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Epsilon-Reducible Context-Free Languages and
Characterizations of Indexed Languages

Séverine Fratania, El Makki Voundya

a Aix-Marseille université, CNRS, LIF UMR 7279, 13000, Marseille, France

Abstract

We study a family of context-free languages that reduce to ε in the free group and give
several homomorphic characterizations of indexed languages relevant to that family.

Keywords: context-free grammars, homomorphic characterizations, transductions,
indexed languages

1. Introduction

The well known Chomsky–Schützenberger theorem [1] states that every context-
free language L can be represented as L = h(R ∩Dk), for some integer k, regular set R
and homomorphism h. The set Dk used in this expression, called Dyck language, is the
set of well-bracketed words over k pairs of brackets. Equivalently, every context-free
language can be written L = h(g−1(D2) ∩ R), for some regular set R, and homomor-
phisms h and g. Combined with Nivat’s characterization of rational transductions, this
means that any context-free language can be obtained by applying a rational transduc-
tion to D2.

Let us consider wider families of languages. Maslov defines in [2] an infinite hier-
archy of languages included in recursively enumerable languages. The level 1 consists
of context-free languages and the level 2 of indexed languages (initially defined by
Aho [3]). Known as higher order languages since the last decades, the languages of
the hierarchy and derived objects as higher order trees [4], higher order schemes [5], or
higher order graphs [6], are used to model programming languages and are in the core
of recent researches in program verification [7].

It is stated in [8] and proved in [9] that each level Lk of the hierarchy is a principal
full trio generated by a language Mk ∈ Lk. This means that each language in Lk is the
image of Mk by a rational transduction. Roughly speaking, the language Mk consists of
words composed by k embedded Dyck words and can be viewed as a generalization of
the Dyck language. Indeed it gives a description of derivations of an indexed grammar
of level k, in the same way that the Dyck language encodes derivations of a context-free
grammar.
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This latter characterization describes Lk from a single language Mk, but this one is
very complicated as soon as k ≥ 2, as the majority of higher order languages. To better
understand higher order languages, we think that it is necessary to characterize them
using more

simple objects. So, we may wonder whether it is possible to give versions of the
Chomsky–Schützenberger theorem and a characterization by transduction of the level
k + 1 of the hierarchy, using only the level k of the hierarchy. The fundamental point is
then to identify mechanisms that bridge the level k to the level k + 1.

In this paper, we solve the problem for the class IL of Indexed Languages (the level
2 of the hierarchy). In order to localize the problem, let us remark that from [10],
recursively enumerable languages are sets that can be written as L = h(K ∩Dk) where
K is a context-free language, and h a homomorphism. So if we want a homomorphic
characterization of IL using only context-free or regular languages, we would have to
consider a restricted class of context-free languages.

For this purpose, we introduce the class of ε-Reducible Context-Free Languages
(ε-CFLs). Informally, there are context-free languages defined over parenthesis alpha-
bets (Γ ∪ Γ̄ where Γ̄ is a copy of Γ) and generated by context-free grammars whose
productions have the form

X −→ αX1 . . . Xnᾱ or X −→ ᾱX1 . . . Xnα, α ∈ Γ, n ≥ 0.

Then every ε-CFL is included in the set TΓ of two-sided Dyck words over Γ: words
that reduce to ε by the reduction {aā → ε, āa → ε}a∈Γ. Note that ε-CFLs are a gener-
alization of pure balanced context-free languages defined in [11], which are languages
generated by grammars whose set of productions is a (possibly infinite) regular set of
rules of the form X −→ αX1 . . . Xnᾱ, where α ∈ Γ and n ≥ 1.

We extend ε-CFLs to transductions: an ε-Reducible Context-Free Transduction
(ε-CFT) is a context-free transduction whose domain is an ε-CFL. Using these ob-
jects, we obtain generalizations of the Chomsky–Schützenberger theorem. Indexed
languages are:

• the images of D2 by ε-reducible context-free transductions (Theorem 5.6);

• sets h(Z ∩ Dk); where k is an integer, Z an ε-CFL, and h a homomorphism
(Theorem 5.10).

Beyond these main results, we study the class of ε-CFLs: we explore closure prop-
erties and express ε-CFLs using ε-safe homomorphisms which are homomorphisms
that preserve the class. We establish a Chomsky–Schützenberger-like Theorem: ε-CFLs
are languages that can be represented as L = g(R∩Dk) for some integer k, regular lan-
guage R, and ε-safe homomorphism g. We also prove that there exist context-free
languages included in TΓ that are not ε-CFLs, and establish some undecidability re-
sults.

Concerning ε-CFTs, we give a Nivat-like characterization: there are relations that
can be represented as {(g(x), h(x)) | x ∈ R ∩ Dk} for some integer k, regular language
R, homomorphism h and ε-safe homomorphism g. This leads to another homomor-
phic characterization of indexed languages: there are languages that can be written
h(g−1(D2) ∩ R ∩ Dk), for some integer k, regular language R, homomorphism h and
ε-safe homomorphism g (Corollary 5.9).
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Related works. Similar homomorphic characterizations have been given for subclasses
of indexed languages: by Weir [12] for linear indexed languages, by Kanazawa [13] and
Sorokin [14] for yields of tree languages generated by simple context-free grammars.
The main difference is that in their cases, the homomorphism g is not ε-safe, but is
fixed in function of k.

Homomorphic characterizations of indexed languages can be found in [15, 16, 17].
In particular, in [15], authors introduced the class of ε-CFLs by means of grammars
that can be viewed as normal forms of the grammars presented here, and proposed
homomorphic characterizations similar to ours. However, we propose here a broader
and more general approach.

In [18], authors prove that the family of linear indexed languages form a principal
full trio and give a generator of the family.

Overview. Section 1 introduces a few notations. Section 2 is devoted to the study of
ε-CFLs. After introducing necessary notions, we define the class of ε-CFLs by means
of context-free grammars. We then study their closure properties, and give a Chomsky–
Schützenberger-like characterization. We then compare ε-CFLs with the class of two-
sided Dyck context-free languages (TCFLs), which are context-free languages included
in TΓ. We conclude by exploring some decidability problems. In Section 3, we extend
our definition to transductions : we define the class of ε-CFTs which are context-free
transductions whose domain is an ε-CFL. After a subsection giving background on
transductions, we give a Nivat-like characterization of ε-CFTs. Section 4 is devoted to
indexed languages. After introducing indexed grammars, we prove that indexed lan-
guages are images of the Dyck language by ε-CFTs and deduce several homomorphic
characterizations. We also define an indexed language that generate the full trio of in-
dexed languages. In the last section, we define the class of two-sided Dyck context-free
transducers (TCFT) which are context-free transductions whose domain is a TCFL. We
prove that a language is indexed iff it is the image of the Dyck language by a TCFT.

2. Notations

Throughout the paper, we will use the following conventions. Every mapping f :
A → B, will by extend into a map over subsets of A: for all X ⊆ A, f (A) = { f (x) | x ∈
X}.

Given two alphabets A and B, where B ⊆ A, πA,B : A∗ → B∗ is the morphism
defined by a < B 7→ ε, and a ∈ B 7→ a. By abuse of notation, we will often use the
notation πB, rather than πA,B, without specify the domain alphabet A.

3. Epsilon-Reducible Context-Free Languages

We introduce the class of ε-reducible Context-Free Languages (ε-CFLs). Each
ε-CFL over an alphabet Γ is a language over the alphabet Γ∪ Γ where Γ is a copy of Γ,
and is included in the set of two-sided Dyck words over Γ, that is, in the set of words
that reduce to ε via the rewriting system {αᾱ −→ ε, ᾱα −→ ε | α ∈ Γ}. We propose a
rather complete study of this class: characterizations, closure properties, a Chomsky–
Schützenberger-like homomorphic characterization, comparison with other classes and
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decidability problems. We assume the reader to be familiar with context-free grammars
and languages (see [19] for example), and present below a few necessary notions on
Dyck languages.

3.1. Dyck and Two-Sided Dyck languages

Given an alphabet Γ, we denote by Γ a disjoint copy Γ = {ā | a ∈ Γ} of it, and by Γ̂

the set Γ ∪ Γ. We adopt the following conventions: ¯̄a = a for all a ∈ Γ, ε̄ = ε and for
any word u = α1 · · ·αn ∈ Γ̂∗, ū = ᾱn · · · ᾱ1.

Let us consider the reduction systems S = {aā → ε, āa → ε | a ∈ Γ} and S + =

{aā → ε | a ∈ Γ}. As S and S + are confluent, each word w is equivalent (mod↔∗S ) to
a unique S -irreductible word denoted ρ(w) and is equivalent (mod↔ S +

∗) to a unique
S +-irreducible word denoted ρ+(w).

For instance, if w = ab̄cc̄dd̄b, then ρ(w) = a and ρ+(w) = ab̄b. Note that for all
u ∈ Γ̂∗, ρ(uū) = ρ(ūu) = ε. The confluence of the systems S and S + implies that:

Lemma 3.1. For all u1, u2, u3 ∈ Γ̂∗, ρ(u1u2u3) = ρ(u1ρ(u2)u3) and ρ+(u1u2u3) =

ρ+(u1ρ
+(u2)u3).

The set of all words u ∈ Γ̂∗ such that ρ(u) = ε is denoted TΓ; it is the so-called
two-sided Dyck language over Γ. The Dyck language over Γ, denoted DΓ, is the set of
all u ∈ TΓ, such that for every prefix v of u : ρ(v) ∈ Γ∗, or equivalently, the set of all
u ∈ TΓ, such that ρ+(u) = ε. We will also write Dk, to refer to the set of Dyck words
over any alphabet of size k ≥ 1.

