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On the benefits of using multivariate analysis in
mass spectrometric studies of combustion-generated
aerosols

D. Ducaa, C. Irimieab, A. Faccinettoc, J. A. Noblea,†, M. Vojkovica, Y. Carpentiera, I. K.
Ortegab, C. Pirima and C. Focsaa

Detailed molecular-level analysis of combustion emissions may be challenging even with high-
resolution mass spectrometry. The intricate chemistry of the carbonaceous particles surface layer
(which drives their reactivity, environmental and health impacts) results in complex mass spec-
tra. Building on a recently proposed comprehensive methodology (encompassing all stages from
sampling to data reduction), we propose herein a comparative analysis of soot particles produced
by three different sources: a miniCAST standard generator, a laboratory diffusion flame and a
single cylinder internal combustion engine. The surface composition is probed by either laser or
secondary ion mass spectrometry. Principal component analysis and hierarchical clustering anal-
ysis proved their efficiency in both identifying general trends and evidencing subtle differences
that otherwise would remain unnoticed in the plethora of data generated during mass spectro-
metric analyses. Chemical information extracted from these multivariate statistical procedures
contributes to a better understanding of fundamental combustion processes and also opens to
practical applications such as the tracing of engine emissions.

1 Introduction1

Multivariate analysis (MVA) methods are powerful tools to un-2

ravel trends in complex databases. They have been successfully3

applied in the past, for instance, to identify drug metabolites4

in biological fluids1, to evaluate profiles of volatile compounds5

present in mainstream tobacco smoke2, or else, to assess surface6

water quality3. Among the MVA methods commonly used4 are7

the principal component analysis (PCA) and the hierarchical clus-8

tering analysis (HCA). The former is used to reveal hidden pat-9

terns in databases, by emphasising the variance between samples10

and thus highlighting their differences and similarities5, whereas11

the latter searches for patterns in a database by grouping the ob-12

servables into distinct clusters. Their capability at distinguishing13

various complex samples, as exemplified for a while now in the14

field of biology, has recently led to their consideration for unrav-15

elling the chemical composition of multifaceted samples of envi-16
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ronmental interest.17

Atmospheric aerosols are airborne particles consisting of an18

intricate mixture of chemical constituents whose nature varies19

greatly depending upon their emission source and evolution20

within the atmosphere. Carbonaceous particles account for a21

significant fraction of atmospheric particulate matter in urban22

areas (typically 30-50% by mass6–8). They are mainly formed23

of soot, i.e. particles generated by the incomplete combustion24

of hydrocarbon-based fuels or biomass. Accordingly, soot parti-25

cles hold a multitude of chemical compounds derived from vari-26

ous sources (remnant of fuels, combustion and/or post-oxidation27

products, etc.) that may have been further transformed (aged)28

by the time they are analysed due to their continuous interaction29

with environmental elements (solar rays, water molecules, pol-30

lutants, etc.). Soot particles are therefore considered a complex31

mixture that often needs a concerted analytical scheme to be fully32

resolved.33

Mass spectrometry (MS) based techniques have significantly34

contributed to better understanding soot chemistry over the35

years. They are generally robust techniques that do not require36

extensive sample preparation, and are hence preferred for the37

analysis of such complex samples. Furthermore, the amount of38

particulate matter required to perform MS analysis is relatively39

small. MS based techniques mostly differ by the way the ions40
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transferred to the mass spectrometer are created (e.g. soot par-41

