
HAL Id: hal-02413269
https://hal.science/hal-02413269

Submitted on 16 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Volumetric Spot Noise for Procedural 3D Shell Texture
Synthesis

Nicolas Pavie, Guillaume Gilet, Jean-Michel Dischler, Eric Galin, Djamchid
Ghazanfarpour

To cite this version:
Nicolas Pavie, Guillaume Gilet, Jean-Michel Dischler, Eric Galin, Djamchid Ghazanfarpour. Volumet-
ric Spot Noise for Procedural 3D Shell Texture Synthesis. Computer Graphics and Visual Computing
(CGVC), 2016. �hal-02413269�

https://hal.science/hal-02413269
https://hal.archives-ouvertes.fr

EG UK Computer Graphics & Visual Computing (2016)
Cagatay Turkay and Tao R. Wan (Editors)

Volumetric Spot Noise for
Procedural 3D Shell Texture Synthesis

Nicolas Pavie1, Guillaume Gilet1, Jean-Michel Dischler2, Eric Galin3 and Djamchid Ghazanfarpour1

1 XLIM - UMR CNRS 7252, University of Limoges, France
2 ICUBE - UMR CNRS-UDS 7357, University of Strasbourg, France

3 LIRIS - UMR CNRS 5202, University of Lyon, France

Abstract
In this paper, we present an extension of the Locally Controlled Spot Noise and a visualization pipeline for volumetric fuzzy
details synthesis. We extend the noise model to author volumetric fuzzy details using filtered 3D quadratic kernel functions
convolved with a projective non-uniform 2D distribution of impulses. We propose a new method based on order independent
splatting to compute a fast view dependent approximation of shell noise at interactive rates. Our method outperforms ray
marching techniques and avoids aliasing artifacts, thus improving interactive content authoring feedback. Moreover, gener-
ated surface details share the same properties as procedural noise: they extend on potentially infinite surfaces, are defined in
an extremely compact way, are non-repetitive, continuous (no discrete voxel-artifacts when zooming) and independent of the
definition of the underlying surface (no surface parameterization is required).

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Display
algorithms I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object rep-
resentations I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Color, shading, shadowing, and texture
Keywords Procedural texturing, Image synthesis, volumetric visualization, procedural noise

1. Introduction

Artists try to achieve realism by constantly increasing the visual
complexity and details of objects in virtual scene. A huge amount of
small scale geometric details over surfaces needs to be defined and
rendered. Despite the improvement of Graphics Processing Unit
(GPU), authoring and rendering large scenes with millions of micro
and meso scale details remain a challenging problem, in particular
for fuzzy details over surfaces such as fur or grass. Simple color and
bump map texturing techniques do not allow for realistic rendering
as important parallax effects are missing and artifacts are visible at
close range. Mass-instancing of small geometric primitives is also
ill-suited because of storage limitations, prohibitive rendering time
and important aliasing artifacts.

Shell texturing avoids most of these limitations. It consists in
mapping a thick semi-transparent layer upon the surface [PBFJ05].
The corresponding volumetric texture can be represented either by
explicit data arrays (voxels) or by continuous analytic functions.
Analytic representations based on procedural noise [LLC∗10] ben-
efit from several important properties which makes it particularly
attractive for modeling fuzzy 3D details. With a low memory over-
head, it provides continuous details allowing close-ups without
voxelization artifacts. Moreover, it is generic and local variations
can be defined by modifying the noise parameters.

Several important problems still limit the use of procedural noise
for shell texturing in computer graphics applications: Noise is
hard to control and displaying shell textures requires computation-
ally demanding direct volume rendering. Locally Controlled Spot
Noise (LCSN) [PGDG16] proposes a spatially controlled procedu-
ral noise, with non-uniform distribution of impulses, to ease the
authoring process. But this noise is parameterization dependant as
it relies on a distribution in texture space. Although GPU ray cast-
ing [KW03] is tractable for voxel data, it is computationally de-
manding for processing procedural noise. Hundreds of evaluations
per pixel might be required along a single ray, which limit the in-
teractive visualization of volumetric models even with the fastest
existing procedural noises. This paper addresses those limitations
and aims at improving the authoring of fuzzy surface details using
procedural noise.