The decomposition properties of Dyck words and two-sided Dyck words gives an induc-
tive definition of the languages DΓ and TΓ that will allow to make proofs by structural
induction.

Lemma 3.2 (Decomposition properties). Let u ∈ Γ̂∗, then u ∈ DΓ (resp. u ∈ TΓ) iff
one of the following case holds:

1. u = ε

2. there are two nonempty words u1, u2 ∈ DΓ (resp. u1, u2 ∈ TΓ) such that u = u1u2;
3. there is a symbol α ∈ Γ (resp. α ∈ Γ̂) and a word v ∈ DΓ (resp. v ∈ TΓ) such that

u = αvᾱ.

Proof. We prove the case of two-sided Dyck words, that of Dyck words is similar.
Because of Lemma 3.1, every word u ∈ Γ̂∗ satisfying one of the cases 1, 2 or 3 belongs
to TΓ. Conversely, let us consider a word u ∈ TΓ. If u = ε then u satisfies the case
1. Otherwise, u = αv, with α ∈ Γ̂ and v ∈ Γ̂∗. From definition, there exists then a
decomposition of v in v = v1ᾱv2 with v1, v2 ∈ TΓ. In particular, if v2 , ε, then u
satisfies the case 2 (by choosing u1 to be αv1ᾱ and u2 to be v2). Otherwise, it satisfies
the case 3. �
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3.2. Epsilon-Reducible Context-Free Languages and Grammars
We introduce the class of ε-reducible context-free languages using a syntactic restric-
tion of context-free grammars. Let us first fix a few notations regarding context-free
grammars.

A context-free grammar (CFG) is a structure G = (N,T, S , P) where N is the set
of non-terminals, T the set of terminals, S the initial non-terminal and P the set of
productions. We call sentence a word over N ∪ T (denoted by symbols Ω,Ω1,Ω2, . . .).
The set of terminal words derived from a non-terminal X ∈ N is

LG(X) = {u ∈ T ∗ | X
∗
−→G u}.

The context-free language (CFL) generated by G is then LG = LG(S ).

Recall that every CFL can be generated by a context-free grammar in (weak) Chom-
sky normal form. That is, such that every production X −→ Ω satisfies Ω ∈ N∗ ∪ Σ∗.

Definition 3.3. An ε-Reducible Context-Free Grammar (ε-CFG) is a context free
grammar G = (N,T, S , P) such that T = Γ̂ for some alphabet Γ and every production is
of the form:

X −→ ωΩω̄, with ω ∈ Γ̂∗, and Ω ∈ N∗.

An ε-Reducible Context-Free Language (ε-CFL) is a language that can be generated
by an ε-CFG. The class of all ε-CFLs included in Γ̂∗ is denoted ECFL(Γ).

The sets DΓ and TΓ belong to ECFL(Γ). Indeed, using the Decomposition property,
one can easily checked that DΓ is generated by the productions

S −→ S S | aS ā | ε, for a ∈ Γ,

and that TΓ is generated by the productions

S −→ S S | αS ᾱ | ε, for α ∈ Γ̂.

The following will be used as running example throughout the paper.

Example 3.4. Let G = (N, {α, β, ᾱ, β̄}, S , P) be the ε-CFG whose productions are:
S −→ βXβ̄, X −→ αXᾱ + Y , Y −→ ᾱYZα + β̄β, Z −→ ᾱZα + β̄β.

One can easily check that:

LG(Z) =
⋃

n≥0 ᾱ
nβ̄βαn, LG(Y) =

⋃
n≥0 ᾱ

nββ̄(Πn
i=1LG(Z)α),

LG(S ) = βLG(X)β̄, LG(X) =
⋃

n≥0 α
nLG(Y)ᾱn.

It follows that: LG =
⋃

n,m,r1,...rm≥0

βαnᾱmβ̄β(Πm
i=1ᾱ

ri β̄βαri+1)ᾱnβ̄. �

We establish now that ε-CFLs can be characterized using a semantic restriction of
context-free grammars: a language is an ε-CFL iff it can be generated by a grammar G
such that for every non-terminal X, LG(X) ⊆ TΓ. This implies in particular that every
ε-CFL is included in TΓ.
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Proposition 3.5. Given L ⊆ Γ̂∗, the following properties are equivalent:

1. L is an ε-CFL;
2. there is a context-free grammar G = (N, Γ̂, P, S ) such that LG = L and for all

X ∈ N : LG(X) ⊆ TΓ;
3. there is a context-free grammar G = (N, Γ̂, P, S ) such that LG = L and for all

X −→ Ω ∈ P : π
Γ̂
(Ω) ∈ TΓ.

Proof.
Assertion (1⇒ 2) comes easily from Lemma 3.1.

For (2 ⇒ 3) we consider a context-free grammar G = (N, Γ̂, P, S ) such that for all
X ∈ N : LG(X) ⊆ TΓ. Removing unused productions and nonterminals, we can also
suppose that for all X ∈ N,LG(X) , ∅. For each production X −→ ω1X1ω2 . . . ωnXnωn+1 ∈

P, there are then u1, . . . , un ∈ TΓ such that ω1u1ω2 . . . ωnunωn+1 ∈ TΓ. Using Lemma
3.1, ρ(ω1u1ω2 . . . ωnunωn+1) = ρ(ω1 · · ·ωn+1) and then ω1 · · ·ωn+1 ∈ TΓ.

For (3 ⇒ 1), we consider a context-free grammar G = (N, Γ̂, P, S ) such that for all
X −→ Ω ∈ P : π

Γ̂
(Ω) ∈ TΓ. We transform G into an equivalent ε-CFG by applying the

following process that transform iteratively each production p : X −→ Ω, according to
the Decomposition Property over vp = π

Γ̂
(Ω):

1. if vp = ε (that is, Ω ∈ N∗), or Ω = αYᾱ, Y ∈ N, α ∈ Γ̂, do not modify p;
2. else, if vp is decomposable in vp = v1v2, with v1, v2 , ε and v1, v2 ∈ TΓ, we

choose a decomposition Ω = Ω1Ω2 such that π
Γ̂
(Ω1) = v1 and π

Γ̂
(Ω2) = v2 and

we replace p by the productions X −→ Y1Y2, Y1 −→ Ω1 and Y2 −→ Ω2, where
Y1,Y2 are fresh nonterminal symbols.

3. else, vp = αvᾱ, with v ∈ TΓ and α ∈ Γ̂. In this case Ω can be decomposed as
follows: Ω = Ω1αΩ2ᾱΩ3, with Ω1,Ω3 ∈ N∗, and π

Γ̂
(Ω2) = v. We replace then

p by the productions X −→ Y1Y2Y3, Y1 −→ Ω1, Y2 −→ αZᾱ, Y3 −→ Ω3 and
Z −→ Ω2 where Y1,Y2,Y3 and Z are fresh nonterminal symbols.

Remark that each step of the iteration preserves the property that for all X −→ Ω ∈ P :
π

Γ̂
(Ω) ∈ TΓ. Obviously, the process terminates and gives an ε-CFG equivalent to G. �

3.3. Closure properties
In this part we prove that ε-reducible context-free languages enjoy similar closures

properties than context-free languages. The main difference being that, of course,
ε-CFLs are not closed under homomorphism, nor inverse homomorphisms. We will
however introduce a class of homomorphisms that preserves the family of ε-CFLs.

Proposition 3.6. The class of ε-CFLs is closed under union, intersection with a regu-
lar language, concatenation and Kleene star.

Proof. The class of ε-CFLs is obviously closed under union, concatenation and Kleene
star. Only the closure under intersection with a regular language remains to prove.

Consider a language L generated by an ε-CFG G = (N, Γ̂, P, S ) and a regular language
R. Since R is rational, there is a finite monoid M, a monoid morphism µ : Γ̂∗ → M
and H ⊆ M such that R = µ−1(H). We construct the ε-CFG G′ = (N′, Γ̂, P′, S ′) where
N′ = {Xm | X ∈ N,m ∈ M} ∪ {S ′} and P′ is the set of all productions:
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• Xm −→ αX1,m1 · · · Xn,mn ᾱ such that X −→ αX1 · · · Xnᾱ ∈ P and m = µ(α)m1 · · ·mnµ(ᾱ)

• S ′ −→ S m for every m ∈ H.

Then for every u ∈ Γ̂∗, for every X ∈ N and m ∈ M:

Xm
∗
−→G′ u iff X

∗
−→G u and µ(u) = m.

It follows that LG′ = L ∩ µ−1(H) = L ∩ R. �

An immediate consequence of Proposition 3.6 is that every regular language in-
cluded in TΓ is ε-reducible since it can be written as the intersection of TΓ with itself.

Lemma 3.7. Every regular language included in TΓ is an ε-CFL.

The family of ε-CFLs is obviously not closed under homomorphisms – at least, not
without any restriction on the applied homomorphisms. In what follows, we introduce
a class of homomorphisms that preserve the “ε-reducibility”.

Definition 3.8. A homomorphism g : Σ̂∗ → Γ̂∗ is said to be ε-safe if for all u ∈ Σ̂∗,
ρ(u) = ε implies ρ(g(u)) = ε.

In other words, g is ε-safe iff for all α ∈ Σ̂, ρ(g(ᾱ)) = ρ(g(α)).