ticle aerosol mass spectrometry (SP-AMS)9, two-step laser mass42

spectrometry (L2MS)10, time-of-flight secondary ion mass spec-43

trometry (ToF-SIMS)11,12), which often condition their specificity44

to provide information on either bulk or surface chemical compo-45

sition. Ultra high resolution mass analyzers as Orbitrap, Fourier46

transform ion cyclotron resonance (FT-ICR) and high resolution47

quadrupole time of flight MS can reach a resolving power higher48

than 90 00013,14. These techniques were developed mainly for49

proteomics and pharmaceutical analyses, but lately their applica-50

tion has been extended to many other fields among which they51

start being used and adapted to atmospheric aerosols15,16. How-52

ever, ultra high resolution mass spectrometry is still very rarely53

applied to the analysis of combustion products, with only a few54

examples to date17. Ultra high resolution mass analyzers are55

powerful analytical tools, however they still need validation of56

the sampling protocols. For instance, the sample transfer into57

the instrument is based on nanospray desorption electrospray us-58

ing a polar solvent for Orbitrap, followed more recently by laser59

desorption for FT-ICR and atmospheric pressure chemical ioniza-60

tion (APCI) for APCI-Orbitrap13,16,17. Let us also emphasize that61

in directed energy (laser, ion beam) desorption methods, beside62

the analyzer performances, the condensed-gas phase transfer it-63

self plays a critical role in the maximum achievable mass resolu-64

tion and on the total number of detected signals, trough, e.g., the65

sample/substrate roughness or conductive properties. We there-66

fore stress the need for a thorough evaluation (and optimization)67

of the entire analysis chain, from sample collection/deposition on68

suitable substrates, to sample transfer/ionization into gas phase,69

ions mass separation and detection, and finally powerful data70

treatment and interpretation18,19.71

Mass spectra of soot particles can be very complex, featuring72

hundreds and even thousands mass peaks, which quickly renders73

the interpretation of mass spectra difficult and therefore limits74

the potentiality of MS to resolve complex mixtures. Accordingly,75

resolving sample complexity in MS databases is currently tackled76

using two main approaches. The first is based on the identifica-77

tion of marker species, i.e. compounds that are directly linked to78

a source/process and that can thus be considered as their finger-79

prints, while the second approach relies on statistical methods.80

In particular, the use of MVA methods in conjunction with MS is81

a creative combination to exploit all of the information given by82

a multitude of peaks within a great variety of sample sets. Both83

approaches are widely used in analysis of mass spectra obtained84

with aerosol mass spectrometers (AMS)20–22, proton transfer re-85

action mass spectrometers (PTR-MS)23,24, and laser-based MS86

techniques19,25,26. Discrimination using marker species was ap-87

plied to samples of various sources, proving its effectiveness when88

comparing soot emitted from wood combustion20,27, on-road ve-89

hicles25, aircrafts22–24,28,29, ships30 or other ambient aerosols21.90

However, since some marker species may not remain stable over91

the aerosols' life span, especially upon atmospheric ageing6, this92

method may misdirect with regards to the origin of samples a93

priori unknown. To circumvent this limitation, MVA approaches94

are chosen, as they can discriminate samples regardless of their95

provenance or evolution. Therefore, MVA can uncover trends and96

features even in samples of unknown/mixed origins28,31, which97

is particularly interesting when analysing natural aerosols.98

In constant interaction with their surroundings, aerosols sur-99

faces drive their overall reactivity, and therefore, set their evo-100

lution path within the atmosphere (sedimentation, formation of101

secondary organic aerosols, nucleation, etc.). It is hence im-102

perative to uncover their complex surface composition in order103

to assess their impact on both human health and the environ-104

ment32,33. For example, some polycyclic aromatic hydrocarbons105

(PAHs), often found adsorbed on the surface of soot particles, are106

known to be toxic and to have mutagenic effects34,35. In addition,107

the chemical composition of aerosol surfaces determines their hy-108

groscopicity36 and therefore their ability to act as condensation109

nuclei, potentially influencing climate forcing, cloud cover and110

precipitations.111

Our group has been addressing this issue of untangling surface112

chemical compositions of field-collected or laboratory-generated113

combustion aerosols for over a decade10,18,19,26,29,30,37–40. We114

recently described an original and comprehensive experimen-115

tal methodology18 that we later implemented in combining116

statistical-based approaches with compound classification tech-117

niques19. This latter systematic study by Irimiea and cowork-118

ers19 was undertaken to characterise over 100 samples collected119

from different flames. In this work we developed a comprehen-120

sive protocol that allowed significant progress towards the fun-121

damental understanding of soot nucleation and growth. Labora-122

tory flames or standard soot generators are often used to produce123

soot particles with similar physico-chemical properties to the ones124

produced by “real world” combustion sources41. Laboratory soot125

particles offer the advantages of a reproducible, easy-access and126

low-cost production, which is of great importance when testing127

the robustness of a protocol. Therefore, this necessary step is of128

paramount importance for further refinements in field-collected129

combustion-generated particle analyses.130

2 Experimental131

In this section, the choice of the combustion conditions, the sam-132

pling approach and the experimental techniques used to charac-133

terised the samples are detailed. In particular, L2MS and SIMS134

are used in parallel to obtain information on the chemical com-135

position of combustion generated aerosols.136

2.1 Soot samples137

Soot samples are generated in different combustion conditions138

(fuel, burner and sampling method) in order to test the ability of139

our data treatment protocols to reveal differences and similarities140

between samples. The sampling procedure, including the sub-141

strate choice and its preparation, is optimised according to our142

previous experience18. In particular, the sample-substrate reac-143

tivity can lead to the formation of a large number of byproducts144

that clutter the mass spectrum and make the identification of in-145

dividual compounds much more difficult. A short description of146

all analysed samples (summarised in Table 1) is given below. The147

following soot samples have been used:148

• Soot produced by a miniCAST generator (5201c) from Jing149

2 | 1–13Journal Name, [year], [vol.],



Ltd., which is currently proposed as a means of obtaining150

“standard” soot easily comparable to other studies41–43. The151

main difference between the miniCAST working points is the152

oxidation flow (1.50 → 1.15 → 1.00 L min−1) resulting in153