We extend the Locally Controlled Spot Noise to model volumet-
ric surface details composed of many similar elements. We use a
projective 2D sparse convolution with filtered 3D kernel functions,
represented as sums of anisotropic Gaussians with arbitrary orien-
tations to model shell textures. To interactively visualize the results
of our noise, we propose a per-pixel projective volume rendering
approach to obtain a view-dependent fast approximation of accu-
mulated densities along viewing directions. We exploit the fact that

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

N. Pavie, G. Gilet, J.-M. Dischler, E. Galin, D. Ghazanfarpour / Volumetric Spot Noise for Procedural 3D Shell Texture Synthesis

the Locally Controlled Spot Noise is based on sparse convolution
with spatially bound kernel functions, the latter being directly pro-
jected, i.e. splatted [CRZP04], thanks to their analytic representa-
tion.

Our method provides better interactivity for authoring procedu-
ral shell textures with noise in a parameterization free definition.
We illustrate this through different case studies showing that such
details can be edited at interactive frame rate with a very low mem-
ory footprint.

2. Related work

In this section we review previous work on the modeling of volu-
metric fuzzy details such as fur, hair or grass and on the rendering
of shell textures.

Volumetric fuzzy details Semi-transparent volume representa-
tions are often preferred to triangles meshes or relief textures
[PO06] to model thick fuzzy surface structures such as grass
[BH02] or hair [LPF01].

Volumetric textures provide a generic and compact alternative
to representations based on individual discrete elements: tiles can
be repeated to cover arbitrarily large surfaces. Such textures can
be generated either by converting explicit geometry [DN09], by
using tomography scanners [ZJMB11], by using reconstruction
[MK06] or by using synthesis based on multiple 2D exemplars
[KFCO∗07]. Two different types of 3D textures should be distin-
guished: solid textures, which are surface independent, and shell-
textures [JMW07] which are linked to the surface geometry. We are
concerned with the second category. To avoid periodicity, 3D ex-
tensions of 2D tiling techniques, like shell-Wang cubes [LEQ∗07],
have been proposed. The discrete nature of voxels yields sam-
pling artifacts when the view point is close. Local variations (i.e.
non-stationary surface details) are hard to manage and interactive
authoring is almost impossible. Analytic function-based textures
avoid these shortcomings and have additional advantages related
to continuity, as discussed in [NL13]. An analytic representation
based on procedural noise [EWM∗98] is particularly interesting
since it allows one modeling various different types of fuzzy de-
tails, including fur [PH89], cotton, fire, etc. in a extremely com-
pact way without visual repetition. Sparse convolution noises like
Gaussian- [Lew89], Spot- [vW91] and Gabor- [LLDD09] noise fur-
thermore allow to get rid of surface parameterization by using di-
rect kernel projection [LHN05]. The recently introduced Locally
controlled Spot Noise [PGDG16] extends Spot noise to improve
the spatial control and to produce structured patterns in texture
space, but their distribution depends on parameterization. We ex-
tend this work by proposing a method for distortion-free shell-
texturing without the need for parameterization.

Volume rendering of shell textures and GPU-based volume ren-
dering have been widely explored. A complete overview is beyond
the scope of the paper. Projection of slices orthogonal to the view-
ing direction [WE98] has been used for a long time. It is also suit-
able for real-time shell-texturing provided the slices can be easily
computed, i.e. the intersection of the shell with a plane, as done

in [DN09]. But slice-based volume rendering is known to pro-
duce numerous visual artifacts [KW03]. Ray marching [PH89] pro-
vides better quality results. Thanks to GPU improvements, it can be
now computed in real-time. Ray marching consists in casting rays
throughout the shell (one ray per pixel) and sampling each ray. Be-
cause a ray might exit and then re-enter the shell, depth peeling
[NK03] must be applied. When the shell is defined procedurally,
especially using noise, computations rapidly become prohibitive
because of the high cost of noise evaluations. Elliptical Weighted
Average (EWA) volume splatting [ZPvBG01] avoids depth peeling
and permits high quality anti-aliasing. It requires time consuming
back-to-front ordering however, and introduces a rasterization over-
head, negatively impacting frame rate because ellipses overlap in
screen space. Even adaptive techniques [CRZP04] still suffer from
rasterization overhead.

Order independent (OI) volume rendering techniques [ME04,
MDM10] trade realism for speed by getting rid of ordering. In-
spired by these works, we propose a novel OI EWA volume splat-
ting. It unifies their advantages and provides an efficient high speed
approximation, that exploits the analytical expression of the ellip-
tical Gaussian kernels that we use for our noise.

3. Procedural details using noise

In this section, we first recall the principles of structured texture
synthesis using Locally Controlled Spot Noise.