Example 3.9. The homomorphism g : α ∈ Γ 7→ αᾱ; ᾱ ∈ Γ̄ 7→ ε is ε-safe. �

Lemma 3.10. For every ε-safe homomorphism g : Σ̂∗ → Γ̂∗: g(TΣ) ⊆ TΓ.

Proof. By a trivial induction on the structure of words in TΣ. �

A homomorphism h : A∗ → B∗ is said to be alphabetic if for every a ∈ A, h(a) ∈ B∪{ε}.
Obviously, if an ε-safe homomorphism g : Σ̂∗ → Γ̂∗ is alphabetic, then for all α ∈ Σ̂ :

g(ᾱ) = g(α). Therefore, when defining alphabetic ε-safe homomorphisms, we will
generally just mention their mapping from the positive alphabet (Σ in this case).

Proposition 3.11. The class of ε-CFLs is closed under ε-safe homomorphism.

Proof. Consider a language L generated by an ε-CFG G = (N, Γ̂, P, S ) and a ε-safe
homomorphism g : Γ̂∗ → Σ̂∗. By replacing every production X −→ uΩū (with Ω ∈ N∗)
by X −→ g(u)Ωg(ū), we obtain a context-free grammar generating g(L) and such that
every production X −→ Ω satisfies π

Σ̂
(Ω) ∈ TΣ (from Lemma 3.10). According to

Proposition 3.5, g(L) is ε-reducible. �

Definition 3.12 (Quotient). Given a language L ⊆ Σ∗ and a word w ∈ Σ∗, we define:

• the right quotient of L by w: L · w−1 = {u | uw ∈ L};

• the left quotient of L by w: w−1 · L = {u | wu ∈ L}.

Context-free languages are closed under quotient by a word w. It is also true for
ε-CFLs as soon as ρ(w) = ε.
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Proposition 3.13. Let L ∈ ECFL(Γ). For every w ∈ TΓ: L · w−1 and w−1 · L belong to
ECFL(Γ).

Proof. We present the proof for the right product, the left product case is symmetrical.
Suppose L to be generated by an ε-CFG G = (N, Γ̂, P, S ). We transform G in an
equivalent grammar under Chomsky normal form G = (N′, Γ̂, P, S ): for all α ∈ Γ̂, we
introduce a new nonterminal symbol Xα, we replace α by Xα in each production and
we add productions Xα −→ α.

We define now Rw to be the set of all Ω ∈ N∗ such that S
∗
−→G′ Ω′ −→G′ Ωw by

a rightmost derivation such that w is not a suffix of Ω′ (this means that the last step
of the derivation has derived the first letter of w). It is folklore that Rw is regular. In
addition, from definition of Rw, {u ∈ Σ∗ | Ω

∗
−→G′ u,Ω ∈ Rw} = L · w−1.

We consider now the morphism g : N′ → N ∪ Γ̂ that replace all nonterminals Xα

by α, and define Q = g(Rw). Obviously we get:

Claim 1. Q is regular and L · w−1 = {u ∈ Γ̂∗ | Ω
∗
−→G u,Ω ∈ Q}.

Then, for every Ω ∈ Q, and every u ∈ Γ̂∗ such that Ω
∗
−→G u, uw ∈ TΓ. It follows

that u ∈ TΓ, and since G is an ε-CFG, π
Γ̂
(Ω) ∈ TΓ. In other words:

Claim 2. π
Γ̂
(Q) ⊆ TΓ.

Consider now the morphism µ : (N ∪ Γ̂)∗ → (N̂ ∪ Γ̂)∗ defined by X ∈ N 7→ XX̄ and
α ∈ Γ̂ 7→ α. From Claims 1 and 2, the language µ(Q) is regular and included in TN∪Γ.
It is then also an ε-CFL from Lemma 3.7.

Let Gw = (Nw, N̂ ∪ Γ̂, Pw, S w) be an ε-CFG generating µ(Q), we define the context
free grammar G′ = (N′, Γ̂, Pw ∪ P ∪ P′, S w), where N′ = N ∪ Nw ∪ N̄ and P′ = {X̄ −→
ε, X ∈ N}.

From construction, S w
∗
−→G′ u iff there is Ω ∈ Q such that Ω

∗
−→G u iff ( from

Claim 1) u ∈ L · w−1. Then :

Claim 3. LG′ = L · w−1.

We conclude by emphasizing that for any production X −→ Ω ∈ P′, π
Γ̂
(Ω) ∈ TΓ and

hence from Proposition 3.5, LG′ is an ε-CFL. �

Another well known property of context-free language is the closure under reversal.
Given a word w = α1 · · ·αn, the reversal of w is wR = αn · · ·α1. The reversal of a
language L is LR = {wR | w ∈ L}.

Proposition 3.14. The class of ε-CFLs is closed under reversal.

Proof. The proof is similar to that of closure under reversal of context-free languages.
Given an ε-CFG G = (N, Γ̂, P, S ), we define G′ = (N, Γ̂, PR, S ) where PR is the set of
productions X −→ ΩR, for X −→ Ω ∈ P. Clearly, G′ is an ε-CFG and we can check by
induction on length of derivations that for all X ∈ N, X

∗
−→G w ∈ Γ̂∗ iff X

∗
−→G′ wR. It

follows that LG′ = LG
R.

We show now that every context-free language L can be mapped to an ε-CFL by a
homomorphism. This property will be used in several proofs.
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Lemma 3.15. Let L ⊆ Σ∗ be a context-free language and µ : Σ∗ → Γ̂∗ be a homomor-
phism such that : for all α ∈ Σ, µ(α) ∈ TΓ. The language µ(L) is an ε-CFL.

Proof. Suppose L to be generated by a context-free grammar G = (N,Σ, P, S ) in
Chomsky normal form. Replacing every production X −→ u, u ∈ Σ ∪ {ε} by X −→
µ(u), we get a context-free grammar generating µ(L) and in which every nonterminal
X generates only words in TΓ, that is, from Proposition 3.5, µ(L) is an ε-CFL. �

Proposition 3.16. For all Γ, the class ECFL(Γ) is not closed under intersection nor
complement in TΓ.

Proof. Suppose that E = L1 ∩ L2 where L1, L2 ∈ Γ∗ are context-free languages, and
E is not context-free (such languages exist since context-free languages are not closed
under intersection). Let µ : Γ∗ → Γ̂∗ be the morphism defined by α 7→ αᾱ, and πΓ be
the projection of Γ̂∗ into Γ∗; E can be written:

E = πΓ(µ(L1) ∩ µ(L2)),

since µ is injective and πΓ ◦ µ is the identity map.
The sets µ(L1) and µ(L2) are ε-CFLs (see Lemma 3.15) but µ(L1) ∩ µ(L2) is not

context-free since context-free languages are closed under homomorphism. It follows
that µ(L1) ∩ µ(L2) is not an ε-CFL and then ECFL(Γ) is not closed under intersection.

Now, let L1, L2 be two ε-CFLs. Since L1, L2 ⊆ TΓ, we have:

L1 ∩ L2 = TΓ − ((TΓ − L1) ∪ (TΓ − L2)).

Since ECFL(Γ) is closed under union, if it is closed under complement in TΓ, it is also
closed under intersection. Then ECFL(Γ) is not closed under complement in TΓ. �

3.4. A Chomsky–Schützenberger-like theorem for ε-CFLs
The Chomsky–Schützenberger theorem states that a language L ⊆ Σ∗ is context-

free iff there is an alphabet Γ, a regular set R ⊆ Γ̂∗, and a homomorphism h : Γ̂∗ → Σ∗

such that
L = h(R ∩DΓ).

This implies that the whole class of context-free languages is generated by homomor-
phic images of ε-CFLs, since R ∩ DΓ is an ε-CFL. However, if we restrict h to be
ε-safe, we generate exactly the family of ε-CFLs.

Proposition 3.17. For all L ∈ ECFL(Γ), there is an alphabet Σ, an alphabetic ε-safe
homomorphism g : Σ̂∗ → Γ̂∗, and a regular language R ⊆ Σ̂∗ such that L = g(R∩DΣ).

Proof. We use a slight adaptation of the proof of the non-erasing variant of the
Chomsky–Schützenberger theorem given in [20]. Suppose L to be generated by an
ε-CFG G = (N, Γ̂, S , P) such that all productions have the form X −→ αεᾱε, or X −→
YZ where symbols Y,Z are distinct and αε ∈ Γ̂ ∪ {ε}. This condition is not restrictive
since such a grammar can easily be obtained.

We build from G the context-free grammar G′ = (N′, Σ̂, P′, S ′) where
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• N′ = {Xp | X ∈ N, p ∈ P ∪ {#}};

• Σ is the set of pairs of productions (p0, p1) such that p1 is compatible with p0,
that is

Σ = {(p0, p1) | p0 = # or p0 = X −→ Ω1YΩ2 and p1 = Y −→ Ω3};

• the set of productions P′ consists of all Xp0 −→ (p0, p1)X1,p1 · · · Xn,p1 (p0, p1)
such that (p0, p1) ∈ Σ and p1 = X −→ αεX1 · · · Xnᾱε ∈ P;

Consider now the alphabetic ε-safe homomorphism g : Σ̂∗ → Γ∗ defined as follows:

for all (p0, p1) ∈ Σ, with p1 = X −→ αεX1 · · · Xnᾱε, g(p0, p1) = αε.

We have clearly:
Claim 1. LG′ ⊆ DΣ and LG = g(LG′ ).

