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From behavior to circuit modeling of light-seeking navigation in zebrafish larvae

Bridging brain-scale circuit dynamics and organism-scale behavior is a central challenge in neuroscience. It requires the concurrent development of minimal behavioral and neural circuit models that can quantitatively capture basic sensorimotor operations. Here we focus on light-seeking navigation in zebrafish larvae. Using a virtual reality assay, we first characterize how motor and visual stimulation sequences govern the selection of discrete swim-bout events that subserve the fish navigation in the presence of a distant light source. These mechanisms are combined into a comprehensive Markov-chain model of navigation that quantitatively predict the stationary distribution of the fish's body orientation under any given illumination profile. We then map this behavioral description onto a neuronal model of the ARTR, a small neural circuit involved in the orientation-selection of swim bouts. We demonstrate that this visually-biased decision-making circuit can similarly capture the statistics of both spontaneous and contrast-driven navigation.

Introduction

Animal behaviors are both stereotyped and variable: they are constrained at short time scale to a finite motor repertoire while the long-term sequence of successive motor actions displays apparent stochasticity. Behavior is thus best described as a set of statistic rules that defines how elementary motor actions are chained. In the presence of sensory cues, two types of behavioral responses can be distinguished. If they signal an immediate threat or reward (e.g. the presence of a predator or a prey), they may elicit a discrete behavioral switch as the animal engages in a specialized motor program (e.g. escape or hunt, Budick and O' Malley (2000); Fiser et al. (2004); Bianco et al. (2011); (2015)). However, most of the time, sensory cues merely reflect changes in external factors as the animal navigates through a complex environment.

McClenahan et al. (2012); Bianco and Engert

These weak motor-related cues interfere with the innate motor program to cumulatively promote the exploration of regions that are more favorable for the animal [START_REF] Tsodyks | Linking Spontaneous Activity of Single Cortical Neurons and the Underlying Functional Architecture[END_REF][START_REF] Fiser | Small modulation of ongoing cortical dynamics by sensory input during natural vision[END_REF].

A quantification of sensory-biased locomotion thus requires to first categorize the possible movements, and then to evaluate the statistical rules that relate the selection of these different 1 of 24 actions to the sensory and motor history. Although the probabilistic nature of these rules generally precludes a deterministic prediction of the animal's trajectory, they may still provide a quantification of the probability distribution of presence within a given environment after a given exploration time.

In physics terms, the animal can thus be described as a random walker, whose transition probabilities are a function of the sensory inputs. This statistical approach was originally introduced to analyze bacteria chemotaxis [START_REF] Lovely | Statistical Measures of Bacterial Motility[END_REF]. Motile bacteria navigate by alternating straight swimming and turning phases, so-called runs and tumbles, resulting in trajectories akin to random walks [START_REF] Berg | Chemotaxis in E coli analysed by 3D tracking[END_REF]. Chemotaxis originates from a chemical-driven modulation of the transition probability from run to tumble: the transition rate is governed by the time-history of chemical sensing. How this dependency is optimized to enhance gradient-climbing has been the subject of extensive literature [START_REF] Macnab | The Gradient-Sensing Mechanism in Bacterial Chemotaxis[END_REF][START_REF] Adler | Decision"-Making in Bacteria : Chemotactic Response of Escherichia coli to Conflicting Stimuli[END_REF][START_REF] Mello | Effects of adaptation in maintaining high sensitivity over a wide range of backgrounds for Escherichia coli chemotaxis[END_REF][START_REF] Yuan | Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor[END_REF][START_REF] Celani | Bacterial strategies for chemotaxis response[END_REF]. More recently, similar descriptions have been successfully used to quantify chemotaxis and phototaxis in multi-cellular organisms such as C.

elegans [START_REF] Ward | Chemotaxis by the Nematode Caenorhabditis elegans: Identification of Attractants and Analysis of the Response by Use of Mutants[END_REF][START_REF] Miller | Step-Response Analysis of Chemotaxis in Caenorhabditis elegans[END_REF][START_REF] Ward | Light-sensitive neurons and channels mediate phototaxis in C. elegans[END_REF], Drosophila larva [START_REF] Sawin | Sensorimotor transformation from light reception to phototactic behavior in Drosophila larvae (Diptera: Drosophilidae)[END_REF][START_REF] Kane | Sensorimotor structure of Drosophila larva phototaxis[END_REF][START_REF] Gomez-Marin | Active sampling and decision making in Drosophila chemotaxis[END_REF][START_REF] Tastekin | Sensorimotor pathway controlling stopping behavior during chemotaxis in the Drosophila melanogaster larva[END_REF] or different types of slugs [START_REF] Matsuo | Photo-tropotaxis based on projection through the cerebral commissure in the terrestrial slug Limax[END_REF][START_REF] Marée | Phototaxis during the slug stage of Dictyostelium discoideum: A model study[END_REF]. Although the sensorimotor apparatus of these animals are very different, the taxis strategies at play appear to be convergent and can be classified based on the gradient sensing methods [START_REF] Fraenkel | The Orientation of Animals, Kinesis, Taxes and Compass Reactions[END_REF][START_REF] Gomez-Marin | Active sensation during orientation behavior in the Drosophila larva: more sense than luck[END_REF]. Tropotaxis refers to strategies in which the organism directly and instantaneously infers the stimulus direction by comparison between two spatially distinct sensory receptors. In contrast, during klinotaxis, the sensory gradient is inferred from successive samplings at different spatial positions. This second strategy is particularly adapted when the organism has only one receptor, or if the sensory gradient across the animal's body is too small to be detected [START_REF] Humberg | Dedicated photoreceptor pathways in Drosophila larvae mediate navigation by processing either spatial or temporal cues[END_REF]. It requires at least a basic form of memory, since the sensory information needs to be retained for some finite period of time.

In the present work, we implement such a framework to produce a comprehensive statistical model of phototaxis in zebrafish larvae. Zebrafish larva is currently the only vertebrate system that allows in vivo whole-brain functional imaging at cellular resolution [START_REF] Panier | Fast functional imaging of multiple brain regions in intact zebrafish larvae using Selective Plane Illumination Microscopy[END_REF][START_REF] Ahrens | Whole-brain functional imaging at cellular resolution using light-sheet microscopy[END_REF]. It thus provides a unique opportunity to study how sensorimotor tasks, such as sensory-driven locomotion, are implemented at the brain-scale level.

Although adult zebrafish are generally photophobic (or scototactic, Serra et al. (1999); Maximino et al. (2007)), they display positive phototaxis at the larval stage, from 5 days post-fertilization (dpf) on [START_REF] Orger | Channeling of red and green cone inputs to the zebrafish optomotor response[END_REF]. At this early stage, their locomotion consists of a series of discrete swimming events interspersed by ∼ 1 s long periods of inactivity [START_REF] Girdhar | The behavioral space of zebrafish locomotion and its neural network analog[END_REF]. Previous studies have shown that, when exposed to a distant light source, the first bout executed by the fish tend to be orientated in the direction of the source (tropotaxis) [START_REF] Burgess | Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation[END_REF].

Furthermore, Chen and Engert (2014) have shown, using a virtual reality assay, that zebrafish are able to confine their navigation within a bright region within a dark environment even when deprived from stereovisual contrast information. This latter study thus established that their phototactic behavior also involves a spatio-temporal integration mechanism (klinotaxis).

