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Abstract In its permanent quest of mechanobiological homeostasis, our vascula-
ture significantly adapts across multiple length and time scales in various physi-
ological and pathological conditions. Computational modeling of vascular growth
and remodeling (G&R) has significantly improved our insights of the mechanobio-
logical processes of diseases such as hypertension or aneurysms. However, patient–
specific computational modeling of ascending thoracic aortic aneurysm (ATAA)
evolution, based on finite-element models (FEM), remains a challenging scientific
problem with rare contributions, despite the major significance of this topic of
research. Challenges are related to complex boundary conditions and geometries
combined with layer-specific G&R responses. To address these challenges, in the
current paper, we employed the constrained mixture model (CMM) to model the
arterial wall as a mixture of different constituents such as elastin, collagen fiber
families and smooth muscle cells (SMCs). Implemented in Abaqus as a UMAT,
this first patient–specific CMM-based FEM of G&R in human ATAA was first
validated for canonical problems such as single–layer thick–wall cylindrical and
bi–layer thick–wall toric arterial geometries. Then it was used to predict ATAA
evolution for a patient–specific aortic geometry, showing that the typical shape
of an ATAA can be simply produced by elastin proteolysis localized in regions of
deranged hemodymanics. The results indicate a transfer of stress to the adventitia
by elastin loss and continuous adaptation of the stress distribution due to change
of ATAA shape. Moreover, stress redistribution leads to collagen deposition where
the maximum elastin mass is lost, which in turn leads to stiffening of the arterial
wall. As future work, the predictions of this G&R framework will be validated
on datasets of patient–specific ATAA geometries followed up over a significant
number of years.
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List of symbols

In folowing i ∈
{
e, cj ,m

}
and k ∈ {cj ,m}

ak
0 The unit vector pointing direction of the kth fiber

Ci
el Elastic right Cauchy-Green deformation tensor of the ith constituent

C
i
el Modified elastic right Cauchy-Green deformation tensor of the ith con-

stituent
Dmax Maximum damage of elastin
Ḋi

g Generic rate function of ith constituent
F The total deformation gradient of the mixture
Fi

tot Total deformation gradient of the ith constituent
Fi

el Elastic deformation gradient of the ith constituent
Fi

gr Total inelastic (G&R) deformation gradient of the ith constituent
Fi

g Deformation gradient of the ith constituent due to growth
Fi

r Deformation gradient of the ith constituent due to remodelling
Gi

h Deposition stretch tensor of the ith constituent
J Jacobian of the mixture
I
i
1 First invariant of the right Cauchy-Green deformation tensor for the ith

constituent
Ii4 Fourth invariant of the right Cauchy-Green deformation tensor for the ith

constituent
k
cj
σ Gain or growth parameter of collagen fiber families

kk
1 Fung-type material coefficient the kth constituent

kk
2 Fung-type material coefficient the kth constituent

Ldam The spatial damage spread parameter of elastin
S Second Piola–Kirchhoff stress
T i The average turnover time of the ith constituent
tdam The temporal damage spread parameter of elastin
W The specific strain energy density function of the mixture
W i The strain energy of the ith individual constituents
X Material point in a reference configuration
x Material point in a deformed or current configuration
αcj each direction of collagen fiber families
µe Neo Hookean material coefficient of elastin
κ Bulk modulus of elastin
σi Current stress of extant ith constituent
σ

cj
h Average stress of ith constituent at homeostasis

λe
z Axial elastin deposition stretch value

λe
θ Circumferential elastin deposition stretch value

λk Deposition stretch value of kth constituent in fiber direction
Ω0 Reference configuration
Ω(t) Deformed or current configuration
ϱi0 Mass densities of of the ith constituent before G&R
ϱit Mass densities of the ith constituent at time t
ϱ̇e(t) The rate of mass degradation of the elastin
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ϱ̇
cj
adv(t) The rate of mass degradation or deposition in the adventitia for collagen

fibers
ϱ̇
cj
med(t) The rate of mass degradation or deposition in the media for collagen fibers

1 Introduction

Growth and remodeling (G&R) are fundamental mechanobiological processes in
normal tissue development and in various pathological conditions. It is suggested
that G&R in tissues may be mediated by mechanical stresses. For example, cardiac
hypertrophy and normal cardiac growth develop in response to increased hemo-
dynamic loading and altered systolic and diastolic wall stresses [27]. Sustained
hypertension is also associated with changes such as increased wall thickness in
large arteries [36]. This adaptation ability of soft tissues is related to the exis-
tence of a mechanical homeostasis across multiple length and time scales in the
vasculature. At the tissue scale, this manifests through continuous mass changes
of the components of the extracellular matrix (ECM) such as collagen, elastin and
proteoglycans [14,39].

In the current paper, we are interested in continuum finite-element formula-
tions to simulate G&R in arteries. The first model of mechano–regulated soft tissue
growth was presented by Rodriguez et al [52] in the mid–1990s, incorporating the
associated growth by multiplicative decomposition of the total deformation gra-
dient into an elastic and inelastic part. Thereafter, this conceptual simplicity has
been widely used by others. Comellas et al [12] introduced an original constitutive
model to study remodeling of damaged tissue within the framework of continuum
damage mechanics and open-system thermodynamics. The total damage rate was
calculated as the sum of a healing rate and a mechanical damage rate. In or-
der to couple biochemical and biomechanical damage, the healing rate was driven
by mechanical stimuli and subjected to simple metabolic constraints. Although
their model was based on the mixture theory, it did not account for the evolving
prestretch of each constituent.

Although many theories of G&R have modelled the tissue as a homogenized
(single-constituent) solid continuum [33,34], the constrained mixture model (CMM)
has been increasingly employed by a number of authors [3,8,14,20,24,43,45,56,59,
64,67] to simulate G&R in arteries, including non–homogenized [20,56,59] and ho-
mogenized [8,14,45] approaches. For example, Valentín et al [59,60] established a
nonlinear finite element model (FEM) based on the non–homogenized constrained
mixture theory (CMT) of G&R to facilitate numerical analyses of various cases
of arterial adaptation and maladaptation. Watton et al [64] presented the first
mathematical framework to study G&R in two-layered cylindrical membranes. In
their framework the natural configurations of each individual constituent were up-
dated at each time step and thus cell-mediated G&R effects could be handled [38].
They introduced collagen fibre recruitment and collagen fibre density in the strain
energy density functions. Baek et al [3] made another important contribution to
study the growth of intracranial cerebral aneurysms with a constrained mixture
thin-walled model, permitting to account for evolving strain energy density func-
tions. Although both adopted a CMM (deforming different constituents altogether
under a total mixture deformation gradient but having different natural reference
configurations) the mathematical foundations were slightly different. The former
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employed a rate-based approach whilst the latter used an integral approach. The
rate-based approach was shown to be more efficient and as accurate as the inte-
gral one [25]. Including disease progression and evolving geometries, CMT-based
models were able to predict changes in fiber orientations and quantities, degra-
dation of elastin and loss of smooth muscle cells (SMCs). The same concept was
implemented by Famaey et al [20] in Abaqus [30] to predict adaptation of a pul-
monary autograft over an extended period. There are a number of other applied
contributions considering, for example:

– two dimensional (2D) non–homogenized CMM for arterial G&R proposed by
Baek et al [3], for cerebral aneurysms and extended by Valentín et al [55,57,58]
for cerebral arteries

– the evolving geometry, structure, and mechanical properties of a representative
straight cylindrical artery subjected to changes in mean blood pressure and flow
in 3D [41].

Braeu et al [8] and Cyron et al [14] introduced the homogenized CMM frame-
work for G&R using an informal temporal averaging approach. Lin et al. [45]
combined homogenization and the CMT to simulate the dilatation of abdominal
aortic aneurysms. Their methodology is computationally less expensive than non–
homogenized CMM and it can yet capture important aspects of G&R such as mass
turnover in arterial walls. Unlike non–homogenized CMMs in which one must deal
with myriads of evolving configurations, the homogenized CMM is based on a sin-
gle time–independent reference configuration for each material species and each
point with a time–dependent inelastic local deformation of G&R. Recently, La-
torre and Humphrey [44] introduced a new rate-based CMM formulation suitable
for studying mechanobiological equilibrium and stability of soft tissues exposed
to transient or sustained changes, permitting direct resolution of G&R problems
with a static approach.