three different combustion conditions (C1 →C2 →C3)41–43.154

The hereby generated particles are subsequently deposited155

on quartz fibre filters.156

• Soot produced by laboratory turbulent diffusion flames sup-157

plied with two different liquid fuels: diesel (D1-5) and158

kerosene (K1-5). Soot particles are sampled from the flame159

at different height above the burner (HAB) and deposited by160

impaction on Si wafers. Sampling at various HAB is a means161

of investigating soot particles of different maturity38.162

• Soot produced by a gasoline single cylinder internal combus-163

tion engine (ICE). Operating conditions of this engine (e.g.164

injection and ignition crank angle, applied load) could be165

easily changed, thus allowing exhausts sampling at various166

working regimes. The following operating points were used:167

– normal engine operation, i.e. engine optimised in168

terms of high efficiency and low particle emissions,169

with medium (GOM) and high (GOH) applied loads,170

which simulate different driving regimes;171

– malfunction simulation with a medium load applied:172

low air/fuel ratio resulting in a high-sooting regime173

(GEF) and an addition of oil to the combustion cham-174

ber (GEO).175

Soot particles are sampled using a cascade impactor176

(NanoMOUDI) to enable for size selection during sampling,177

and deposited on Al foils. We analysed the particles collected178

on the last five stages, having diameter in the range 10-180179

nm (Table 1).180

Off-line analysis of soot particles requires a careful choice of181

the deposition substrate, not only to minimise the risk of contam-182

inating the samples, but also to ensure that a high mass resolution183

can be achieved. In particular, among other factors, the mass res-184

olution is directly linked to the surface roughness of the substrate,185

and can be maximised by depositing the samples on ultra-flat sur-186

faces such as Si or Ti wafers. Furthermore, the sample-substrate187

reactivity can lead to the formation of reaction byproducts that188

may heavily interfere with the assignment of sample-specific sig-189

nals. Therefore, the careful characterization/choice of the depo-190

sition substrate is mandatory and the comprehensive identifica-191

tion of its possible reactivity byproducts is necessary for a valid192

analytical protocol18,19. Regardless of its nature, the substrate193

should undergo a series of preparation steps before it can be used194

to collect particulate matter. A comprehensive view of sampling195

protocols used by our group can be found in a previous paper18.196

2.2 Two-step laser mass spectrometry (L2MS)197

This laser-based MS technique has been extensively used by our198

group to characterise the chemical composition of combustion199

byproducts during the last decade10,18,26,29,30,37–39. The main200

advantages of L2MS are its high sensitivity and selectivity with re-201

gards to specific classes of compounds thanks to resonant ionisa-202

tion processes that can be tuned to reach for instance the sub-fmol203

limit for the detection of PAHs10,37. In addition, the controlled204

laser desorption process ensures a soft removal of molecules ad-205

sorbed on the particle surface (typically sub-monolayer regime),206

and thus avoids/limits either their fragmentation or the in-depth207

damaging of the underlying carbon matrix37. This qualifies L2MS208

as a surface-sensitive analysis technique, comparable in limit of209

detection (∼10−6 monolayers) with static-mode secondary ions210

mass spectrometry (SIMS, see below), but with much lower an-211

alyte fragmentation. However, our previous L2MS studies were212

limited by a mass resolution of m/∆m∼ 1000, significantly lower213

than the one achievable in SIMS (up to m/∆m∼ 10 000, depend-214

ing on the deposition substrate18,19). In the current work, we215

take benefit of the recent implementation of a new mass spec-216

trometer (Fasmatech S&T) which combines ion cooling, Radio217

Frequency (RF) guiding and Time of Flight (ToF) analyser to218

reach a mass resolution of about m/∆m∼ 15000. In this new ex-219

perimental setup, the sample, placed under vacuum (10−8 mbar220

residual pressure), is irradiated at 30° angle of incidence by a fre-221

quency doubled Nd:YAG laser beam (Quantel Brilliant, λ= 532222

nm, 4 ns pulse duration, ∼50 mJ cm−2 fluence, 10 Hz repetition223

rate) focused to a 0.3 mm2 spot on the surface. The desorbed224

compounds form a gas plume expanding in the vacuum normally225

to the sample surface, and are ionised by an orthogonal UV laser226

beam (Quantel Brilliant, λi = 266 nm, 4 ns pulse duration, 10227

Hz repetition rate, ∼0.3 J cm−2 fluence). At this ionisation wave-228

length, a high sensitivity is achieved for PAHs through a resonance229

enhanced multiphoton ionisation process 1+1 REMPI44–46. Care230

must be taken on the coupling of the desorption and ionisation231

steps in this laser-based MS technique47–49. Moreover, by chang-232

ing the ionisation wavelength, one can target different classes of233

compounds. The generated ions are then RF-guided to a He colli-234

sion cell for thermalisation and subsequently mass analysed in a235

time of flight mass spectrometer (ToF-MS).236

2.3 Secondary Ion Mass Spectrometry (SIMS)237

In addition, the samples are characterised by using a commercial238

IONTOF ToF-SIMS5 secondary ion mass spectrometer with maxi-239

mum resolving power of m/∆m ∼ 10 000. In short, samples are240

placed in the analysis chamber with a residual pressure of ∼ 10−7
241

mbar. The surface of the sample is bombarded by a 25 keV Bi+3242

ion beam with a current of 0.3 pA in static mode. A small fraction243

of the ejected atoms/molecules are ionised (secondary ions) and244

can thus be analysed using a time-of-flight tube (V mode). Mass245

spectra are recorded in both positive and negative polarities, to246

obtain the maximum amount of information on the sample18,19.247

3 Data Analysis Methodology and Exam-248

ples of Applications249

The data presented below is analysed following an approach250

structured in three main points that include: mass defect analysis251

for identification of unknown compounds (Section 3.1), multi-252

variate analysis for the reduction of the number of dimensions of253
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Table 1 Soot samples used to put in evidence the proposed methodology

Name Fuel Source Substrate Description Analysing technique

C1
propane miniCAST Quartz fibre filters

1.5 l/min oxidation flow
L2MS +C2 1.15 l/min oxidation flow

C3 1.0 l/min oxidation flow
D1

diesel diffusion flame Si wafer

HAB = 6mm

SIMS +/-
D2 HAB = 12mm
D3 HAB = 14mm
D4 HAB = 18mm
D5 HAB = 24mm
K1

kerosene diffusion flame Si wafer

HAB = 6mm

SIMS +/-
K2 HAB = 12mm
K3 HAB = 14mm
K4 HAB = 18mm
K5 HAB = 24mm

GOM1

gasoline Al foil

�100 - 180nm

SIMS +/-
GOM2 ICE, �56 - 100nm
GOM3 optimal conditions, �32 - 56nm
GOM4 medium load �18 - 32 nm
GOM5 �10 - 18 nm
GOH1

gasoline

ICE,

Al foil

�100 - 180nm

SIMS +/-
GOH2 optimal conditions, �56 - 100nm
GOH3 high load �32 - 56nm
GOH4 �18 - 32 nm
GEF1

gasoline

ICE,

Al foil

�100 - 180nm

SIMS +/-
GEF2 low Air/Fuel ratio �56 - 100nm
GEF3 �32 - 56nm
GEF4 �18 - 32 nm
GEO1