Now, we construct a regular language R ⊆ Σ∗ such that LG′ = R ∩ DΣ. First, we
define R0 as the set of all words in Σ̂∗ such that each factor of length 2 is in one of the
following forms:

• (p0, p1)(p1, p2) for (p1 = X −→ αεYᾱε or p1 = X −→ YZ) and p2 = Y −→ Ω;

• (p0, p1)(p0, p1) for p1 = X −→ αεᾱε;

• (p1, p2)(p1, p3) for p1 = X −→ YZ and p2 = Y −→ Ω and p3 = Z −→ Ω′;

• (p1, p3) (p0, p1) for (p1 = X −→ YZ or p1 = X −→ αεZᾱε) and p3 = Z −→ Ω.

The set R0 is a regular set expressing a necessary condition on derivations, then LG′ ⊆

R0, and so, LG′ ⊆ R0 ∩DΣ.

Claim 2. For all words u = (p0, p1)v(p0, p1) ∈ R0 ∩DΣ, there is a derivation of u in G′

starting with the production p1.
This can be checked by induction on the length of u.

Hence, let
R = R0 ∩

⋃
p=S−→Ω∈P

(#, p)̂Σ∗(#, p),

we have R ∩DΣ = LG′ , and then LG = g(R ∩DΣ). �

Theorem 3.18. Let L ⊆ Γ̂∗, the following assertions are equivalent:

1. L is an ε-CFL;
2. there is an alphabet Σ, an ε-safe homomorphism g : Σ̂∗ → Γ̂∗, and a regular set

R ⊆ Σ̂∗ such that L = g(R ∩DΣ);
3. there is an alphabet Σ, an alphabetic ε-safe homomorphism g : Σ̂∗ → Γ̂∗, and a

regular set R ⊆ Σ̂∗ such that L = g(R ∩DΣ);
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Proof. (3 ⇒ 2) is obvious; (2⇒ 1) is a straightforward consequence of Propositions
3.6, 3.11 and the fact that DΣ is an ε-CFL; (1⇒ 3) is stated Proposition 3.17. �

We conclude by emphasizing that Theorem 3.18, Proposition 3.6 and Proposition 3.11
provide another characterization of the class of ε-CFLs:

Corollary 3.19. The family of ε-CFLs is the least family of languages that contains
the Dyck languages and is closed under union, intersection with a regular language,
ε-safe homomorphisms, concatenation and Kleene star.

3.5. Comparison with Two-Sided Dyck Context-Free languages

Let us now compare ECFL(Γ) with the class of context-free languages included in
TΓ. We show these two classes to be distinct using a pumping lemma.

Lemma 3.20. If L ⊆ Γ̂∗ is an ε-CFL, then there exists some integer p ≥ 1 such that
every word s ∈ L with |s| ≥ p can be written as s = uvwxy with

1. ρ(uy) = ε, ρ(vx) = ε and ρ(w) = ε

2. |vwx| ≤ p,
3. |vx| ≥ 1, and
4. uvnwxny is in L for all n ≥ 0.

Proof (Sketch). Let G be an ε-CFG generating L. The proof of the pumping lemma
for context-free languages is based on the fact that if a word s ∈ L is long enough,
there are a non-terminal A and terminal words u, v, w, x, y such that S

∗
−→G uAy

∗
−→G

uvAxy
∗
−→G uvwxy and s = uvwxy. Since G is an ε-CFG, this implies that ρ(uy) = ε,

ρ(vx) = ε and ρ(w) = ε. �

Definition 3.21. A language L ⊆ Γ̂∗ is a Two-sided Context-Free Language (TCFL) if
it is context-free and included in TΓ.

Proposition 3.22. There is a TCFL which is not an ε-CFL.

Proof. Let us consider the TCFL L = {(aā)nb(aā)nb̄ | n ≥ 0}. Applying Lemma
3.20 to L, we consider a word s = (aā)mb(aā)mb̄ such that |s| ≥ p. There is then a
decomposition s = uvwxy such that

1. ρ(uy) = ε, ρ(vx) = ε and ρ(w) = ε

2. |vwx| ≤ p,
3. |vx| ≥ 1, and
4. uvnwxny is in L for all n ≥ 0.

Clearly, to satisfy conditions 3 and 4, it is necessary that v = (αᾱ)i and x = (ββ̄)i

for some 1 ≤ i ≤ m and some α, β ∈ {a, ā}, and there are w1,w2 ∈ {a, ā}∗ such that
w = w1bw2. It follows that ρ(w) , ε, contradicting the condition 1. �
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3.6. Decision problems

Our main decidability result is that it is undecidable to know whether a context-free
language L is an ε-CFL. In particular, this problem is undecidable even if L is assumed
to be a TCFL, since one can decide if a context-free language is a TCFL [21], and a
context-free language is an ε-CFL only if it is a TCFL.

The proof is inspired by the Greibach Theorem that gives a general method to deal
with this kind of problems, and allows for example to prove that it is undecidable to
know if a context-free language is rational (see for example [22]).

We start by showing that is undecidable to determine if a language L ∈ ECFL(Γ) is
equal to TΓ.

Proposition 3.23. The problem “L = TΓ?” is undecidable for L ∈ ECFL(Γ) .

Proof. Let us consider the morphism µ : Γ∗ → Γ̂∗ defined by a 7→ aā. The first
step of the proof is to note that every word w ∈ TΓ admits a (unique) decomposition
w = w0µ(v1)w1 · · · µ(vn)wn, n ≥ 0 where:

• for all 0 ∈ [0, n], wi ∈ Γ̂∗ and for all a ∈ Γ, wi does not contain occurrences of
aā;

• for all i ∈ [1, n], vi ∈ Γ+

• for all i ∈ [1, n − 1] wi , ε.

To get this decomposition, it suffices to choose v1, . . . , vn so that |v1|+ · · ·+ |vn| is max-
imal. Let K ⊆ Γ+. If for all i ∈ [1, n], vi ∈ K, w is said to be K-decomposable.

Claim 1. If K ⊆ Γ+ is context-free, the set LK ⊆ TΓ of K-decomposable words is an
ε-CFL.

Proof of Claim 1. Let # be a symbol that does not belong to Γ, and

• R be the set of words over Γ̂ ∪ {̂#} that contain no factor aā, a ∈ Γ,

• R′ = Â∗(##̄Â+)∗##̄Â∗.

Languages R and R′ and regular, then the language M = TΓ∪{#} ∩ R ∩ R′ is an
ε-CFL by Proposition 3.6 and is equal to L{#}.
According to Lemma 3.15, µ(K) is an ε-CFL that we assume to be generated
by the ε-CFG G# = (N, Γ̂, P, S #). We transform the ε-CFG generating M as
follows: in every production, we replace #̄ by ε, and # by S #, then we add the
set of productions P. The grammar thus constructed is an ε-CFG that generate
LK . �

Note that for all language K ⊆ Γ∗, LK contains at least the set of words over Γ̂ that
contain no factor aā, a ∈ Γ.

Claim 2. LK = TΓ iff K = Γ+.
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Proof of Claim 2. Suppose that K , Γ+: there is u ∈ Γ+ such that u < K, then
µ(u) < LK and hence LK , TΓ. Conversely, given w ∈ TΓ, if w < LK , then w
is not K-decomposable and contains at least a factor of the form aā, for some
a ∈ Γ. This means that the decomposition of w is w = w0µ(v1)w1 · · · µ(vn)wn,
with n ≥ 1 and there is i ∈ [1, n] such that vi < K. In particular, K , Γ+. �

The problem to know whether a context-free language K ⊆ Γ∗ satisfies K = Γ∗ is
undecidable [22, Thm 8.10], then it is easy to see that the problem to know whether
a context-free language K ⊆ Γ+ satisfies K = Σ+ is too. We conclude the problem
L = TΓ? for L ∈ ECFL(Γ) to be undecidable. �

Theorem 3.24 ([21]). Given a context-free language L, one can decide in polynomial
time whether L is a TCFL.

Theorem 3.25. The problem to know whether a context-free language L is an ε-CFL
is undecidable. The problem is also undecidable if L is a TCFL.

Proof. Let L1 ⊆ Σ̂∗ be an ε-CFL, and L0 ⊆ Σ̂∗ be a TCFL which is not an ε-CFL (such
a language exists from Proposition 3.22). Let L = L0##̄TΣ ∪ TΣ##̄L1 where # is a new
symbol that does not belong to Σ. From closure properties of context-free languages,
L is a context-free language, and since L ∈ TΣ∪{#}, it follows that L is a TCFL.

Claim. L is an ε-CFL iff L1 = TΣ.
Proof. Clearly, if L1 = TΣ, then L = TΣ##̄TΣ which is an ε-CFL. Let us
suppose that L1 , TΣ. Then, there is v ∈ TΣ such that v < L1, and hence
L ∩ TΣ##̄v = L0##̄v. The set L0##̄v is not an ε-CFL by Proposition 3.13, then
L ∩ (TΣ##̄v) is not an ε-CFL. Hence L is not an ε-CFL since L ∩ (TΣ##̄v) =

L ∩ (̂Σ∗##̄v) and from Proposition 3.6, ε-CFLs are closed under intersection
with regular languages. �

We have then reduced the problem to know whether L is an ε-CFL, to the problem to
know if L1 = TΣ which is undecidable by Proposition 3.23. �

4. Epsilon-Reducible Context-Free Transductions

In this section, we extend the notion of ε-reducibility to transductions. We consider
a subclass of context-free transductions whose domains are ε-CFLs. We give a Nivat-
like presentation of those transductions.

