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11

Abstract12

Bridging brain-scale circuit dynamics and organism-scale behavior is a central challenge in13

neuroscience. It requires the concurrent development of minimal behavioral and neural circuit14

models that can quantitatively capture basic sensorimotor operations. Here we focus on15

light-seeking navigation in zebrafish larvae. Using a virtual reality assay, we first characterize how16

motor and visual stimulation sequences govern the selection of discrete swim-bout events that17

subserve the fish navigation in the presence of a distant light source. These mechanisms are18

combined into a comprehensive Markov-chain model of navigation that quantitatively predict the19

stationary distribution of the fish’s body orientation under any given illumination profile. We then20

map this behavioral description onto a neuronal model of the ARTR, a small neural circuit involved21

in the orientation-selection of swim bouts. We demonstrate that this visually-biased22

decision-making circuit can similarly capture the statistics of both spontaneous and contrast-driven23

navigation.24

25

Introduction26

Animal behaviors are both stereotyped and variable: they are constrained at short time scale to a27

finite motor repertoire while the long-term sequence of successive motor actions displays apparent28

stochasticity. Behavior is thus best described as a set of statistic rules that defines how elementary29

motor actions are chained. In the presence of sensory cues, two types of behavioral responses can30

be distinguished. If they signal an immediate threat or reward (e.g. the presence of a predator or31

a prey), they may elicit a discrete behavioral switch as the animal engages in a specialized motor32

program (e.g. escape or hunt, Budick and O’Malley (2000); Fiser et al. (2004); Bianco et al. (2011);33

McClenahan et al. (2012); Bianco and Engert (2015)). However, most of the time, sensory cues34

merely reflect changes in external factors as the animal navigates through a complex environment.35

These weak motor-related cues interfere with the innate motor program to cumulatively promote36

the exploration of regions that are more favorable for the animal (Tsodyks et al., 1999; Fiser et al.,37

2004).38

A quantification of sensory-biased locomotion thus requires to first categorize the possible39

movements, and then to evaluate the statistical rules that relate the selection of these different40
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actions to the sensory and motor history. Although the probabilistic nature of these rules generally41

precludes a deterministic prediction of the animal’s trajectory, they may still provide a quantification42

of the probability distribution of presence within a given environment after a given exploration43

time.44

In physics terms, the animal can thus be described as a random walker, whose transition45

probabilities are a function of the sensory inputs. This statistical approach was originally introduced46

to analyze bacteria chemotaxis (Lovely and Dahlquist, 1975). Motile bacteria navigate by alternating47

straight swimming and turning phases, so-called runs and tumbles, resulting in trajectories akin to48

random walks (Berg and Brown, 1972). Chemotaxis originates from a chemical-driven modulation49

of the transition probability from run to tumble: the transition rate is governed by the time-history50

of chemical sensing. How this dependency is optimized to enhance gradient-climbing has been51

the subject of extensive literature (Macnab and Koshland, 1972; Adler and Tso, 1974; Mello and52

Tu, 2007; Yuan et al., 2010; Celani and Vergassola, 2010). More recently, similar descriptions have53

been successfully used to quantify chemotaxis and phototaxis in multi-cellular organisms such as C.54

elegans (Ward, 1973;Miller et al., 2005;Ward et al., 2008), Drosophila larva (Sawin et al., 1994; Kane55

et al., 2013; Gomez-Marin et al., 2011; Tastekin et al., 2018) or different types of slugs (Matsuo56

et al., 2014; Marée et al., 1999). Although the sensorimotor apparatus of these animals are very57

different, the taxis strategies at play appear to be convergent and can be classified based on the58

gradient sensing methods (Fraenkel and Gunn, 1961; Gomez-Marin and Louis, 2012). Tropotaxis59

refers to strategies in which the organism directly and instantaneously infers the stimulus direction60

by comparison between two spatially distinct sensory receptors. In contrast, during klinotaxis, the61

sensory gradient is inferred from successive samplings at different spatial positions. This second62

strategy is particularly adapted when the organism has only one receptor, or if the sensory gradient63

across the animal’s body is too small to be detected (Humberg et al., 2018). It requires at least a64

basic form of memory, since the sensory information needs to be retained for some finite period of65

time.66

In the present work, we implement such a framework to produce a comprehensive statistical67

model of phototaxis in zebrafish larvae. Zebrafish larva is currently the only vertebrate system68

that allows in vivo whole-brain functional imaging at cellular resolution (Panier et al., 2013; Ahrens69

et al., 2013). It thus provides a unique opportunity to study how sensorimotor tasks, such as70

sensory-driven locomotion, are implemented at the brain-scale level.71

Although adult zebrafish are generally photophobic (or scototactic, Serra et al. (1999);Maximino72

et al. (2007)), they display positive phototaxis at the larval stage, from 5 days post-fertilization (dpf)73

on (Orger and Baier, 2005). At this early stage, their locomotion consists of a series of discrete74

swimming events interspersed by ∼ 1 s long periods of inactivity (Girdhar et al., 2015). Previous75

studies have shown that, when exposed to a distant light source, the first bout executed by76

the fish tend to be orientated in the direction of the source (tropotaxis) (Burgess et al., 2010).77

Furthermore, Chen and Engert (2014) have shown, using a virtual reality assay, that zebrafish78

are able to confine their navigation within a bright region within a dark environment even when79

deprived from stereovisual contrast information. This latter study thus established that their80

phototactic behavior also involves a spatio-temporal integration mechanism (klinotaxis).81

From a neuronal viewpoint, recent calcium imaging experiments identified a well defined circuit82

in the rostral hindbrain that plays a key role in phototaxis (Ahrens et al., 2013; Dunn et al., 2016;83

Wolf et al., 2017). This region, called ARTR (anterior rhombencephalic turning region) or HBO84

(hindbrain oscillator), displays pseudo-periodic antiphasic oscillations, such that the activity of the85

left and right subpopulations alternate with a ∼ 20s period. This alternation was shown to set the86

coordinated direction of the gaze and tail bout orientation, thus effectively organizing the temporal87

sequence of the successive reorientations. It was further shown that this circuit oscillation could be88

driven by whole-field illumination of the ipsilateral eye, such as to favor the animal’s orientation89

towards a light source (Wolf et al., 2017).90

In the present study, we aim at quantifying the statistical rules that control the larva’s reorien-91
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tation dynamics in the presence of a continuous angular gradient of illumination (orientational92

phototaxis). Using a virtual-reality closed-loop assay, we quantify how swim bouts selection is93

statistically controlled by the light intensity received on both eyes prior to the bout initiation, or94

the change in illumination elicited by the previous swim bout. Our experimental configuration95

allows us to disentangle the contribution of the two aforementioned strategies: tropotaxis and96

klinotaxis. From the analysis of this short-term behavior, we built a minimal Markov model of97

phototaxis, from which we compute the long-term distribution of orientations for any angular98

profile of illumination. This model offers explicit predictions of the statistics of the fish orientation99

that quantitatively compare with the experimental observations. We further expand on a recent100

rate model of the ARTR circuit to propose a functional neuronal model of spontaneous navigation101

and contrast-biased orientation selection. We demonstrate that the statistics of turn orientation102

can be fully understood by assuming that this self-oscillating circuitry, that selects the orientation of103

turning bouts, integrates stereovisual contrast in the form of incoming currents proportional to the104

visual stimulus.105

Results106

Kinematics of spontaneous navigation as a first-order autoregressive process107

Zebrafish larvae aged 5-7 dpf were placed one at a time in a Petri dish (14cm in diameter). Their108

center-mass position and body axis orientation were tracked in real time at 35 frames/s (Figure 1A-109

B). This information was used to deliver a body-centered visual stimulus using a video-projector110

directed onto a screen supporting the Petri dish.111

Prior to each phototactic assay, the larva was allowed an ≈ 8 min-long period of spontaneous112

exploration under uniform and constant illumination at maximum intensity Imax = 450�W .cm−2.113

Such pre-conditioning phases were used to promote light-seeking behavior (Burgess and Granato,114

2007), while enabling the quantification of the basal exploratory kinematics for each fish.115