From a neuronal viewpoint, recent calcium imaging experiments identified a well defined circuit in the rostral hindbrain that plays a key role in phototaxis [START_REF] Ahrens | Whole-brain functional imaging at cellular resolution using light-sheet microscopy[END_REF][START_REF] Dunn | Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion[END_REF][START_REF] Wolf | Sensorimotor computation underlying phototaxis in zebrafish[END_REF]. This region, called ARTR (anterior rhombencephalic turning region) or HBO (hindbrain oscillator), displays pseudo-periodic antiphasic oscillations, such that the activity of the left and right subpopulations alternate with a ∼ 20 period. This alternation was shown to set the coordinated direction of the gaze and tail bout orientation, thus effectively organizing the temporal sequence of the successive reorientations. It was further shown that this circuit oscillation could be driven by whole-field illumination of the ipsilateral eye, such as to favor the animal's orientation towards a light source [START_REF] Wolf | Sensorimotor computation underlying phototaxis in zebrafish[END_REF].

In the present study, we aim at quantifying the statistical rules that control the larva's reorien-2 of 24 tation dynamics in the presence of a continuous angular gradient of illumination (orientational phototaxis). Using a virtual-reality closed-loop assay, we quantify how swim bouts selection is statistically controlled by the light intensity received on both eyes prior to the bout initiation, or the change in illumination elicited by the previous swim bout. Our experimental configuration allows us to disentangle the contribution of the two aforementioned strategies: tropotaxis and klinotaxis. From the analysis of this short-term behavior, we built a minimal Markov model of phototaxis, from which we compute the long-term distribution of orientations for any angular profile of illumination. This model offers explicit predictions of the statistics of the fish orientation that quantitatively compare with the experimental observations. We further expand on a recent rate model of the ARTR circuit to propose a functional neuronal model of spontaneous navigation and contrast-biased orientation selection. We demonstrate that the statistics of turn orientation can be fully understood by assuming that this self-oscillating circuitry, that selects the orientation of turning bouts, integrates stereovisual contrast in the form of incoming currents proportional to the visual stimulus.

Results

Kinematics of spontaneous navigation as a first-order autoregressive process

Zebrafish larvae aged 5-7 dpf were placed one at a time in a Petri dish (14 in diameter). Their center-mass position and body axis orientation were tracked in real time at 35 frames/s (Figure 1A-B). This information was used to deliver a body-centered visual stimulus using a video-projector directed onto a screen supporting the Petri dish.

Prior to each phototactic assay, the larva was allowed an ≈ 8 min-long period of spontaneous exploration under uniform and constant illumination at maximum intensity = 450

. -2 .
Such pre-conditioning phases were used to promote light-seeking behavior [START_REF] Burgess | Modulation of locomotor activity in larval zebrafish during light adaptation[END_REF], while enabling the quantification of the basal exploratory kinematics for each fish.

Larval zebrafish navigation is comprised of discrete swim bouts lasting ≈ 100 and interspersed with 1 to 2 -long inter-bout intervals ( ) during which the fish remains still [START_REF] Dunn | Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion[END_REF]. Each bout results in a translational motion of the animal and/or a change in its body axis orientation, and can thus be automatically detected from kinematic parameters. As we are mostly interested in the orientational dynamics, we extracted a discrete sequence of orientations measured just before each swimming event (Figure 1B-C) from which we computed the bout-induced reorientation angles = +1 -.

Although the complete swim bouts repertoire of zebrafish larvae is rich and complex [START_REF] Marques | Structure of the Zebrafish Locomotor Repertoire Revealed with Unsupervised Behavioral Clustering[END_REF][START_REF] Johnson | Probabilistic Models of Larval Zebrafish Behavior: Structure on Many Scales[END_REF], the statistical distribution of the reorientation angles ( ) in such unbiased conditions can be correctly captured by the weighted sum of two zero-mean normal distributions, ( ) =  (0, 2 ) +  (0, 2 ), reflecting the predominance of only two distinct bouts types: turning bouts (standard deviation = 0.6) and forward scoots ( = 0.1) (Figure 1D). This bimodal distribution is consistent with the locomotor repertoire of larvae described by Marques et al. during spontaneous swimming and phototactic tasks [START_REF] Marques | Structure of the Zebrafish Locomotor Repertoire Revealed with Unsupervised Behavioral Clustering[END_REF]. In the absence of a visual bias, the turning bouts and forward scoots were found to be nearly equiprobable, = 1 -= 0.41.

Successive bouts were found to exhibit a slightly positive correlation in amplitude (Figure 1F).

This process can be captured by a 2-state Markov chain model that controls the alternation between forward and turning bouts, while the amplitude within each population is randomly sampled from the corresponding distribution (Figure 1E). Within this scheme, we analytically derived the dependence in the amplitude of successive bouts and thus estimated the forward-to-turn and turn-to-forward transition rates, noted → and → . We found that → ∕ = → ∕ ≈ 0.8. as a function of the cumulative number of bouts, and associated fit (blue, Equation A16). The dotted line is the linear extrapolation of the first two data points and corresponds to the diffusive process expected for a memory-less random walk (no correlation in bout orientation). (J) Orientation correlation of turning bouts (thresholded at 0.22
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) as a function of the time elapsed between those bouts. The blue line is the exponential fit.

memory-less by setting → = and → = .

In line with previous observations [START_REF] Chen | Navigational strategies underlying phototaxis in larval zebrafish[END_REF][START_REF] Dunn | Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion[END_REF], we also noticed that successive turning bouts tended to be oriented in the same (left or right) direction (Figure 1G).

This orientational motor persistence was accounted for by a second Markov chain that sets the orientation of turning bouts, and is controlled by the rate of flipping direction noted (Figure 1E bottom). Notice that, in contrast with the model proposed by [START_REF] Dunn | Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion[END_REF], although the orientational state is updated at each bout, it only governs the direction of turning bouts. When a forward bout is triggered, its orientation is thus unbiased.

This model provides an analytical prediction for the mean reorientation angle ⟨ ⟩ | -1 at bout following a reorientation angle -1 at bout -1 (see Annex 1). This expression was used to fit the experimental data (Figure 1G) and allowed us to estimate the flipping rate = 0.19 (99% confidence bounds ±0.017). We further computed the autocorrelation function of the reorientation angles and the Mean Square Reorientation (MSR) accumulated after bouts (Figure 1H-I). Both were consistent with their experimental counterparts. In particular, this model quantitatively captures the ballistic-to-diffusive transition that stems from the directional persistence of successive bouts (Figure 1I). As a consequence, the effective rotational diffusivity at long time = 0.3 2 is about twice as large than the value expected for a memory-less random walk with = 0.5 (Figure 1I dashed line).

In this discrete Markov-chain model, time is not measured in seconds but corresponds to the number of swim bouts. It thus implicitly ignores any dependence of the transition rates with the interbout interval. We examined this hypothesis by evaluating the correlation in bouts orientations as a function of the time elapsed between them. To do so, we first selected the putative turning bouts by selecting the large amplitude events (| | < 0.22

). We then binarized their values, based on their leftward or rightward orientation, yielding a discrete binary signal ( ) = ±1. We finally computed the mean product ⟨ ( ) ( )⟩ for various time intervals Δ = -. The resulting graph, shown in Figure 1J, demonstrates that the correlation in orientation of successive bouts decays quasi-exponentially with the inter-bout period. This mechanism can be captured by assuming that the orientation selection at each bout is governed by a hidden two-state continuous-time process.

