− q(t)

)
, (1)

where the so-called switching function q is T -periodic; A1 and
A2 are constant n× n matrices, a1 and a2 are constant n× 1
vectors. It will be convenient for averaging to first put (1) into
the normalized form

dX

dτ
= ε
(
(AX + a) + (BX + b)s0(τ)

)
, (2)

where ε is a small parameter and s0 is 2π-periodic with zero
mean. To this end, we first rewrite (1) as

dx

dt
=
(
qA1 + (1− q)A2

)
x+ qa1 + (1− q)a2

+
(
(A1 −A2)x+ a1 − a2

)(
q(t)− q

)
,



where the first line of the rhs is independent of time and
the second line depends on time only through the zero mean
function q(t) − q. We next perform the change of variables
X(τ) = Px(t), where P is a suitable invertible matrix (in
general diagonal), and the time change τ := 2πt

T . This yields
the desired form (3), with

ε := T
2πλ

s0(τ) := q
(
T
2π τ
)

A := λP
(
qA1 + (1− q)A2

)
P−1

a := λP
(
qa1 + (1− q)a2

)
B := λP (A1 −A2)P−1

b := λP (a1 − a2);

λ is a scaling factor, chosen so as to balance the entries of A.
Remark 1: In the power electronics literature on averaging,

it is common to consider instead of (1) the composite system

dx

dt
= A1x+ a1 when the switch is on (i.e., q(t) = 1)

dx

dt
= A2x+ a2 when the switch is off (i.e., q(t) = 0).

Working with a single differential system containing a switch-
ing function such as (1) or (2) makes (higher-order) averaging
easier to handle, because it fits directly into the mathematical
framework of the theory.

Remark 2: The normalized form (2) is by no mean unique,
nor even a mandatory step for performing averaging in prac-
tice. It is rather a normalization step that highlights a small
parameter ε which motivates the averaging analysis. In theory,
the averaging process must be conducted on the normalized
form to be justified, and only then can everything be expressed
back into the original variables; in practice, it could be
conducted directly on the original system (1), provided one
is careful in evaluating what is “small” and what isn’t (which
is not so easy when considering non-normalized quantities).

B. Example: ideal boost converter

Figure 1. Ideal boost converter.

We illustrate the normalization step of section II-A on the
ideal boost converter of Fig. 1. The converter is modeled by

L
dı

dt
= vinq(t) + (vin − v)

(
1− q(t)

)
C
dv

dt
= ı
(
1− q(t)

)
− v

R
,

where ı is the current into the inductor L and v is the voltage
across the capacitor C; the switching function applied to the
transistor is the standard PWM signal with (constant) duty
ratio d and frequency 1

T

q(t) =

{
1, 0 < t mod T ≤ Td
0, Td < t mod T ≤ T,

and satisfies q = d.
Changing then time and variables according to

τ := 2π
t

T

I :=

√
L
R

RC

Rı

vin
=

√
L

C

ı

vin

V :=
v

vin
,

and selecting the scaling factor λ :=
√
LC

1−d , we readily find

dI

dτ
= ε
(
−V + 1

1−d + V s0(τ)
)

dV

dτ
= ε
(
I − µV − Is0(τ)

)
with

ε :=
T (1− d)

2π
√
LC

µ :=
1

R(1− d)

√
L

C

s0(τ) :=
q(t)− d

1− d
.

The transformed system has the desired form (2), with A =(
0 −1
1 −µ

)
, a =

(
1/(1−d)

0

)
, B =

(
0 1
−1 0

)
, b =

(
0
0

)
, and s0 = 0.

C. Periodic functions shaping the ripple

We will see in sections III-B and III-C that the state ripple
is shaped by some periodic functions derived from s0, namely
• s1 (zero-mean primitive of s0) for second-order averaging
• s1, s2 (zero mean primitive of s1), and (s0s1)1 (zero

mean primitive of s0s1) for third-order averaging.
As an example, we compute here these functions in the case
of the standard PWM switching function q of section II-B.
They are displayed in Fig. 2 for the case d := 0.7.

From the definition of the switching function q, we have

s0(τ) =

{
1, 0 < τ

2π ≤ d
−d
1−d , d < τ

2π ≤ 1,



Figure 2. Periodic functions s0, s1, s2, and (s0s1)1 for d := 0.7.

where τ := τ mod 2π; clearly, s0 = 0. As it is some-
what awkward to manipulate a piecewise-defined function, we
equivalently rewrite s0 as

s0(τ) =
1− 2d− sign(τ − 2πd)

2(1− d)
.