Spot Noise [vW91, dLvL97] is a sparse convolution noise
[Lew89] with a flexible kernel formulation: a uniform distribu-
tion of impulses is convolved with an arbitrary kernel spatially
defined. For impulses generation on the fly, jittering and pseudo-
random number generation are used. Using a Gabor filter, Gabor-
noise [LLDD09] trades spectral control for spatial control. But It
can only produced Gaussian patterns (i.e. fully characterized by
their power spectrum). In contrast, LCSN extends the original spot
noise formulation to improve spatial control and to produce struc-
tured textures. A non-uniform distribution of impulses is convolved
with a kernel composed of multiple ellipsoidal Gaussian functions.
The kernel formulation is given as:

k(p) = ∑
Vi

gVi gV (p) = Ae
−1

2
pT V−1p

(1)

p is a point in dimension N + 1 with last coordinate set to 1, N
refers to the evaluation space dimension. V is a (N + 1) semi-
positive square matrix that describe the ellipsoid iso-contour and
A is the Gaussian envelop magnitude. Still using a random distri-
bution, non-uniformity is obtained by the use of a Kroenecker delta
(δ): Impulses failing a density test between a random density value
generated per impulse and a local density factor are rejected. The
noise formulation is the following:

ns(p) = ∑
j

δ
(
ξ(p j)< d(p j)

)
|w j(p j)|K j(p) (2)

with K j(p) = ks
(
(p−p j)Rs(p j)Ss(p j)

)
. Orientation Rs and scale

Ss are related to underlying data fields. d is a scalar field and rep-
resents a probability. || denotes the absolute value. ξ is a random
variable selected independently of w j. d allows to control the den-
sity of impulses in given regions.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

N. Pavie, G. Gilet, J.-M. Dischler, E. Galin, D. Ghazanfarpour / Volumetric Spot Noise for Procedural 3D Shell Texture Synthesis

Two points are not addressed by LCSN. Filtering is not further
explored in the noise model, but the use of a sum of Gaussian func-
tion allows for analytic filtering if splatting is used for individual
gaussian evaluation [ZPvBG01]. The non-uniform distribution pro-
posed depends on parameterization as impulses are generated in
texture space.

We propose to extend the kernel definition of LCSN to model
shell textures, i.e. volumetric textures. We do this by defining fil-
tered 3D kernels instead of 2D kernels and by projecting random
impulse positions over surfaces. A kernel k is defined by a sum
of ellipsoidal Gaussian functions with arbitrary orientation. Ker-
nels can be modeled by editing the parameters of the ellipsoidal
Gaussian functions while impulse density, kernel orientation, ker-
nel color and kernel scale can be directly painted over the surface,
for instance using octree textures [BD02] if no surface parame-
terization is wanted. We consider now the Gaussian formulation
of [ZPvBG01] instead of the one defined in (1):

gV (p) =
||V−1′ ||1/2

(2π)3/2
e
−1

2
pT V−1p

(3)

Here V is a 4×4 matrix, such that V−1 = (M R S)−T (M R S)−1

and V−1′ is the matrix V−1 reduced to a 3× 3 matrix (i. e. last
row and column encoding translations are ignored). ||V−1′ || is the
determinant of the matrix. M,R and S respectively correspond to
shift, rotation and scaling matrices. The iso-contour of the Gaussian
is given by pT V−1p, which describes an implicit quadratic surface
given that V is a semi-positive quadratic matrix (p is a 3D point in
homogeneous coordinates). From (3), we can obtain a reconstruc-
tion filter using the Jacobian matrix of the pixel into kernel space
for each Gaussian function, as in [RPZ02]. The kernel formulation
becomes:

k(p) = ∑
Vi

ρ
′
k,Vi ρ

′
k,V (p) = g

V+J−1
k J−1T

k
(p) (4)

Jk is the Jacobian projected in kernel space and ρ
′
V,k is the recon-

struction filter for a Gaussian gV in kernel space.

This 3D kernel definition is versatile and allows us to model
very thin surfaces such as grass blades by using a single truncated
flat Gaussian kernel. Complex semi-transparent structures like fur
or cotton can be obtained by using multiple Gaussians as demon-
strated in shell textures (Section 5).