gasoline

ICE,

Al foil

�100 - 180nm

SIMS +/-
GEO2 addition of oil �56 - 100nm
GEO3 �32 - 56nm
GEO4 �18 - 32 nm

the dataset (Section 3.2) and eventually mass peak grouping for254

uncovering hidden trends and highlight correlations between dif-255

ferent classes of compounds (Section 3.3). This section details the256

proposed data treatment protocol. Mass spectra of the previously257

described samples have been used to demonstrate its advantages,258

including its universal character (the ability to be used with mass259

spectra of various samples, obtained with different experimen-260

tal techniques). Mass spectra were recorded with either L2MS or261

SIMS in multiple regions of the sample surface, to ensure the con-262

sistency of the method and to build a database allowing a more263

advanced statistical analysis. Once all the peaks coming from the264

substrate are removed, the data is ready to be processed.265

3.1 Mass defect analysis266

Mass defect analysis is used to assign a molecular formula to the267

recorded accurate mass50,51. By convention, the mass defect of268

12C is defined as zero, therefore the mass defect of every other269

existing isotope is either positive or negative, depending on its270

relative nuclear binding energy to 12C. Since each nuclide has271

unique mass defect, molecules with different isotopic composition272

have unique exact mass. For example, while a resolving power273

of around 5000 is sufficient to completely separate C14H+
10 and274

C13H6O+, for closely spaced ions the required resolving power275

can easily increase up to 105 or even higher. As the m/z increases,276

the number of combinations of different elements resulting in the277

same nominal mass grows very fast. This experimental limitation278

is already tackled in Irimiea et al. 19 when discussing the role of279

oxygen containing compounds. Nevertheless, a lower mass res-280

olution mass spectrum can provide several helpful information.281

In particular, in the investigation of soot particles sampled from282

laboratory flames C, H and O are the major contributors to the283

total mass of soot, and therefore the mass analysis of peaks with284

a high signal-to-noise ratio (SNR) can be reasonably limited to285

CmHnO+
p ions. Identification within 5 ppm, often but not neces-286

sarily assumed as “certain”52, in our work is possible up to m/z ≈287

150 – 200. A priori knowledge of the samples and experimental288

conditions can extend this range up to m/z ≈ 500 – 550 and lead289

to self consistent results and coherence with many other works in290

the literature.291

The mass defect analysis can also be used to simplify the visu-292

alisation of complex mass spectra (e.g. Figures S1 and S2). This293

is generally achieved by plotting the mass defects of all peaks ver-294

sus their nominal mass. The resulting graph (mass defect plot,295

Figure 1 and S3) enables the visualisation of complex databases296

in one single plot, and highlights trends that are often invaluable297

to identify unknown species. For instance aliphatic, aromatic or298
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polycyclic aromatic hydrocarbons are aligned on different positive299

slopes corresponding to the addition of H atoms. When analysing300

samples containing hydrocarbons with different degrees of alky-301

lation, the Kendrick mass defect can be used as an alternative way302

of presenting the mass defect data50,51. Kendrick mass defect is303

calculated from the re-normalised mass of a repeating molecu-304

lar fragment to an integer value as shown in Equation 1 for the305

common case of CH2 (m = 14.01565):306

mKendrick = mIUPAC 14.0000
14.01565

(1)