The simplest one compatible with our observations is the telegraph process, whose transition probability over a small interval reads , and whose autocorrelation decays as exp(-2 ).

Setting = ∕ ( ) = 0.2 -1
, this model thus correctly captures the -dependence of the orientational correlation of bouts.

In the two following sections, we use the discrete version of the Markov-model to represent the fish navigation, and investigate how the model's parameters are modulated in the presence of a virtual distant light source. We then go back to the underlying continuous-time process when introducing a neuronal rate model for the orientation selection process.

Contrast-driven phototaxis can be described as a biased random walk

We first examined the situation in which the perceived stereo-visual contrast is the only cue accessible to the animal to infer the direction of the light source (tropotaxis regime). The visual stimulus consisted of two uniformly lit half-disks, each covering one visual hemifield. The intensity delivered to the left and right eyes, noted and respectively, were locked onto the fish's orientation relative to the virtual light source (Figure 2A-C): the total intensity ( + ) was maintained constant while the contrast = -was varied linearly with , with a mirror symmetry at ∕2 (Figure 2B). This dependence was chosen to mimic the presence of a distant source located at = 0 (Figure 2B), for which the contrast is null.

The orientation of the virtual source in the laboratory frame of reference was randomly selected at initiation of each assay. After only a few bouts, the animal orientation was found to be statistically biased towards = 0, as shown in Figure 2C-D. This bias was quantified by computing the population resultant vector R defined as the vectorial mean of all orientations (Figure 2E).

Trajectories that are strongly biased towards the source tend to exit the ROI earlier than unbiased For a more thorough analysis of the bout selection mechanisms leading to the orientational bias, we examined, for all values of the contrast, the mean and variance of the two distributions associated with turning bouts and forward scoots, as well as the fraction of turning bouts (Figure 2H-K). We found that the orientational drift solely results from a probabilistic bias in the selection of the turning bouts (left vs right) orientation: the mean orientation of the turning bouts varies linearly with the imposed contrast (Figure 2I). Reversely, the ratio of turning bouts and the variance of the two distributions are insensitive to the contrast (Figure 2J-K). These results indicate that the stereo-visual contrast has no impact neither on bout type selection nor on bout amplitude.

As discussed in the preceding section, successive bouts tend to be oriented in the same direction.

During phototaxis, the selection of the turning orientation is thus expected to reflect a competition between two distinct mechanisms: motor persistence, which favors the previous bout orientation, and stereo-visual bias, which favors the brighter side. To investigate how these two processes interfere, we sorted the bouts into two categories. In the first one, called "reinforcement", the bright side is in the direction of the previous bout, such that both the motor and sensory cues act in concert. In the second one, called "conflicting", the contrast tends to evoke a turning bout in a direction opposite to the previous one. For each category, we plotted the mean reorientation angle at bout as a function of the reorientation angle at bout -1 (Figure 2L). We further estimated, for each condition and each value of the contrast, the probability of flipping orientation (Figure 2M and Methods). These two graphs show that the stereo-visual contrast continuously modulates the innate motor program by increasing or decreasing the probability of flipping bout orientation from left to right and vice versa. Noticeably, in the conflicting situation at maximum contrast, the visual cue and motor persistence almost cancel each other out such that the mean orientation is close to

0 ( ∼ 0.4).

Phototaxis under uniform stimulation is driven by a modulation of the orientational diffusivity

We now turn to the second paradigm, in which the stereo-visual contrast is null (both eyes receive the same illumination at any time), but the total perceived illumination is orientation-dependent (klinotaxis regime). We thus imposed a uniform illumination to the fish whose intensity was locked onto the fish orientation relative to a virtual light source. We tested three different illumination profiles ( ) as shown in Figure 3A: a sinusoidal and two exponential profiles with different maxima.

Despite the absence of any direct orientational cue, a large majority of the larvae (78%) displayed positive phototactic behavior: their orientational distribution showed a significant bias towards the virtual light source, i.e. the direction of maximum intensity (Figure 3C-E).

Although the efficiency of the phototactic behavior is comparable to the tropotaxis case previously examined, here we did not observe any systematic bias of the reorientation bouts towards 6 of 24 the brightest direction (Figure 3F). This indicates that the larvae do not use the change in intensity at a given bout to infer the orientation of the source in order to bias the orientation of the forthcoming turn. Instead, the phototactic process originates from a visually-driven modulation of the orientational diffusivity, as measured by the variance of the bout angle distributions (Figure 3G).

The use of different profiles allowed us to identify which particular feature of the visual stimulus drives this modulation. Although the bout amplitude variance was dependent on the intensity and intensity change experienced before the bout, these relationships were found to be inconsistent across the different imposed intensity profiles. In contrast, when plotted as a function of ∕ , all curves collapse (Figure 3-Figure Supplement 1). This observation is in line with the Weber-Fechner law (Fechner, 1860), which states that the perceived change scales with the relative change in the physical stimulus. One noticeable feature of this process is that the modulation of the turning amplitude is limited to illumination decrement (i.e. negative values of ∕ ). In the terminology of bacterial chemotaxis [START_REF] Oliveira | Single-cell twitching chemotaxis in developing biofilms[END_REF], the zebrafish larva can thus be considered as a "pessimistic" phototactic animal: the orientational diffusivity increases in response to a decrease in illumination (corresponding to a negative subjective value), whereas its exploratory kinematics remain unchanged upon an increase of illumination (positive subjective value).

Two kinematic parameters can possibly impact the orientational diffusivity: the fraction of turning bouts and their characteristic amplitude . We thus extracted these two quantities and plotted them as a function of ∕ (Figure 3G-H). They appear to equally contribute to the observed modulation.

To test whether this uniform phototactic process has a retinal origin, or whether it might be mediated by non-visual deep-brain phototreceptors [START_REF] Fernandes | Deep brain photoreceptors control light seeking behavior in zebrafish larvae[END_REF], we ran similar assays on bi-enucleated fish. In this condition, no orientational bias was observed, which indicates that the retinal pathway is involved in the orientational klinotaxis (Figure 3 

A neuronal model of the ARTR captures spontaneous and contrast driven navigation

The behavioral description proposed above indicates that larvae navigation can be correctly accounted for by two independent stochastic processes: one that organizes the sequence of successive bouts amplitude and in particular the selection of forward vs turning events, while a second one selects the left vs right orientation of the turning bouts. These two processes are independently modulated by two distinct features of the visual stimulus, namely the global intensity changes and the stereo-visual contrast, leading to the two phototactic strategies.

This in turn suggests that, at the neuronal level, two independent circuits may control these characteristics of the executed swim bouts. As mentioned in the introduction, the ARTR is a natural candidate for the neuronal selection of bouts orientation. This small bilaterally-distributed circuit located in the anterior hindbrain displays antiphasic activity oscillation with ∼ 20 period [START_REF] Ahrens | Whole-brain functional imaging at cellular resolution using light-sheet microscopy[END_REF]. The currently active region (left or right) constitutes a strong predictor of the orientation of turning bouts [START_REF] Dunn | Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion[END_REF]. This circuit further integrates visual inputs as each ARTR subpopulation responds to the uniform stimulation of the ipsilateral eye [START_REF] Wolf | Sensorimotor computation underlying phototaxis in zebrafish[END_REF]).