We then find

s1(τ) =

∫ τ

0

s0(σ)dσ − 1

2π

∫ 2π

0

∫ τ

0

s0(σ)dσdτ

=
(1− 2d)τ − |τ − 2πd|+ 2πd2

2(1− d)

s2(τ) =

∫ τ

0

s1(σ)dσ − 1

2π

∫ 2π

0

∫ τ

0

s1(σ)dσdτ

=
(1− 2d)τ 2 − (τ − 2πd) |τ − 2πd|

4(1− d)

+
3πd2τ − π2d(2d2 + 1)

3(1− d)

(s0s1)1(τ) =

∫ τ

0

(s0s1)(σ)dσ − 1

2π

∫ 2π

0

∫ τ

0

(s0s1)(σ)dσdτ

=
s21(τ)− s21

2

=
((1− 2d)τ − |τ − 2πd|+ 2πd2)2

8(1− d)2
− π2d2

6
,

where the last but one line stems from integrating by parts. It is
easily seen that, as desired, s′1 = s0, s′2 = s1, (s0s1)′1 = s0s1,
and s1 = s2 = (s0s1)1 = 0.

III. HIGHER-ORDER AVERAGING

We first summarize the theory of higher-order periodic
averaging along the lines of [10, section 2.9]. We then apply it
to the DC-DC converter; the second-order case turns out to be
very simple, whereas the third-order case is more complicated
but still easily tractable.

A. A summary of higher-order periodic averaging theory

Consider the differential system

dX

dτ
= εf(X, τ), (3)

where ε is a “small” parameter, and f is 2π-periodic with
respect to its second argument. The theory of kth-order
averaging asserts it is possible to find a time-invariant system

dX

dτ
= εg1(X) + · · ·+ εkgk(X), (4)

such that the solution X(τ) of (3) and the solution X(τ) of (4)
are related by

X(τ) = X(τ) +

k−1∑
i=1

εiui
(
X(τ), τ

)
+O(εk), τ > τ0,

for some suitable ui 2π-periodic with respect to their second
arguments, provided their initial conditions are also related by

X(τ0) = X(τ0) +
k−1∑
i=1

εiui
(
X(τ0), τ0

)
+O(εk).

The gi’s and ui’s are not uniquely defined (there are infinitely
many possible solutions), but for g1, which is necessarily the
time average of f , i.e., g1(X) = 1

2π

∫ 2π

0
f(X, τ)dτ . In the

sequel, we will further impose the ui’s to have zero mean,
which then uniquely defines them as well as the gi’s; in
particular, this yields g2 = 0. The physical reason for this
choice is that the εiui’s appear as small zero-mean “ripples”
on top of the “averaged value” X .

The proof comprises two main steps. The first step is to
determine a so-called quasi-identity transformation

X = X̃ +

k−1∑
i=1

εiui(X̃, τ)

which puts the system into

dX̃

dτ
= εg1(X̃) + · · ·+ εkgk(X̃) + εkh(X̃, τ) +O(εk+1); (5)

the whole point is that the transformed system does not depend
on τ except through the zero-mean function h. This step is
purely computational, and several solutions are possible. The
second step is a comparison result. It asserts the averaged
system (4) obtained by truncating (5) has in fact the same
solution as (5) to order εk, starting from the same initial
conditions; the remarkable point is that the term εkh in (5) has
therefore no influence at order εk because it has zero mean.
The overall conclusion then immediately follows from those
two steps.

B. Second-order averaging for DC-DC converters

We now apply the general theory of section III-A to second-
order averaging of a DC-DC converter. We thus start with a
system in the form (2), with initial condition X(τ0) := X0.
On the other hand, consider the time-invariant system

dX

dτ
= ε(AX + a), (6)



with initial condition X(τ0) := X0 given by

X0 = X0 + ε(BX0 + b)s1(τ0),

where s1 is the primitive of s0 with zero-mean.
We will establish that the solution X(τ) of (2) and the

solution X(τ) of (6) are related by

X(τ) = X(τ) + ε
(
BX(τ) + b

)
s1(τ) +O(ε2). (7)