Although prior work in the CMM framework have significantly improved our
insights of arterial wall G&R, they have been mostly limited to canonical prob-
lems in arterial mechanics such as 2D [3, 55, 57, 58] or simplified 3D cases, us-
ing membrane [14] or single–layer thick–wall axisymmetric [8,45] approximations.
Therefore, the framework still requires to be extended to more realistic and di-
verse analyses including patient–specific arterial geometries. To this end, several
problems still need to be addressed within the CMM framework such as layer
specificity, irregular boundary conditions and complex deformations. These prob-
lems can become extremely challenging in the case of ascending thoracic aortic
aneurysms (ATAA) due to the simulateneous and region specific evolution of ge-
ometry, material properties [22], and hemodynamic loads [13,38].

In the present work, the objective is to set up the first nonlinear FEM based
on the homogenized CMT to simulate G&R in patient–specific ATAA. After its
implementation, the FEM is first validated on an idealized single–layer thick–wall
cylinder. In a second stage, the model is illustrated for a canonical problem in
arterial mechanics: G&R of a toric bilayer thick–wall arterial geometry. Then it
is used to predict ATAA evolution for a patient–specific aortic geometry, showing
that the typical shape of an ATAA can be obtained simply with a proteolysis of
elastin localized in regions of deranged hemodymanics.
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2 Material and methods

2.1 G&R kinematics

Let χ : Ω0 be the general mapping in a R3 domain. Ω0 is considered as the in
vivo (for example healthy) configuration of a blood vessel before any specific G&R
starts. The total deformation gradient of a mixture of n different constituents (e.g.
elastin, collagen fiber families, or SMCs), F, between a material point, X ∈ Ω0,
from a reference configuration, Ω(0) = Ω0, and a position, x = χ(X, t) ∈ Ω0, in
a deformed or current configuration, Ω(t) = Ωt, at time t can be defined as

F(X, t) =
∂x

∂X
(1)

Reference volume elements dV ∈ Ω0 are mapped to volume elements dv = JdV ∈
Ωt with the Jacobian J =| F | > 0.

According to the CMT, we assume that all constituents in the mixture deform
together under the total deformation gradient F in the stressed field while each
constituent has a different "total" deformation gradient resulting from its own
deposition stretch. Therefore, assuming that Gi

h (i ∈ {e, cj ,m}, where superscripts
e, cj and m represent respectively the elastin, the constituent made of each of the
n possible collagen fiber families and the SMCs, all these constituents making
the mixture) is the deposition stretch of the ith constituent with respect to the
reference homeostatic configuration [10, 49, 50], the "total" deformation gradient
of the ith constituent can be calculated as

Fi
tot = FGi

h (2)

where the deposition stretch tensor of elastin may be written such as Ge
h =

diag[ 1
λe

θλ
e
z
, λe

θ, λ
e
z] to ensure incompressibility, and the deposition stretch tensor

of collagen families and SMCs may be written such as Gk
h = λkak

0 ⊗ak
0 +

1√
λk

(I−
ak
0 ⊗ ak

0), k ∈ {cj ,m}. λe
θ and λe

z are the deposition stretches of elastin in the
circumferential and longitudinal directions, respectively, and λk is the deposition
stretch of the kth constituent in the fiber direction with a unit vector ak

0 .
The local stress–free state may vary between each constituent and even between

the differential mass depositions of these constituents at different time increments.
Thus, for each differential mass increment of the ith constituent deposited at time
τ , the total deformation gradient of each constituent in Eq. 2 may be rewritten
by a multiplicative decomposition into an elastic Fi

el and inelastic (namely G&R)
part Fi

gr as

Fi
tot = Fi

elF
i
gr (3)

It is noteworthy that due to continuous G&R, the inelastic G&R deformation gra-
dient includes the changes between the local stress-free configurations of different
mass increments resulting from deposition in a different configuration and at a
different time. This process is schematically shown in Fig. 1. Dynamic effects such
as inertia or viscoelasticity can usually be neglected during G&R as they occur at
slow time scales [8].
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2.2 Mechanical Constitutive model of arterial wall

Numerous mechanical constitutive models were introduced for arterial walls [31].
In this section, a strain energy density function is defined for the different compo-
nents of the arterial wall based on the CMT [8, 14, 16, 49, 50, 66]. These different
components are: elastin, four different families of collagen fibers oriented in circum-
ferential, axial, and diagonal directions and SMCs. The intima layer is disregarded
here as it is very thin. Based on the mass fractions of each individual component,
the specific strain energy density function may be written as [8, 35,49,50]:

W = ϱe
t

(
W

e
(I

e
1) + U(Je

el)
)
+

n∑
j=1

ϱ
cj
t W cj (I

cj
4 ) + ϱm

t Wm(Im
4 ) (4)

where ϱit and W i (i ∈ {cj ,m}) refer respectively to the mass densities and strain
energy of the individual constituents based on the first (Ii1), fourth (Ii4) invariants
and Jacobian (J).

Strain energy density of elastin is described by a Neo–Hookean function in
which incompressibility is enforced by a penalty function of the Jacobian [10,31,49]
as

W
e
(I

e
1) =

µe

2
(I

e
1 − 3) (5a)

Ue(Je
el) = κ(Je

el − 1)2 (5b)

where µe and κ are respectively a material parameter and the bulk modulus
(stress–like dimensions), and

I
e
1 = tr(C

e
el) (6a)

C
e
el = F

e
el

(T )
F

e
el (6b)

F
e
el =

1

Je
el
1/3

Fe
el (6c)

Je
el = det(Fe

el) > 0 (6d)

Noting that det(Fe
el) = 1.

The passive strain energy density of SMCs and collagen families are are de-
scribed using an exponential expression respectively as [10,49,51,53]

W cj (I
cj
4 ) =

k
cj
1

2k
cj
2

[
ek

cj
2 (I

cj
4 −1)2 − 1

]
(7)

and

Wm(Im
4 ) =

km
1

2km
2

[
ek

m
2 (Im

4 −1)2 − 1
]

(8)

k
cj
1 and km

1 are stress–like material parameters while k
cj
2 and km

2 are dimensionless
material parameters. These parameters can take different values when fibers are
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under compression or tension [7, 50]. Noting that the fourth invariant and right
Cauchy–Green stretch tensor can respectively be written such as

Ik4 =
1

∥ Fk
gra

k
0 ∥2

Ck
el : a

k ⊗ ak (9a)

Ck
el = Fk

el
(T )

Fk
el (9b)

where k ∈ {cj ,m} and ak =
Fk

gra
k
0

∥Fk
gra

k
0∥

.
For every 3D hexahedral or tetrahedral finite element across the geometry of

the artery, the same strain energy density function is assumed, however different
material properties and mass densities of the individual constituents may be used
for each layer (media and adventitia).

Referring to Eq. 4 leads to the expression of the second Piola-Kirchhoff stress
tensor as:

S = ϱe
t(S

e
+ JpC−1) +

n∑
i=1

ϱ
cj
t Scj + ϱm

t Sm (10)

where S
e
= 2∂W

e

∂C and Sj = 2∂W j

∂C are the second Piola-Kirchhoff stress of corre-
sponding constituents of the mixture, (i ∈ {cj ,m}), and p = dUe

dJel
, the hydrostatic

pressure. The Cauchy stress tensor is derived from the second Piola-Kirchoff stress
as

σ = J−1FSFT (11)

Mass turnover and inelastic G&R deformation gradient

In CMT–based models, G&R is a conceptual phenomenon during which simul-
taneous degradation and deposition of different constituents continuously occur.
This mass turnover is a stress mediated process during which extant mass is con-
tinuously degraded and new mass is deposited into the extant matrix by a stress
mediated rate [8,14,20]. In this work, in two-layer arterial models, mass turnover of
collagen families is mediated by SMC stresses in the media and by collagen stresses
in the adventitia (for the latter, it is assumed that fibroblasts of the adventitia
would be sensitive to the stresses of collagen, both in intensity and directionality).
Therefore, the rate of mass degradation or deposition in the media and in the
adventitia can be respectively calculated as

ϱ̇
cj
med(t) = ϱ

cj
t k

cj
σ
σm − σm

h
σm

h
+ Ḋ

cj
g (12a)

ϱ̇
cj
adv(t) = ϱ

cj
t k

cj
σ
σcj − σ

cj
h

σ
cj
h

+ Ḋ
cj
g (12b)

where ϱ
cj
t = ϱcj (t) are mass densities of collagen families at time t, kcj

σ stands for
collagen growth (gain) parameter, σm

h and σ
cj
h are average SMCs and collagen fiber

stresses at homeostasis, σm and σcj denote the current stress of extant collagen
fibers and SMCs.