Here we adapted a minimal neuronal model of the ARTR, introduced in Wolf et al. (2017) to interpret the calcium recordings, and tested whether it could explain the observed statistics Manuscript submitted to eLife persistent activity is strong recurrent excitation in each module through recurrent coupling ( ), this tends to maintain each module's activity for a finite period of time. Reciprocal inhibition ( ) between the left and right modules guarantees strong antiphasic dynamics between each side.

Finally, each ARTR module receives an input current from the visual system proportional to the illumination of the ipsilateral eye. Such architecture gives rise to a stimulus-selective attractor well described in Freeman (1995); Wang (2001).

The equations governing the network are provided in Appendix 2 Equation A17. The various model parameters were adjusted in order to match the behavioral data. First, the self-excitatory and cross-inhibitory couplings were chosen such that the circuit displayed spontaneous oscillatory dynamics in the absence of sensory input. Figure 5B shows example traces of the two units' activity in this particular regime. From these two traces, we extracted a binary "orientational state" signal by assigning to each time point a left or right value (indicated in red and blue, respectively), based on the identity of the module with the largest activity.

In the present approach, tail bouts are assumed to be triggered independently of the ARTR activity. The latter thus acts as mere orientational hub by selecting the orientation of the turning events: incoming bouts are oriented in the direction associated with the currently active module.

In the absence of information regarding the circuit that organizes the swim bouts emission, their timing and absolute amplitude were drawn from the behavioral recordings of freely swimming larvae (Figure 5 In the presence of a lateralized visual stimulus, the oscillatory dynamics become biased towards the brightest direction (Figure 5D-E). Hence, illuminating the right eye favors longer periods of activation of the rightward-selective ARTR unit. The mean reorientation displays a quasi-linear dependence with the imposed contrast (Figure 5D) in line with the behavioral observations (Fig-

ure 2G).

At intermediate contrast values, the orientation of bouts remains stochastic; the effect of the contrast is to lengthen streaks of turning bouts towards the light (Figure 5E). We also tested whether this model could capture the competition mechanism between stereovisual bias and motor persistence, in both conflicting and reinforcement conditions. We thus computed the dependence of the flipping probability as a function of the contrast in both conditions (Figure 5F). The resulting graph is in quantitative agreement with its experimental counterparts (Figure 2M).

We finally used this model to emulate a simulated phototactic task. In order to do so, a virtual fish was submitted to a contrast whose amplitude varied linearly with the animal orientation, as in the lateralized assay. When a turning bout was triggered, its orientation was set by the ARTR instantaneous activity while its amplitude was drawn from the experimental distributions. After a few bouts, a stationary distribution of orientation was reached that was biased towards the virtual light source (Figure 5G). Its profile was in quantitative agreement with its experimental counterpart (mean resultant vector length = 0.23 in simulation for = 0.24 in experimental data for bouts 2 to 17).

Discussion

Sensorimotor transformation can be viewed as an operation of massive dimensionality reduction, in which a continuous stream of sensory and motor-related signals is converted into a discrete series of stereotyped motor actions. The challenge in understanding this process is (i) to correctly categorize the behavioral events, i.e. to reveal the correct parametrization of the motor repertoire Here we implemented a minimal model approach in order to unveil the basic rules underlying phototaxis. We showed that zebrafish light-driven orientational navigation can be quantitatively described by a stochastic model consisting of two independent Markov chains: one that selects forward scoots vs turning bouts and a second one that sets the orientation of the latter. We established that the stereo-visual contrast and global intensity modulation act separately on each of these selection processes. The contrast induces a directed bias of turning bouts towards the illuminated side, but does not impact the prevalence of turning bouts vs forward scoots.

Reversely, a global decrement in illumination increases the ratio of turning bouts but does not favor any particular direction. For the contrast-driven configuration (tropotaxis), the minimal model corresponds to an Ornstein-Uhlenbeck process [START_REF] Uhlenbeck | On the Theory of the Brownian Motion[END_REF], which describes the dynamics of a diffusive brownian particle in a quadratic trap. In the klinotaxis configuration (in the absence of stereo-visual contrast), the orientational bias solely results from a light-dependent modulation of the diffusivity, a mechanism reminiscent of bacterial chemotaxis.

This stochastic minimal model is built on a simple decision tree ( Figure 4A) with a set of binary choices. However, to fully capture the orientational dynamics, we had to incorporate the continuous increase in turning bout amplitude with the light decrement in an ad-hoc way. It is currently unclear whether all turn bouts in our experiments can be assigned to a single class of swim maneuvers that are modulated in amplitude, or whether these encompass distinct motor programs executed with varying frequencies. In the latter case, it might be possible to represent this amplitude modulation through an extension of the decision tree that would select between distinct turn bout categories.

Compared to previous studies on phototaxis, e.g. Burgess et al. (2010), our approach allowed us to clearly disentangle the contributions of spatial (stereovisual contrast) and time-dependent (motion-induced change in global illumination) visual cues. Hence, the contrast-driven assays were performed under constant overall illumination intensity (the sum of left and right intensities). This allowed us to establish that, rather surprisingly, the probability of triggering a turn (vs a forward swim) is insensitive to the imposed contrast. This possibility constitutes an important asset with respect to standard experimental configurations, such as the one examined by Burgess et al. (2010), in which the animal is submitted to an actual distant light source. Although these configurations provide a more realistic context, the visual stimulus effectively perceived by each eye can not be quantitatively assessed, which precludes the design of predictive models. Conversely, once adjusted on well-controlled virtual assays, our model could be numerically implemented in realistic environments, and the trajectories could then be directly confronted with behavioral data. This would require to first infer how the intensity impinging on each eye depends on the source distance and orientation relative to the animal body axis.

Another critical and distinct aspect of the present work is its focus on the steady-state dynamics.

Our aim was to mimic the continuous exploration of an environment in which the brightness level displays slowly varying angular modulations. The luminosity profiles were thus chosen to ensure that individual bouts elicited relatively mild changes in illumination. By doing so, we tried to mitigate visual startle responses that are known to be elicited upon sudden darkening (Stephen S. Easter and Nicola, 1996). Although we could not avoid the initial large drop in illumination at the onset of each trial, the associated short-term response (i.e. the first bout) was excluded from the analysis.

In this respect, our experiment differs from the study of Chen and Engert (2014) in which a similar close-loop setup was used to demonstrate the ability of larvae to confine their navigation within bright regions. This behavior was entirely controlled by the animal's response to light-on or light-off stimuli as it crossed the virtual border between a bright central disk and the dark outer area. These sharp transitions resulted in clear-cut behavioral changes that lasted for a few bouts. In comparison, our experiment addresses a different regime in which subtle light-driven biases in the spontaneous exploration cumulatively drive the animal towards brightest regions.