Larval zebrafish navigation is comprised of discrete swim bouts lasting ≈ 100ms and interspersed116

with 1 to 2s-long inter-bout intervals (�n) during which the fish remains still (Dunn et al., 2016). Each117

bout results in a translational motion of the animal and/or a change in its body axis orientation, and118

can thus be automatically detected from kinematic parameters. As we are mostly interested in the119

orientational dynamics, we extracted a discrete sequence of orientations �n measured just before120

each swimming event n (Figure 1B-C) from which we computed the bout-induced reorientation121

angles ��n = �n+1 − �n.122

Although the complete swim bouts repertoire of zebrafish larvae is rich and complex (Marques123

et al., 2018; Johnson et al., 2019), the statistical distribution of the reorientation angles P (��n) in124

such unbiased conditions can be correctly captured by the weighted sum of two zero-mean normal125

distributions, P (��n) = pturn (0, �2
turn

) + pfwd (0, �2
fwd

), reflecting the predominance of only two126

distinct bouts types: turning bouts (standard deviation �turn = 0.6) and forward scoots (�fwd = 0.1)127

(Figure 1D). This bimodal distribution is consistent with the locomotor repertoire of larvae described128

byMarques et al. during spontaneous swimming and phototactic tasks (Marques et al., 2018). In the129

absence of a visual bias, the turning bouts and forward scoots were found to be nearly equiprobable,130

pturn = 1 − pfwd = 0.41.131

Successive bouts were found to exhibit a slightly positive correlation in amplitude (Figure 1F).132

This process can be captured by a 2-state Markov chain model that controls the alternation between133

forward and turning bouts, while the amplitude within each population is randomly sampled134

from the corresponding distribution (Figure 1E). Within this scheme, we analytically derived the135

dependence in the amplitude of successive bouts and thus estimated the forward-to-turn and136

turn-to-forward transition rates, noted kf→t and kt→f . We found that kf→t∕pturn = kt→f∕pfwd ≈ 0.8.137

This indicates that the probability to trigger a turn (resp. forward) bout is decreased by only 20% if138

the previous bout is a forward (resp. turn) bout. For the sake of simplicity, we ignore in the following139

this modest bias in bout selection and assume that the chaining of forward and turning bout is140
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Figure 1. Kinematics of spontaneous navigation. (A) Experimental setup: real-time monitoring of the larva

position and orientation using IR illumination, enables closed-loop visual stimulation using a video projector.

(B) Typical trajectory of a 6 days old larva in the region of interest (ROI) of the arena under constant, uniform

illumination. Each point indicates the fish position at the onset of a swim bout. Dots’ size and color encode

the bout distance and bout reorientation angle, respectively. Insets: blow-up of an example frame (left) and

definition of the reorientation angle ��n at bout number n (right). b.len : body length. (C) Time-sequence

of the fish body orientation � (top). Swim bouts elicit rapid re-orientations. The angular dynamics can thus

be represented as a series of discrete reorientation events of various amplitudes ��n (color code as in (B)).

(D) Experimental (dark) and analytical (blue) distributions (pdf : probability density function) of reorientations

��n. The two normal distributions used in the fit with Equation A1, weighted by pturn and 1 − pturn, are also

displayed in dashed blue lines. (E) Two independent Markov chains model for spontaneous navigation: the bout

type chain controls the forward scoot (F ) versus turning (T ) state, with transitions rates kT→F and kF→T . The

side chain controls the transitions between left (L) and right (R) headings when the animal is in the turning

state, with transition rate kflip. (F) Mean squared reorientation amplitude of bout n + 1 as a function of the

squared amplitude of bout n (grey), and its associated analytical fit (blue, Appendix 1 Equation A5). (G) Average

reorientation of bout n + 1 as a function of the reorientation at bout n (grey), and its associated analytical fit

(blue, Equation A11). (H) Correlation in reorientation angles Cq as a function of the number of bouts (grey) and

associated fit (blue, Equation A14). (I) Mean square reorientation (MSR) Mq as a function of the cumulative

number of bouts, and associated fit (blue, Equation A16). The dotted line is the linear extrapolation of the

first two data points and corresponds to the diffusive process expected for a memory-less random walk (no

correlation in bout orientation). ( J) Orientation correlation of turning bouts (thresholded at 0.22rad) as a function

of the time elapsed between those bouts. The blue line is the exponential fit.
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memory-less by setting kf→t = pturn and kt→f = pfwd .141

In line with previous observations (Chen and Engert, 2014; Dunn et al., 2016), we also noticed142

that successive turning bouts tended to be oriented in the same (left or right) direction (Figure 1G).143

This orientational motor persistence was accounted for by a second Markov chain that sets the144

orientation of turning bouts, and is controlled by the rate of flipping direction noted kflip (Figure 1E145

bottom). Notice that, in contrast with the model proposed by (Dunn et al., 2016), although the146

orientational state is updated at each bout, it only governs the direction of turning bouts. When a147

forward bout is triggered, its orientation is thus unbiased.148

This model provides an analytical prediction for the mean reorientation angle ⟨��n⟩|��n−1 at bout149

n following a reorientation angle ��n−1 at bout n − 1 (see Annex 1). This expression was used to150

fit the experimental data (Figure 1G) and allowed us to estimate the flipping rate pflip = 0.19 (99%151

confidence bounds ±0.017). We further computed the autocorrelation function of the reorientation152

angles and the Mean Square Reorientation (MSR) accumulated after n bouts (Figure 1H-I). Both were153

consistent with their experimental counterparts. In particular, this model quantitatively captures154

the ballistic-to-diffusive transition that stems from the directional persistence of successive bouts155

(Figure 1I). As a consequence, the effective rotational diffusivity at long time Deff = 0.3rad2 is about156

twice as large than the value expected for a memory-less random walk with pflip = 0.5 (Figure 1I157

dashed line).158

In this discrete Markov-chain model, time is not measured in seconds but corresponds to the159

number of swim bouts. It thus implicitly ignores any dependence of the transition rates with the160

interbout interval. We examined this hypothesis by evaluating the correlation in bouts orientations161

as a function of the time elapsed between them. To do so, we first selected the putative turning162

bouts by selecting the large amplitude events (|��| < 0.22rad). We then binarized their values, based163

on their leftward or rightward orientation, yielding a discrete binary signal s(tn) = ±1. We finally164

computed the mean product ⟨s(tn)s(tp)⟩ for various time intervals Δt = tp − tn. The resulting graph,165

shown in Figure 1J, demonstrates that the correlation in orientation of successive bouts decays166

quasi-exponentially with the inter-bout period. This mechanism can be captured by assuming that167

the orientation selection at each bout is governed by a hidden two-state continuous-time process.168

The simplest one compatible with our observations is the telegraph process, whose transition169

probability over a small interval dt reads kflipdt, and whose autocorrelation decays as exp(−2kflipt).170

Setting kflip = pflip∕median(�n) = 0.2s−1, this model thus correctly captures the �n-dependence of the171

orientational correlation of bouts.172

In the two following sections, we use the discrete version of the Markov-model to represent173

the fish navigation, and investigate how the model’s parameters are modulated in the presence of174

a virtual distant light source. We then go back to the underlying continuous-time process when175

introducing a neuronal rate model for the orientation selection process.176

Contrast-driven phototaxis can be described as a biased random walk177

We first examined the situation in which the perceived stereo-visual contrast is the only cue178

accessible to the animal to infer the direction of the light source (tropotaxis regime). The visual179

stimulus consisted of two uniformly lit half-disks, each covering one visual hemifield. The intensity180

delivered to the left and right eyes, noted IL and IR respectively, were locked onto the fish’s181

orientation relative to the virtual light source � (Figure 2A-C): the total intensity (IL + IR) was182

maintained constant while the contrast c = IL−IR was varied linearly with �, with a mirror symmetry183

at �∕2 (Figure 2B). This dependence was chosen to mimic the presence of a distant source located184

at � = 0 (Figure 2B), for which the contrast is null.185

The orientation of the virtual source in the laboratory frame of reference was randomly selected186

at initiation of each assay. After only a few bouts, the animal orientation was found to be statistically187

biased towards � = 0, as shown in Figure 2C-D. This bias was quantified by computing the population188

resultant vector R defined as the vectorial mean of all orientations (Figure 2E).189

Trajectories that are strongly biased towards the source tend to exit the ROI earlier than unbiased190
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trajectories, which are more tortuous and thus more spatially confined. This generates a progressive191

selection bias as the number of bouts considered is increased, as revealed by the slow decay of the192

resultant vector length (Figure 2–Figure Supplement 1). In order to mitigate this selection bias, all193

analyses of stationary distributions were restricted to bout indices lower than the median number194

of bouts per trial (N ≤ 17), and excluding the first bout. Under this condition, we found that ∼ 77% of195

zebrafish larvae display a significant phototactic behavior (Figure 2D, test of significance based on a196

combination of two circular statistic tests, see Methods), a fraction consistent with values reported197

by Burgess et al. (2010) in actual phototactic assays .198

From these recordings, we could characterize how the contrast experienced during the inter-bout199

interval impacts the statistics of the forthcoming bout. Figure 2G displays the mean reorientation200