Moreover, it is assumed that elastin can be only subjected to degradation, if
any, and its mass loss cannot be compensated by new elastin deposition.

ϱ̇e(t) = Ḋe
g (13)
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Ḋ
cj
g and Ḋe

g, so called generic rate function, is used to describe additional deposi-
tion or degradation due to any damage in collagen and elastin, respectively. Those
are not stress mediated but can be driven by other factors like chemical degra-
dation processes or mechanical fatigue. Besides, no mass turnover is assumed for
SMCs.

Even when there is a mass balance between mass degradation and mass pro-
duction (ϱit = 0), the traction–free state changes as new mass is deposited with
a prestress which is not usually identical to the current stress at which the ex-
isting mass is removed. This results in changes of the current average stress and,
in turn, of the traction–free state of a constituent. Therefore, some change of the
microstructure of the tissue, so-called remodeling, should accompany this mass
balance. However, the local traction–free configuration of a constituent will be
changed also by growth when there is no mass balance between mass degradation
and production (ϱit ̸= 0). Thus in addition to this turnover–based remodeling,
which is a volume preserving process, the mass turnover is generally associated
with a local change of the volume by growth which accommodates the mass in
a certain region of the body. Consequently, the traction–free configuration of a
certain constituent should be amended by both remodeling– and growth–related
inelastic local changes of the microstructure and volume. To this end, we take
advantage of the homogenized CMT–based G&R model presented by Cyron et
al [8, 14]. Therefore, multiplicative decomposition of the inelastic G&R deforma-
tion gradient of the ith constituent deposited at different times reads

Fi
gr = Fi

rF
i
g (14)

where Fi
g and Fi

r are inelastic deformation gradients due to G&R, respectively.
The former is related to any change in the mass per unit reference volume and
the latter captures changes in the microstructure due to mass turnover. Therefore,
having the net mass production rate based on [8,14], the evolution of the inelastic
remodeling deformation gradient of the ith constituent at time t is calculated by
solving the following system of equations[

ϱ̇it
ϱit

+
1

T i

] [
Si − Si

pre

]
=

[
2
∂Si

∂Ci
el

: (Ci
elL

i
r)

]
(15)

where S is the second Piola–Kirchhoff stress and subscript "pre" denotes deposition
prestress while Li

r = Ḟi
r F

i
r
−1 is the remodeling velocity gradient. T i is the period

within which a mass increment is degraded and replaced by a new mass increment,
named the average turnover time.

It is assumed that elastin is not produced any longer during adulthood, it
even undergoes a slow degradation with a half–life time of several decades [8, 15].
Therefore, elastin growth can be basically calculated based on its degradation rate
(Ḋe

g) which in turn depends on elastin half–life time (some decades). This implies
that the remodeling velocity gradient is zero, then the remodeling gradient is the
identity (Le

r = 0, Ḟe
r = 0 and Fe

r = I).
Any change in the mass of each constituent in a region of the arterial wall

generally induces a local change of wall volume which can be captured by an in-
elastic deformation gradient namely the growth deformation gradient. The inelastic
growth deformation gradient relates the change of shape and size of a differential
volume element to the degraded or deposited mass in that element. Basically it
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is the geometrical and micromechanical features of the underlying growth pro-
cess that dictates the local deformation gradient due to a certain mass change.
The degradation or deposition of each constituent induces element deformations
at each time increment that can be captured by an inelastic deformation gradi-
ent rate for each constituent. Based on the homogenized CMT, Braeu et al [8]
suggested that all constituents experience the same inelastic growth deformation
gradient: Fi

g = Fg. Therefore, the total inelastic growth deformation gradient rate
equals the sum of the growth–related deformation gradient rates of each individual
constituent and can be obtained by

Ḟg =
n∑

i=1

ϱ̇it

ϱtott

[
Fi

g
-T : ai

g ⊗ ai
g

]ai
g ⊗ ai

g (16)

where unit vector ai
g stands for growth direction of individual constituents which,

for example, can represent an anisotropic growth in arterial wall thickness direc-
tion. ϱtott =

∑n
i=1 ϱ

i
t denotes total volumic mass at each time. It is noteworthy that

SMCs do not experience growth according to Eq. 16, which means that no mass
turnover is assumed for them. However, because the second term on the left-hand
side of Eq. 15 is never null, SMCs continuously undergo remodeling, leading to a
continuous update of their reference configuration.

2.3 Finite–Element implementation

The proposed model was implemented within the commercial FE software Abaqus
[30] through a coupled user material subroutine (UMAT) [21]. A 3D structural
mesh made of hexahedral elements was reconstructed across the wall of the artery.
The mesh was structural, which means that the edge of each element was locally
aligned with the material directions of the artery: radial, circumferential and axial.
For non–perfectly cylindrical geometries, the radial direction is defined as the
outward normal direction to the luminal surface, the axial direction is defined as
the direction parallel to the luminal centerline in the direction of the blood flow,
and the circumferential direction is perpendicular to the two previously defined
directions. It is assumed that each element is a mixture of elastin, collagen and
SMCs with mass density varying regionally.

The deformation of the artery is computed for every time step corresponding
to one month of real time. It is obtained by feeding equilibrium equations with the
constitutive equations introduced previously, and solving the resulting nonlinear
equations using the Newton Raphson method. G& R deformations tensors are
obtained at each time step based on stresses assessed at the previous step. Only
the initial time step is assumed to satisfy homeostatic conditions.

3 Numerical Applications

Three different models were considered:

1. The first case was an thick–wall cylindrical artery responding to localized
elastin loss. It was initially solved by Braeu et al. [8] using the homogenized
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CMM and the purpose was to use these previous results for validating our
model.

2. The second case was a thick–wall toric artery responding to localized elastin
loss. The toric model was previously used by Alford and Taber [2] to study
G&R in the aortic arch.

3. The third case was a thick–wall patient–specific artery responding to localized
elastin loss.

Previous work with the homogenized CMM considered a single layer to model
the artery. Similar single–layer models were used in the first case using material
properties taken from [8] and reported in Table 2. In other cases, in order to have
a more realistic model of G&R, we considered two–layer thick–wall arteries, with
different material properties for the media and the adventitia. Additional material
parameters used in the two–layer thick–wall model were calibrated with data of
our group [17,50], they are reported in Table 3.

3.1 Application to a single–layer thick–wall cylindrical artery responding to
elastin loss

An idealized single–layer thick–wall cylindrical artery with r = 10 mm and h =
1.41 mm was considered. It was assumed that this geometry, which was set as the
reference configuration, was related to a reference pressure of 13.3 kPa and was
at homeostasis. The deposition stretch of elastin permitting to obtain mechanical
equilibrium in the reference configuration was solved using the algorithm presented
in [49]. Following [8], elastin was degraded with the following rate:

Ḋe
g(X, t) = −ϱe(X, t)

T e − Dmax

tdam
ϱe(X, 0)e

−0.5(
X3

Ldam
)2− t

tdam (17)

where Ldam and tdam are the spatial and the temporal damage spread parameters,
respectively, while Dmax is maximum damage. X3 is the material position in the
axial direction of the cylinder. Due to symmetrical geometry one–fourth of the
cylinder was modeled using symmetric boundary conditions. The axial direction
was defined such as 0 ≤ X3 ≤ L

2 . The first term in Eq 17 denotes a normal elastin
loss by age while the second one is related to a sudden and abnormal local damage
starting at t = 0 with maximum value at the center of the cylinder (X3 = 0)
and fading at X3 = L

2 . The 3D results obtained with our model on this case
are compared with the corresponding 3D results of [8] for six different growth
parameters, kcj

σ .

3.2 Application to a two–layer thick–wall toric artery responding to elastin loss

We employed the model on a torus shown in Fig. 2 with R
r = 4. Its thickness and

inner radius were assumed identical to the ones of the cylindrical artery defined
in section 3.1 (r = 10 mm and h = 1.41 mm). Due to symmetry only a quarter of
the torus was modeled using symmetric boundary conditions.