3.1. On-the-fly impulse generation over surfaces

To achieve on-the-fly generation of impulses over an arbitrary sur-
face, the latter is partitioned using a regular 3D grid. The size of
each grid cell is fixed according to the size of the kernels, so that
no kernel spans more than two cells (i.e. a kernel with center in
one cell can only contribute to directly neighboring cells). Simi-
lar to [LHN05] and [LLDD09], our cells are voxels straddling the
surface. Kernels are distributed in three-dimensional space using
a PRNG initialized inside the voxel. Randomly generated 3D im-
pulses are then projected on a plan approximating the overlapped
surface (see figure 1). To save space, an octree data structure is
used. The leaves of the octree are voxels, on which we store a vec-
tor N(u,v) to the closest surface point P(u,v), as well as a tangent

Figure 1: Generating impulse distributions over arbitrary surfaces
using an octree (left), with leaves of equally-sized voxels. distribu-
tions.

T (u,v).−N/||N|| is the normal on P. The kernel K is then oriented
according to these surface properties (see figure 2). Note that the
impulse position might also be shifted away from the surface along
the normal, which is denoted as P(u,v,h) in the figure 2.

The number of impulses in one cell is randomly defined ac-
cording to the local impulse density property of the cell. That
is, each cell contains the density information d. As pointed out
in [LLDD09], such set-up free surface noise definition assumes
that texture detail is small compared to geometric detail, which is a
common assumption in texturing.

ϕ Direction
rotation

xMt

yMt

x

N (u,v)

ρ Spinning
rotation

u

v

zMt
B (u,v)

θ Bending rotation

h

p (u,v,h)

Figure 2: Transformed kernel evaluation space in shell space
(u,v,h).

4. Shell spot noise evaluation on GPU

Shell spot noise defines volumetric color and transparency fields,
nrgb and na. It requires volume rendering. The volume rendering
equation describes the light intensity L that reaches the center of
projection along a ray of length l. For interactive display, a com-
mon approximation consists in neglecting scattering effects, thus
considering only emission and absorption. In this case, the classi-
cal formulation is:

L =
∫ l

0
(E◦n)(p(s))e−A0(s)δs A0(s) =

∫ s

0
na(p(t))δt (5)

where the exponential term can be interpreted as an attenuation fac-
tor, and (E◦n)(p(s)) the term describing both the emission and ex-
tinction in the direction of the ray at point p(s). When no lighting
is considered this term corresponds in our case to:

(E◦n)(p(s)) = nrgb(p(s))na(p(s)) (6)

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

N. Pavie, G. Gilet, J.-M. Dischler, E. Galin, D. Ghazanfarpour / Volumetric Spot Noise for Procedural 3D Shell Texture Synthesis

where nrgb(p(s)) is the color of the noise function and na(p(s)) its
transparency at point p(s). For clarity, we will use from now on the
function E to denote the multiplication of the color component by
the extinction component of an expression. When shading is used,
the emission term nrgb has to be modified by multiplying with an
additional shading factor usually computed by the dot product be-
tween the gradient of na(p(s)) and the light direction [GAMD10].
For the sake of simplicity, we present our formula without shading.

Transparency artifacts

Optimal distinction

Depth-weighted sample blending 1

Default sample blending

Closest sample and depth-
weighted sample blending

2

3

Transparency artifacts

Figure 3: Impact of OIT. 1st row: Using a depth-related weight
function as described in [MB13]. 2nd row: Blending the closest
contributive sample with the depth-weighted samples accumulator.
3rd row: No OIT (all kernels are blended together, which is equiv-
alent to the use of a constant function T).

Evaluating shell spot noise is optimized by using a volumetric
regular grid, so that the search of closest kernels is accelerated. In
addition, a simple extruded version of the underlying surface can
be rasterized to produce viewing rays for each corresponding frag-
ment covered by our shell. By considering that a ray traverses in-
dividual cells, we can write the previous equation by decomposing
the domain into a succession of disjoint cells Ci. By further intro-
ducing the term 1− α j, commonly used in volume rendering to
approximate the corresponding exponential attenuation, Equation
5 becomes:

L≈
N−1

∑
i=0

LCi

i−1

∏
j=0

(1−α j) (7)

with N the number of cells traversed by the ray. LCi is the light
scattered in the direction of the ray by cell Ci. It is expressed as:

LCi =
∫ li+1

li
(E◦n)(p(s))e−Ali(s)δs (8)

For the next part, we only consider the case of uniform distribution
(i.e. with δ = 1). By substituting (2) into (8) and by using the stan-
dard 0-order approximation [HMDM08] of the attenuation factor,
the contribution of one cell Ci can be rewritten as:

LCi ≈
U

∑
u=0

(
E◦ ∑

p j∈C∗i

w jK(p(u)−p j)

)
(p(u))

u−1

∏
v=0

(1−αv) (9)

where U denotes the number of samples taken along the ray travers-
ing the cell and p j ∈C ∗i the impulses contributing to the cell Ci (i.e.
the impulses of the cell and those of the directly neighboring cells).