4.1. Transductions
We briefly introduce rational and context-free transductions. The reader can refer

to [23] for a more detailed presentation.
Let Γ and Σ be two finite alphabets, we consider the monoid Γ∗ ×Σ∗ whose product

is the product on words, extended to pairs of words : (u1, v1)(u2, v2) = (u1u2, v1v2). A
subset τ of Γ∗ × Σ∗ is called a (Γ,Σ)-transduction.

Transductions are viewed as (partial) functions from Γ∗ toward subsets of Σ∗: for
any u ∈ Γ∗, τ(u) = {v ∈ Σ∗ | (u, v) ∈ τ}. For every L ⊆ Γ∗, the image (or transduction)
of L by τ is τ(L) =

⋃
u∈L τ(u). The domain of τ is Dom(τ) = {u | ∃v, (u, v) ∈ τ}.
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Rational transductions: . A rational (Γ,Σ)-transduction is a rational subset of the
monoid Γ∗ × Σ∗. Among the different characterizations of rational transductions, let
us cite the Nivat theorem [24] stating that rational transductions are relations τ =

{(g(u), f (u)) | u ∈ R}, for some regular set R and homomorphisms f and g.
Rational transductions are closed by composition and many classes of languages

are closed under rational transductions. In particular, τ(L) is rational if L is rational,
and τ(L) is context-free if L is context-free.

Associated with the Nivat theorem, the Chomsky–Schützenberger theorem estab-
lishes in a stronger version that a language L is context-free iff there is a rational trans-
duction τ such that L = τ(D2).

Context-free transductions: . Following [23, page 62], a (Γ,Σ)-transduction τ is context-
free if there is an alphabet A, a context-free language K ⊆ A∗ and two homomorphisms
f : A∗ → Σ∗ and g : A∗ → Γ∗ such that τ = {(g(u), f (u)) | u ∈ K}.

Equivalently, τ is context-free if it is generated by a context-free transduction gram-
mar: a context-free grammar whose terminals are pairs of words. Derivations are done
as usually but the product used on terminal pairs is the product of the monoid Γ∗ × Σ∗.

Context-free transductions enjoy however fewer good properties, in particular, [23,
page 62] they are not closed under composition and classes of languages are usually not
closed under them. For example, every context-free language is the image of a regular
language, and every recursively enumerable language is the image of a context-free
language.

4.2. ε-Reducible Context-Free Transductions and Transducers
Definition 4.1. An ε-Reducible Context-Free Transduction Grammar (ε-CFTG) is
a context-free transduction grammar G = (N, Γ̂,Σ, S , P) in which every production is
of the form

X −→ (ω, u)Ω(ω̄, v), with ω ∈ Γ̂∗, u, v ∈ Σ∗, Ω ∈ N∗.

The transduction generated by G is TG = {(u, v) ∈ Γ̂∗ × Σ∗ | S
∗
−→G (u, v)}. An

ε-reducible context-free transduction (ε-CFT) is a context-free transduction generated
by an ε-CFTG.

Example 4.2. Let G = (N, {α, β, ᾱ, β̄}, {a}, S , P) be the ε-CFTG whose productions are:

S −→ (β, ε)X(β̄, ε), X −→ (α, ε)X(ᾱ, ε), X −→ (ε, ε)Y(ε, ε),
Y −→ (ᾱ, a)YZ(α, ε), Z −→ (ᾱ, a)Z(α, a), Y −→ (β̄, ε)(β, ε), Z −→ (β̄, ε)(β̄, ε).

Let τ be the transduction generated by G. The domain of τ is the ε-CFL given in
Example 3.4 and one can easily check that

τ =
⋃

n,m,r1,...rm≥0

(βαnᾱmβ̄β(Πm
i=1ᾱ

ri β̄βαri+1)ᾱnβ̄, am+2r1+···+2rm ).

�

By a proof similar to that of Proposition 3.5, we get:
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Proposition 4.3. Given τ ⊆ Γ̂∗ × Σ∗, the following properties are equivalent:

1. L is an ε-CFT;
2. there is a context-free transduction grammar G = (N, Γ̂,Σ, P, S ) such thatTG = τ

and for all X ∈ N : if X
∗
−→G (ω, u), then ω ∈ TΓ.

To ease the proofs, we will often use grammars under a simpler form, thanks to the
following property.

Lemma 4.4. Every ε-CFT can be generated by an ε-CFTG in which every production
is in the form

X −→ (αε, u)Ω(ᾱε, v) with Ω ∈ N∗, u, v ∈ Σ∗ and αε ∈ Γ̂ ∪ {ε}.

An ε-CFTG under this form is said to be standard. �

Proof. Let G = (N, Γ̂,Σ, S , P) be an ε-CFTG. One simply has to replace every
production X −→ (ω, u)Ω(ω, v), with ω = α1 · · ·αn and Ω ∈ N∗, by X −→ (ε, u)Y1(ε, v)
and introduce the new productions Yi −→ (αi, ε)Yi+1(ᾱi, ε) for i ∈ {1, . . . , n − 1} and
Yn −→ (αn, ε)Ω(ᾱn, ε). �

Theorem 4.5. Given a (̂Γ,Σ)-transduction τ, the following assertions are equivalent:

1. τ is an ε-CFT.
2. There is an alphabet ∆, an ε-CFL X ⊆ ∆̂∗, an ε-safe (alphabetic) homomorphism

g : ∆̂∗ → Γ̂∗ and a homomorphism h : ∆̂∗ → A∗ such that

τ = {(g(u), h(u)) | u ∈ X};

3. There is an alphabet ∆, an ε-safe (alphabetic) homomorphism g : ∆̂∗ → Γ̂∗, a
homomorphism h : ∆̂∗ → A∗ and a regular set R ⊆ ∆̂∗ such that

τ = {(g(u), h(u)) | u ∈ R ∩D∆}.

Proof. (1⇒ 2) According to Lemma 4.4), we suppose τ to be generated by a standard
ε-CFTG G = (N, Γ̂,Σ, S , P). We define the grammar G′ = (N, ∆̂, S , P′) where ∆ = P,
and

P′ = {X −→ pΩ p̄ | p = X −→ (αε, v)Ω(ᾱε,w) ∈ P}.

Now, let h : ∆̂∗ → A∗ be the homomorphism defined by

for all p = X −→ (αε, v)Ω(ᾱε,w): p 7→ v, p̄ 7→ w,

and g : ∆̂∗ → Γ̂∗ be the ε-safe alphabetic homomorphism defined by

for all p = X −→ (αε, v)Ω(ᾱε,w): p 7→ αε, p̄ 7→ ᾱε.

Clearly we G′ is an ε-CFG and TG = {(g(u), h(u)) | u ∈ L(G′)}.

(2 ⇒ 3) Suppose that τ = {(g(u), h(u)) | u ∈ X} where X is an ε-CFL and g is (al-
phabetic) ε-safe. From Theorem 3.18, there is an alphabet Σ, a regular set R ⊆ Σ̂∗,
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and a ε-safe alphabetic homomorphism g′ : Σ̂∗ → ∆̂∗ such that X = g′(R ∩D∆). The
homomorphism g ◦ g′ is (alphabetic) ε-safe and τ = {(g(g′(x)), h(g′(x))) | x ∈ R∩D∆}.

(3⇒ 1) Let τ = {(g(u), h(u)) | u ∈ R∩D∆}where R is a regular language and g is ε-safe.
From Proposition 3.6, R∩D∆ is an ε-CFL that we assume to be generated by the ε-CFG
G = (N, ∆̂, P, S ). Then τ is generated by the context-free grammar G′ = (N, Γ̂, Σ̂, P′, S )
where

P′ = {X −→ (g(u), h(u))Ω(g(ū), h(ū)) | X −→ uΩū ∈ P,Ω ∈ N∗, u ∈ Γ̂∗}.

From Proposition 3.5, the domain of TG′ is an ε-CFL, and so τ is an ε-CFT. �

It is clear that every context-free language L can be obtained by applying an ε-CFT
to a regular language (for instance using the transduction {ε}×L). We will see (Theorem
5.6) that the family of images of the Dyck language is that of indexed languages, but
more generally, images of ε-CFLs by ε-CFTs are recursively enumerable languages.

Proposition 4.6. For every recursively enumerable language E, there is an ε-CFT τ,
and an ε-CFL Z such that E = τ(Z).

Proof. Suppose that E ⊆ Σ∗. From [10], there is an alphabet Γ, a homomorphism
h : Γ̂∗ → Σ∗, and a context-free language K ⊆ Γ̂∗ such that E = h(K ∩DΓ).

Let g : Γ̂∗ → Γ̂∗ be the injective ε-safe homomorphism defined by x 7→ xx̄, for all
x ∈ Γ̂. Then E = h(g−1(Z) ∩DΓ), for Z = g(K), that is, from Theorem 4.5, E = τ(Z),
where τ is an ε-CFT. We conclude by noting that from Lemma 3.15, Z is an ε-CFL. �

5. Characterizations of Indexed Languages

We relate now indexed languages to ε-CFTs by showing that indexed language are
sets τ(D2), where τ is an ε-CFT. This gives rise to various homomorphic characteriza-
tions of indexed languages.

5.1. Indexed Grammars and Languages

Introduced by Aho[3], indexed grammars extend context-free grammars by allow-
ing nonterminals to yield a stack. Derivable elements are then represented by symbols
Xω where X is a nonterminal and ω is a word called index word. Index words are ac-
cessed by a LIFO process: during a step of derivation of Xω, it is possible to add a
symbol in head of ω, or to remove its first letter. Additionally, ω can be duplicated and
distributed over other nonterminals.