As we aimed to obtain a simple and tractable kinematic description, we ignored some other aspects of the navigation characteristics. First, we focused on the orientation of the animal and thus did not systematically investigate how the forward components of the swim bouts were impacted 13 of 24 by visual stimuli. However, in the context of angle-dependent intensity profiles, this effect should not impact the observed orientational dynamics. More importantly, we ran most of our analysis using the bout number as a time-scale, and thus ignored possible light-driven modulations of the inter-bout intervals ( ). We showed, however, that the orientational correlation is controlled by an actual time-scale. This result may have significant consequence on the fish exploration. In particular, we expect that changes in bout frequency, reflecting various level of motor activity, may significantly affect the geometry of the trajectories (and not only the speed at which they are explored). We illustrated this process by running numerical experiments at similar flipping rate for increasing bout frequencies. The trajectories, shown in An important outcome of this study is to show that light-seeking navigation uses visual cues over relatively short time scales. The bouts statistics could be captured with a first order autoregressive process, indicating that the stimulus perceived over one is sufficient to predict the forthcoming bout. However, one should be aware that such observation is only valid provided that the sensory context remains relatively stable. Hence for instance, a prolonged uniform drop in luminosity is known to enhance the overall motor activity (generally measured by displacement over a period of time) for up to several tens of minutes [START_REF] Prober | Hypocretin/Orexin Overexpression Induces An Insomnia-Like Phenotype in Zebrafish[END_REF][START_REF] Emran | OFF ganglion cells cannot drive the optokinetic reflex in zebrafish[END_REF][START_REF] Emran | Zebrafish larvae lose vision at night[END_REF][START_REF] Liu | Statistical analysis of zebrafish locomotor response[END_REF]. This long-term behavioral change, so-called photokinesis, might be regulated by deep brain photoreceptors [START_REF] Fernandes | Deep brain photoreceptors control light seeking behavior in zebrafish larvae[END_REF][START_REF] Horstick | Search strategy is regulated by somatostatin signaling and deep brain photoreceptors in zebrafish[END_REF] and thus constitutes a distinct mechanism. One particularly exciting prospect will be to understand how such behavioral plasticity may not only modulate the spontaneous activity [START_REF] Johnson | Probabilistic Models of Larval Zebrafish Behavior: Structure on Many Scales[END_REF] but also affects the phototactic dynamics.

One of the motivations of minimal behavioral models is to facilitate the functional identification and modeling of neural circuits that implement the identified sensorimotor operations in the brain. Here we used the behavioral results to propose a neuronal model of the ARTR that quantitatively reproduces non-trivial aspects of the bout selection process. This recurrent neural circuit is a simplified version of working memory models developed by Brunel and [START_REF] Wang | Synaptic reverberation underlying mnemonic persistent activity[END_REF];

Wang (2001,2002,2008) and adapted in [START_REF] Wang | Probabilistic Decision Making by Slow Reverberation in Cortical Circuits[END_REF] for a decision task executed in the parietal cortex (Shadlen andNewsome, 1996, 2001). In this class of models, the binary decision process reflects the competition between two cross-inhibitory neural populations. The circuit is endowed with two major functional capacities: (1) it can maintain mnemonic persistent activity over long periods of time, thanks to recurrent excitatory inputs; (2) it can integrate sensory signals in a graded fashion to continuously bias the statistics of the decision. This model thus naturally recapitulates the major functional features of the sensory-biased Markov side chain -motor persistence and contrast-driven continuous bias -that organizes the orientation selection.

It is tempting to generalize about this behavior-to-circuit approach, at least in small animals such as zebrafish or drosophila, by representing any behavior as a coordinated sequence of competing elemental actions biased by sensory feedback and organized within a hierarchical decision tree.

The identification of such decision trees through quantitative behavioral analysis may provide a blueprint of the brain functional organization and significantly ease the development of circuit models of brain-scale sensorimotor computation.

Materials and methods

Zebrafish maintenance and behavioral setup

All behavioral free-swimming experiments were performed on wild-type zebrafish (Danio Rerio) larvae aged 5 to 8 days post-fertilization. Larvae were reared in Petri dishes in E3 solution on a 14/10h light/dark cycle at 28 • C, and were fed powdered nursery food every day from 6 dpf.

Experiments were conducted during daytime hours (10 am to 6 pm). Single larvae were swim-14 of 24 ming in a 14 in diameter Petri dish containing E3 medium. The arena was placed on a screen illuminated from below by a projector (ASUS S1). Infrared illumination was provided by LEDs, to enable recording and tracking of the fish. We used an IR-sensitive Flea3 USB3 camera (FL3-U3-13Y13M-C, Point Grey Research, Richmond, BC, Canada), with an adjustable macro lens (Zoom 7000, Navitar, USA) equiped with an IR filter.

The experimental setup was enclosed in a light-tight rig, which was maintained at 28 • C using "The Cube" (Life Imaging Services).

For the stereovisual paradigm = 47 larvae were tested, and = 37 for the temporal paradigm [(uniform 1) : 12, (uniform 2) : 11, (uniform 3) : 14]. All tested fish ( = 84) were also used to assess spontaneous navigation statistics.

Behavioral assay

Closed-loop tracking and illumination were performed at a mean frequency of 35 Hz, with a custom-written software in Matlab (The MathWorks), using the PsychToolBox (PTB) version 3.0.14 add-on.

Position and orientation (heading direction) of the fish, as well as bouts characteristics, were extracted online and the illumination pattern was updated accordingly, with a maximum latency of 34ms. Heading direction was extracted with an accuracy of +/-0.05 rad (∼ 3 • ). To mitigate the effects of the walls in the fish navigation, behavioral monitoring was restricted to a circular central region of interest of 8.2 diameter. When outside the ROI, the fish was actively brought back into the field of view of the camera through the opto-motor reflex (OMR), using a concentrically moving circular pattern. One second after the fish re-entered the ROI, a new recording sequence was started.

Prior to the phototactic assays, all tested fish were subjected to a period of at least 8 minutes of habituation under whole-field illumination at an intensity of = 450 . -2 . For both paradigms, the absolute orientation of the virtual source was randomly selected when initiating a new experimental sequence (each time the animal would re-enter the region of interest). Thus the relative orientation of the fish towards the light source was calculated online using the absolute orientation of the fish and the randomly chosen orientation of the source : = -.

Lateralized paradigm. A circle of 6cm in diameter was projected under and centered on the fish.

The circle was divided into two parts, covering the left and right side of the fish. The separation between the two parts corresponded to the animal midline. The division (2mm thick) as well as a triangle (30°) in front of the head were darkened to avoid interception of intensity coming from the right side of the fish by its left eye and vice-versa. Left and right intensities ( and ) were varied linearly as a function of , such that + = , being constant. Since during the habituation period, the whole arena was lit, the intensity received by the fish drops by a factor of 2 with the establishment of the circle, at the beginning of the trial. Note that when heading towards the virtual light source, the total intensity received on both eyes is equal to half the value that the animal experiences during the conditioning phase. Although our imposed contrast profiles displays two angles for which the contrast is null, namely = 0 and , only does the first one correspond to a stable equilibrium point. When is close to zero, any excursion away from this particular direction results in a contrast that drives the animal back to the null angle. Conversely, when ≈ , the contrast drives the animal away from (unstable equilibrium).