After this conversion, homologous series that contain the re-307

peating fragment have identical Kendrick mass defect and are308

found aligned on horizontal lines, making their identification309

even easier50,53. This is useful when dealing with repeating alkyl310

groups for instance, since their mass defect increases regularly311

with their molecular weight and makes their association to a cer-312

tain series less intuitive when represented on conventional mass313

defect plots50. The most convenient approach (conventional or314

Kendrick) heavily depends on the nature of the sample. If the315

sample is dominated by a variety of different species, the use of316

the conventional mass defect is more advisable. However, when317

the mass spectrum contains many species that only differ by a318

repeating unit such as aliphatic chains for instance (Table S1),319

Kendrick mass defect is more advantageous (Figure S4).320

In this work, mass defect analysis is applied to the data ob-321

tained from L2MS and SIMS to demonstrate its effectiveness322

when dealing with a variety of mass spectrometric data. Figure323

1 shows the mass defect plot obtained from sample C2 analysed324

by L2MS. The suggested representation merges into one graph325

important information extracted from the raw mass spectra that326

include the peaks mass defect (y-axis), nominal mass (x-axis) and327

relative abundance (dot size). Species that line up in the mass328

defect plots typically contain a repeating unit. Additionally, the329

detection of a series of homologous species can help the identi-330

fication of unknown peaks. This is especially helpful for species331

with high molecular masses, where the attribution of a chemical332

formula can be rather delicate.333

As PAHs exhibit a high thermodynamic stability54, they appear334

in great abundance in all mass spectra and this is amplified by the335

high sensitivity of the analysis technique to these specific com-336

pounds (Figure S1). Since the H/C ratio of PAHs is low com-337

pared to other hydrocarbons, they have a relatively small mass338

defect and are thus easily distinguishable from other hydrocar-339

bons. For instance, aromatic hydrocarbons that contain the same340

number of hydrogen atoms and progressively increasing number341

of carbon atoms (e.g. C10H8 → C12H8 → C14H8 → ...→ C22H8)342

can be found on the same horizontal line. Besides hydrocarbons,343

all samples contain oxygen and nitrogen organic derivatives to344

some extent. As a rule of thumb, in the mass defect plot of com-345

bustion generated aerosols, oxygen containing hydrocarbons are346

often found below the corresponding hydrocarbons due to the347

large negative mass defect of oxygen. Nitrogen containing hydro-348

carbons show distinct behaviours. For instance, organic amines349

are often found mixed to their corresponding hydrocarbons due350

to the nucleophilicity of nitrogen that results in their tendency to351

bind one additional hydrogen atom post-ionisation. Organic ni-352

trates, on the other hand, tend to be found at lower mass defect353

due to the presence of oxygen.354

Kendrick mass defect can be used to emphasise some less obvi-355

ous patterns as shown in Figure S4, in which CH (m = 13.007825)356

is used as the base unit.357

3.2 Statistical analysis358

In this section we detail the chemometric techniques, based on359

commonly used statistical tools like multivariate analysis, that360

were adopted by our group to extract chemical information from361

mass spectrometric data. A mass spectrometry database can con-362

tain an extremely variable number of mass spectra (observations),363

and each of them typically contain up to thousands of peaks (vari-364

ables). This database structure should be taken into consideration365

when choosing the most appropriate statistical methods.366

3.2.1 Principal component analysis367

PCA is a powerful statistical tool that can be used to classify sam-368

ples and reveal trends and patterns in databases5, and is often369

used to increase the readability of very complex data55. PCA ap-370

plied to mass spectrometry is especially useful when many mass371

spectra are being compared, since it reduces the dimensionality372

of the database while preserving most of the original informa-373

tion. PCA is a non-parametric analysis, i.e. its output is inde-374

pendent of any hypotheses about data distribution56. In this375

work, PCA is performed on a matrix containing the integrated376

peaks (variables) against the samples (observations). Before ap-377

plying PCA, data obtained from mass spectrometry should un-378

dergo a special preparation procedure56,57 that includes calibra-379

tion, baseline removal, construction of a peak list, peak integra-380

tion and standardisation. PCA applied to data with no normali-381

sation/standardisation is mostly affected by the largest raw vari-382

ance, which can skew the overall interpretation of the dataset.383

Therefore, normalisation techniques are applied to mass spec-384

tra prior PCA analysis when there are differences in the sam-385

ples weight, volume or other properties that may result in ad-386

ditional sources of variance. The most popular and generally rec-387

ommended normalisation method is the normalisation to the total388

ion count (TIC), i.e. the integrated ion count over a given mass389

range18,58,59.390

Care has to be taken when building the peak list as it should391

only contain species representative of the sample. Minor-392

abundance isotopes are usually excluded from the peak list, thus393

allowing to focus on the major-abundance isotopic species58.394

Peaks coming from the substrate and/or originate from the395

sample-substrate reactivity should also be disregarded. Identi-396

fying these peaks, especially the ones corresponding to reaction397

products, can be a difficult task. One approach to their identifica-398

tion involves comparing mass spectra of the sample deposited in399

the same experimental conditions but on different substrates (e.g.400

Si and Ti wafers)18. Another possibility relies on the use of PCA:401

species coming from the sample-substrate reactivity become less402

prominent as the substrate coverage increases and is less avail-403

able for the reaction, and are thus likely to be found all clustered404

in the same principal component.405
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Fig. 1 Mass defect plot obtained from the L2MS mass spectrum of miniCAST soot, C2 sample. The data points represent the assigned accurate mass.
The size of the data points is proportional to the corresponding peak integrated area, normalised to the total ion count after background subtraction.
Molecular formulas of homologous species are displayed. The error bars show the uncertainty on the accurate mass calculated from the obtained
mass resolution.

Each principal component (PC) accounts for a defined percent-406

age of the total variance within the data set, are represented in a407

scree plot and used to select the PCs to take into consideration.408

The loadings represent the weights of each variable used to cal-409

culate the PCs, and are used to understand the contribution of410

each variable to the selected PC. The distance of an observation411

from a PC is represented on the scores plot. Scores are obtained412

for each observation in the database and for each principal com-413

ponent, and are often used as a base to display and classify the414

samples. In the score plot, similar observations group together415

and are separated from dissimilar observations. The clustering416

of the scores is strongly related to the values of the loadings, and417

they are discussed as a whole. The most challenging part of PCA is418

the interpretation of individual PCs and their contribution to the419

investigated processes. To this purpose, there is a vast literature420

providing general guidelines that should be followed5,60–62.421

To illustrate the potential of this technique, we show below422

some application to mass spectrometric data of various combus-423

tion generated aerosol samples.424

3.2.1.1 MiniCAST soot, L2MS425

When L2MS mass spectra of miniCAST soot samples are exam-426

ined, PC1 and PC2 account for ∼ 96% of the total variance, and427

are therefore only considered for the data interpretation. The428

three samples are well separated in the PC2 vs. PC1 scores plot429

(Figure 2). Sample C1 is highly influenced by C14H8, C14H10 and430

C16H10 (high positive PC1 scores) whereas C2 and C3 are domi-431

nated by higher mass aromatic compounds (negative PC1 scores).432

It can be noticed that PC2 (∼ 10%) allows for better discrimina-433

tion between the samples than PC1, especially C2 and C3.434

3.2.1.2 Flame and ICE soot, SIMS435

PCA is applied to the ensemble of SIMS mass spectra obtained436

in positive polarity from soot samples generated by the gasoline437

engine and the laboratory flame (diesel and kerosene fuels). PC1438

and PC2 account together for the 73.3% of the total variance.439

Two main groups are observed in the score plot of both positive440

and negative ions (Figure 3 and S5). While it was not possible to441

clearly associate a phenomenon to PC1 (51.7% of total variance),442

the samples are well separated by the different emission source443

(engine, GOM, and flame, D and K) in PC2 (21.6% of total vari-444

ance). At this level of the analysis PCA cannot distinguish soot445

generated by burning the two different liquid fuels (diesel and446

kerosene) in laboratory flames, which appear mixed together in447

negative PC2.448

PC1 is mainly associated to high H/C fragment ions (negative449

contribution, red dots in the loadings plot (Figure 3), and low450

H/C fragment ions probably resulting from the dissociation of451

large aromatic hydrocarbons (positive contribution, green dots452

in the loadings plot). The main contributions to PC2 come from453

aromatic species (positive contribution, blue dots on the loadings454

plot), and to a smaller extent to high H/C fragment ions. There-455

fore, the contribution of high H/C fragment ions, possibly related456

to the dissociation of aliphatic hydrocarbons, depends less on the457

fuel and more on the combustion conditions (engine vs. con-458
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Fig. 2 Score plots of PC2 vs PC1 for miniCAST soot samples obtained
with L2MS – (a). Ellipses highlight data points coming from different sam-
ples and are added for visual purposes only. (b) – the corresponding
loadings plot of PC2 vs PC1. Several homologous series are highlighted:
Cn+8Hn – red, Cn+10Hn – purple, Cn+12Hn – green.