�� as a function of the instantaneous contrast c. This graph reveals a quasi-linear dependence201

of the mean reorientation with c, directed towards the brighter side. Notice that the associated202

slope shows a significant decrease in the few first bouts, before reaching a quasi-constant value203

(Figure 2–Figure Supplement 2). This effect likely reflects a short term habituation mechanism, as204

the overall intensity drops by a factor of 2 at the initiation of the assay.205

For a more thorough analysis of the bout selection mechanisms leading to the orientational206

bias, we examined, for all values of the contrast, the mean and variance of the two distributions207

associated with turning bouts and forward scoots, as well as the fraction of turning bouts pturn208

(Figure 2H-K). We found that the orientational drift solely results from a probabilistic bias in the209

selection of the turning bouts (left vs right) orientation: the mean orientation of the turning bouts210

varies linearly with the imposed contrast (Figure 2I). Reversely, the ratio of turning bouts and the211

variance of the two distributions are insensitive to the contrast (Figure 2J-K). These results indicate212

that the stereo-visual contrast has no impact neither on bout type selection nor on bout amplitude.213

As discussed in the preceding section, successive bouts tend to be oriented in the same direction.214

During phototaxis, the selection of the turning orientation is thus expected to reflect a competition215

between two distinct mechanisms: motor persistence, which favors the previous bout orientation,216

and stereo-visual bias, which favors the brighter side. To investigate how these two processes217

interfere, we sorted the bouts into two categories. In the first one, called "reinforcement", the218

bright side is in the direction of the previous bout, such that both the motor and sensory cues act219

in concert. In the second one, called "conflicting", the contrast tends to evoke a turning bout in a220

direction opposite to the previous one. For each category, we plotted the mean reorientation angle221

at bout n as a function of the reorientation angle at bout n − 1 (Figure 2L). We further estimated, for222

each condition and each value of the contrast, the probability of flipping orientation pflip (Figure 2M223

and Methods). These two graphs show that the stereo-visual contrast continuously modulates the224

innate motor program by increasing or decreasing the probability of flipping bout orientation from225

left to right and vice versa. Noticeably, in the conflicting situation at maximum contrast, the visual226

cue and motor persistence almost cancel each other out such that the mean orientation is close to227

0 (pflip ∼ 0.4).228

Phototaxis under uniform stimulation is driven by a modulation of the orienta-229

tional diffusivity230

We now turn to the second paradigm, in which the stereo-visual contrast is null (both eyes receive231

the same illumination at any time), but the total perceived illumination is orientation-dependent232

(klinotaxis regime). We thus imposed a uniform illumination to the fish whose intensity I was locked233

onto the fish orientation � relative to a virtual light source. We tested three different illumination234

profiles I(�) as shown in Figure 3A: a sinusoidal and two exponential profiles with different maxima.235

Despite the absence of any direct orientational cue, a large majority of the larvae (78%) displayed236

positive phototactic behavior: their orientational distribution showed a significant bias towards the237

virtual light source, i.e. the direction of maximum intensity (Figure 3C-E).238

Although the efficiency of the phototactic behavior is comparable to the tropotaxis case previ-239

ously examined, here we did not observe any systematic bias of the reorientation bouts towards240
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Figure 2. Contrast-driven phototaxis as a biased random walk. N = 47 fish, 18, 322 bouts. All statistical analysis

are performed on the first 17 bouts, the first one excluded, for each assay. VS : virtual source. (A) Stimulus

pattern delivered to the larva. The orientation relative to the virtual source is noted �. (B) Left and right

intensities (top panel) and contrast c =
IL−IR
IL+IR

(bottom panel) as a function of �. The virtual light source is defined

by a null contrast (c = 0) and corresponds to a stable point ( dc
d�

< 0). (C) Probability density function (pdf) of

orientations relative to the virtual light source for one fish during 20 trials, bouts 2 to 17 (n=320 bouts). (D)

Probability density function (pdf) of orientations for all tested fish (N = 47). Significantly biased toward the

virtual source (V-test for non-uniformity with specified mean 0 (pval < 10−11) (E) Definition of the mean resultant

vector length R for one fish. The points represent the angular positions �n of the fish relative to the source. The

length of the resultant vector is defined, in the complex plane, as R =
|||
1

N

∑
exp i�n

|||. (F) Resultant vectors R for
individual fish. (G) Mean reorientation ⟨��n⟩ per bout as a function of contrast c for all fish. Error bars represent
the standard error of the mean. Red line is the linear fit with slope 0.2 rad. (H) Illustration of the shift in turning

distribution (�t < 0) induced by a negative contrast. (I) Means, (J) standard deviations and (K) relative weight

of the turning distribution as a function of the contrast. For each value of the contrast, these quantities were

extracted by double-Gaussian fitting of the bout angles. The error bars represent the 99% confidence interval

from the fit. (L) Average reorientation at bout n + 1 as a function of the reorientation at bout n in reinforcing

(contrast and previous bout orientation are consistent) or conflicting (contrast and previous bout orientation are

in conflict) situations. The dashed line is the analytical prediction in the absence of stimulation. (M) Probability

of switching direction pflip as a function of the contrast, in situations of conflict or reinforcement.

Figure 2–Figure supplement 1. Evolution of R as a function of bout number

Figure 2–Figure supplement 2. Evolution of bias slope with bout number
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the brightest direction (Figure 3F). This indicates that the larvae do not use the change in intensity241

at a given bout to infer the orientation of the source in order to bias the orientation of the forth-242

coming turn. Instead, the phototactic process originates from a visually-driven modulation of the243

orientational diffusivity, as measured by the variance of the bout angle distributions (Figure 3G).244

The use of different profiles allowed us to identify which particular feature of the visual stimulus245

drives this modulation. Although the bout amplitude variance was dependent on the intensity I and246

intensity change �I experienced before the bout, these relationships were found to be inconsistent247

across the different imposed intensity profiles. In contrast, when plotted as a function of �I∕I , all248

curves collapse (Figure 3–Figure Supplement 1). This observation is in line with the Weber-Fechner249

law (Fechner, 1860), which states that the perceived change scales with the relative change in the250

physical stimulus. One noticeable feature of this process is that the modulation of the turning251

amplitude is limited to illumination decrement (i.e. negative values of �I∕I). In the terminology252

of bacterial chemotaxis (Oliveira et al., 2016), the zebrafish larva can thus be considered as a253

"pessimistic" phototactic animal: the orientational diffusivity increases in response to a decrease254

in illumination (corresponding to a negative subjective value), whereas its exploratory kinematics255

remain unchanged upon an increase of illumination (positive subjective value).256

Two kinematic parameters can possibly impact the orientational diffusivity: the fraction of257

turning bouts pturn and their characteristic amplitude �turn. We thus extracted these two quantities258

and plotted them as a function of �I∕I (Figure 3G-H). They appear to equally contribute to the259

observed modulation.260

To test whether this uniform phototactic process has a retinal origin, or whether it might be261

mediated by non-visual deep-brain phototreceptors (Fernandes et al., 2013), we ran similar assays262

on bi-enucleated fish. In this condition, no orientational bias was observed, which indicates that263

the retinal pathway is involved in the orientational klinotaxis (Figure 3–Figure Supplement 2, all264

p-values > 0.14, pairwise T -tests).265

A biased random walk model for phototaxis provides a quantitative prediction of266

light-driven orientational bias267

In the preceding sections, we quantified how visual stimuli stochastically modulate specific kinematic268

parameters of the subsequent bout. We used these relationships to build a biased random walk269

model of phototaxis. We then tested how such a model could reproduce the statistical orientational270

biases towards the directions of minimal contrast and maximal illumination. The phototactic271

model thus incorporates a visually-driven bias to the discrete two-Markov chains introduced to272

represent the spontaneous navigation (Figure 4A). In line with the observation of Figure 2M, the273

rate of flipping orientational state (left-to-right or right-to-left) was a linear function of the imposed274

contrast: kR→L = kflip + ac and kl→r = kflip − ac. The value of a was set so as to capture the contrast-275

dependent orientational drift (Figure 2G) and was made dependent on bout number in order to276