Formally, an indexed grammar is a structure I = (N, I,Σ, S , P), where N is the set
of nonterminals, Σ is the set of terminals, S ∈ N is the start symbol, I is a finite set of
indexes, and P is a finite set of productions of the form

X0
η0 −→ u0X1

η1 u1 · · · Xn
ηn un

with ui ∈ Σ∗, Xi ∈ N and ηi ∈ I ∪ {ε} for i ∈ {0, . . . , n}.
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Indexes are denoted as superscript, and we will often not write indexes equal to ε.

Sentences are words u1A1
ω1 . . . unAn

ωn un+1 with ui ∈ Σ∗, Ai ∈ N and ωi ∈ I∗. The
derivation rule “−→I” is a binary relation over sentences defined by

Ω1AηωΩ2 −→I Ω1u0B1
η1ω · · · Bn

η1ωunΩ2
iff there is a production Aη −→ u0B1

η1 u1 . . . Bn
ηn un ∈ P.

The language generated by I is LI = {u ∈ Σ∗ | S
∗
−→I u}. Languages generated by

indexed grammars are called indexed languages.

Example 5.1. Let us consider the following indexed grammar I = (N, I,Σ, S , P) with
N = {S , X, A, B,C}, I = {β, α}, Σ = {a, b, c} and P consists of the following rules:

p1 : S −→ Xβ, p2 : S −→ ε, p3 : X −→ Xα, p4 : X −→ ABC,
p5 : Aα −→ aA, p6 : Aβ −→ ε, p7 : Bα −→ bB, p8 : Bβ −→ ε,
p9 : Cα −→ cC, p10 : Cβ −→ ε.

Here is a possible derivation:

S
p1
−→I Xβ p3

−→I Xαβ p3
−→I Xααβ p4

−→I AααβBααβCααβ p5
−→I aAαβBααβCααβ

p5
−→I aaAβBααβCααβ p6

−→I aaBααβCααβ p7 p7 p8
−→I aabbCααβ p9 p9 p10

−→I aabbcc

The language generated by I is {anbncn, n ≥ 0}. �

5.2. Characterizations of Indexed Languages by context-free transductions
We provide now homomorphic characterizations of indexed languages by estab-

lishing a strong connexion between indexed languages and ε-CFTs.

Theorem 5.2 ([22]). For every indexed language L, there is an indexed grammar (N, I,T, S , P)
generating L in which every production is in either one of the following forms.

(1) X −→ YZ, (2) X −→ Yα, (3) Xα −→ Y,
or (4) X −→ u

with X,Y,Z ∈ N, a ∈ T, u ∈ T ∗ and α ∈ I.

Corollary 5.3. Every indexed language can be generated by an indexed grammar in
which every production is in one of these forms

(1) X0 −→ uX1
α · · · Xn

αv, or (2) X0
α −→ uX1 · · · Xnv

with n ≥ 0, Xi ∈ N, α ∈ I ∪ {ε} and u, v ∈ T ∗.

An indexed grammar under this form is said to be standard.

Definition 5.4. Let us consider the mapping ϕ that maps a standard indexed grammar
I = (N, I,Σ, P, S ) into a standard ε-CFTG ϕ(I) = (N, Î,Σ, ϕ(P), S ) by transforming
every production

p : X0 −→ uX1
α · · · Xn

αv into ϕ(p) : X0 −→ (α, u)X1 · · · Xn(ᾱ, v), and
p : X0

α −→ uX1 · · · Xnv into ϕ(p) : X0 −→ (ᾱ, u)X1 · · · Xn(α, v).
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Fact. . The transformation ϕ is bijective.

Lemma 5.5. Let I = (N, I,Σ, P, S ) be a standard indexed grammar.
There is a derivation

S
∗
−→I v1Y1

w1 v2Y2
w2 · · · Yn

wn vn+1

iff there is a derivation

S
∗

−→ϕ(I) (u1, v1)Y1(u2, v2)Y2 · · · Yn(un+1, vn+1) such that

u1 · · · un+1 ∈ DI , and ρ(u1 · · · ui) = wR
i , for all i ∈ [1, n].

Here wR
i denotes the reverse of wi.

Proof. This is proved by induction over the steps of derivations and is trivially true
derivations of length 0. Furthermore, since the derivation rules of indexed grammars,
and of context-free grammar are confluent, we need only to consider leftmost deriva-
tions for our induction. Let us prove the induction step. Suppose a derivation

S
∗
−→I v1Y1

w1 v2Y2
w2 · · · Yn

wn vn+1

in I and a derivation

S
∗

−→ϕ(I) (u1, v1)Y1(u2, v2)Y2 · · · Yn(un+1, vn+1)

in ϕ(I) with u1 · · · un+1 ∈ DI and ρ(u1 · · · ui) = wR
i for i ∈ [1, n].

Because ϕ is bijective, there is a production p = Y1 −→ xZ1
α · · · Zm

αy ∈ P iff there is
a production ϕ(p) = Y1 −→ (α, x)Z1 · · · Zm(ᾱ, y) ∈ ϕ(P). By applying p and ϕ(p), we
obtain the derivations

S
∗
−→I v1xZ1

αw1 · · · Zm
αw1 yv2Y2

w2 · · · Yn
wn vn+1

in I and
S

∗
−→ϕ(I) (u1α, v1x)Z1 · · · Zm(ᾱu2, yv2)Y2 · · · Yn(un+1, vn+1)

in ϕ(I). Furthermore, since α ∈ I ∪ {ε}, the word u1αᾱu2 · · · un+1 is in DI . Also,
ρ(u1α) = ρ(u1)α = (αw1)R and for every i ∈ {2, . . . , n} : ρ(u1αᾱ · · · ui) = ρ(u1 · · · ui) =

wi
R.

Likewise, there is a production p = Yα
1 −→ xZ1 · · · Zmy ∈ P iff there is a production

ϕ(p) = Y1 −→ (ᾱ, x)Z1 · · · Zm(α, y) ∈ ϕ(P). This time around, we need to observe two
cases.

– If the production p can be applied to derivation in I, it means that w1 = αw0 and
ρ(u1ᾱ) = w0 for some w0 ∈ I∗. Also, the word u1ᾱα · · · un still belongs to DI .
By applying p and ϕ(p) we obtain the derivations

S
∗
−→I v1xZ1

αw1 · · · Zm
αw1 yv2Y2

w2 · · · Yn
wn vn+1

in I and

S
∗

−→ϕ(I) (u1ᾱ, v1x)Z1 · · · Zm(αu2, yv2)Y2 · · · Yn(un+1, vn+1)

in ϕ(I) satisfying the induction hypothesis.
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– If the production p cannot be applied to derivation in I, it means that w1 does not
start with α and ρ(u1) does not end with α. Therefore, the word u1ᾱαu2 · · · un+1
does not belong to DI . Applying ϕ(p) to the derivation in ϕ(I) would then result
in a derivation

S
∗

−→ϕ(I) (u1ᾱ, v1x)Z1 · · · Zm(αu2, xv2)Y2 · · · Yn(un+1, vn+1)

that does not satisfy the induction hypothesis.

�

Theorem 5.6. A language is indexed iff there is an ε-CFT τ and k ≥ 0 such that
L = τ(Dk).

Proof. (⇒) Let I = (N, I,Σ, P, S ) be a standard indexed grammar. Lemma 5.5 im-
plies that there is a terminal derivation S

∗
−→I w in I iff there is a terminal derivation

S
∗

−→ϕ(I) (u,w) in ϕ(I) with u ∈ DI . Therefore, for every standard indexed grammar
I = (N, I,Σ, P, S ):

LI = τϕ(I)(DI).

(⇐)Conversely, since ϕ is bijective, for every reduced ε-CFTG G = (N, Γ̂,Σ, P, S ):

τG(DΓ) = Lϕ−1(G).

Together with Lemma 4.4 and Corollary 5.3, this proves the theorem. �

Example 5.7. Let I = (N, I,Σ, S , P) be an indexed grammar with N = {S , X,Y,W,Z},
I = {β, α}, A = {a} and P consists of the rules:

S −→ Xβ, X −→ Xα, X −→ Y , Yα −→ aYZ
Yβ −→ ε, Zα −→ aZa, Zβ −→ ε.

Initially defined in [25], the grammar I generates the language L = {an2
| n ≥ 0}.

Applying the bijection ϕ defined above to I, we get the ε-CFTG G given in Example
4.2 and generating the transduction

τ =
⋃

n,m,r1,...rm≥0

(βαnᾱmβ̄β(Πm
i=1ᾱ

ri β̄βαri+1)ᾱnβ̄, am+2r1+···+2rm ).

For every u = βαnᾱmβ̄β(Πm
i=1ᾱ

ri β̄βαri+1)ᾱnβ̄ ∈ Dom(τ),

u is a Dyck word =⇒ m = n, r1 = 0, and for all i ∈ [0,m − 1], ri+1 = ri + 1
=⇒ τ(u) = an+2(0+1+···+n−1)

=⇒ τ(u) = an2
.

It follows that τ(DI) = {an2
}n≥0 = LI. �
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Corollary 5.8. A language L is indexed if there is a homomorphism h, an ε-safe ho-
momorphism g, a regular set R and k, q ∈ N such that

L = h(R ∩Dk ∩ g−1(Dq)).

This characterization is still true if g is alphabetic.