Again, it was assumed that this geometry, which was set as the reference con-
figuration, was related to a reference pressure of 13.3 kPa and was at homeostasis.
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The deposition stretch of elastin permitting to obtain mechanical equilibrium in
the reference configuration was solved using the algorithm presented in [46,49].

Then, an elastin degradation rate with temporal and spatial damage was as-
sumed as

Ḋe
g(X, t) = −ϱe(X, t)

T e − Dmax

tdam
ϱe(X, 0)e

−0.5( θ
θdam

)2− t
tdam (18)

where θdam is the spatial damage spread parameters. 0 ≤ θ ≤ 90 is the material
position varying as shown in Fig. 2, indicating maximal and minimal elastin loss
at θ = 0◦ and θ = 90◦, respectively.

Material parameters reported in Table 2 were employed considering that the
media comprised 97% of total elastin, 100% of total SMCs, and 15% of total axial
and diagonal collagen fibers while the adventitia comprised 3% of total elastin, 85%
of total axial and diagonal collagen, and 100% of total circumferential collagen [6].

3.3 Application to a two–layer thick–wall patient–specific human ATAA
responding to elastin loss

To demonstrate the applicability of the model to predict patient–specific wall
G&R, the model was employed onto the geometry of a real human ATAA. An
ATAA specimen and the preoperative CT scan of the patient were obtained after
informed consent from a donor undergoing elective surgery for ATAA repair at
CHU–SE (Saint-Etienne, France). The lumen of the aneurysm was clearly visible

Table 2 Material parameters employed for a single–layer thick–wall cylindrical artery and a
two–layer thick–wall toric artery [8]. αc1 , αc2 , αc3 and αc4 are axial, circumferential and two
diagonal directions of collagen fiber families, respectively.

Symbol Values
αcj , j = 1, 2, ..., 4 0, π

2
and ±π

4
µe 72 [J/kg]
κ 720 [J/kg]
k
cj
1 568 [J/kg]

k
cj
2 11.2

km
1 7.6 [J/kg]

km
2 11.4

ϱe
0 241.5 [kg/m3]

ϱc1
0 65.1 [kg/m3]

ϱc2
0 65.1 [kg/m3]

ϱc3
0 = ϱc4

0 260.4 [kg/m3]
ϱm
0 157.5 [kg/m3]

λe
z 1.25

λcj 1.062
λm 1.1
T e 101 [years]
T cj 101 [days]
Tm 101 [days]
Ldam 10 [mm]
tdam 40 [days]
Dmax 0.5
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in the DICOM file, but detection of the aneurysm surface was not possible auto-
matically. A non–automatic segmentation of the CT image slices was performed
using MIMICS (v. 10.01, Materialise NV) to reconstruct the ATAA geometry.
The reconstructed geometry was meshed with 7700 hexahedral elements. A wall
thickness of 2.38 mm was defined evenly in the reference configuration, yielding
an average thickness of 2.67 mm at zero pressure, which corresponded to the
measured thickness on the supplied sample [22]. Material parameters (reported
in Table 3) such as deposition stretch of collagen and exponents were taken from
literature [6,10] and others were calibrated with data of our group [17]. Note that
97% of total elastin, 100% of total SMC, and 15% of total axial and diagonal
collagen fibers were assigned to the media. Conversely, 3% of total elastin, 85% of
total axial and diagonal collagen, and 100% of total circumferential collagen were
assigned to the adventitia [6,49,50]. The geometry obtained from the CT scan was
assigned as the reference configuration. It was subjected to a luminal pressure of
80 mmHg (diastole). An axial deposition stretch of 1.3 was defined for the elastin
and the deposition stretches of collagen and SMC components were set to 1.1. The
spatially varying circumferential deposition stretch of elastin was determined to
ensure equilibrium with the luminal pressure using our iterative algorithm [49].
Both ends of the ATAA model were fixed in axial and circumferential directions,
allowing only radial displacements.

4D flow magnetic resonance imaging (MRI) with full volumetric coverage of
ATAAs can reveal complex aortic 3D blood flow patterns, such as flow jets, vor-
tices, and helical flow [13, 32]. For the same patient, 4D flow MRI datasets were
also acquired, revealing a jet flow impingement against the aortic wall around the
bulge region (downstream the area of maximum dilatation) as shown in Fig 3-
a. Guzzardi et al. [29] found that regions with largest WSS underwent greater
elastin degradation associated with vessel wall remodeling in comparison with the
adjacent regions with normal WSS. Consequently, based on these findings we con-
sidered a localized elastin degradation and simulated its effects on ATAA G&R.
The local elastin degradation rate was written such as

Ḋe
g(X, t) = −ϱe(X, t)

T e − Dmax

tdam
ϱe(X, 0)e

− t
tdam (19)

Three different values of tdam (as listed in Table 3) were studied.

4 Results

4.1 Response of a single–layer thick–wall cylindrical artery to localized elastin
loss

The dilatation at the middle of the cylindrical artery (where maximum elastin loss
occurs) is shown in Fig. 4 over 15 years for different growth parameters. There
are a good agreement between these results obtained with our 3D FEM and the
numerical model from [8]. The cylindrical artery responds to elastin degradation
with large and unstable dilatations for small gain parameters while it only slightly
dilates in the case of relatively large gain parameters, recovering its stability after
a transient period. Distribution of maximum principal stresses and distributions
of normalized collagen mass density for the largest and smallest gain parameters
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are shown in Figs. 5. Elastin loss naturally leads to higher stresses in the other
components of the arterial wall and subsequently higher deposition of new collagen
fibers.

4.2 Response of a two–layer thick–wall toric artery to localized elastin loss

The effect of elastin loss during 15 years in a two–layer toric artery was considered
for k

cj
σ = 0.05

T cj and k
cj
σ = 0.15

T cj . The change of the thickness and diameter due to
degradation of the elastin are shown in Figs. 6-a and Figs. 6-b, respectively. The
dilatation and thickness were never stable for small growth parameters (kcj

σ =
0.05
T cj ). Conversely, for relatively large growth parameters (kcj

σ = 0.15
T cj ), the thickness

and diameter became stable after about five years of transient growth period. The
wall was basically thickened on the outer curvature side, mainly in the media.
Therefore, the response of a toric artery to elastin loss is unstable for small growth
parameters while it recovers its stability, after some enlargement, for relatively
large growth parameters. In addition, colormaps of the maximum principal stress
and the collagen mass density for large and small growth parameters (Figs. 7) show
that elastin loss continuously causes higher stresses and collagen deposition in the
media. However, the balance between arterial dilatation and collagen deposition
leads to higher collagen production for small gain parameters. This in turn ends
with higher stresses in the arch with small gain parameters.

Table 3 Material parameters employed for two–layer patient–specific human ATAA model
adapted from [50]. αc1 , αc2 , αc3 and αc4 are axial, circumferential and two diagonal directions
of collagen fiber families, respectively.

Symbol Values
αcj , j = 1, 2, ..., 4 0, π

2
and ±π

4
µe 82 [J/kg]
κ 100µe [J/kg]
k
cj ,c
1 = km,c

1 15 [J/kg]
k
cj ,c
2 = km,c

2 1.0
k
cj ,t
1 105 [J/kg]

k
cj ,t
2 0.13

km,t
1 10 [J/kg]

km,t
2 0.1

ϱe
0 250 [kg/m3]

ϱ
cj
0 460 [kg/m3]

ϱm
0 280 [kg/m3]

λe
z 1.3

λcj 1.1
λm 1.1
T e 101 [years]
T cj 101 [days]
Tm 101 [days]
tdam 20, 40 and 80 [days]
Dmax 0.5
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4.3 Response of a two–layer patient–specific human ATAA to localized elastin
loss

The G&R response of a patient–specific ATAA to localized elastin degradation
is shown in Fig. 8-a, c and e. Due to change of shape, the stress distribution is
in continuous adaptation. For all cases, elastin loss induces a transfer of stress to
the adventitia in the damaged region. Moreover, an increase of tdam results in an
increase of maximum principal stresses in the arterial wall. It is induced by the
related increase of elastin degradation rate. In Fig. 8-b, d and f, the distribution
of collagen mass density for different tdam shows that most of the collagen is de-
posited in the media where elastin has been lost (recall that ∼97% of the elastin
is in media), causing finally a thickening of the arterial wall (Fig. 9). It is note-
worthy that increase of tdam accelerates collagen deposition and consequently wall
thickening. Moreover, we studied the sensitivity of ATA dilatation to the collagen
growth parameter, kcj

σ . As shown in Fig. 10, larger growth parameters stabilize
ATA dilatation induced by elastin loss. However, for relatively small growth pa-
rameters, kcj

σ = 0.1
T cj , as shown in Figs. 10-a, 10-b and 11-a, the ATA undergoes

an excessive dilatation (the maximum ATA diameter increases continuously from
∼42 mm to ∼64 mm after ∼180 months). As the newly deposited collagen has to
compensate for the elastin loss to maintain the homeostatic state, this induces the
adaptation response. Conversely, increasing the growth parameter leads to a stable
growth of ATA after 31 months (the maximum diameter of ATA after elastin loss
stops increasing after ∼31 months, enlarging from ∼42 mm to ∼47 mm). For all
cases, whatever the growth parameter, remodeling induced by collagen deposition
always causes ATA wall thickening, mainly in the media (see Fig. 11).