account for the observed habituation process (Figure 2–Figure Supplement 2).277

The selection of bout type was in turn linearly modulated by the relative change in intensity278

after negative rectification (
[
�I∕I

]−
= min(�I∕I, 0)). Hence, the turn-to-forward and forward-to-turn279

transition rates read kt→f = kturn + �
[
�I∕I

]−
and kf→t = kturn − �

[
�I∕I

]−
, respectively. We also280

imposed a linear modulation of the turn amplitude variance �turn = �
spont

turn
− 


[
�I∕I

]−
. The values of �281

and 
 were adjusted to reproduce the observed dependence of the turn-vs-forward ratio and bout282

amplitude with �I∕I (Figure 3H-I).283

This stochastic model was tested under two conditions, tropo- and klino-phototaxis, similar to284

those probed in the experiments (Figure 4B). In order to account for the sampling bias associated285

with the finite size of the experimental ROI, the particles in the simulations also progressed in a 2D286

arena. At each time step, a forward displacement was drawn from a gamma distribution adjusted287

on the experimental data (Figure 5–Figure Supplement 1). Statistical analysis was restricted to288

bouts executed within a circular ROI as in the experimental assay.289

The comparison of the data and numerical simulation is shown in Figure 4C for the tropotaxis290
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Figure 3. Orientational phototaxis driven by modulation of the global illumination. N = 37 fish, n = 26, 443

bouts. (A) Top panel : Angle-dependent intensity profiles delivered to the larva. The virtual light source is

located at � = 0, defined as the point of maximum intensity. The profiles are sinusoidal (uniform 1, purple)

or exponentially-shaped (uniform 2 and 3 respectively orange and yellow). All statistics were computed using

bouts number 2 to the median number of bouts per sequence (resp. 27, 17 and 15 for the 3 profiles). (B-D) PDF

of the fish orientations for the 3 profiles. All 3 distributions are significantly biased towards the virtual source

(V-test for non-uniformity of circular data with specified mean 0, pvals respectively 9.10
−3, 2.10−7 and 3.10−5).(E)

Resultant vector R for all individual fish. (F) Mean reorientation per bout ⟨��⟩ of all fish as a function of � for the
3 profiles. No significant bias towards the source (� = 0) is observed. (G) Variance of the reorientation angles⟨
��2

⟩
as a function of the relative change in intensity experienced at the previous bout �I∕I . Error bars are

standard error of the mean. (H) Standard deviation �turn of turning bouts as a function of �I∕I . The standard

deviation of forward scouts was set at �fwd , and �turn was then estimated using a double-Gaussian fitting of the

bout angles. Error bars are the 99% confidence interval from fit. (I) Probability of triggering a turning bout as a

function of �I∕I . Error bars are the 99% confidence interval from the fit.

Figure 3–Figure supplement 1. Variance of �� as a function of 3 different illumination parameters

Figure 3–Figure supplement 2. Control for retinal origin of klinotaxis

protocol and in Figure 4D-F for the klinotaxis protocols. This minimal stochastic model quantitatively291

captures the mean orientational bias, as measured by the resultant vector R. It also reproduces the292

evolution of this parameter as a function of the cumulative number of bouts (Figure 4G-J).293

A neuronal model of the ARTR captures spontaneous and contrast driven naviga-294

tion295

The behavioral description proposed above indicates that larvae navigation can be correctly ac-296

counted for by two independent stochastic processes: one that organizes the sequence of succes-297

sive bouts amplitude and in particular the selection of forward vs turning events, while a second298

one selects the left vs right orientation of the turning bouts. These two processes are independently299

modulated by two distinct features of the visual stimulus, namely the global intensity changes and300

the stereo-visual contrast, leading to the two phototactic strategies.301

This in turn suggests that, at the neuronal level, two independent circuits may control these302

characteristics of the executed swim bouts. As mentioned in the introduction, the ARTR is a303

natural candidate for the neuronal selection of bouts orientation. This small bilaterally-distributed304

circuit located in the anterior hindbrain displays antiphasic activity oscillation with ∼ 20s period305

(Ahrens et al., 2013). The currently active region (left or right) constitutes a strong predictor of the306

orientation of turning bouts (Dunn et al., 2016). This circuit further integrates visual inputs as each307

ARTR subpopulation responds to the uniform stimulation of the ipsilateral eye (Wolf et al., 2017).308

Here we adapted a minimal neuronal model of the ARTR, introduced in Wolf et al. (2017)309

to interpret the calcium recordings, and tested whether it could explain the observed statistics310

of exploration in both spontaneous and phototactic conditions. The architecture of the model311

is depicted in Figure 5A. The network consists of two modules that are selective for leftward312

and rightward turning bouts, respectively. A perfect candidate mechanism for the generation of313
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Figure 4. A Markov-chain model of phototaxis captures the observed orientational distribution. (A) Decision

tree for simulation: selection of forward scoots vs turning bouts are governed by the relative intensity change

at the previous bout. If a turning bout is triggered, the selection of left-right orientation is biased by the

stereovisual contrast. (B) 2D density profiles computed from all experimental and simulated trajectories for

the three different paradigms (no stimulation, lateralized illumination and uniform illumination). The color

encodes the excess or deficit of density with respect to the radially-averaged density without any stimulation.

(C-F) Experimental (color) and simulation (solid line) probability density distributions of orientations for the 4

phototactic configurations (stereo-visual stimulation, uniform stimulation with angular profiles 1 to 3). (G-J)

Evolution of the resultant vector’s length as a function of the bout number for the experiment (color) and

simulation (solid line). Error bar : standard error of the mean.

10 of 24

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/810960doi: bioRxiv preprint first posted online Oct. 21, 2019; 

http://dx.doi.org/10.1101/810960


Manuscript submitted to eLife

persistent activity is strong recurrent excitation in each module through recurrent coupling (wE ),314

this tends to maintain each module’s activity for a finite period of time. Reciprocal inhibition (wI )315

between the left and right modules guarantees strong antiphasic dynamics between each side.316

Finally, each ARTR module receives an input current from the visual system proportional to the317

illumination of the ipsilateral eye. Such architecture gives rise to a stimulus-selective attractor well318

described in Freeman (1995);Wang (2001).319

The equations governing the network are provided in Appendix 2 Equation A17. The various320

model parameters were adjusted in order to match the behavioral data. First, the self-excitatory321

and cross-inhibitory couplings were chosen such that the circuit displayed spontaneous oscillatory322

dynamics in the absence of sensory input. Figure 5B shows example traces of the two units’ activity323

in this particular regime. From these two traces, we extracted a binary "orientational state" signal324

by assigning to each time point a left or right value (indicated in red and blue, respectively), based325

on the identity of the module with the largest activity.326

In the present approach, tail bouts are assumed to be triggered independently of the ARTR327

activity. The latter thus acts as mere orientational hub by selecting the orientation of the turning328

events: incoming bouts are oriented in the direction associated with the currently active module.329

In the absence of information regarding the circuit that organizes the swim bouts emission, their330

timing and absolute amplitude were drawn from the behavioral recordings of freely swimming331

larvae (Figure 5- figure supplement 1). Combined with the ARTR dynamics, this yielded a discrete332

sequence of simulated bouts (leftward, rightward and forward, Figure 5B, inset). With adequate333

choice of parameters, this model captures the orientational persistence mechanism, as quantified334

by the slow decay of the turning bout autocorrelation with the interbout interval (Figure 5C).335

In the presence of a lateralized visual stimulus, the oscillatory dynamics become biased towards336

the brightest direction (Figure 5D-E). Hence, illuminating the right eye favors longer periods of337

activation of the rightward-selective ARTR unit. The mean reorientation displays a quasi-linear338

dependence with the imposed contrast (Figure 5D) in line with the behavioral observations (Fig-339

ure 2G). At intermediate contrast values, the orientation of bouts remains stochastic; the effect of340

the contrast is to lengthen streaks of turning bouts towards the light (Figure 5E). We also tested341

whether this model could capture the competition mechanism between stereovisual bias and motor342

persistence, in both conflicting and reinforcement conditions. We thus computed the dependence343

of the flipping probability pflip as a function of the contrast in both conditions (Figure 5F). The344

resulting graph is in quantitative agreement with its experimental counterparts (Figure 2M).345

We finally used this model to emulate a simulated phototactic task. In order to do so, a virtual346

fish was submitted to a contrast whose amplitude varied linearly with the animal orientation, as347

in the lateralized assay. When a turning bout was triggered, its orientation was set by the ARTR348

instantaneous activity while its amplitude was drawn from the experimental distributions. After a349

few bouts, a stationary distribution of orientation was reached that was biased towards the virtual350

light source (Figure 5G). Its profile was in quantitative agreement with its experimental counterpart351

(mean resultant vector length R = 0.23 in simulation for R = 0.24 in experimental data for bouts 2352

to 17).353

Discussion354

Sensorimotor transformation can be viewed as an operation of massive dimensionality reduction, in355

which a continuous stream of sensory andmotor-related signals is converted into a discrete series of356

stereotyped motor actions. The challenge in understanding this process is (i) to correctly categorize357

the behavioral events, i.e. to reveal the correct parametrization of the motor repertoire, and (ii) to358

unveil the statistical rules for action selection. Testing the validity of such description can be done359

by building a minimal model based on these rules. If the model is correct, the motor variability360

unaccounted for by the model should be entirely random, i.e. independent of the sensorimotor361

history.362
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Figure 5. A neuronal model of turning bout selection captures spontaneous and contrast-driven navigation.