Proof. Direct from Theorem 5.6 and Theorem 4.5. �

For every positive integer k, the set Dk can be written as µ−1(D2) where µ is the ε-safe
and injective homomorphism that encodes a positive symbol ai as 01i0 and āi as 0̄1̄i0̄.
Combined with the closure under composition of ε-safe homomorphisms, we obtain
the following.

Corollary 5.9. Let L be language. The following assertions are equivalent.

1. L is indexed;
2. there is a homomorphism h, an ε-safe homomorphism g, a regular set R and

k ∈ N such that
L = h(R ∩Dk ∩ g−1(D2));

3. there is an ε-CFT τ such that L = τ(D2).

Another proof of the following theorem can be found in [15].

Theorem 5.10. A language L is indexed iff there is an ε-CFL K, a homomorphism h,
and an alphabet ∆ such that

L = h(K ∩D∆).

Proof. (⇒) Let L ⊆ A∗ be an indexed language. From Theorem 5.6 and Theorem
4.5, there are alphabets Σ,Γ, an ε-CFL K ⊆ Σ̂∗, a homomorphism h : Σ̂∗ → A∗ and
an ε-safe homomorphism g : Σ̂∗ → Γ̂∗ such that L = h(K ∩ g−1(DΓ)). We suppose
that Γ ∩ A = ∅ (otherwise, it suffices to work with a copy of Γ), and define the ε-safe
homomorphism µ : Σ̂∗ → ∆̂∗, for ∆ = Γ ∪ A, by α 7→ g(α)h(α)h(α). For all u ∈ Σ̂∗,
µ(u) ∈ D∆ iff u ∈ g−1(DΓ); in addition, πA(µ(u)) = h(u), with πA being the projection
of ∆̂∗ into A∗. Then we have:

πA(µ(K) ∩D∆) = h(K ∩ g−1(DΣ)) = L.

We conclude by emphasizing that µ(K) is an ε-CFL from Proposition 3.11.

(⇐) Obvious from Theorem 5.6 and Proposition 4.5, by choosing g to be the identity
mapping. �
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5.3. Characterizations of Indexed Languages by rational transductions

Let us recall the characterization of context-free languages by rational transduc-
tions: there exists a language A such that for every language L, L is context-free iff
L = τ(DA) for some rational transduction τ.

Theorem 5.6 extend this result to indexed language by considering ε-CFTs rather
than rational transductions. We now prove another extension, by applying rational
transductions to an indexed language of Dyck words that we consider to be the indexed
Dyck language.

Let us first remark that Nivat’s Theorem and Corollary 5.8 imply the following.

Proposition 5.11. A language is indexed iff there is a rational transduction τ, an al-
phabetic ε-safe homomorphism g and alphabets Γ1,Γ2 such that

L = τ(DΓ1 ∩ g−1(DΓ2 )).

We then simply have to prove that there are an alphabetic ε-safe homomorphism
g and alphabets Γ1,Γ2 such that every indexed language can be written L = τ(DΓ1 ∩

g−1(DΓ2 )).

Definition 5.12. Let A1 = {a1, b1}, A2 = {a2, b2}, A′1 = {a′1, b
′
1} be pairwise disjoint

alphabets, and A = A2 ∪ A1 ∪ A′1. Let σ : Â∗ −→ Â1
∗

be the alphabetic ε-safe
homomorphism such that

σ(α) = ε if α ∈ A2, σ(α) = α if α ∈ A1, σ(α′) = ᾱ if α ∈ A1,

we define the indexed Dyck language: DA1,A2 = DA ∩ σ
−1(DA1 ).

Then, DA1,A2 is the set of all Dyck words such that if we inverse letters of A′1 and
remove letters of A2, the obtained word is still a Dyck word. Note that DA1,A2 is an
indexed language from Corollary 5.8.

Example 5.13. The word u = b1a2b′1b̄′1ā2b̄1 belongs to DA1,A2 since u ∈ DA1∪A2∪A′1 and
σ(u) = b1b̄1b1b̄1 ∈ DA1 .

Proposition 5.14. For every alphabets Γ1,Γ2, and every alphabetic ε-safe homomor-
phism g : Γ̂2

∗
→ Γ̂1

∗
, there is an ε-safe homomorphism h : Γ̂2

∗
→ Â∗ such that

DΓ2 ∩ g−1(DΓ1 ) = h−1(DA1,A2 ).

Proof. We suppose Γ1 and Γ2 to be disjoint and ordered as follows: Γ1 = {c1, . . . , cn}

and Γ2 = {d1, . . . , dm} and we define the injective ε-safe homomorphism µ : (Γ̂1 ∪

Γ̂2)∗ → (Â1 ∪ Â2)∗:

ci 7→ a1b1
ia1, di 7→ a2b2

ia2, and for all a ∈ Γ1 ∪ Γ2, ā 7→ ¯µ(a).

Claim 1. DΓ1∪Γ2 = µ−1(DA1∪A2 ), DΓ1 = µ−1(DA1 ) and DΓ2 = µ−1(DA2 ) .
Now, we define the ε-safe homomorphism h : Γ̂2

∗
→ Â∗ as follows: for all a ∈ Γ2,
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a 7→ µ(a)µ(g(a)) if g(a) ∈ Γ1 ∪ {ε}, a 7→ µ(a)µ(g(a))′ if g(a) ∈ Γ1,

and ā 7→ h(a).

Note that in the definition above, we use the following notation: if u = α1 . . . αn ∈ Â1
∗
,

then u′ = α′1 . . . α
′
n.

Claim 2. σ ◦ h = µ ◦ g.
Proof of Claim 2. For all a ∈ Γ2, µ(a) ∈ A2

∗ and then σ(µ(a)) = ε. In addition,

• if g(a) ∈ Γ1∪{ε}, then µ(g(a)) ∈ A1
∗ and σ(µ(g(a)) = µ(g(a)). It follows

that
σ(h(a)) = σ(µ(a))σ(µ(g(a))) = µ(g(a));

• if g(a) ∈ Γ1, µ(g(a)) ∈ A1
∗
, then µ(g(a))′ ∈ A′1

∗ and σ(µ(g(a))′) =

µ(g(a)). It follows that

σ(h(a)) = σ(µ(a))σ(µ(g(a))′) = µ(g(a));

• σ(h(ā)) = σ(h(a)) = µ(g(a)) = µ(g(ā)).

�

Claim 3. DΓ2 = h−1(DA).
Proof of Claim 3. Clearly, since for all a ∈ Γ2, h(a) ∈ A∗ and h(ā) = h(a), for
every u ∈ DΓ2 , h(u) ∈ DA.
Conversely, suppose that h(u) ∈ DA: the projection πÂ2

(h(u)) belongs to DA2 .
From construction of h, πÂ2

(h(u)) = µ(u) and then from Claim 1, u ∈ DΓ2 .

�

We are now ready to conclude:

DΓ2 ∩ g−1(DΓ1 ) = h−1(DA) ∩ g−1(µ−1(DA1 )) from Claims 3 and 1
= h−1(DA) ∩ h−1(σ−1(DA1 )) from Claim 2
= h−1(DA ∩ σ

−1(DA1 )) = h−1(DA1,A2 ).

�

Combining Propositions 5.11 and 5.14 we get that a language L is indexed iff there
is a rational transduction τ such that L = τ(DA1,A2 ).

Theorem 5.15. The family of indexed languages is the principal full trio generated by
DA1,A2 .

6. Two sided Dyck context-free transductions

Let us extend the class of TCFLs to transducers:
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Definition 6.1. A two-sided-Dyck context-free transduction (TCFT) is a context-free
transduction whose domain is a TCFL.

Since the domain of a context-free transduction is a context-free language, a TCFT is
simply a context-free transduction whose domain contains only two-sided Dyck words.

We have already seen that TCFLs are strictly more expressive than ε-CFLs, so
TCFTs are strictly more expressive than ε-CFTs. We prove however that ranges of
the Dyck language by TCFTs and by ε-CFLs define in fact the same classes, and then
TCFTs can be used to generate indexed languages.

The reason to consider TCFTs instead of ε-CFTs is that it is decidable to know
whether a context-free transduction is a TCFT, while it is undecidable to know whether
it is an ε-CFT (from Theorem 3.23).

Our proof is based on the fact if a transduction grammar is reduced (see Proposition
6.2) and generates a TCFT, the ρ-reduction of the domain of the transduction derived
from any nonterminal symbol is a singleton.

Proposition 6.2 ([19]). For every context-free (transduction) grammar, one can effec-
tively construct a equivalent context-free (transduction) grammar satisfying: every
nonterminal X derives at least a terminal word and is accessible by a derivation from
S . A such a grammar is called reduced.

Lemma 6.3. Let G = (N, Γ̂,Σ, P, S ) be a reduced context-free transduction grammar
generating a TCFT. For X ∈ N, there exists wX ∈ Γ̂∗ such that for all (ω, u) ∈ Γ̂∗ × Σ∗,
if X

∗
−→ (ω, u), then ρ(ω) = wX .

In addition, wX is effectively computable.

Proof. Since G generates a TCFT, if S
∗
−→ (ω, u) then ρ(ω) = ε and hence, wS = ε.

Suppose now that X
∗
−→ (ω1, u1) and X

∗
−→ (ω2, u2). Since G is reduced, there is

a derivation S
∗
−→ ω3Xω4 and then ρ(ω3ω1ω4) = ρ(ω3ω2ω4) = ε. It follows that

ρ(ω1) = ρ(ω2) = ρ(ω̄3ω̄4).
Using the following procedure, we compute every words wX:

while N , ∅, do

1. choose a terminal production X −→ (ω, u) ∈ P;
2. state wX = ρ(ω);
3. remove from P every production whose LHS is X;
4. replace X by (wX , ε) in every RHS of productions in P; N := N − {X}.