X(τ) therefore decomposes as a “slowly-varying” part X(τ)
and a small periodic ripple ε

(
BX(τ) + b

)
s1(τ) with “slowly-

varying” amplitude.
We first show the quasi-identity transformation

X = X̃ + ε
(
BX̃ + b

)
s1(τ) (8)

puts (2) into

dX̃

dτ
= ε(AX̃ + a) + ε2Z(X̃, τ) +O(ε3), (9)

where Z is a term with zero mean yet to define. On the one
hand, plugging (8) into the rhs of (2) yields

dX

dτ
= ε
(
(AX̃ + a) + (BX̃ + b)s0(τ)

)
+ ε2Z1(X̃, τ), (10)

where

Z1(X̃, τ) := A(BX̃ + b)s1(τ) +B(BX̃ + b)(s0s1)(τ)

has zero mean. Indeed, s1 has by construction zero mean, and

s0s1 =
1

2π

[s21(τ)

2

]2π
0

= 0.

On the other hand, differentiating (8) yields

dX

dτ
= ε
(
(AX̃ + a) + (BX̃ + b)s0(τ)

)
+ ε2Z2(X̃, τ) + ε2Z(X̃, τ) +O(ε3), (11)

where Z2(X̃, τ) := B(AX̃ + a)s1(τ) has obviously zero
mean. Setting then Z := Z1 − Z2, we find that (10) and (11)
agree to order ε2. That is, (8) transforms (2) into (9), with Z
by construction zero mean.

We conclude by using the comparison result: since Z has
zero mean, the averaged system (6) has the same solution
as (9) to order ε2, which directly implies the claim.

Remark 3: As mentioned in section III-B, the averaged
system (6) has no term in ε2 because the transformation (hence
the ripple) has zero mean.

C. Third-order averaging for DC-DC converters

Similarly, but with more tedious calculations, we can handle
third-order averaging for a DC-DC converter. We start as
before with a system in the form (2), with initial condition
X(τ0) := X0. On the other hand, we consider the time-
invariant system

dX

dτ
= ε(AX + a)− ε3B

(
(AB −BA)X +Ab−Ba

)
s21, (12)

with initial condition X(τ0) := X0 given by

X0 = X0 + ε(BX0 + b)s1(τ0)

+ ε2
(
(AB −BA)X0 +Ab−Ba

)
s2(τ0)

+ ε2B(BX0 + b)(s0s1)1(τ0);

s2 is the primitive of s1 with zero-mean, and (s0s1)1 the
primitive of s0s1 with zero-mean.

We will establish that the solution X(τ) of (2) and the
solution X(τ) of (12) are related by

X(τ) = X(τ) + ε
(
BX(τ) + b

)
s1(τ)

+ ε2
(
(AB −BA)X(τ) +Ab−Ba

)
s2(τ)

+ ε2B(BX + b)(s0s1)1(τ) +O(ε3) (13)

Thus, on top of the first-order ripple ε
(
BX(τ)+b

)
s1(τ), there

is also a second-order ripple modulated by s2 and (s0s1)1.
Notice also that the averaged system (12) has a term in ε3 but
as usual no term in ε2.

We first show the quasi-identity transformation

X(τ) = X̃(τ) + ε
(
BX̃(τ) + b

)
s1(τ)

+ ε2
(
(AB −BA)X̃(τ) +Ab−Ba

)
s2(τ)

+ ε2B(BX̃ + b)(s0s1)1(τ) (14)

puts (2) into

dX̃

dτ
= ε(AX̃ + a)− ε3B

(
(AB −BA)X̃ +Ab−Ba

)
s21

+ ε3Z(X̃, τ) +O(ε4), (15)

where Z is a term with zero mean yet to define. On the one
hand, plugging (14) into the rhs of (2) yields

dX

dτ
= ε
(
(AX̃ + a) + (BX̃ + b)s0(τ)

)
+ ε2

(
A+Bs0(τ)

)
(BX̃ + b)s1(τ)

+ ε3B
(
(AB −BA)X̃ +Ab−Ba

)
s0s2

+ ε3Z1(X̃, τ), (16)

where

Z1(X̃, τ) := A
(
(AB −BA)X̃ +Ab−Ba

)
s2(τ)

+AB(BX̃ + b)(s0s1)1(τ)

+B
(
(AB −BA)X̃ +Ab−Ba

)(
(s0s2)(τ)− s0s2

)
+B2(BX̃ + b)

(
s0(s0s1)1

)
(τ)

has zero mean. Indeed, s2, (s0s1)1 and s0s2 − s0s2 have by
construction zero mean; moreover, integrating by parts gives

s0(s0s1)1 =
1

2π

[(
s1(s0s1)1

)
(τ)
]2π
0
− s1(s0s1)

= 0− 1

2π

[s31(τ)

3

]2π
0

= 0.