Computing LCi using a straightforward ray marching algorithm
introduces an important computational overhead. There is a double
sum on samples and on kernels. Hence, each cell kernel (itself com-
posed of several elliptical Gaussians) is evaluated multiple times
(i.e. at each ray sample). Moreover, due to the Nyquist limit, in the
extreme case of perfectly flat Gaussian kernels, as for grass blades,
the step between successive samples must be infinitely small in or-
der to achieve an accurate rendering.

EWA volume splatting [ZPvBG01] provides an alternative com-
putation scheme by relying on the rasterization of individual ker-
nels K, thus getting rid of sampling along rays: each kernel be-
comes evaluated only once. In practice, the Gaussians composing
the kernels are first sliced into several flat Gaussians facing the
camera and then rasterized directly into screen space. But such a
technique is suitable for interactive rendering with modern GPUs
only if few Gaussians are rendered or if correct attenuation is not
mandatory: volume splatting algorithms require the flat elliptical
Gaussian slices to be depth-sorted to achieve correct attenuation.
This drastically reduces performance in the case of large numbers
of Gaussians, which is our case. Depth-peeling [NK03] can be used
to some extend to accelerate sorting, but it is still too time con-
suming for very large numbers of Gaussians. Indeed, such method
would require one depth-peeling pass for each overlapping kernel
on screen. To approximate attenuation at much lower cost, we pro-
pose a novel approach: it consists in computing an unordered accu-
mulation of depth-weighted view-dependent contributions of ker-
nels, renormalized in a final composition pass. The contribution of
each volumetric kernel is approximated per pixel by a ray-based
depth-ordered slicing. Kernel slicing is performed by casting rays
throughout the kernel K according to the viewing direction (i.e.
slicing is implicit through ray sampling). For each individual ker-
nel, we consider the classical ray marching approximation consist-
ing of a discrete sum on samples di taken along the viewing ray:

K̃(d,p j)≈
Ns

∑
u=0

(
E◦w jK(du−p j)

)u−1

∏
v=0

(1−αv) (10)

K(du−p j) is the evaluation of kernel K on impulse p j at a sample
du inside the volume delimited by K. The number Ns of samples
per kernel is directly related to the thickness of K. In practice, the
bounding box of each kernel is rasterized to cast rays. The opac-
ity and color are evaluated on samples du and accumulated until a
maximum opacity value is reached or all samples have been eval-
uated. In case of infinitely flat Gaussian kernels, a single sample
matching the intersection between the ray and the kernel is used
instead of the sum.

As opposed to equation 9, the previous ray marching is limited

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

N. Pavie, G. Gilet, J.-M. Dischler, E. Galin, D. Ghazanfarpour / Volumetric Spot Noise for Procedural 3D Shell Texture Synthesis

Figure 4: Comparison of rendering techniques: the result computed by the instancing of opaque kernels with depth test (1st column) is
efficient both in performance and quality of the opaque parts at close up view, but cannot handle transparency. Furthermore flickering and
aliasing artifacts appears when viewed from far away. This could be solved by using a complex geometry filtering scheme. Splatting of kernels
with weighted order independent transparency (2nd column) shows none of this aliasing artifacts, but introduces transparency artifacts in
close up views. Our rendering pipeline (3rd column) correct this issue by using the depth information provided by the instancing technique.

to individual kernels: it allows us to evaluate the opacity of a given
kernel according to a given viewing direction d. The contributions
of all kernels must be now accumulated, without explicit depth-
sorting or depth-peeling to avoid the aforementioned computation
overhead. Since depth cues are crucial to get visually convincing
results, we use an order independent transparency (OIT) function.
The core of OIT is to define a weight, given in our case by a func-
tion T (p j), related to the depth of the kernel.

Using our combination of EWA splatting with OIT, we replace
the previous equation 9 by:

LCi ≈ ∑
p j∈C∗i

T (p j)K̃(d,p j) (11)

A normalization is needed to get an approximation of L and be-
cause the result of accumulating depth-weights T (p j) depends on
the number of samples and cells:

L≈ ∑
N−1
i=0 LCi

∑
N−1
i=0 ∑p j∈C∗i

T (p j)
(12)

T (p j) can be defined in different ways. We have first exper-
imented the simple and generic formulations of [MB13]. Using
[MB13], a slightly improved distinction of kernels can be noticed
(see fig. 3.1 and fig. 4 center) compared to the use of no OIT at
all (see fig.3.3). The latter amounts in setting T (p j) = 1,∀ j. Some
opaque kernels, especially the ones that are very close to each other,
are not processed correctly which motivated the following original
solution.