Clearly, the procedure terminates, and preserves the following invariant: for all
X ∈ N, there is (ω, u) such that X

∗
−→P (ω, u) iff ρ(ω) = wX . �

The words wX will be the key tool of our construction. We will also need few
properties of Dyck words that we state below.

Lemma 6.4. Let us call Dyck factor every word ω ∈ Γ̂∗ for which there exist ω1, ω2 ∈

Γ̂∗ such that ω1ωω2 ∈ DΓ. The following properties hold:
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1. for all ω ∈ Γ̂∗, ω is a Dyck factor iff ρ+(ω) ∈ Γ
∗
Γ∗;

2. if ω1ω2 ∈ Γ̂∗ and ρ+(ω1ω2) ∈ Γ
∗
Γ∗, then ρ+(ω1), ρ+(ω2) ∈ Γ

∗
Γ∗;

3. for all ω ∈ Γ̂∗, if ρ(ω) = w and ρ+(ω) ∈ Γ
∗
Γ∗ then ρ+(ωw̄w) = ρ+(ω).

Proof.
1. If there are x, y ∈ Γ∗ such that ρ+(ω) = x̄y, then xωȳ ∈ DΓ, since ρ+(xωȳ) =

ρ+(xρ+(ω)ȳ) = ρ+(xx̄yȳ) = ε.
Conversely, suppose that ω1ωω3 ∈ DΓ:
• ρ+(ω1ωω3) = ρ+(ρ+(ω1)ρ+(ωω3)) = ε and then ρ+(ω1) ∈ Γ∗;
• ρ+(ω1ωω3) = ρ+(ρ+(ω1ω)ρ+(ω3)) = ε and then ρ+(ω1ω) ∈ Γ∗.

It follows that ρ+(ω) ∈ Γ
∗
Γ∗.

2. From item (1) ω1ω2 is a Dyck factor, and then so are ω1 and ω2. Again from (1),
we get that ρ+(ω1), ρ+(ω2) ∈ Γ

∗
Γ∗.

3. Suppose that ρ(ω) = w and ρ+(ω) ∈ Γ
∗
Γ∗. There are then u1, u2, u3 ∈ Γ∗ such

that ρ+(ω) = ū1 ū2u2u3 and ρ(ω) = u1u3. Then ρ+(ωw̄w) = ρ+(ρ+(ω)w̄w) =

ρ+(ū1 ū2u2u3ū3u1ū1u3) = ρ+(ū1ū2u2u3) = ρ+(ω). �

Proposition 6.5. For every TCFT τ ⊆ Γ̂∗ × Σ∗, one can effectively find an ε-CFT τ′

such that τ(DΓ) = τ′(DΓ).

Proof. According to Proposition 6.2, we assume τ to be generated by a reduced CFTG
G = (N, Γ̂,Σ, P, S ). We also suppose, without loss of generality, that every production
X −→ Ω ∈ P satisfies Ω ∈ NN ∪ (̂Γ∗ × Σ∗). According to Lemma 6.3, for every X ∈ N,
we can effectively construct the unique word wX such that for all (ω, u) ∈ Γ̂∗ × Σ∗, if
X

∗
−→ (ω, u), then ρ(ω) = wX .

We consider the context-free transduction grammar G′ = (N ∪ {Nε}, Γ̂,Σ, P′, S )
such that Nε = {Xε | X ∈ N} and:

P′ = {X −→ (ω, u) ∈ P} ∪ {Xε −→ X(w̄X , ε) | X ∈ N} ∪

{X −→ Yε(wY , ε)Zε(wZ , ε) | X −→ YZ ∈ P}.

Claim 1. For every X ∈ N, and every (ω, u) ∈ Γ̂∗ × Σ∗:

1. if X
∗
−→G′ (ω, u) then ρ(ω) = wX;

2. if Xε
∗
−→G′ (ω, u) then ρ(ω) = ε.

Proof of Claim 1. By induction on the length of derivations:

• If X −→G′ (ω, u), then X −→G (ω, u) by definition of P′ and ρ(ω) = wX

by definition of wX .
• Suppose that

X −→G′ Yε(wY , ε)Zε(wZ , ε)
∗
−→G′ (ω1, u1)(wY , ε)(ω2, u2)(wZ , ε) = (ω, u).

By induction hypothesis, ρ(ω1) = ρ(ω2) = ε, then ρ(ω) = ρ(wYwZ).
From definition of P′, there is a production X −→ YZ ∈ P and then
ρ(wYwZ) = wX .
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• Suppose that Xε −→G′ X(w̄X , ε)
∗
−→G′ (ω1w̄X , u). By induction hypoth-

esis ρ(ω1) = ρ(wX), then ρ(ω1w̄X) = ε. �

Claim 2. For all X ∈ N, u ∈ Σ∗, and ω ∈ Γ̂∗ such that ρ+(ω) ∈ Γ
∗
Γ∗:

if X
∗
−→G (ω, u), then there exists ω′ ∈ Γ̂∗ such that

X
∗
−→G′ (ω′, u) and ρ+(ω′) = ρ+(ω).

Proof of Claim 2. We prove the claim by induction on the length of deriva-
tions. The basis case is trivially true since terminal productions have not been
modified. For the induction case, there only one possible first step:
X −→G YZ

∗
−→G (ω1, u1)Z

∗
−→G (ω1ω2, u1u2) and ρ+(ω1ω2) ∈ Γ

∗
Γ∗. Then,

from construction of G′:

X −→G′ Yε(wY , ε)Zε(wZ , ε)
−→G′ Y(w̄YwY , ε)Zε(wZ , ε)
−→G′ Y(w̄YwY , ε)Z(w̄YwZ , ε).

We have supposed that ρ+(ω1ω2) ∈ ΓΓ∗, then from Lemma 6.4(2),
ρ+(ω1), ρ+(ω2) ∈ Γ

∗
Γ∗ and we can then apply the induction hypothesis: there

are ω′1, ω
′
2 ∈ Γ̂∗ such that ρ+(ω′1) = ρ+(ω1), ρ+(ω′2) = ρ+(ω2), Y

∗
−→G′ (ω′1, u1)

and Z
∗
−→G′ (ω′2, u2). It follow that

X
∗
−→G′ (ω′1w̄YwYω

′
2w̄YwZ , u1u2) = (ω′, u).

From Claim 1, ρ(ω′1) = wY and ρ(ω′2) = wZ , then from Lemma 6.4(3), ρ+(ω′) =

ρ+(ω′1ω
′
2) and so ρ+(ω′) = ρ+(ω1ω2). �

Claim 3. For all X ∈ N, u ∈ Σ∗, and ω ∈ Γ̂∗ such that ρ+(ω) ∈ Γ
∗
Γ∗:

if X
∗
−→G′ (ω, u), then there exists ω′ ∈ Γ̂∗ such that

X
∗
−→G (ω′, u) and ρ+(ω′) = ρ+(ω).

The proof of Claim 3 is similar to that of Claim 2 and uses the same arguments.
Claim 4. TG(DΓ) = TG′ (DΓ).

Proof of Claim 4. Direct from Claims 2 and 3 and the fact that for all ω ∈ DΓ,
ρ+(ω) = ε ∈ Γ

∗
Γ∗. �

We are now ready to construct the required ε-CFTG. Recall that productions of G′

have the form:

X −→ (ω, u), X −→ Yε(wY , ε)Zε(wZ , ε), Xε −→ X(w̄X , ε), for X,Y,Z ∈ N.

We construct from G′ a grammar G′′ = (N′′, Γ̂,Σ, P′′, S ) as follows:

1. we replace every production Xε −→ X(w̄X , ε) ∈ P′, X , S , by the set {Xε −→

Ω(w̄X , ε) | X −→ Ω ∈ P′}
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2. we remove every production whose LHS belongs to N − {S }.

We can easily see that for all X ∈ N′′, ηG′′ (X) = ε, then from Proposition 4.3, TG′′

is an ε-CFT. In addition, G′′ and G′ generate the same transduction, then from Claim
4, TG(DΓ) = TG′′ (DΓ). �

As direct consequences of Proposition 6.5, Theorem 4.5 and Corollary 5.9, we get
the two following theorems.

Theorem 6.6. Given a TCFT τ ⊆ Γ̂∗ × A∗, the following assertions hold:

1. there is an alphabet ∆, an ε-CFL X ⊆ ∆̂∗, an ε-safe homomorphism g : ∆̂∗ → Γ̂∗

and a homomorphism h : ∆̂∗ → A∗ such that

τ(DΓ) = h(g−1(DΓ) ∩ X)

2. there is an alphabet ∆, an ε-safe homomorphism g : ∆̂∗ → Γ̂∗, a homomorphism
h : ∆̂∗ → A∗ and a regular set R ⊆ ∆̂∗ such that

τ(DΓ) = h(g−1(DΓ) ∩ R ∩D∆).

Theorem 6.7. A language L is indexed iff there is a TCFT τ such that L = τ(D2).

We end the paper with a positive decidability result:

Theorem 6.8. The problem to know whether a context-free transduction is a TCFT is
decidable in polynomial time.

Proof. Given a context-free transduction τ ⊆ Γ̂∗ × Σ∗, τ is a TCFT iff Dom(τ) ∈ TΓ

where Dom(τ) is context-free language. This problem is decidable in polynomial time
from Theorem 3.24.
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