5 Discussion

A robust computational model based on the homogenized CMT was presented and
its potential was shown to predict ATAA evolution for a patient–specific aortic
geometry, showing that the typical shape of an ATAA can be obtained simply
with a proteolysis of elastin localized in regions of deranged hemodymanics. The
most interesting result is that although elastin degradation occurs locally in the
ATAA at the location of WSS peak, the whole ATAA globally undergoes G&R
due to redistribution of stresses distribution, leading to ATAA dilatation.

A general advantage of the model presented here is that it was developed to ac-
count for in situ prestrain (and therefore prestress). It permits to run FE analysis
of G&R in soft biological tissues without requiring a zero–pressure configuration.
This appears to be especially beneficial when a patient–specific geometry is re-
constructed using CT scans or MRI data acquired in a pressurized configuration.
Using this methodology, the prestress is calculated based on the prestrain, defined
in terms of fiber prestretches (deposition stretches), assuming a hyperelastic elas-
tic material behavior. Therefore, a drawback of this methodology is that we may
encounter some instability in the resolution if we enforce a particular deposition
stretch for each constituent. Large distortions of elements may also occur with
small variations of deposition stretchs and lead to the divergence of the resolution.
This indicates that an arbitrary deposition stretch cannot be always imposed on
an arbitrary reference configuration.



Patient–specific predictions of aneurysm growth and remodeling 15

For all geometries given herein for large gain parameters, kσ, the blood vessel
recovered a new stable state after a transient period of dilation and enlargement.
In contrast, for small gain parameters it underwent unbounded dilation, experi-
encing mechanobiological instability. Dilatation due to weakening of the arterial
wall by elastin loss is physically consistent with previous findings [8,14]. However,
one can find 3D FE implementation of G&R in which the arterial radius decreases
after elastin degradation [19,28,59]. This can be explained by the implementation
of volumetric growth. [19, 28, 59] defined implicitly the growth directions using
the volumetric deviatoric contributions of the deformation gradient and imposing
incompressibility constraints. Only isotropic growth can be modeled with their
approach, elastin degradation consequently causing a decrease of total tissue vol-
ume. Therefore, in their model the arterial wall shrinks in all spatial directions,
including the circumferential direction. Eriksson [18] attempted to overcome this
problem by introducing the concept of constant and adaptive individual density
growth in which an elastin loss does not cause a contraction of the arterial wall
due to loss of mass. Nevertheless, it is still controversial whether elastin loss would
locally lead to arterial shrinking in the thickness direction or if it would really
induce a change in the mass density of the tissue.

Basically, two major approaches were so far proposed for numerical modeling
of soft tissue G&R. Rodriguez et al. [52] introduced a kinematic growth theory
by multiplicative decomposition of the deformation gradient into an elastic and
an inelastic growth contributions. The elastic part ensured geometric compati-
bility and mechanical equilibrium while the inelastic growth part contained the
local changes of mass and volume. Although their model was computationally effi-
cient and conceptually simple it was intrinsically unable to compute the separate
G&R of structurally different constituents. This limitation was fixed by CMT–
based model introduced by [39] in which the in vivo situation can be realistically
mimicked using the concept of deposition stretches. The computational cost of the
classical CMT–based models is higher than that of simple kinematic growth theory.
Homogenized CMT–based models introduced by Cyron et al. [14] combines the ad-
vantages of both classical CMT–based models and simple kinematic growth models
to overcome the drawback of each model. The results obtained by homogenized
CMT–based models are similar to the classical ones but with low computational
cost. Focusing on the example of simple membrane–like [14] and thick–wall [8]
cylindrical vessels, they showed that homogenized CMT–based models are able to
reproduce realistically both pathological growth responding to an elastin loss (as
observed in aneurysms) and adaptive growth in healthy vessels due to hyperten-
sion. The prominent privilege of CMT–based models is the inherent incorporation
of anisotropic volumetric growth in the thickness direction of arterial wall (proved
by experimental observations of [48]). Moreover, recently Lin et al. [45] combined
homogenization and CMT to capture G&R of the abdominal aorta and to con-
sider dilatation of abdominal aortic aneurysms under loading. They focused on a
transversely isotropic mixture subjected to uniform extension in the direction of
collagen fibers assuming that they are embedded in an isotropic elastin matrix,
ignoring the role of SMCs. Considering a very special case of isotropic growth,
their model can successfully predict the continuous enlargement of an abdominal
aortic aneurysm by combined effects of elastin degradation, loss of extant collagen
and production of new collagen, as well as fiber remodeling.
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As anisotropic growth may stabilize the arterial wall under perturbations more
efficiently than the isotropic growth [8] so that the ability of the homogenized
CMT–based model implemented herein can be considered an ideal tool to realis-
tically study the patient–specific geometries undergoing G&R in response to an
unexpected degradation of elastin. Following [6, 8, 10, 63, 64], it was assumed that
patient–specific G&R resulted from specific temporal and spatial distributions
of elastin degradation. We considered multiple temporal damage parameters for
elastin degradation leading to different aneurysm growth rate. Although the global
shape of the aneurysm resembles, the thickening and collagen production rates are
different for different cases. Different temporal damage constants showed signifi-
cant effects on the expansion rate where the higher tdam delivers the higher G&R
rate. Although we simply employed temporal damage parameter for elastin degra-
dation, elastin degradation during ATAA growth involves multiple biological and
mechanical parameters including abnormal distribution of wall shear stress [29]
and circumferential stress [39]. The formation of intraluminal thrombus is specific
to AAA [61, 62]. It may stimulate proteolytic effects but this was not considered
here as thrombus are very rare in ATAAs.

In the patient–specific study it also appears that collagen deposition tends to
compensate the elastin loss. It is worth noting that as aneurysm grows, principal
stress may not increase necessarily in a damaged location. This is observed in AAA
growth as well [68]. Moreover, although elastin was degraded locally, dilatation of
the ATA was spread across a larger area due to stress redistribution.

The in vivo images were obtained when the artery was under pressure so that
the stress–free or zero pressure configuration was not basically available. Hence,
for hyperelastic models such as Holzapfel–type models [31], approaches such as
inverse elastostatic methods [69] or Lagrangian-Eulerian formulations [26] are re-
quired to estimate the stress–free state of in vivo geometries obtained from medical
images. One of the advantages of current CMT-based model is that G&R analy-
sis of a patient-specific model can be directly performed on the in vivo geometry
reconstructed from medical images obtained under pressure, without needing to
compute the stress–free geometry.

Salient features of the response of arterial walls to altered hemodynamics
[4, 5, 11, 55] were captured by 2D and 3D CMT-based models [9, 39, 41]. Despite
the major interest of this prior work on CMT-based models, two novelties can be
highlighted in our work: application of CMT-based models to patient-specific ge-
ometries and integration of layer-specific properties (media and adventitia). Future
work will focus on fully coupling the present model with CFD analyses [13] to study
the effects on aortic G&R of different hemodynamic metrics, such as helicity, wall
shear stress (WSS), time averaged WSS (TAWSS), oscillatory shear index (OSI)
or relative residence time (RRT). Such fluid-solid-growth simulations have already
been developed by different authors for cerebral [65] or abdominal [1, 28, 47, 54]
aneurysms and we will extend them to ATAA to provide additional insight into
the evolution of these aneurysms.