Figure 3. Currents ı, ı1, ı2, ı3 at 20 kHz.

On the other hand, differentiating (14) yields

dX

dτ
= ε
(
(AX̃ + a) + (BX̃ + b)s0(τ)

)
+ ε2(A+Bs0(τ))(BX̃ + b)s1(τ)

− ε3B
(
(AB −BA)X̃ +Ab−Ba

)
s21

+ ε3Z2(X̃, τ) + ε3Z(X̃, τ) +O(ε4), (17)

where

Z2(X̃, τ) := B2(AX̃ + a)(s0s1)1(τ)

+ (AB −BA)(AX̃ + a)s2(τ)

has obviously zero mean. Setting then Z := Z1−Z2, we find
that (16) and (17) agree to order ε3. That is, (14) transforms (2)
into (15), with Z by construction zero mean.

We conclude once again by using the comparison result:
since Z has zero mean, the averaged system (12) has the same
solution as (15) to order ε3, which directly implies the claim.

Figure 4. Currents ı, ı1, ı2, ı3 at 20 kHz (zoom).

IV. NUMERICAL SIMULATIONS: IDEAL BOOST CONVERTER

We illustrate the results of the previous sections on the ideal
boost converter of section II-B, with values R = 3 Ω, L =
250 µH, C = 200 µF, d = 0.7, and vin = 24 V. The system
was first normalized as explained in section II-B, then the
second- and third-order averaging procedures were applied;
finally the resulting equations were expressed back into the
original variables, and simulated with Matlab-Simulink. The
averaged system for second-order averaging is given by (6) and
the ripple by (7); the averaged system for third-order averaging
is given by (12) and the ripple by (13). The periodic functions
appearing in these expressions are computed in section II-C.

The first numerical experiment was performed with the
PWM frequency 1

T = 20 kHz. Fig. 3 displays the evolution
of the currents: ı is the true value of the current, ı1 is
its approximation with plain first-order averaging (i.e., the
solution of (6) with no ripple correction), ı2 its approximation
with second-order averaging, and ı3 its approximation with
third-order averaging. As expected, the errors between the
true and approximated currents significantly decrease with
the averaging order. Fig. 4 provides a closer view around
t = 3 ms; the ripple is very close to the triangular shape of
s1, because the ε2-ripple is very small. Fig. 5 and Fig. 6 show
the corresponding information for the voltages.

To better highlight the interest of third-order averaging, the
same numerical experiment was performed with the rather low
PWM frequency 1

T = 2 kHz: the approximations given by
second-order averaging are now noticeably off the true values,
whereas the approximations given by third-order averaging are
still very good, see Fig. 7 and 9; besides the ripple is now
only vaguely triangular, because the ε2-ripple is no longer
negligible, see Fig. 8 and 10.

Notice the errors between the true and approximated val-
ues behave quantitatively according to the theory: 101 times
smaller at 20 kHz than at 2 kHz for first-order averaging,



Figure 5. Voltages v, v1, v2, v3 at 20 kHz.

Figure 6. Voltages v, v1, v2, v3 at 20 kHz (zoom).

Figure 7. Currents ı, ı1, ı2, ı3 at 2 kHz.

Figure 8. Currents ı, ı1, ı2, ı3 at 2 kHz (zoom).



Figure 9. Voltages v, v1, v2, v3 at 2 kHz.

Figure 10. Voltages v, v1, v2, v3 at 2 kHz (zoom).

102 times smaller for second-order averaging, and 103 times
smaller for third-order averaging,

V. CONCLUSION

We have presented a revisited derivation of ripple computa-
tion in DC-DC converters by higher-order periodic averaging,
together with error estimates. The expressions so obtained
are very simple for second-order averaging, and still easily
tractable for third order averaging. Numerical simulations
confirm the relevance of the approach, and the interest of con-
sidering third-order averaging when the switching frequency
is low.
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