trolled laboratory flames).459

Going a step further, PCA is applied to gasoline soot samples460

obtained in different engine regimes in order to determine their461

impact on the chemical composition (Figure 4). There is an obvi-462

ous separation between normal engine operation regimes (GOM,463

GOH) and the ones which simulate a malfunction (GEF, GEO).464

A good discrimination is achieved with only the first two compo-465

nents that account for ∼ 98% of the total variance. PC1 alone466

(∼ 91%) allows the separation of regimes, based on the abun-467

dance of aliphatic fragment ions (positive contribution to PC1,468

marked in red in Figure S6). Consequently, samples that simulate469

a malfunction (GEF, GEO) are characterised by a higher relative470

contribution from aliphatic fragment ions compared to optimised471

engine regimes (GOM, GOH). PC2 is linked to the contribution of472

aliphatic fragment ions and aromatic species (positive PC2 value),473

however some aliphatic fragment ions (C5H7, C5H9, C3H7, C4H7)474

show a contribution to negative PC2). The data points corre-475

sponding to optimal engine regimes form a smaller cluster. This476

implies that soot produced in conditions simulating engine mal-477

function shows a much larger variability in chemical composition.478

At this point of the analysis, it is clear that the two regimes that479

simulate a malfunction (GEF, GEO) exhibit similarities, while be-480

ing well separated from the optimised regimes (upper panel of481

Figure 4). This implies that the variance of a certain principal482

component for them is much smaller than the one responsible483

for the separation between optimised and non-optimised regimes.484

Consequently, each group should be analysed independently, thus485

uncovering even smaller contributions to the variance. To demon-486

strate this concept, the same statistical method was applied a487

second time to the two non-optimised regimes, and their com-488

parison lead to discriminate between the two main contributors489

to particulate emissions of the internal combustion engine: fuel490

and oil, Figure 4. In this case, PC1 (∼ 71%), accountable for the491

separation of the two regimes, is linked to the contribution of492

hydrogen-rich hydrocarbons on one side (negative contribution)493

and of fragment ions and aromatic species on the other (positive494

contribution). This reveals that oil-related soot particles feature495

more hydrogen-rich hydrocarbons, while an excess of gasoline496

leads to the production of more aromatic species, Figure S6. The497

increase of the contribution of fragment ions in the latter is prob-498

ably linked to the increase in the aromatic contribution, since the499

majority of fragment ions can be related to dissociation reactions500

of PAHs63. PC2 (∼ 20%) is associated to the presence of aromatic501

hydrocarbons (blue dots in Figure S6). One can also notice that502

samples corresponding to the engine regime with a low air/fuel503

ratio (GEF1) surprisingly lie in the oil-excess region, while sam-504

ples GEO3 appear far from the oil-excess region (Figure 4). It is505

likely that the specific behaviour observed for these samples re-506

lates to their particle size (Table 1) but correlating size to chemi-507

cal composition is out of scope of this paper and will be addressed508

in a future work.509

3.2.2 Hierarchical clustering analysis510

Hierarchical clustering analysis (HCA) is a MVA method that iden-511

tifies patterns in a dataset by creating groups of observations512

called clusters. Unlikely PCA, HCA accounts for the total vari-513

ance in the database60,62. HCA is based on a simple approach514

for building the clusters that starts with one cluster for each ob-515

servation and finishes with a single cluster containing the entire516

database. At each step, the two closest clusters are merged into517

a single new cluster resulting in a dendrogram representative of518

the database. In order to decide which clusters to merge, different519

approaches to measure their distance can be used and give rise to520

several hierarchical methods61,62. In this work, HCA (group av-521

erage method, Euclidean distances) is applied to the same stan-522

dardised matrix used for PCA analysis, on both columns (observa-523

tions) and rows (variables). The HCA output is built in a heatmap524

organised by the clusters obtained on observations and variables.525
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Fig. 3 Score plot of PC2 vs PC1 for positive ions of soot samples obtained from gasoline engine and laboratory flames (left panel). Corresponding
loadings plot of the first two principal components (right panel). For sample description see Table 1.