This altogether indicates that the present model has the potential for clinical
applications to predict G&R of patient–specific geometries if a realistic rate of
elastin loss and collagen growth parameter are available.

There are still several limitations and technical challenges associated with cur-
rent model:
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– The active role of SMCs is not considered in the present model, despite its
major role in mechanosensing [40].

– Theory of G&R is based on a key assumption, the existence of mechanical
homeostasis [37,42]. It is difficult to have the assumption of a homeostatic state
satisfied at every point of the arterial wall. For an idealized model, such as ideal
thick–wall cylinders, the in vivo material properties are typically assumed to
be uniform across the domain. When a patient–specific geometry is used for a
clinical study, it will be essential to prescribe the distribution of material and
structural parameters such as thickness and fiber orientations consistent with
in vivo data. Therefore, considering the arterial wall with a uniform thickness
can be considered as additional limitations of the current work.

– Another difficulty associated with patient–specific models is estimating the
constitutive parameters of the model for different patients. Here, these param-
eters were estimated by curve fitting from the ex vivo bulge inflation data of
an ATAA segment excised after the surgical intervention of the same patient.
However, in clinical applications, it will be needed to identifying noninvasively
the in vivo material properties of ATAAs [22,23].

6 Conclusion

In summary, in this manuscript, a robust computational model based on the ho-
mogenized CMT was presented and its potential was shown for patient–specific
predictions of growth and remodeling of aneurysmal human aortas in response to
localized elastin loss. As future application, the predictions of this G&R frame-
work will be validated on datasets of patient–specific ATAA geometries followed
up over a significant number of years.

7 Acknowledgements

The authors are grateful to the European Research Council for grant ERC-2014-
CoG BIOLOCHANICS. The authors would also like to thank Nele Famaey (KU
Leuven, Belgium), Christian J. Cyron (TU Hamburg, Germany) and Fabian A.
Braeu (TU München, Germany) for inspiring discussions related to this work.

8 Conflict of interest

There is no conflict of interest.

References

1. P. Di Achille, G. Tellides, and J.D. Humphrey. Hemodynamics-driven deposition of in-
traluminal thrombus in abdominal aortic aneurysms. Int J Numer Method Biomed Eng,
33(5):e2828, 2017.

2. P.W. Alford and L.A. Taber. Computational study of growth and remodelling in the aortic
arch. Comput Methods Biomech Biomed Engin, 11(5):525–38, 2008.

3. S. Baek, K.R. Rajagopal, and J.D. Humphrey. A theoretical model of enlarging intracranial
fusiform aneurysms. J Biomech Eng, 128(1):142–9, 2006.



18 S. Jamaleddin Mousavi et al.

4. S. Baek, K.R. Rajagopal, and J.D. Humphrey. A theoretical model of enlarging intracranial
fusiform aneurysms. J Biomech Eng, 128(1):142–9, 2006.

5. S. Baek, A. Valentín, and J.D. Humphrey. Biochemomechanics of cerebral vasospasm
and its resolution: II. constitutive relations and model simulations. Ann Biomed Eng.,
35:1498–509, 2007.

6. C. Bellini, J. Ferruzzi, S. Roccabianca, E.S. Di Martino, and J.D. Humphrey. A microstruc-
turally motivated model of arterial wall mechanics with mechanobiological implications.
Ann. Biomed. Eng., 42(3):488–502, 2014.

7. M.R. Bersi, C. Bellini, P. Di Achille, J.D. Humphrey, K. Genovese, and S. Avril. Novel
methodology for characterizing regional variations in the material properties of murine
aortas. J. Biomech. Eng., 138(7):doi: 10.1115/1.4033674, 2016.

8. F.A. Braeu, A. Seitz, R.C. Aydin, and C.J. Cyron. Homogenized constrained mixture
models for anisotropic volumetric growth and remodeling. Biomech Model Mechanobiol,
16(3):889–906, 2017.

9. L. Cardamone and J.D. Humphrey. Arterial growth and remodelling is driven by hemody-
namics. In: Ambrosi D., Quarteroni A., Rozza G. (eds) Modeling of Physiological Flows.
MS&A âĂŤ Modeling, Simulation and Applications, 5 Springer, Milano, 2012.

10. L. Cardamone, A. Valentin, J.F. Eberth, and J.D. Humphrey. Origin of axial prestretch
and residual stress in arteries. Biomech. Model. Mechanobiol., 8:431–46, 2009.

11. L. Cardamone, A. Valentín, J.F. Eberth, and J.D. Humphrey. Modelling carotid artery
adaptations to dynamic alterations in pressure and flow over the cardiac cycle. Math Med
Biol., 27(4):343–71, 2010.

12. E. Comellas, T.C. Gasser, F.J. Bellomo, and S. Oller. A homeostatic-driven turnover
remodelling constitutive model for healing in soft tissues. J R Soc Interface, 13(116):doi:
10.1098/rsif.2015.1081, 2016.

13. F. Condemi, S. Campisi, M. Viallon, T. Troalen, G. Xuexin, A.J. Barker, M. Markl,
P. Croisille, O. Trabelsi, C. Cavinato, A. Duprey, and S. Avril. Fluid- and biomechanical
analysis of ascending thoracic aorta aneurysm with concomitant aortic insufficiency. Ann
Biomed Eng, 45(12):2921–32, 2017.

14. C.J. Cyron, R.C. Aydin, and J.D. Humphrey. A homogenized constrained mixture (and
mechanical analog) model for growth and remodeling of soft tissue. Biomech Model
Mechanobiol, 15(6):1389–1403, 2016.

15. C.J. Cyron and J.D. Humphrey. Growth and remodeling of loadbearing biological soft
tissues. Meccanica, 52(3):645–64, 2016.

16. C.J. Cyron, J.S. Wilson, and J.D. Humphrey. Mechanobiological stability: a new paradigm
to understand the enlargement of aneurysms? J R Soc Interface, 11(100):20140680, 2014.

17. F.M. Davis, Y. Luo, S. Avril, A. Duprey, and J. Lu. Local mechanical properties of human
ascending thoracic aneurysms. J Mech Behav Biomed Mater, 61:235–49, 2016.

18. T.S.E. Eriksson. Modelling volumetric growth in a thickwalled fibre reinforced artery. J
Mech Phys Solids, 73:134–150, 2014.

19. T.S.E. Eriksson, P.N. Watton, X.Y. Luo, and Y. Ventikose. Modelling volumetric growth
in a thickwalled fibre reinforced artery. J Mech Phys Solids, 73:134–50, 2014.

20. N. Famaey, J. Vastmans, H. Fehervary, L. Maes, E. Vanderveken, F. Rega, S.J. Mousavi,
and S. Avril. Numerical simulation of arterial remodeling in pulmonary autografts. Z
Angew Math Mech, pages 1–19, 2018.

21. S. Farzaneh, O. Paseta, and M.J. Gómez-Benito. Multi-scale finite element model of growth
plate damage during the development of slipped capital femoral epiphysis. Biomech Model
Mechanobiol, 14(2):371–85, 2015.

22. S. Farzaneh, O. Trabelsi, and S. Avril. Inverse identification of local stiffness across ascend-
ing thoracic aortic aneurysms. Biomech Model Mechanobiol, 10.1007/s10237-018-1073-0,
2018.

23. S. Farzaneh, O. Trabelsi, B. Chavent, and S. Avril. Identifying local arterial stiffness
to assess the risk of rupture of ascending thoracic aortic aneurysms. Ann Biomed Eng,
47(4):1038–50, 2019.

24. C.A. Figueroa, S. Baek, C.A. Taylor, and J.D. Humphrey. Acomputational framework
for fluid-solid-growthmodeling in cardiovascular simulations. Comput Methods Appl Mech
Eng, 198(45–46):3583–602, 2009.

25. Ch. Gasser and A. Grytsan. Biomechanical modeling the adaptation of soft biological
tissue. Current Opinion in Biomedical Engineering, 1:71–77, 2017.

26. M.W. Gee, C. Forster, and W.A. Wall. A computational strategy for prestressing patient-
specific biomechanical problems under finite deformation. Int J Numer Meth Biomed
Engng, 26:52–72, 2010.