For a spot noise mostly composed of opaque kernels, visual re-
sults are significantly improved by maximizing the contribution of
the closest kernel to the final color L. In any rendering pipeline,
this kernel can be trivially determined by using a depth test. L is
then obtained by combining the previous OIT-based EWA splatting
approximation with the contribution of the closest sample:

L≈ K̃(d,p f)α f +

(
∑

N−1
i=0 LCi

∑
N−1
i=0 ∑p j∈C∗i

T (p j)

)
(1−α f) (13)

p f denotes the impulse corresponding to the closest kernel, and α f

its transparency. In practice, our experiments show that results com-
puted using this improved OIT are almost identical to standard OIT
for highly transparent kernels, but show significant improvements
when opaque kernels are rendered (fig. 3.2 and fig. 4 right).

5. Results

Figures 6 and 7 show examples of opaque flat kernels on 3D ob-
jects. These images are interactively rendered using a GeForce 980,
an OpenGL 4.3 framework and a 1920×1080 rendering window.

Speed The performance of our rendering method is strongly re-
lated to the density and complexity of the kernels composing the
shell spot noise. All interactive examples using flat Gaussian ker-
nels run between 5 and 60+ fps, depending on the kernel density
on screen and the viewpoint. As shown by figure 4, several method
can be used to render our noise model. Rendering opaque kernels
by geometry instancing offers the best performance (from 60fps
for 800k kernels to 3 fps for 10M kernels) but introduces many
aliasing artifacts (fig 4 left) as the size of the kernels decrease, due
to heavy z-fighting and limited depth precision. Furthermore, such
method is unable to handle semi-transparency. Aliasing artifacts
can be removed and semi-transparency processed by using Volume
EWA Splatting. However, as stated in the previous section, tradi-
tional EWA Splatting is not tractable in practice as depth-sorting
introduces a severe performance and storage overhead. OIT offers
a very fast alternative with a performance close to geometry in-
stancing but introduces noticeable transparency artifacts in close
up views (fig 4, center). Basic OIT is not precise enough to distin-
guish pairs of neighbouring kernels (with performances to instanc-
ing). By re-introducing some depth information using a geometry
instancing pass combined with OIT EWA splatting, we are able to
avoid these artifacts (fig 4, right) at the expense of some perfor-
mance loss (roughly half the framerate of previous methods).

Using a 3D kernel definition based on sums of Gaussians allows
us to model both thin surfaces like grass blades and more complex
semi-transparent structures. Figure 5 illustrates examples of proce-
dural shell textures obtained using multiple Gaussians. We show

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

N. Pavie, G. Gilet, J.-M. Dischler, E. Galin, D. Ghazanfarpour / Volumetric Spot Noise for Procedural 3D Shell Texture Synthesis

Figure 5: Volumetric textures defined by non-uniform shell spot
noise. Top left: a sum of elliptical Gaussians is used to define ker-
nel functions k (here, up to three Gaussians). Bottom left: the field
that controls impulse distributions. The darker the grey value, the
more impulses. All textures are extremely compact (only the noise
function, one 4× 4 matrix per Gaussian and a density field are
stored), continuous and aperiodic.

from top to bottom different impulse distributions ranging from
uniformly random to semi-regular. These textures were modeled
interactively by editing the Gaussians of k (anisotropy, position,
orientation) and by providing different periodic fields defined in
the form of 2D intensity images (lower left images). Note that a
very low number of Gaussians already allows one to model com-
plex fuzzy textures. Even more complex shell textures are obtained
by furthermore controlling the bending and spinning (rotation), size
and color of kernels, as well as by using different types of kernels
and different types of distributions. Finally, figure 8 shows exam-
ples of 3D volumetric kernels over 3D objects. All details are rep-

resented as a combination of semi-transparent volumetric kernels
over a surface. As for previous examples, kernels can be edited
interactively and controlled using low-resolution discrete maps or
functions. The performance of our method in the case of semi-
transparent 3D volumetric kernels is strongly related to both the
number of kernels and the number of slices Ns in equation 10 (i.e.
the precision of the kernel evaluation) and performs in range from
55 fps for 2.5k volumetric kernel to 1.5 fps for 300k kernels.