This representation improves the visualisation of clusters in the526

multidimensional space, in which each tile represents the value527

of the correlation between observations and variables.528

The heatmap obtained for the samples analysed in SIMS pos-529

itive polarity is shown in Figure 5. HCA groups the samples in530

three main clusters (C1, C2 and C3) at distance d1 function of531

the characteristics of the five clusters of variables (R1, R2, R3, R4532

and R5). Cluster C1 is specific to samples GEO1-4, GOM4 and533

D1 due to the high contribution of compounds with H/C > 1 and534

identified in the C1-1 cluster. C1-2 is dissimilar from the C1-1 due535

to the presence of aromatic hydrocarbons and other compounds536

with low H/C ratio. Soot collected from the gasoline engine in537

optimal conditions and after the addition of oil are dominated by538

R5, while there is a shift to R1 and R2 for soot collected from the539

diesel flame. Contrary to C1, C2 has a high contribution of frag-540

ment ions with high (R4) and low (R1) H/C ratio. C2 shows that541

soot collected from the engine in optimal conditions with high542

and medium load have similar chemical fingerprint.543

This representation offers at once a clustering of the samples544

function of the three main classes of chemical compounds iden-545

tified in the mass spectra. For instance, the high content of aro-546

matic hydrocarbons and low H/C fragment ions is specific to soot547

collected from the kerosene flame. Basically, the addition of oil548

increases the fraction of high H/C fragment ions in the emissions,549

the normal operation conditions of the engine have an intermedi-550

ate content of high H/C fragment ions and a slight contribution of551

aromatics with four and five aromatic rings, while kerosene soot552

contains the highest contribution of aromatic compounds and low553

H/C fragment ions. HCA is also applied to L2MS and SIMS neg-554

ative polarity data as detailed in the Supplementary Information.555

In this work, HCA is applied to the raw data corresponding to the556

selected mass spectra but its usefulness can be extended to more557

compact data after using another statistical method for sorting558

the input variables and observations. One of the advantages of559

this method is that it does not require the raw data set. Moreover,560

HCA can be used to visualise clusters that form in the principal561

component space, after applying the PCA, or it can group sam-562

ples according to other properties (mass defect, contribution from563

different classes of compounds, etc).564

3.3 Mass peaks grouping into chemical classes565

A detailed description of the soot chemical composition is cer-566

tainly desirable and can lead to important clues on the soot for-567

mation, growth, ageing and reactivity. However, this can rapidly568

turn into a very cumbersome task, especially if many different569

samples are analysed. For the sake of simplicity, most of the time,570

and especially when long time-series of field-collected data are571

to be treated, individual compounds are grouped in classes (e.g.572

aliphatics, aromatics, oxygenated, sulphur-containing hydrocar-573

bons and so on). This grouping of mass peaks into appropriate574

classes allows easier comparison with other experimental mea-575

surements (e.g. OC/EC29) and facilitates the interaction with576

modellers that use the data as inputs for various scales simula-577

tions. Moreover, this grouping of peaks is also useful when mass578

spectra of several samples are compared to each other in order to579

reveal general trends in their chemical composition.580

When it comes to the chemical composition of combustion gen-581

erated aerosols, three non-specific indicators are often consid-582

ered: amount of ash components (inorganic compounds, IC),583

amount of carbon associated to the carbonaceous matrix (ele-584

mental carbon, EC), and amount of carbon found in organic com-585

pounds (organic carbon, OC)64. IC alone can sometimes help586

identify the main source of the emissions. For instance, K+, Na+,587

K2Cl+ and K3SO+
4 in the positive polarity mass spectra and Cl−,588

SO−3 , HSO−4 and KCl−2 in the negative polarity mass spectra are589

known to be markers of wood combustion65. Generally speaking,590

since IC potentially contains many inorganic compounds, it can591

8 | 1–13Journal Name, [year], [vol.],



Fig. 4 Score plots of the first two principal components for soot samples
produced by a single cylinder engine. Upper panel – discrimination be-
tween different engine regimes, lower panel – particle source discrimina-
tion. Ellipses highlight clusters of data points and are for visual purposes
only. For sample description see Table 1.

and should be further broken down into source specific groups592

when characterising complex systems such as internal combus-593

tion engines. In this case, accepted grouping of inorganic com-594

pounds is: fuel specific (compounds that are coming from fuel595

additives and trace elements (Na, K)11,66), oil specific (detergent596

and anti-wear additives (P, Ca)67) and engine wear tracers (Fe,597

Al, Cr)30,67,68). For addressing the elemental carbon (EC) com-598

ponent, carbon clusters C−n (n=2-4) are considered to be appro-599

priate markers in aerosol mass spectrometry64. This is also con-600

firmed by the high positive correlation between C−2 , C−3 and C−4601

Fig. 5 Two-way hierarchical clustering heat-map for positive ions of gaso-
line, diesel and kerosene soot obtained with SIMS. Each column corre-
sponds to the averaged mass spectra obtained for a soot sample. The
contribution of each mass in individual samples is expressed as relative
value and is represented by the cell colour.

signals in the recorded mass spectra26. In single particle mass602

spectrometry, carbon clusters with even higher masses are also603

considered to be representative of the elemental carbon (C−5 at604

60 u, C−6 at 72 u and C−7 at 84 u)11. While the handling of IC and605

EC is relatively straightforward, the OC landscape looks far more606

complex, with an overwhelming variety of organic compounds,607

generated in various processes and being themselves main actors608

of broad-range time-scale reactivity. A subsequent classification609

of different organic species according to their functional group(s)610

seems therefore necessary. However, the detailed chemical analy-611

sis of a complex mixture of chemicals based on mass spectromet-612

ric data only is still an important challenge that requires the iden-613

tification of the individual ion dissociation patterns. On a prac-614

tical ground, being able to distinguish these compounds is very615

important since they all have different sources and roles in the616

soot formation and ageing mechanisms. For instance, PAHs form617

during combustion and are well known as building blocks of soot618

particles and are generally seen as reliable markers of the over-619
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all OC content29. Organic hydroxyl groups are linked to alcohols620