Temporal paradigm. The whole arena was illuminated with an intensity locked onto the fish orientation relative to a virtual light source. The initial orientation was randomly chosen at the beginning of a recording sequence. Three different intensity angular profiles were implemented:

(uniform 1) a sinusoidal profile, with a maximum intensity of 60% of , (uniform 2) an exponential profile, with a maximum intensity of 60% of and finally (uniform 3) an exponential profile with a maximum intensity of 30% of .

Data analysis

Data analysis was performed using a custom-written code in Matlab. When representing the mean of a variable against another, bin edges were chosen such that each bin would encompass the same number of elements. Circular statistics analyses (mean, variance, uniformity) and circular statistics tests, namely the circular Rayleigh test of non-uniformity of data and the one-sample test for the mean angle of a circular distribution (tested on the orientation of the light virtual light source ⟨ ⟩ = 0) were performed using CircStat toolbox for Matlab [START_REF] Berens | CircStat: A MATLAB Toolbox for Circular Statistics[END_REF].

In order to calculate the mean resultant vector length , we consider all the angular positions relative to the source. The resultant vector is defined, in the complex plane, as = 1 ∑ exp and its length as = | |. In order to assess to what extent a distribution is biased towards a specific direction (here, the light source), the quantity ( ) was sometimes used : the mean resultant vector projected onto the direction of the light source.

Individual fish often exhibit a consistent (minute) bias towards one direction (either leftward or rightward). This bias was subtracted before performing the different analyses, in order to guarantee that ⟨ ⟩ = 0 in the absence of a stimulus. The distribution of reorientation angles during spontaneous swimming periods was fitted with a constrained double-Gaussian function.

We imposed that both the mean absolute angle and variance of the fitting function be consistent with the experimental measurements. This yields an expression with only one independent fitting parameter in the form:

( ) = 1 √ 2 -1 2 ( ) 2 + 1 - -1 2 2 (1) using = + √ 2 2 -2 -(1 - ) 2 + (1 - ) 2 + (1 - ) and = √ ∕2 - 1 - with = ⟨| |⟩ , = ⟨ 2 ⟩
To evaluate the mean and variance of the forward and turn bouts under various visual context, the distributions in different bins were also fitted with a constrained double Gaussian model as in

(1). The stereovisual data distributions were fitted with two additional mean terms and ;

and for the klinotaxis assay, with a constraint on and . The bins were constructed either on the contrast experienced just before bout or on the relative difference of intensity experienced at bout -1 :

∕ = 2 -1 --2 -1 + -2 .
All distributions of and analyses of bias were computed using trajectories from bouts number 2 to a maximum of the median number of bouts per sequence in each type of experiment. The median number of bouts in each experiment was = 17 for the tropotaxis experiment, and 27, 15, 17 for the klinotaxis assays for the 3 profiles 1-3, respectively.

Numerical simulations

The random walk model simulations were performed using a custom-written code in MATLAB. Initial orientations and positions within the ROI were randomly sampled from, respectively, a uniform distribution and a normal distribution centered on a circle of radius 20 mm from the center of the ROI and a standard deviation of 1.3 mm (mimmicking the starting points of experimental data).
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At each step, the walker draws a certain angular step-size from the data: either from the turning distribution with a probability or from the forward distribution with a probability 1 -.

Respective means are and and standard deviation and . The direction of only the turns is set by the probability of flipping sides . For the spatially constrained simulations, the walker also draws a distance step-size (between two successive positions) from two different gamma distributions : one for the turning bouts, a second one for the scoots. Under neutral conditions (uniform illumination), all parameters are constant.

For simulation of stereovisual phototactic conditions, only changes linearly as a function of the contrast (based on the data represented in Figure 2J).

As for the temporal phototaxis, parameters and were adapted as a function of the relative illumination change ∕ experienced at the previous steps (as represented in Figure 3G-H).

The simulations also account for the adaptation illumination preceding an experimental trial, prior the first bout.

⟨ +1 ⟩ = (1 - ) ⟨ | || +1 | ⟩ - ⟨ | || +1 | ⟩ = 2 [(1 -2 ) ⟨ | || +1 | ⟩ ] thus : ⟨ +1 ⟩ ⟨ | || +1 | ⟩ = 2 [(1 -2 ) = 1
And finally

= 1 2 (1 -1 2 ) (2)

Mean square reorientation (MSR)

The mean square reorientation for a lag ∈ ℕ * is defined by:

= ⟨ + - 2 ⟩ (A15)
and can be expressed as a sum of correlations as follows:

= ⟨ ∑ =1 + -1 2 ⟩ = ⟨ ∑ =1 ∑ =1 + -1 + -1 ⟩ = ∑ =1 ∑ =1 ⟨ + -1 + -1 ⟩ = ⟨ 2 ⟩ + ∑ =1 ∑ =1 ≠ ⟨ + -1 + -1 ⟩ = ⟨ 2 ⟩ + 2 -1 ∑ =1 ( -) ⟨ + ⟩ = + 2 -1 ∑ =1 ( -) ⟨ 2 ⟩
and using equation A13 we finally obtain the expression used in 
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 1 Figure 1. Kinematics of spontaneous navigation. (A) Experimental setup: real-time monitoring of the larva position and orientation using IR illumination, enables closed-loop visual stimulation using a video projector. (B) Typical trajectory of a 6 days old larva in the region of interest (ROI) of the arena under constant, uniform illumination. Each point indicates the fish position at the onset of a swim bout. Dots' size and color encode the bout distance and bout reorientation angle, respectively. Insets: blow-up of an example frame (left) and definition of the reorientation angle at bout number (right). b.len : body length. (C) Time-sequence of the fish body orientation (top). Swim bouts elicit rapid re-orientations. The angular dynamics can thus be represented as a series of discrete reorientation events of various amplitudes (color code as in (B)). (D) Experimental (dark) and analytical (blue) distributions (pdf : probability density function) of reorientations . The two normal distributions used in the fit with Equation A1, weighted by and 1 -, are also displayed in dashed blue lines. (E) Two independent Markov chains model for spontaneous navigation: the bout type chain controls the forward scoot ( ) versus turning ( ) state, with transitions rates → and → . The side chain controls the transitions between left ( ) and right ( ) headings when the animal is in the turning state, with transition rate . (F) Mean squared reorientation amplitude of bout + 1 as a function of the squared amplitude of bout (grey), and its associated analytical fit (blue, Appendix 1 Equation A5). (G) Average reorientation of bout + 1 as a function of the reorientation at bout (grey), and its associated analytical fit (blue, Equation A11). (H) Correlation in reorientation angles as a function of the number of bouts (grey) and associated fit (blue, Equation A14). (I) Mean square reorientation (MSR) as a function of the cumulative number of bouts, and associated fit (blue, Equation A16). The dotted line is the linear extrapolation of the first two data points and corresponds to the diffusive process expected for a memory-less random walk (no correlation in bout orientation). (J) Orientation correlation of turning bouts (thresholded at 0.22) as a function of the time elapsed between those bouts. The blue line is the exponential fit.

  are more tortuous and thus more spatially confined. This generates a progressive selection bias as the number of bouts considered is increased, as revealed by the slow decay of the resultant vector length (Figure2-Figure Supplement 1). In order to mitigate this selection bias, all analyses of stationary distributions were restricted to bout indices lower than the median number of bouts per trial ( ≤ 17), and excluding the first bout. Under this condition, we found that ∼ 77% of zebrafish larvae display a significant phototactic behavior (Figure 2D, test of significance based on a combination of two circular statistic tests, see Methods), a fraction consistent with values reported by Burgess et al. (2010) in actual phototactic assays . From these recordings, we could characterize how the contrast experienced during the inter-bout interval impacts the statistics of the forthcoming bout. Figure 2G displays the mean reorientation as a function of the instantaneous contrast c. This graph reveals a quasi-linear dependence of the mean reorientation with c, directed towards the brighter side. Notice that the associated slope shows a significant decrease in the few first bouts, before reaching a quasi-constant value (Figure 2-Figure Supplement 2). This effect likely reflects a short term habituation mechanism, as the overall intensity drops by a factor of 2 at the initiation of the assay.