(A) Scheme of the Markov chain model of the orientation selection, and corresponding neuronal model of the

ARTR. The latter consists of two units whose relative activation controls the orientation of bouts. Persistent and

self-alternating dynamics result from the recurrent excitation (wE ) and reciprocal inhibition (wI ) between each

unit. They further receive input currents proportional to the illumination of the ipsilateral eye. (B) Top: example

traces of the simulated activity of the left (red) and right (blue) modules in the absence visual stimulation (AU :

arbitrary units). These continuous dynamics control the alternation between right and left orientational states.

Close-up: forward and turning bouts are triggered independently with a statistics drawn from the behavioral

recordings. The orientational state governs the orientation of the turning bouts. (C) Orientation correlation of

turning bouts (thresholded at .22 rad) as a function of the inter-bout interval �n. Result from the neuronal model

is in blue, experimental data are in black. (D) Mean reorientation ⟨��⟩ as a function of the contrast c. (E) Example
traces of the simulated activity for a constant contrast c = 0.5. (F) Probability of flipping orientation as a function

of the imposed contrast c in situations of conflict or reinforcement (neuronal model). (G) Probability distribution

function of � for 10 simulated phototactic trajectories with a linear dependence of average reorientation on

contrast. Each trajectory lasted 50,000 seconds. The dotted line is the orientational distribution in the absence

of visual stimulation.

Figure 5–Figure supplement 1. Inter-bout distance distribution

Figure 5–Figure supplement 2. Simulated trajectories with different inter-bout intervals �n
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Here we implemented a minimal model approach in order to unveil the basic rules underlying363

phototaxis. We showed that zebrafish light-driven orientational navigation can be quantitatively364

described by a stochastic model consisting of two independent Markov chains: one that selects365

forward scoots vs turning bouts and a second one that sets the orientation of the latter. We366

established that the stereo-visual contrast and global intensity modulation act separately on each367

of these selection processes. The contrast induces a directed bias of turning bouts towards368

the illuminated side, but does not impact the prevalence of turning bouts vs forward scoots.369

Reversely, a global decrement in illumination increases the ratio of turning bouts but does not370

favor any particular direction. For the contrast-driven configuration (tropotaxis), the minimal model371

corresponds to an Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930), which describes372

the dynamics of a diffusive brownian particle in a quadratic trap. In the klinotaxis configuration (in373

the absence of stereo-visual contrast), the orientational bias solely results from a light-dependent374

modulation of the diffusivity, a mechanism reminiscent of bacterial chemotaxis.375

This stochastic minimal model is built on a simple decision tree ( Figure 4A) with a set of binary376

choices. However, to fully capture the orientational dynamics, we had to incorporate the continuous377

increase in turning bout amplitude with the light decrement in an ad-hoc way. It is currently unclear378

whether all turn bouts in our experiments can be assigned to a single class of swim maneuvers that379

are modulated in amplitude, or whether these encompass distinct motor programs executed with380

varying frequencies. In the latter case, it might be possible to represent this amplitude modulation381

through an extension of the decision tree that would select between distinct turn bout categories.382

Compared to previous studies on phototaxis, e.g. Burgess et al. (2010), our approach allowed383

us to clearly disentangle the contributions of spatial (stereovisual contrast) and time-dependent384

(motion-induced change in global illumination) visual cues. Hence, the contrast-driven assays were385

performed under constant overall illumination intensity (the sum of left and right intensities). This386

allowed us to establish that, rather surprisingly, the probability of triggering a turn (vs a forward387

swim) is insensitive to the imposed contrast. This possibility constitutes an important asset with388

respect to standard experimental configurations, such as the one examined by Burgess et al. (2010),389

in which the animal is submitted to an actual distant light source. Although these configurations390

provide a more realistic context, the visual stimulus effectively perceived by each eye can not391

be quantitatively assessed, which precludes the design of predictive models. Conversely, once392

adjusted on well-controlled virtual assays, our model could be numerically implemented in realistic393

environments, and the trajectories could then be directly confronted with behavioral data. This394

would require to first infer how the intensity impinging on each eye depends on the source distance395

and orientation relative to the animal body axis.396

Another critical and distinct aspect of the present work is its focus on the steady-state dynamics.397

Our aim was to mimic the continuous exploration of an environment in which the brightness level398

displays slowly varying angular modulations. The luminosity profiles were thus chosen to ensure399

that individual bouts elicited relatively mild changes in illumination. By doing so, we tried to mitigate400

visual startle responses that are known to be elicited upon sudden darkening (Stephen S. Easter401

and Nicola, 1996). Although we could not avoid the initial large drop in illumination at the onset of402

each trial, the associated short-term response (i.e. the first bout) was excluded from the analysis.403

In this respect, our experiment differs from the study of Chen and Engert (2014) in which a similar404

close-loop setup was used to demonstrate the ability of larvae to confine their navigation within405

bright regions. This behavior was entirely controlled by the animal’s response to light-on or light-off406

stimuli as it crossed the virtual border between a bright central disk and the dark outer area. These407

sharp transitions resulted in clear-cut behavioral changes that lasted for a few bouts. In comparison,408

our experiment addresses a different regime in which subtle light-driven biases in the spontaneous409

exploration cumulatively drive the animal towards brightest regions.410

As we aimed to obtain a simple and tractable kinematic description, we ignored some other411

aspects of the navigation characteristics. First, we focused on the orientation of the animal and thus412

did not systematically investigate how the forward components of the swim bouts were impacted413
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by visual stimuli. However, in the context of angle-dependent intensity profiles, this effect should414

not impact the observed orientational dynamics. More importantly, we ran most of our analysis415

using the bout number as a time-scale, and thus ignored possible light-driven modulations of the416

inter-bout intervals (�n). We showed, however, that the orientational correlation is controlled by417

an actual time-scale. This result may have significant consequence on the fish exploration. In418

particular, we expect that changes in bout frequency, reflecting various level of motor activity,419

may significantly affect the geometry of the trajectories (and not only the speed at which they are420

explored). We illustrated this process by running numerical experiments at similar flipping rate kflip421

for increasing bout frequencies. The trajectories, shown in Figure 5–Figure Supplement 2, exhibit422

increasing complexity as measured by the fractal dimension. This mechanism may explain the423

changes in trajectories’ geometry observed by Horstick et al. (2017) in response to sudden light424

dimming.425

An important outcome of this study is to show that light-seeking navigation uses visual cues over426

relatively short time scales. The bouts statistics could be captured with a first order autoregressive427

process, indicating that the stimulus perceived over one �n is sufficient to predict the forthcoming428

bout. However, one should be aware that such observation is only valid provided that the sensory429

context remains relatively stable. Hence for instance, a prolonged uniform drop in luminosity is430

known to enhance the overall motor activity (generally measured by displacement over a period431

of time) for up to several tens of minutes (Prober et al., 2006; Emran et al., 2007, 2009; Liu et al.,432

2015). This long-term behavioral change, so-called photokinesis, might be regulated by deep brain433

photoreceptors (Fernandes et al., 2013; Horstick et al., 2017) and thus constitutes a distinct mech-434

anism. One particularly exciting prospect will be to understand how such behavioral plasticity may435

not only modulate the spontaneous activity (Johnson et al., 2019) but also affects the phototactic436

dynamics.437

One of the motivations of minimal behavioral models is to facilitate the functional identifica-438

tion and modeling of neural circuits that implement the identified sensorimotor operations in439

the brain. Here we used the behavioral results to propose a neuronal model of the ARTR that440

quantitatively reproduces non-trivial aspects of the bout selection process. This recurrent neural441

circuit is a simplified version of working memory models developed by Brunel and Wang (2001);442