Patient–specific predictions of aneurysm growth and remodeling 19

27. W. Grossman. Cardiac hypertrophy: useful adaptation or pathologic process? Am J Med,
69(4):576–84, 1980.

28. A. Grytsan, P.N. Watton, and G.A. Holzapfel. Athick-walled fluid-solidgrowth model
of abdominal aortic aneurysm evolution: application to a patient-specific geometry. J
Biomech Eng, 137(3):031008, 2015.

29. D.G. Guzzardi, A.J. Barker, P. van Ooij, S.C. Malaisrie, J.J. Puthumana, D.D. Belke,
H.E. Mewhort, D.A. Svystonyuk, S. Kang, S. Verma, J. Collins, J. Carr, R.O. Bonow,
M. Markl, J.D. Thomas, P.M. McCarthy, and P.W. Fedak. Valve-related hemodynamics
mediate human bicuspid aortopathy: Insights from wall shear stress mapping. J Am Coll
Cardiol, 66(8):892–900, 2015.

30. Hibbit, Karlson, and Sorensen. Abaqus-Theory manual, 6.11-3 edition, 2011.
31. A.G. Holzapfel, C.T. Gasser, and R.W. Ogden. A new constitutive framework for arterial

wall mechanics and a comparative study of material models. Journal of Elasticity, 61:1–48,
2000.

32. T.A. Hope, M. Markl, L. Wigström, M.T. Alley, D.C. Miller, and R.J. Herfkens. Compar-
ison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional
magnetic resonance velocity mapping. J Magn Reson Imaging, 26(6):1471–9, 2007.

33. H.S. Hosseini, K.E. Garcia, and L.A. Taber. A new hypothesis for foregut and heart
tube formation based on differential growth and actomyosin contraction. Development,
144(13):2381–91, 2017.

34. H.S. Hosseini and L.A. Taber. How mechanical forces shape the developing eye. Progress
in biophysics and molecular biology, pages 1–12, 2018.

35. J.D. Humphrey. Mechanics of arterial wall: Review and directions. Crit. Rev. Biomed.
Eng., 23(1-2):1–162, 1995.

36. J.D. Humphrey. Mechanisms of arterial remodeling in hypertension: coupled roles of wall
shear and intramural stress. Hypertension, 52(2):195–200, 2008.

37. J.D. Humphrey. Vascular adaptation and mechanical homeostatsis at tissue, cellular, and
sub-cellular levels. Cell Biochemistry and Biophysics, 50:53–78, 2008.

38. J.D. Humphrey and G.A. Holzapfel. Mechanics, mechanobiology, and modeling of human
abdominal aorta and aneurysms. J Biomech, 45(5):805–84, 2012.

39. J.D. Humphrey and K.R. Rajagopal. A constrained mixture model for growth and remod-
eling of soft tissues. Math Models Methods Appl Sci, 12(03):407–30, 2002.

40. J.D. Humphrey, M.A. Schwartz, G. Tellides, and D.M. Milewicz. Role of mechanotransduc-
tion in vascular biology: focus on thoracic aortic aneurysms and dissections. Circulation
Research, 116(8):1448–1461, 2015.

41. I. Kars̆aj, J. Sorić, and J.D. Humphrey. A 3-d framework for arterial growth and remod-
eling in response to altered hemodynamics. Int J Eng Sci, 48(11):1357–72, 2010.

42. G.S. Kassab. Mechanical homeostasis of cardiovascular tissue. In: Artmann, G.M., Chien,
S. (Eds.), Bioengineering in Cell and Tissue Research. Springer, pages 371–391, 2008.

43. M. Latorre and J.D. Humphrey. Critical roles of time-scales in soft tissue growth and
remodeling. APL BIOENGINEERING, 2:026108, 2018.

44. M. Latorre and J.D. Humphrey. Mechanobiological stability of biological soft tissues.
Journal of the Mechanics and Physics of Solids, 125:298–325, 2018.

45. W.J. Lin, M.D. Iafrati, R.A. Peattie, and L. Dorfmann. Growth and remodeling with
application to abdominal aortic aneurysms. J Eng Math, 109(1):113–137, 2017.

46. L. Maes, H. Fehervary, J. Vastmans, S.J. Mousavi, S. Avril, and N. Famaey. Constrained
mixture modeling affects material parameter identification from planar biaxial tests. J
Mech Behav Biomed Mater, 95:124–35, 2019.

47. A.L. Marsden and J.A. Feinstein. Computational modeling and engineering in pediatric
and congenital heart disease. Current opinion in pediatrics, 27(5):587, 2015.

48. T. Matsumoto and K. Hayashi. Response of arterial wall to hypertension and residual
stress. In: Hayashi K., Kamiya A., Ono K. (eds) Biomechanics. Springer, Tokyo, pages
93–119, 1996.

49. S.J. Mousavi and S. Avril. Patient-specific stress analyses in the ascending thoracic aorta
using a finite-element implementation of the constrained mixture theory. Biomech Model
Mechanobiol, s10237:doi: 10.1007/s10237–017–0918–2, 2017.

50. S.J. Mousavi, S. Farzaneh, and S. Avril. Computational predictions of damage propagation
preceding dissection of ascending thoracic aortic aneurysms. Int J Numer Method Biomed
Eng, 34(4):e2944, 2018.

51. F. Riveros, S. Chandra, E.A. Finol, T.C. Gasser, and J.F. Rodriguez. A pull-back algo-
rithm to determine the unloaded vascular geometry in anisotropic hyperelastic aaa passive
mechanics. Ann Biomed Eng, 41(4):694–708, 2013.



20 S. Jamaleddin Mousavi et al.

52. E.K. Rodriguez and A. Hoger. Stress-dependent finite growth in soft elastic tissues. J
Biomech, 27(4):455–67, 1994.

53. J.F. Rodriguez, C. Ruiz, M. Doblaré, and G. Holzapfel. Mechanical stresses in abdominal
aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. ASME J.
Biomech., 130(2):021023, 2008.

54. A. Sheidaei, S.C. Hunley, S. Zeinali-Davarani, L.G. Raguin, and S. Baek. Simulation of
abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic
geometry. Medical engineering & physics, 33(1):80–88, 2011.

55. A. Valentín, L. Cardamone, S. Baek, and J.D. Humphrey. Complementary vasoactivity
and matrix remodelling in arterial adaptations to altered flow and pressure. J R Soc
Interface, 6(32):293–306, 2009.

56. A. Valentín and G.A. Holzapfel. Constrained mixture models as tools for testing competing
hypotheses in arterial biomechanics: A brief survey. Mech Res Comm, 42:126–33, 2012.

57. A. Valentín and J.D. Humphrey. Evaluation of fundamental hypotheses underlying con-
strained mixture models of arterial growth and remodelling. Philos Transact A Math Phys
Eng Sci, 367:3585–606, 2009.

58. A. Valentín and J.D. Humphrey. Parameter sensitivity study of a constrained mixture
model of arterial growth and remodeling. J Biomech Eng, 131:101006, 2009.

59. A. Valentín, J.D. Humphrey, and G. Holzapfel. A finite element-based constrained mixture
implementation for arterial growth, remodeling, and adaptation: Theory and numerical
verification. Int J Numer Method Biomed Eng, 29(8):822–49, 2013.

60. A. Valentín, J.D. Humphrey, and G.A. Holzapfel. A multi-layered computational model
of coupled elastin degradation, vasoactive dysfunction, and collagenous stiffening in aortic
aging. Ann Biomed Eng, 39(7):2027–45, 2011.

61. D.A. Vorp and J.P. Vande Geest. Biomechanical determinants of abdominal aortic
aneurysm rupture. Arterioscler Thromb Vasc Biol, 25(8):1558–66, 2005.

62. D.A. Vorp, P.C. Lee, D.H.J. Wang, M.S. Makaroun, E.M. Nemoto, S. Ogawa, and M.W.
Webster. Association of intraluminal thrombus in abdominal aortic aneurysm with local
hypoxia and wall weakening. J Vasc Surg, 34(2):291–99, 2001.

63. P.N. Watton and N.A. Hill. Evolving mechanical properties of a model of abdominal aortic
aneurysm. Biomech Model Mechanobiol, 8(1):25–42, 2009.

64. P.N. Watton, N.A. Hill, and M. Heil. A mathematical model for the growth of the ab-
dominal aortic aneurysm. Biomech Model Mechanobiol, 3(2):98–113., 2004.