Figure 2 .

 2 Figure 2. Contrast-driven phototaxis as a biased random walk. = 47 fish, 18, 322 bouts. All statistical analysis are performed on the first 17 bouts, the first one excluded, for each assay. VS : virtual source. (A) Stimulus pattern delivered to the larva. The orientation relative to the virtual source is noted . (B) Left and right intensities (top panel) and contrast = -+ (bottom panel) as a function of . The virtual light source is defined by a null contrast ( = 0) and corresponds to a stable point ( < 0). (C) Probability density function (pdf) of orientations relative to the virtual light source for one fish during 20 trials, bouts 2 to 17 (n=320 bouts). (D) Probability density function (pdf) of orientations for all tested fish ( = 47). Significantly biased toward the virtual source (V-test for non-uniformity with specified mean 0 ( < 10 -11 ) (E) Definition of the mean resultant vector length for one fish. The points represent the angular positions of the fish relative to the source. The length of the resultant vector is defined, in the complex plane, as = | | | 1 ∑ exp | | | . (F) Resultant vectors for individual fish. (G) Mean reorientation ⟨ ⟩ per bout as a function of contrast for all fish. Error bars represent the standard error of the mean. Red line is the linear fit with slope 0.2 rad. (H) Illustration of the shift in turning distribution ( < 0) induced by a negative contrast. (I) Means, (J) standard deviations and (K) relative weight of the turning distribution as a function of the contrast. For each value of the contrast, these quantities were extracted by double-Gaussian fitting of the bout angles. The error bars represent the 99% confidence interval from the fit. (L) Average reorientation at bout + 1 as a function of the reorientation at bout in reinforcing (contrast and previous bout orientation are consistent) or conflicting (contrast and previous bout orientation are in conflict) situations. The dashed line is the analytical prediction in the absence of stimulation. (M) Probability of switching direction as a function of the contrast, in situations of conflict or reinforcement.
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 22 Figure 2-Figure supplement 1. Evolution of R as a function of bout number Figure 2-Figure supplement 2. Evolution of bias slope with bout number

  -Figure Supplement 2, all -values > 0.14, pairwise -tests).A biased random walk model for phototaxis provides a quantitative prediction of light-driven orientational biasIn the preceding sections, we quantified how visual stimuli stochastically modulate specific kinematic parameters of the subsequent bout. We used these relationships to build a biased random walk model of phototaxis. We then tested how such a model could reproduce the statistical orientational biases towards the directions of minimal contrast and maximal illumination. The phototactic model thus incorporates a visually-driven bias to the discrete two-Markov chains introduced to represent the spontaneous navigation (Figure4A). In line with the observation of Figure 2M, the rate of flipping orientational state (left-to-right or right-to-left) was a linear function of the imposed contrast: → = + and → = -. The value of was set so as to capture the contrastdependent orientational drift (Figure 2G) and was made dependent on bout number in order to account for the observed habituation process (Figure 2-Figure Supplement 2).The selection of bout type was in turn linearly modulated by the relative change in intensity after negative rectification ( ∕ -= ( ∕ , 0)). Hence, the turn-to-forward and forward-to-turn transition rates read → to reproduce the observed dependence of the turn-vs-forward ratio and bout amplitude with ∕ (Figure3H-I).This stochastic model was tested under two conditions, tropo-and klino-phototaxis, similar to those probed in the experiments (Figure4B). In order to account for the sampling bias associated with the finite size of the experimental ROI, the particles in the simulations also progressed in a 2D arena. At each time step, a forward displacement was drawn from a gamma distribution adjusted on the experimental data (Figure5-FigureSupplement 1). Statistical analysis was restricted to bouts executed within a circular ROI as in the experimental assay.The comparison of the data and numerical simulation is shown in Figure4Cfor the tropotaxis

Figure 3 .

 3 Figure 3. Orientational phototaxis driven by modulation of the global illumination.= 37 fish, = 26, 443 bouts. (A) Top panel : Angle-dependent intensity profiles delivered to the larva. The virtual light source is located at = 0, defined as the point of maximum intensity. The profiles are sinusoidal (uniform 1, purple) or exponentially-shaped (uniform 2 and 3 respectively orange and yellow). All statistics were computed using bouts number 2 to the median number of bouts per sequence (resp. 27, 17 and 15 for the 3 profiles). (B-D) PDF of the fish orientations for the 3 profiles. All 3 distributions are significantly biased towards the virtual source (V-test for non-uniformity of circular data with specified mean 0, respectively 9.10 -3 , 2.10 -7 and 3.10 -5 ).(E) Resultant vector for all individual fish. (F) Mean reorientation per bout ⟨ ⟩ of all fish as a function of for the 3 profiles. No significant bias towards the source ( = 0) is observed. (G) Variance of the reorientation angles ⟨ 2 ⟩ as a function of the relative change in intensity experienced at the previous bout ∕ . Error bars are standard error of the mean. (H) Standard deviation of turning bouts as a function of ∕ . The standard deviation of forward scouts was set at , and was then estimated using a double-Gaussian fitting of the bout angles. Error bars are the 99% confidence interval from fit. (I) Probability of triggering a turning bout as a function of ∕ . Error bars are the 99% confidence interval from the fit.
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 33 Figure 3-Figure supplement 1. Variance of as a function of 3 different illumination parameters Figure 3-Figure supplement 2. Control for retinal origin of klinotaxis

  of exploration in both spontaneous and phototactic conditions. The architecture of the model is depicted in Figure5A. The network consists of two modules that are selective for leftward and rightward turning bouts, respectively. A perfect candidate mechanism for the generation of

Figure 4 .

 4 Figure 4. A Markov-chain model of phototaxis captures the observed orientational distribution. (A) Decision tree for simulation: selection of forward scoots vs turning bouts are governed by the relative intensity change at the previous bout. If a turning bout is triggered, the selection of left-right orientation is biased by the stereovisual contrast. (B) 2D density profiles computed from all experimental and simulated trajectories for the three different paradigms (no stimulation, lateralized illumination and uniform illumination). The color encodes the excess or deficit of density with respect to the radially-averaged density without any stimulation. (C-F) Experimental (color) and simulation (solid line) probability density distributions of orientations for the 4 phototactic configurations (stereo-visual stimulation, uniform stimulation with angular profiles 1 to 3). (G-J) Evolution of the resultant vector's length as a function of the bout number for the experiment (color) and simulation (solid line). Error bar : standard error of the mean.

  figure supplement 1). Combined with the ARTR dynamics, this yielded a discrete sequence of simulated bouts (leftward, rightward and forward, Figure 5B, inset). With adequate choice of parameters, this model captures the orientational persistence mechanism, as quantified by the slow decay of the turning bout autocorrelation with the interbout interval (Figure 5C).