Memory The memory footprint of our model is extremely low,
since the kernel and distribution definition itself only need a few
kilobytes. In other words, the memory does not depend on the
amount of rendered kernels (linked to the amount of impulses), but
only on the definition of the parameters of the kernels. Parame-
ters governing the kernel orientations, distributions, densities and
scales can be defined in the form of painted low-resolution textures
or they can be procedurally computed. Figure 6 illustrates the vi-
sual effect of interactive user control over noise. The noise can be
edited and animated interactively by modifying density and orien-
tation of kernels, This is related to the fact that all parameters are
evaluated on-the-fly, without any need of pre-computation (unlike
voxel based pre-filtering techniques). The parameter modification
can be expressed through a function such as wind or a combination
of low resolution textures. The latter gives the user an efficient way
to control kernels and facilitates authoring of local features.

As shown in figure 7, our method allows close zooms and the
complex micro-geometry becomes more visible (individual hairs)
with optimized distinction. At far distance (top) individual hairs
are rendered with no aliasing and improved distinction, thanks to
the EWA volume splatting with OIT.

6. Conclusion

We have presented an extension of Locally Controlled Random
Spot Noise for interactive authoring of volumetric shell textures.
This extension can produce a wide range of procedural 3D pat-
terns from near-regular to stochastic for a very low memory foot-
print. The hybrid rendering pipeline can render patterns at inter-
active frame rate. Interactivity is guaranteed even for millions of
kernels, thus significantly improving the authoring and design of
such textures.

A promising extension would consist in enhancing the perfor-
mances by evaluating our continuous noise model function using
a multi-scale rendering scheme. This would enable us to adapt
the pattern evaluation to the viewing conditions (such as tessella-
tion/instancing for close-ups and statistically- based filtering ap-
proximation for far distance views) to provide a method targeted at
real-time realistic rendering of volumetric procedural shell textures

References

[BD02] BENSON D., DAVIS J.: Octree textures. ACM Trans. Graph. 21,
3 (July 2002), 785–790. URL: http://doi.acm.org/10.1145/
566654.566652, doi:10.1145/566654.566652. 3

[BH02] BAKAY B., HEIDRICH W.: Real-time animated grass. In Pro-
ceedings of Eurographics (short paper) (2002). 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

http://doi.acm.org/10.1145/566654.566652
http://doi.acm.org/10.1145/566654.566652
http://dx.doi.org/10.1145/566654.566652

N. Pavie, G. Gilet, J.-M. Dischler, E. Galin, D. Ghazanfarpour / Volumetric Spot Noise for Procedural 3D Shell Texture Synthesis

Figure 6: (left) uniform density, (middle) user controls density, (right) user controls orientation. In all cases, control maps can be painted
interactively.

Figure 7: The appearance of these models are defined using ≈
400k small kernels for the left bunny (10 fps) and ≈ 1.6M small
kernels for the right bunny (3 fps). Each of these kernels can be
interactively edited.

[CRZP04] CHEN W., REN L., ZWICKER M., PFISTER H.: Hardware-
accelerated adaptive ewa volume splatting. In Proceedings of the Confer-
ence on Visualization ’04 (Washington, DC, USA, 2004), VIS ’04, IEEE
Computer Society, pp. 67–74. URL: http://dx.doi.org/10.
1109/VISUAL.2004.38, doi:10.1109/VISUAL.2004.38. 2

[dLvL97] DE LEEUW W., VAN LIERE R.: Divide and conquer spot noise.
In Proceedings of the 1997 ACM/IEEE Conference on Supercomputing
(New York, NY, USA, 1997), SC ’97, ACM, pp. 1–13. URL: http:
//doi.acm.org/10.1145/509593.509612, doi:10.1145/
509593.509612. 2

[DN09] DECAUDIN P., NEYRET F.: Volumetric billboards. Computer
Graphics Forum 28, 8 (2009), 2079–2089. URL: www.antisphere.
com/Research/VolBlbCGF09.php. 2

[EWM∗98] EBERT D. S., WORLEY S., MUSGRAVE F. K., PEACHEY
D., PERLIN K., MUSGRAVE K. F.: Texturing and Modeling : A Proce-
dural Approach, 2nd ed. Academic Press, Inc., Orlando, FL, USA, 1998.
2