65. P.N. Watton, N.B. Raberger, G.A. Holzapfel, and Y. Ventikos. Coupling the hemody-
namic environment to the evolution of cerebral aneurysms: computational framework and
numerical examples. J Biomech Eng, 131(10):doi: 10.1115/1.3192141, 2009.

66. J.S. Wilson, S. Baek, and J.D. Humphrey. Parametric study of effects of collagen turnover
on the natural history of abdominal aortic aneurysms. Proc R Soc A, 469(2150):20120556,
2013.

67. S. Zeinali-Davarani and S. Baek. Medical image-based simulation of abdominal aortic
aneurysm growth. Mechanics Research Communications, 42:107–17, 2012.

68. S. Zeinali-Davarani, A. Sheidaei, and S. Baek. A finite element model of stress-mediated
vascular adaptation: application to abdominal aortic aneurysms. Comput Methods
Biomech Biomed Engin, 14(9):803–17, 2011.

69. X. Zhou, M.L. Raghavan, R.E. Harbaugh, and J. Lu. Specific wall stress analysis in
cerebral aneurysms using inverse shell model. Ann Biomed Eng, 38(2):478–89, 2010.



List of Figures

1 A body in a reference configuration is assumed to be a mixture of
different constituents whose stress-free initial configuration is re-
lated to the reference configuration by the deposition stretch tensor
Gi

h. From the reference configuration to the current configuration,
the body undergoes a deformation gradient denoted F. From their
respective initial fictitious stress-free configuration to the current
configuration, each constituent undergoes a total deformation Fi

tot
which can be decomposed multiplicatively into an elastic part Fi

el
and an inelastic part Fi

gr. The latter is caused by growth and remod-
elling and leads to a stress-free fictitious intermediate configuration
for each constituent. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Schematic display of an arch on which the presented G&R model is
applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 A jet flow impingement against the aortic wall was observed around
the bulge region in the 4D flow MRI (a) causing the maximum
TAWSS in that region (b) based on CFD analysis by [13]. . . . . . 24

4 Dilatation of a single–layer thick–wall cylindrical artery responding
to elastin loss for different growth parameters. The dilatation is
plotted for the point where maximum elastin loss occurs). Numerical
results obtained by [8] (dash lines) were compared to the results
obtained our 3D Abaqus model (solid lines). . . . . . . . . . . . . . 25

5 Distribution of the maximum principal stress (a and b) and nor-
malized collagen mass density (c and d) in a single–layer thick–
wall cylindrical artery responding to an elastin loss during 15 years,
k
cj
σ = 0.05

T cj (first column) and k
cj
σ = 0.15

T cj (second column) . . . . . . 26

6 Change of thickness (a) and diameter (b) of a two–layer thick–wall
toric artery responding to elastin loss during 15 years for kcj

σ = 0.05
T cj

(dash lines) and k
cj
σ = 0.15

T cj (solid lines). Superscript "m" and "a"
stand for media and adventitia, respectively, while subscripts "i"
and "o" denote the inner and outer curvatures of the arch, respectively. 27

7 Distribution of maximum principal stress (a and b) and normalized
collagen mass density (c and d) in a two–layer thick–wall toric artery
responding to elastin loss during 15 years, kcj

σ = 0.05
T cj (a and c) and

k
cj
σ = 0.15

T cj (b and d) . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Distribution of the maximum principal stress (first column) and
normalized collagen mass density (second column) in a two–layer
patient–specific human ATAA responding to localized elastin loss,
tdam = 20 (a and b), tdam = 40 (c and d) and tdam = 80 (e and f)
days. In all cases it is assumed that k

cj
σ = 0.05

T cj . . . . . . . . . . . . 29

9 Distribution of the normalized thickness in a two–layer patient–
specific human ATAA responding to localized elastin loss for a-
tdam = 20, b- tdam = 40 and c- tdam = 80 days. In all cases it is
assumed that k

cj
σ = 0.05

T cj . . . . . . . . . . . . . . . . . . . . . . . . . 30



22 S. Jamaleddin Mousavi et al.

10 Distribution of the maximum principal stress (first column) and
normalized collagen mass density (second column) in a two–layer
patient–specific human ATAA responding to localized elastin loss,
k
cj
σ = 0.1

T cj (a and b), kcj
σ = 0.2

T cj (c and d) and k
cj
σ = 0.3

T cj (e and f)
days. In all cases it is assumed that tdam = 40. . . . . . . . . . . . 31

11 Distribution of the normalized thickness in a two–layer patient–
specific human ATAA responding to localized elastin loss for a-
k
cj
σ = 0.1

T cj , b- k
cj
σ = 0.2

T cj and c- k
cj
σ = 0.3

T cj days. In all cases it is
assumed that tdam = 40. . . . . . . . . . . . . . . . . . . . . . . . . 32



Patient–specific predictions of aneurysm growth and remodeling 23

Fig. 1 A body in a reference configuration is assumed to be a mixture of different constituents
whose stress-free initial configuration is related to the reference configuration by the deposition
stretch tensor Gi

h. From the reference configuration to the current configuration, the body
undergoes a deformation gradient denoted F. From their respective initial fictitious stress-free
configuration to the current configuration, each constituent undergoes a total deformation Fi

tot
which can be decomposed multiplicatively into an elastic part Fi

el and an inelastic part Fi
gr.

The latter is caused by growth and remodelling and leads to a stress-free fictitious intermediate
configuration for each constituent.

Fig. 2 Schematic display of an arch on which the presented G&R model is applied.



(a) (b)

Fig. 3 A jet flow impingement against the aortic wall was observed around the bulge region in
the 4D flow MRI (a) causing the maximum TAWSS in that region (b) based on CFD analysis
by [13].
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Fig. 4 Dilatation of a single–layer thick–wall cylindrical artery responding to elastin loss for
different growth parameters. The dilatation is plotted for the point where maximum elastin loss
occurs). Numerical results obtained by [8] (dash lines) were compared to the results obtained
our 3D Abaqus model (solid lines).
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(a) (b)

(c) (d)

Fig. 5 Distribution of the maximum principal stress (a and b) and normalized collagen mass
density (c and d) in a single–layer thick–wall cylindrical artery responding to an elastin loss
during 15 years, kcj

σ = 0.05
T

cj (first column) and k
cj
σ = 0.15

T
cj (second column)
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(a) (b)

Fig. 6 Change of thickness (a) and diameter (b) of a two–layer thick–wall toric artery re-
sponding to elastin loss during 15 years for k

cj
σ = 0.05

T
cj (dash lines) and k

cj
σ = 0.15

T
cj (solid

lines). Superscript "m" and "a" stand for media and adventitia, respectively, while subscripts
"i" and "o" denote the inner and outer curvatures of the arch, respectively.
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(a)

(b)

(c)

(d)

Fig. 7 Distribution of maximum principal stress (a and b) and normalized collagen mass
density (c and d) in a two–layer thick–wall toric artery responding to elastin loss during 15
years, kcj

σ = 0.05
T

cj (a and c) and k
cj
σ = 0.15

T
cj (b and d)
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Distribution of the maximum principal stress (first column) and normalized collagen
mass density (second column) in a two–layer patient–specific human ATAA responding to
localized elastin loss, tdam = 20 (a and b), tdam = 40 (c and d) and tdam = 80 (e and f) days.
In all cases it is assumed that k

cj
σ = 0.05

T
cj .
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(a)

(b)

(c)

Fig. 9 Distribution of the normalized thickness in a two–layer patient–specific human ATAA
responding to localized elastin loss for a- tdam = 20, b- tdam = 40 and c- tdam = 80 days. In
all cases it is assumed that k

cj
σ = 0.05

T
cj .
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Distribution of the maximum principal stress (first column) and normalized collagen
mass density (second column) in a two–layer patient–specific human ATAA responding to
localized elastin loss, kcj

σ = 0.1
T

cj (a and b), kcj
σ = 0.2

T
cj (c and d) and k

cj
σ = 0.3

T
cj (e and f) days.

In all cases it is assumed that tdam = 40.
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(a)

(b)

(c)

Fig. 11 Distribution of the normalized thickness in a two–layer patient–specific human ATAA
responding to localized elastin loss for a- kcj

σ = 0.1
T

cj , b- kcj
σ = 0.2

T
cj and c- kcj

σ = 0.3
T

cj days. In
all cases it is assumed that tdam = 40.