that are commonly used as additives in gasoline. The presence of621

many compounds containing carbonyl groups has been proposed622

as a marker to distinguish fresh emissions from soot particles aged623

in the atmosphere69.624

A combination of previously described mass peak classification625

methods is shown in Table 2 along with chemical formula assign-626

ments63. Detailed classification of molecular ions by functional627

groups remains difficult by MS alone, however it can be achieved628

in combination with complementary techniques (e.g. FTIR).26
629

Also, for the sake of simplicity, Table 2 displays only the nominal630

masses, but the peak assignment is based on the exact mass (see631

mass defect analysis, Section 3.1). The discussion below is based632

on this grouping of mass peaks.633

Depending on the studied samples, the analysis will focus on634

specific classes from Table 2. For soot samples obtained with635

the miniCAST standard generator, one may want to address the636

impact of the oxidation flow. A possible focus is therefore on637

the evolution of the oxygenated species vs. PAHs (linked to the638

OC content). Since miniCAST soot is a well-studied standard, it639

also allows the comparison of mass spectrometric results with the640

ones reported in the literature based on other experimental tech-641

niques. In the present case, Figure 6 clearly shows an increase of642

the oxygenated species abundance with the oxidation flow, how-643

ever a low oxidation flow (C2 and C3) leads to the formation of644

more PAHs, which confirms previous observations on the same645

set-points of the miniCAST generator43,70.646

Even though examining trends for specific groups can be very647

informative, when it comes to complex mass spectra containing a648

multitude of peaks that can be separated in many different ways,649

not all the groups feature useful trends. It is therefore advis-650

able to first identify the species of interest, groups or individual651

compounds that can be linked to variations in the chemical com-652

position of the samples. This information can be retrieved from653

PCA and HCA as discussed in the sections 3.2.1 and 3.2.2, re-654

spectively. Based on the statistical analysis of positive polarity655

SIMS mass spectra of gasoline, diesel and kerosene soot samples,656

three groups of interest are chosen for further analysis as shown657

in Figure 6: low-mass and low H/C ions (from the dissociation658

of aromatic species63), low-mass and high H/C ions (from the659

dissociation of aliphatic species), and finally large aromatic ions660

(mostly PAHs, stable enough to be detected as molecular ions).661

Gasoline soot shows higher content of large aromatic compounds,662

with high and almost constant contribution to all considered par-663

ticle sizes. Gasoline soot also features the least fragmentation664

that is well consistent with the higher contribution of large aro-665

matics if compared to diesel and kerosene soot. For the other666

two fuels, different zones of the flame, corresponding to different667

stages in the soot formation process, were probed, therefore the668

variation in aromatic content looks more pronounced. It is clear669

that the aliphatic content alone cannot be used to discriminate670

between soot coming from combustion of different fuels, just like671

it was concluded from PCA. However, it still provides valuable in-672

formation about different soot maturity. For example, for diesel673

soot the contribution of aliphatics gradually increases with the674

sampled HAB (HAB ≥ 12 cm). On the other hand the HCA on675

Fig. 6 Several trends retrieved from mass spectra of: (a) – miniCAST
soot (L2MS), (b) – gasoline, diesel and kerosene soot (SIMS).

the negative polarity of SIMS is much easier to interpret because676

the results clearly discriminate the laboratory flame soot from the677

one produced with the gasoline engine. The samples belonging678

to the latest category are clearly evidenced by the presence of679

sulphur and oxygen containing compounds while the soot from680

the flames contains mainly OC and EC. Generally speaking, the681
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Table 2 Grouping of mass peaks into chemical classes

Category m/z Formula m/z Formula m/z Formula m/z Formula
15 CH3 54 C4H6 71 C5H11 99 C7H15

Aliphatics 27 C2H3 55 C4H7 81 C6H9 109 C8H13
(alkynes, 29 C2H5 57 C4H9 83 C6H11 111 C8H15
alkene, 41 C3H5 67 C5H7 85 C6H13 113 C8H17

alkyl, etc.) 43 C3H7 68 C4H8 95 C7H11
53 C4H5 69 C5H9 97 C7H13

Aromatics

26 C2H2 64 C5H4 152 C12H8 216 C17H12
38 C3H2 74 C6H2 154 C12H10 228 C18H12
39 C3H3 75 C6H3 166 C13H10 252 C20H12
40 C3H4 76 C6H4 178 C14H10 276 C22H12
50 C4H2 78 C6H6 266 C21H14 278 C22H14
51 C4H3 91 C7H7 190 C15H10
63 C5H3 128 C10H8 202 C16H10
31 CH3O 69 C4H5O 87 C5H11O 129 C7H13O2
33 CH5O 71 C4H7O 89 C5H13O 137 C10HO
43 C2H3O 73 C3H5O2 97 C6H9O 142 C10H6O
45 C2H5O 73 C4H9O 97 C5H5O2 156 C11H8O

O-containing 47 CH3O2 75 C3H7O2 101 C6H13O 166 C12H6O
(carbonyls, 47 C2H7O 75 C4H11O 105 C7H5O 169 C11H9O

acids, 53 C4H5 81 C5H5O 109 C7H9O 180 C13H8O
ethers, 55 C3H3O 83 C5H7O 111 C6H7O2 205 C14H9O

alcohols, etc.) 57 C3H5O 85 C5H9O 111 C7H11O
59 C3H7O 85 C4H5O2 119 C8H7O
61 C2H5O2 87 C5H11O 123 C7H7O2
61 C3H9O 87 C4H7O2 125 C9HO

N-containing
26 CN 46 CH4NO 60 C2H6NO 89 C2H3NO3
29 CH3N 55 C3H5N 74 C2H4NO2 98 C4H4NO2
44 CH2NO 55 C2H3N2 87 C3H5NO2 121 C8H11N

S-containing 32 S 44 CS 46 CH2S
Unclassified 28 C2H4 56 C4H8 84 C6H12 112 C8H16

hydrocarbons 42 C3H6 70 C5H10 98 C7H14

trends that are shown herewith are very useful when interpret-682

ing the data. However, they are almost impossible to notice in683

the raw mass spectra. Being able to follow the contribution of a684

group of related molecules hidden in a much larger ensemble of685

signals is a powerful feature used to uncover trends that would686

have remained hidden to a more basic analysis. The fact that PCA687

and HCA are able to separate the selected samples into categories688

dependent on their unique pattern of chemical signatures proves689

that mass spectrometry and MVA provide useful insights into their690

properties. The usefulness of this approach allows for an easier691

identification and traceability of combustion generated particles692

with unknown sources.693

4 Conclusions694

Our recently developed comprehensive methodology (based on695

mass defect analysis, PCA/HCA multivariate methods)18 dedi-696

cated to the chemical analysis of combustion-generated aerosols697

is applied here to the study of 30 soot samples generated by698

three different sources using four different fuels. Laser and sec-699

ondary ion mass spectrometry techniques are used to probe their700

surface chemistry. A few examples on the performances of this701

methodology are provided, showcasing its ability to clearly dis-702

criminate samples according to various parameters, such as com-703

bustion source, soot maturity, or engine operating conditions. The704

correlations evidenced by the MVA methods were used for peak705

clustering to highlight the evolution of grand chemical classes706

with the combustion conditions. These trends, along with de-707

tailed molecular-level information, can further help constrain708

the processes involved in particulate matter emissions and pre-709

dict the impact of soot particles on the environment and hu-710

man health. Moreover, aiming for a standardised (generally ac-711

cepted) methodology in treating complex mass spectrometry data712

in aerosol science would certainly allow easier intercomparison713

and the building of extensive shared databases for further spe-714

cific developments. An appealing perspective is the possible ap-715

plication of neural networks to this type of big data, which would716

lead to great advances in automated real-time processing of large717

dataflows.718
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