Wang (2001, 2002, 2008) and adapted in Wang (2002) for a decision task executed in the parietal443

cortex (Shadlen and Newsome, 1996, 2001). In this class of models, the binary decision process444

reflects the competition between two cross-inhibitory neural populations. The circuit is endowed445

with two major functional capacities: (1) it can maintain mnemonic persistent activity over long446

periods of time, thanks to recurrent excitatory inputs; (2) it can integrate sensory signals in a graded447

fashion to continuously bias the statistics of the decision. This model thus naturally recapitulates448

the major functional features of the sensory-biased Markov side chain - motor persistence and449

contrast-driven continuous bias - that organizes the orientation selection.450

It is tempting to generalize about this behavior-to-circuit approach, at least in small animals such451

as zebrafish or drosophila, by representing any behavior as a coordinated sequence of competing452

elemental actions biased by sensory feedback and organized within a hierarchical decision tree.453

The identification of such decision trees through quantitative behavioral analysis may provide a454

blueprint of the brain functional organization and significantly ease the development of circuit455

models of brain-scale sensorimotor computation.456

Materials and methods457

Zebrafish maintenance and behavioral setup458

All behavioral free-swimming experiments were performed on wild-type zebrafish (Danio Rerio)459

larvae aged 5 to 8 days post-fertilization. Larvae were reared in Petri dishes in E3 solution on a460

14/10h light/dark cycle at 28◦C, and were fed powdered nursery food every day from 6 dpf.461

Experiments were conducted during daytime hours (10 am to 6 pm). Single larvae were swim-462
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ming in a 14 cm in diameter Petri dish containing E3 medium. The arena was placed on a screen463

illuminated from below by a projector (ASUS S1). Infrared illumination was provided by LEDs, to464

enable recording and tracking of the fish. We used an IR-sensitive Flea3 USB3 camera (FL3-U3-465

13Y13M-C, Point Grey Research, Richmond, BC, Canada), with an adjustable macro lens (Zoom 7000,466

Navitar, USA) equiped with an IR filter.467

The experimental setup was enclosed in a light-tight rig, which was maintained at 28◦C using "The468

Cube" (Life Imaging Services).469

For the stereovisual paradigm N = 47 larvae were tested, and N = 37 for the temporal paradigm470

[(uniform 1) : 12, (uniform 2) : 11, (uniform 3) : 14]. All tested fish (N = 84) were also used to assess471

spontaneous navigation statistics.472

Behavioral assay473

Closed-loop tracking and illumination were performed at a mean frequency of 35 Hz, with a474

custom-written software in Matlab (The MathWorks), using the PsychToolBox (PTB) version 3.0.14475

add-on.476

Position and orientation (heading direction) of the fish, as well as bouts characteristics, were477

extracted online and the illumination pattern was updated accordingly, with a maximum latency478

of 34ms. Heading direction was extracted with an accuracy of +/- 0.05 rad (∼ 3◦). To mitigate the479

effects of the walls in the fish navigation, behavioral monitoring was restricted to a circular central480

region of interest of 8.2cm diameter. When outside the ROI, the fish was actively brought back481

into the field of view of the camera through the opto-motor reflex (OMR), using a concentrically482

moving circular pattern. One second after the fish re-entered the ROI, a new recording sequence483

was started.484

Prior to the phototactic assays, all tested fish were subjected to a period of at least 8 minutes485

of habituation under whole-field illumination at an intensity of Imax = 450�W .cm−2. For both486

paradigms, the absolute orientation of the virtual source was randomly selected when initiating a487

new experimental sequence (each time the animal would re-enter the region of interest). Thus the488

relative orientation of the fish towards the light source �n was calculated online using the absolute489

orientation of the fish �n and the randomly chosen orientation of the source �source: �n = �n − �source.490

Lateralized paradigm. A circle of 6cm in diameter was projected under and centered on the fish.491

The circle was divided into two parts, covering the left and right side of the fish. The separation492

between the two parts corresponded to the animal midline. The division (2mm thick) as well as a493

triangle (30°) in front of the head were darkened to avoid interception of intensity coming from the494

right side of the fish by its left eye and vice-versa. Left and right intensities (IL and IR) were varied495

linearly as a function of �, such that IL + IR = I , I being constant. Since during the habituation496

period, the whole arena was lit, the intensity received by the fish drops by a factor of 2 with the497

establishment of the circle, at the beginning of the trial. Note that when heading towards the virtual498

light source, the total intensity received on both eyes is equal to half the value Imax that the animal499

experiences during the conditioning phase. Although our imposed contrast profiles displays two500

angles for which the contrast is null, namely � = 0 and �, only does the first one correspond to a501

stable equilibrium point. When � is close to zero, any excursion away from this particular direction502

results in a contrast that drives the animal back to the null angle. Conversely, when � ≈ �, the503

contrast drives the animal away from � (unstable equilibrium).504

Temporal paradigm. The whole arena was illuminated with an intensity locked onto the fish505

orientation �n relative to a virtual light source. The initial orientation was randomly chosen at the506

beginning of a recording sequence. Three different intensity angular profiles were implemented:507

(uniform 1) a sinusoidal profile, with a maximum intensity of 60% of Imax, (uniform 2) an exponential508

profile, with a maximum intensity of 60% of Imax and finally (uniform 3) an exponential profile with a509

maximum intensity of 30% of Imax.510
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Data analysis511

Data analysis was performed using a custom-written code in Matlab. When representing the mean512

of a variable against another, bin edges were chosen such that each bin would encompass the513

same number of elements. Circular statistics analyses (mean, variance, uniformity) and circular514

statistics tests, namely the circular Rayleigh test of non-uniformity of data and the one-sample515

test for the mean angle of a circular distribution (tested on the orientation of the light virtual light516

source ⟨�⟩ = 0) were performed using CircStat toolbox for Matlab (Berens, 2009).517

In order to calculate the mean resultant vector length R, we consider all the angular positions �n518

relative to the source. The resultant vector is defined, in the complex plane, as v =
1

N

∑
exp i�n and519

its length as R = |v|. In order to assess to what extent a distribution is biased towards a specific520

direction (here, the light source), the quantity Rcos(�) was sometimes used : the mean resultant521

vector projected onto the direction of the light source.522

523

Individual fish often exhibit a consistent (minute) bias towards one direction (either leftward524

or rightward). This bias was subtracted before performing the different analyses, in order to525

guarantee that ⟨�⟩ = 0 in the absence of a stimulus. The distribution of reorientation angles ��n526

during spontaneous swimming periods was fitted with a constrained double-Gaussian function.527

We imposed that both the mean absolute angle and variance of the fitting function be consistent528

with the experimental measurements. This yields an expression with only one independent fitting529

parameter pturn in the form:530

f (x) =
1√
2�

(
pturn

�turn
e
−

1
2
(

x

�turn
)2

+
1 − pturn

�f
e
−

1
2

(
x

�fwd

)2)
(1)

using531

�turn =
�abspturn +

√
�2
abs
p2
turn

−
[
�2
abs

− V (1 − pturn)
] [
p2
turn

+ pturn(1 − pturn)
]

p2
turn

+ pturn(1 − pturn)

and

�fwd =
�abs

√
�∕2 − pturn�turn

1 − pturn

with

�abs = ⟨|��|⟩ , V =
⟨
��2

⟩

To evaluate the mean and variance of the forward and turn bouts under various visual context,532

the distributions in different bins were also fitted with a constrained double Gaussian model as in533

(1). The stereovisual data distributions were fitted with two additional mean terms �turn and �fwd ;534

and for the klinotaxis assay, with a constraint on �fwd and �fwd . The bins were constructed either on535

the contrast c experienced just before bout n or on the relative difference of intensity experienced536

at bout n − 1 : �I∕I = 2
In−1−In−2

In−1+In−2
.537

All distributions of �n and analyses of bias were computed using trajectories from bouts number538

2 to a maximum of the median number of bouts per sequence in each type of experiment. The539

median number of bouts in each experiment was medstereo = 17 for the tropotaxis experiment, and540