Figure 5 .

 5 Figure 5. A neuronal model of turning bout selection captures spontaneous and contrast-driven navigation. (A) Scheme of the Markov chain model of the orientation selection, and corresponding neuronal model of the ARTR. The latter consists of two units whose relative activation controls the orientation of bouts. Persistent and self-alternating dynamics result from the recurrent excitation ( ) and reciprocal inhibition ( ) between each unit. They further receive input currents proportional to the illumination of the ipsilateral eye. (B) Top: example traces of the simulated activity of the left (red) and right (blue) modules in the absence visual stimulation (AU : arbitrary units). These continuous dynamics control the alternation between right and left orientational states. Close-up: forward and turning bouts are triggered independently with a statistics drawn from the behavioral recordings. The orientational state governs the orientation of the turning bouts. (C) Orientation correlation of turning bouts (thresholded at .22 rad) as a function of the inter-bout interval . Result from the neuronal model is in blue, experimental data are in black. (D) Mean reorientation ⟨ ⟩ as a function of the contrast . (E) Example traces of the simulated activity for a constant contrast = 0.5. (F) Probability of flipping orientation as a function of the imposed contrast in situations of conflict or reinforcement (neuronal model). (G) Probability distribution function of for 10 simulated phototactic trajectories with a linear dependence of average reorientation on contrast. Each trajectory lasted 50,000 seconds. The dotted line is the orientational distribution in the absence of visual stimulation.
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 55 Figure 5-Figure supplement 1. Inter-bout distance distribution Figure 5-Figure supplement 2. Simulated trajectories with different inter-bout intervals
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 5 Figure Supplement 2, exhibit increasing complexity as measured by the fractal dimension. This mechanism may explain the changes in trajectories' geometry observed by Horstick et al. (2017) in response to sudden light dimming.
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 22 Figure 2-Figure supplement 1. Evolution of the mean resultant vector length projected on the direction of the virtual light source in time (bout#) for the 4 tested phototactic modalities (uniform illumination : (p1-p3) and stereo-visual constrast). The vertical lines represent the median number of bouts per sequence in each modality.
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 33 Figure 3-Figure supplement 1. Testing klinotaxis with spatially uniform illumination (orientational profiles p1-p3). Change in variance of at bout n for two different parameters : absolute intensity , absolute change in intensity = --1 and relative change in intensity ∕ = 2 --1 + -1.
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 55 Figure 5-Figure supplement 1. Probability distribution function of the distance between two successive bouts. Fit : gamma distribution.
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Appendix 1

Modelling spontaneous navigation of zebrafish larvae

We model the discrete trajectories (sequences of bouts) as a stochastic process using two independent Markov chains, depicted in Figure 1E. The bout type chain (top) controls the alternation between forward and turning bouts, with possible states and at time , while the side chain (bottom) controls the left/right orientations of turning bouts, with possible states and . All possible states are combinations of the states of the two chains, namely { } , { } , { } , and { }. The transition rates of the bout type chain are → and → , where → ∕ → = is the overall fraction of turning bouts. For the side chain, under constant uniform illumination, the right and left states are equiprobable, and the two transition probabilities are thus equal: → = → = .

The two chains operate synchronously: at every time step transitions on both chains are triggered simultaneously, and a reorientation value is drawn based on the resulting state. When the fish is in a turning state, { } or { } , the reorientation angle is sampled from the positive and negative side of a centered normal distribution with standard deviation for left and right turns, respectively. When the fish is in a forward state, { } or { } , the reorientation angle is drawn from a normal distribution with standard deviation . Therefore, for forward bouts the resulting can be positive or negative, irrespective of the left/right state of the side chain. Altogether, the general statistical distribution of turning amplitudes used in Figure 1F reads

Mean amplitude at + 1

Within this framework, one can analytically compute the mean square angle at time + 1, as detailed below:

The two probabilities read:

Using the functions defined in A2 we introduce the function ( ):

The mean square amplitude at time + 1 can thus be written, as a function of as:

Manuscript submitted to eLife This expression is used to fit the data in Figure 2G and estimate the two transition rates. These are found to be close to the ratio of turning and forward bouts, i.e.

→ ∕ = → ∕(1 -) ≈ 0.8. In the following, we set → = and → = 1 -, thus ignoring the weak memory component in the selection of turning vs forward bouts.

Mean reorientation at + 1

Similarly, one can compute the theoretical expression of the mean reorientation angle at time + 1:

Then:

and

Without further assumption, this simply confirms

Given the reorientation at time , this expression now writes:

and

we obtain

Then, noting that

we finally obtain the formula used to fit the data in Figure 1G:

Autocorrelation of the reorientations

One can then compute the correlation of reorientation amplitudes, defined for ∈ ℕ * as:

with the normalization coefficient equal to the variance of reorientations

The term ⟨ + ⟩ can be computed in a similar manner as for equation A6, but with more terms corresponding to the 16 possible combinations of states:

Only the 4 states in the bottom-right corner have a finite contribution, since all the others terms are multiplied by = 0. Thus:

and, using A7 and

and noting that

one obtains

and finally:

This is the equation used to fit the data in Figure 1H.

An estimate of was calculated as follows. If only turns are considered :

Appendix 2

Neuronal model of the ARTR

The architecture of the ARTR neuronal model is shown in Figure 5A. The circuit consists of two modules selective to lefward or rightward turning. Each module receives recurrent excitatory, cross-inhibitory and sensory inputs. The firing rates of the left/right ARTR modules are governed by two differential equations:

, stands for the firing rate of the left (resp. the right) neuron of the ARTR.

, corresponds to the recurrent excitatory current in the left (resp. the right) part of the network.

, corresponds to the cross-inhibitory current coming from the contralateral side of the network. 0 is a constant, a white noise. The function is a non-negative spiking constraint such that ( > 0) = , whereas ( < 0) = 0. We fix = 100 , 0 = 20 and ( ) is a white noise with standard deviation of 500.

And

Where ℎ is a constant, ( ) is the contrast seen by the fish.

In such a dynamical system, the self-excitation and the noise produce the rise and fall of activity in one population, while inhibition ensures that only one population can be active at a time. Qualitatively controls the anticorrelation between left and right neuron activity.

If

is too low the activity of each side of the network is independent. We fix = 7 . such that the anticorrelation of the left and right signals is comparable to the one described in Wolf et al. (2017): -0.4. controls the ability for each side of the network to have a stable activity across time longer than . Schematically, the dynamical system described by the Equation A17 can have three different regimes given the values of . One regime is characterized by an absence of stable activity (low ). Another regime sees one of the neurons of the network active forever whereas the other is silent ( ∼ 1). The third regime displays an alternation of stable activity between each side of the network. The fixation time of the left or the right neuron is controlled by . An intuitive metric for this fixation time is given by the shape of autocorrelation of , . We choose such that the fits of the autocorrelation ofand the orientation correlation of turning bouts by an exponential decreasing function coincides (Figure 5C and Figure 1J). For the phototactic simulated activity, we modelled the effective visual contrast seen by the fish with a linear function of the angular distance between the fish and the light source.