27, 15, 17 for the klinotaxis assays for the 3 profiles 1-3, respectively.541

542

Numerical simulations543

The random walk model simulations were performed using a custom-written code in MATLAB. Initial544

orientations and positions within the ROI were randomly sampled from, respectively, a uniform545

distribution and a normal distribution centered on a circle of radius 20 mm from the center of the546

ROI and a standard deviation of 1.3 mm (mimmicking the starting points of experimental data).547
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At each step, the walker draws a certain angular step-size from the data: either from the turning548

distribution with a probability pturn or from the forward distribution with a probability 1 − pturn.549

Respective means are �turn and �fwd and standard deviation �turn and �fwd . The direction of only550

the turns is set by the probability of flipping sides pflip. For the spatially constrained simulations,551

the walker also draws a distance step-size (between two successive positions) from two different552

gamma distributions : one for the turning bouts, a second one for the scoots. Under neutral553

conditions (uniform illumination), all parameters are constant.554

For simulation of stereovisual phototactic conditions, only pflip changes linearly as a function of the555

contrast (based on the data represented in Figure 2J).556

As for the temporal phototaxis, parameters pturn and �turn were adapted as a function of the relative557

illumination change �I∕I experienced at the previous steps (as represented in Figure 3G-H).558

The simulations also account for the adaptation illumination preceding an experimental trial, prior559

the first bout.560
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Appendix 1689

Modelling spontaneous navigation of zebrafish larvae690

We model the discrete trajectories (sequences of bouts) as a stochastic process using two

independent Markov chains, depicted in Figure 1E. The bout type chain (top) controls the

alternation between forward and turning bouts, with possible states Fn and Tn at time n, while

the side chain (bottom) controls the left/right orientations of turning bouts, with possible

states Ln and Rn. All possible states are combinations of the states of the two chains, namely

{FL}n, {FR}n, {TL}n, and {TRn}. The transition rates of the bout type chain are kF→T and

kT→F , where kF→T ∕kT→F = pturn is the overall fraction of turning bouts. For the side chain,

under constant uniform illumination, the right and left states are equiprobable, and the two

transition probabilities are thus equal: kR→L = kL→R = pflip.

691

692

693

694

695

696

697

698

699

The two chains operate synchronously: at every time step transitions on both chains are

triggered simultaneously, and a reorientation value ��n is drawn based on the resulting state.

When the fish is in a turning state, {TL}n or {TR}n, the reorientation angle is sampled from

the positive and negative side of a centered normal distribution with standard deviation �turn

for left and right turns, respectively. When the fish is in a forward state, {FL}n or {FR}n,

the reorientation angle is drawn from a normal distribution with standard deviation �fwd .

Therefore, for forward bouts the resulting ��n can be positive or negative, irrespective of the

left/right state of the side chain. Altogether, the general statistical distribution of turning

amplitudes ��n used in Figure 1F reads

700

701

702

703

704

705

706

707

708

P (��n) = �t(��n) + �f (��n) (A1)

with

�t = pturn (0, �2
turn

) and �f = (1 − pturn) (0, �2
fwd

) (A2)

709

710

711

712

713

714

715

716

717

Mean amplitude at n + 1718

Within this framework, one can analytically compute the mean square angle at time n + 1, as

detailed below:

719

720

⟨
��2

n+1

⟩
= ℙ(Fn+1)�

2
fwd

+ ℙ(Tn+1)�
2
turn

(A3)

721

722

723

724

725

The two probabilities read:726

ℙ(Fn+1) = ℙ(Fn)(1 − kF→T ) + ℙ(Tn)kT→F

ℙ(Tn+1) = ℙ(Tn)(1 − kT→F ) + ℙ(Fn)kF→T

727

728

729

730

731

732

733

such that734

⟨
��2

n+1

⟩
= ℙ(Fn)

[
�2
fwd

+ kF→T (�
2
turn

− �2
fwd

)
]
+ ℙ(Tn)

[
�2
turn

+ kT→F (�
2
fwd

− �2
turn

)
]

735

736

737

738

Using the functions defined in A2 we introduce the function f (��n):

f (��n) = ℙ(Tn|��n) =
�t(��n)

�t(��n) + �f (��n)
(A4)

739

740

741

742

743

The mean square amplitude at time n + 1 can thus be written, as a function of ��n as:744

⟨
��2

n+1

⟩
= �2

fwd
+ kF→T (�

2
turn

− �2
fwd

) + f (||��n||)(�2
turn

− �2
fwd

)(1 − kT→F − kF→T ) (A5)
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745

746

747

748

749

This expression is used to fit the data in Figure 2G and estimate the two transition rates.

These are found to be close to the ratio of turning and forward bouts, i.e. kF→T ∕pturn =

kT→F∕(1 − pturn) ≈ 0.8. In the following, we set kF→T = pturn and kT→F = 1 − pturn, thus ignoring

the weak memory component in the selection of turning vs forward bouts.

750

751

752

753

Mean reorientation at n + 1754

Similarly, one can compute the theoretical expression of the mean reorientation angle at

time n + 1:

⟨
��n+1

⟩
= ℙ({FL}n+1)�f + ℙ({FR}n+1)�f + ℙ({TL}n+1)�L + ℙ({TR}n+1)�R (A6)

with

�f = 0 and �L = −�R =

√
2

�
�turn (A7)

Then:

ℙ({TL}n+1) = ℙ(Tn+1)ℙ(Ln+1) = pturn
[
pflipℙ(Rn) + (1 − pflip)ℙ(Ln)

]

ℙ({TR}n+1) = ℙ(Tn+1)ℙ(Rn+1) = pturn
[
pflipℙ(Ln) + (1 − pflip)ℙ(Rn)

]

and
⟨
��n+1

⟩
= pturn(1 − 2pflip)

√
2

�
�turn

[
ℙ(Ln) − ℙ(Rn)

]
(A8)

Without further assumption, this simply confirms
⟨
��n+1

⟩
= 0. Given the reorientation at

time n, this expression now writes:

⟨
��n+1

⟩
|��n = pturn(1 − 2pflip)

√
2

�
�turn

[
ℙ(Ln|��n) − ℙ(Rn|��n)

]
(A9)

Since

ℙ(Ln|��n) = ℙ(Ln|Tn, ��n)ℙ(Tn|��n) + ℙ(Ln|Fn, ��n)ℙ(Fn|��n)
ℙ(Rn|��n) = ℙ(Rn|Tn, ��n)ℙ(Tn|��n) + ℙ(Rn|Fn, ��n)ℙ(Fn|��n)

and

ℙ(Ln|Fn, ��n) = ℙ(Rn|Fn, ��n) = 1∕2
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780
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786

787
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790

we obtain

⟨
��n+1

⟩
|��n =

[
ℙ(Ln|Tn, ��n) − ℙ(Rn|Tn, ��n)

]
pturn(1 − 2pflip)

√
2

�
�turnf (��n) (A10)

Then, noting that

{
ℙ(Ln|Tn, ��n > 0) = 1

ℙ(Rn|Tn, ��n > 0) = 0
and

{
ℙ(Ln|Tn, ��n < 0) = 0

ℙ(Rn|Tn, ��n < 0) = 1

we finally obtain the formula used to fit the data in Figure 1G:

⟨
��n+1

⟩
|��n = sgn(��n)

√
2

�
pturn(1 − 2pflip)�turnf (��n) (A11)
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Autocorrelation of the reorientations804

One can then compute the correlation of reorientation amplitudes, defined for q ∈ ℕ
∗ as:

Cq =

⟨
��n��n+q

⟩
− ⟨��n⟩

⟨
��n+q

⟩
√⟨

��2
n

⟩√⟨
��2

n+q

⟩ =

⟨
��n��n+q

⟩
⟨
��2

n

⟩ (A12)

with the normalization coefficient equal to the variance of reorientations

⟨
��2

n

⟩
= pturn�

2
turn

+ (1 − pturn)�
2
fwd

(A13)

The term
⟨
��n��n+q

⟩
can be computed in a similar manner as for equation A6, but with more

terms corresponding to the 16 possible combinations of states:

{FL}n, {FL}n+q {FL}n, {FR}n+q {FL}n, {TL}n+q {FL}n, {TR}n+q

{FR}n, {FL}n+q {FR}n, {FR}n+q {FR}n, {TL}n+q {FR}n, {TR}n+q

{TL}n, {FL}n+q {TL}n, {FR}n+q {TL}n, {TL}n+q {TL}n, {TR}n+q

{TR}n, {FL}n+q {TR}n, {FR}n+q {TR}n, {TL}n+q {TR}n, {TR}n+q

Only the 4 states in the bottom-right corner have a finite contribution, since all the others

terms are multiplied by �f = 0. Thus:

⟨
��n��n+q

⟩
= ℙ({TL}n, {TL}n+q)�

2
L
+ ℙ({TL}n, {TR}n+q)�L�R+

ℙ({TR}n, {TL}n+q)�R�L + ℙ({TR}n, {TR}n+q)�
2
R

and, using A7 and

ℙ({TL}n{TL}n+q) = ℙ(Tn)ℙ(Tn+q)ℙ(Ln)ℙ(Ln+q|Ln) =
p2
turn

2
ℙ(Ln+q|Ln)

ℙ({TL}n{TR}n+q) = ℙ(Tn)ℙ(Tn+q)ℙ(Ln)ℙ(Rn+q|Ln) =
p2
turn

2
ℙ(Rn+q|Ln)

ℙ({TR}n{TL}n+q) = ℙ(Tn)ℙ(Tn+q)ℙ(Rn)ℙ(Ln+q|Rn) =
p2
turn

2
ℙ(Ln+q|Rn)

ℙ({TR}n{TR}n+q) = ℙ(Tn)ℙ(Tn+q)ℙ(Rn)ℙ(Rn+q|Rn) =
p2
turn

2
ℙ(Rn+q|Rn)

and noting that

ℙ(Ln+q|Ln) = ℙ(Rn+q|Rn) =

q+1∑
i=1

i odd

(
q

i

)
pi−1
flip

(1 − pflip)
q−i+1

ℙ(Ln+q|Rn) = ℙ(Rn+q|Ln) =

q+1∑
i=1

i even

(
q

i

)
pi−1
flip

(1 − pflip)
q−i+1

one obtains

⟨
��n��n+q

⟩
= p2

turn

[
q+1∑
i=1

(−1)q+1
(
q

i

)
pi−1
flip

(1 − pflip)
q−i+1

]
�2
L
=

2

�

(
1 − 2pflip

)q
p2
turn

�2
turn

and finally:

Cq =
2

�

p2
turn

�2
turn

pturn�
2
turn

+ (1 − pturn)�
2
fwd

(1 − 2pflip)
q (A14)

This is the equation used to fit the data in Figure 1H.

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

An estimate of pflip was calculated as follows. If only turns are considered :840
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⟨
��n��n+1

⟩
= pturn(1 − pflip)

⟨|��n||��n+1|
⟩
− pturnpflip

⟨|��n||��n+1|
⟩

= p2
turn

[(1 − 2pflip)
⟨|��n||��n+1|

⟩
]

841

842

843

844

thus : ⟨
��n��n+1

⟩
⟨|��n||��n+1|

⟩ = p2
turn

[(1 − 2pflip) = C1

845

846

847

848

And finally

pflip =
1

2
(1 −

C1

p2
turn

) (2)

849

850

851

852

Mean square reorientation (MSR)853

The mean square reorientation for a lag q ∈ ℕ
∗ is defined by:

Mq =
⟨(

�n+q − �n
)2⟩

(A15)

854

855

856

857

858

and can be expressed as a sum of correlations as follows:859

Mq =

⟨(
q∑
i=1

��n+i−1

)2⟩

=

⟨
q∑
i=1

q∑
j=1

��n+i−1��n+j−1

⟩

=

q∑
i=1

q∑
j=1

⟨
��n+i−1��n+j−1

⟩

= q
⟨
��2

n

⟩
+

q∑
i=1

q∑
j=1
j≠i

⟨
��n+i−1��n+j−1

⟩

= q
⟨
��2

n

⟩
+ 2

q−1∑
i=1

(q − i)
⟨
��n��n+i

⟩

=

[
q + 2

q−1∑
i=1

(q − i)Ci

]⟨
��2

n

⟩

860
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863

and using equation A13 we finally obtain the expression used in Figure 1I:864

Mq =

[
q + 2

q−1∑
i=1

(q − i)Ci

](
pturn�

2
turn

+ (1 − pturn)�
2
fwd

)
(A16)
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Appendix 2870

Neuronal model of the ARTR871

The architecture of the ARTR neuronal model is shown in Figure 5A. The circuit consists

of two modules selective to lefward or rightward turning. Each module receives recurrent

excitatory, cross-inhibitory and sensory inputs. The firing rates of the left/right ARTRmodules

are governed by two differential equations:

⎧
⎪⎪⎨⎪⎪⎩

� ̇rL = −rL + �(wErL −wIrR + I0 + IL(t)) + �(t)

� ̇rR = −rR + �(wErR −wIrL + I0 + IR(t)) + �(t) (A17)

872

873

874

875

876

877

878

879

rL,R stands for the firing rate of the left (resp. the right) neuron of the ARTR. wErL,R

corresponds to the recurrent excitatory current in the left (resp. the right) part of the

network. wIrL,R corresponds to the cross-inhibitory current coming from the contralateral

side of the network. I0 is a constant, � a white noise. The function � is a non-negative spiking

constraint such that �(x > 0) = x, whereas �(x < 0) = 0. We fix � = 100ms, I0 = 20A and �(t) is

a white noise with standard deviation of 500.

880

881

882

883

884

885

And886

⎧
⎪⎨⎪⎩

IL(t) = Iligℎt(1 − c(t))∕2

IR(t) = Iligℎt(1 + c(t))∕2
(A18)

887

888

889

890

891

Where Iligℎt is a constant, c(t) is the contrast seen by the fish.892

In such a dynamical system, the self-excitation and the noise produce the rise and fall of

activity in one population, while inhibition ensures that only one population can be active at

a time. Qualitatively wI controls the anticorrelation between left and right neuron activity.

If wI is too low the activity of each side of the network is independent. We fix wI = 7A.s

such that the anticorrelation of the left and right signals is comparable to the one described

in Wolf et al. (2017): -0.4. wE controls the ability for each side of the network to have a

stable activity across time longer than �. Schematically, the dynamical system described

by the Equation A17 can have three different regimes given the values of wE . One regime

is characterized by an absence of stable activity (low wE ). Another regime sees one of the

neurons of the network active forever whereas the other is silent (wE ∼ 1). The third regime

displays an alternation of stable activity between each side of the network. The fixation

time of the left or the right neuron is controlled by wE . An intuitive metric for this fixation

time is given by the shape of autocorrelation of rL,R. We choose wE such that the fits of the

autocorrelation of rL − rR and the orientation correlation of turning bouts by an exponential

decreasing function coincides (Figure 5C and Figure 1J). For the phototactic simulated activity,

we modelled the effective visual contrast seen by the fish with a linear function of the angular

distance between the fish and the light source.
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Figure 2–Figure supplement 1. Evolution of the mean resultant vector length R projected on the

direction of the virtual light source in time (bout#) for the 4 tested phototactic modalities (uniform

illumination : (p1-p3) and stereo-visual constrast). The vertical lines represent the median number

of bouts per sequence in each modality.
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Figure 2–Figure supplement 2. Slope � of �turn = f (C), representing the bias towards the brighter

side, at different bout numbers. The bias quickly drops, this can be explained by the higher variance

of �� during the first bouts of a sequence (change of illumination intensity) and then the selection

of individuals which are not very responsive to the stimulus.
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Figure 3–Figure supplement 1. Testing klinotaxis with spatially uniform illumination (orientational

profiles p1-p3). Change in variance of �� at bout n for two different parameters : absolute intensity

In, absolute change in intensity �In = In − In−1 and relative change in intensity �I∕I = 2
In−In−1

In+In−1
.
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Figure 3–Figure supplement 2. Upper figure : Testing klinotaxis with spatially uniform illumination

(orientational profile p2). N=12 enucleated zebrafish larvae. No significant change in variance of ��

upon decrease of relative difference of intensity. Neutral conditions of control larvae represented

with gray dashes. Lower figure : pvalues of two-sample t-tests of the distributions of < ��2 > in the

different bins. None of the bins has a significantly different mean value from another.
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Figure 5–Figure supplement 1. Probability distribution function of the distance between two

successive bouts. Fit : gamma distribution.
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Figure 5–Figure supplement 2. Examples of simulated trajectories with different inter-bout in-

tervals �n = 1 displaying different fractal dimensions H . Units : mm. (A) �n = 1 second, H = 1.5.

(B) �n = 5 seconds, H = 1.3 (C) �n = 10 seconds, H = 1.2. Red segments represent the onset of a

sequence.
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