[GAMD10] GUETAT A., ANCEL A., MARCHESIN S., DISCHLER J.-
M.: Pre-integrated volume rendering with non-linear gradient interpola-
tion. Visualization and Computer Graphics, IEEE Transactions on 16, 6
(Nov 2010), 1487–1494. doi:10.1109/TVCG.2010.187. 4

[HMDM08] HAJJAR J.-F. E., MARCHESIN S., DISCHLER J.-M.,
MONGENET C.: Second order pre-integrated volume rendering. In Visu-
alization Symposium, 2008. PacificVIS ’08. IEEE Pacific (2008), pp. 9–
16. 4

[JMW07] JESCHKE S., MANTLER S., WIMMER M.: Interactive smooth
and curved shell mapping. In Rendering Techniques 2007 (Proceedings
Eurographics Symposium on Rendering) (6 2007), Kautz J., Pattanaik S.,
(Eds.), Eurographics, Eurographics Association, pp. 351–360. 2

[KFCO∗07] KOPF J., FU C.-W., COHEN-OR D., DEUSSEN O.,
LISCHINSKI D., WONG T.-T.: Solid texture synthesis from 2d ex-
emplars. ACM Trans. Graph. 26, 3 (July 2007). URL: http://
doi.acm.org/10.1145/1276377.1276380, doi:10.1145/
1276377.1276380. 2

[KW03] KRÜGER J., WESTERMANN R.: Acceleration Techniques for
GPU-based Volume Rendering. In Proceedings IEEE Visualization 2003
(2003). 1, 2

[LEQ∗07] LU A., EBERT D. S., QIAO W., KRAUS M., MORA B.: Vol-
ume illustration using wang cubes. ACM Transactions on Graphics
(TOG) 26, 2 (2007), 11. 2

[Lew89] LEWIS J. P.: Algorithms for solid noise synthe-
sis. SIGGRAPH Comput. Graph. 23, 3 (July 1989), 263–270.
URL: http://doi.acm.org/10.1145/74334.74360,
doi:10.1145/74334.74360. 2

[LHN05] LEFEBVRE S., HORNUS S., NEYRET F.: Texture Sprites:
Texture Elements Splatted on Surfaces. In Symposium on In-
teractive 3D Graphics and Games (Washington, États-Unis, 2005),
ACM SIGGRAPH, ACM Press. URL: http://hal.inria.fr/
inria-00510158. 2, 3

[LLC∗10] LAGAE A., LEFEBVRE S., COOK R., DEROSE T., DRET-
TAKIS G., EBERT D., LEWIS J., PERLIN K., ZWICKER M.: A survey
of procedural noise functions. Computer Graphics Forum 29, 8 (De-
cember 2010), 2579–2600. doi:10.1111/j.1467-8659.2010.
01827.x. 1

[LLDD09] LAGAE A., LEFEBVRE S., DRETTAKIS G., DUTRÉ P.:
Procedural noise using sparse gabor convolution. In ACM SIG-
GRAPH 2009 papers (New York, NY, USA, 2009), SIGGRAPH ’09,
ACM, pp. 54:1–54:10. URL: http://doi.acm.org/10.1145/
1576246.1531360, doi:10.1145/1576246.1531360. 2, 3

[LPF01] LENGYEL J., PRAUN E., FINKELSTEIN A.: Real-time fur over
arbitrary surfaces. In 2001 ACM Symposium on Interactive 3D Graphics
(2001), pp. 227–232. 2

[MB13] MCGUIRE M., BAVOIL L.: Weighted blended order-
independent transparency. Journal of Computer Graphics Techniques

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

http://dx.doi.org/10.1109/VISUAL.2004.38
http://dx.doi.org/10.1109/VISUAL.2004.38
http://dx.doi.org/10.1109/VISUAL.2004.38
http://doi.acm.org/10.1145/509593.509612
http://doi.acm.org/10.1145/509593.509612
http://dx.doi.org/10.1145/509593.509612
http://dx.doi.org/10.1145/509593.509612
www.antisphere.com/Research/VolBlbCGF09.php
www.antisphere.com/Research/VolBlbCGF09.php
http://dx.doi.org/10.1109/TVCG.2010.187
http://doi.acm.org/10.1145/1276377.1276380
http://doi.acm.org/10.1145/1276377.1276380
http://dx.doi.org/10.1145/1276377.1276380
http://dx.doi.org/10.1145/1276377.1276380
http://doi.acm.org/10.1145/74334.74360
http://dx.doi.org/10.1145/74334.74360
http://hal.inria.fr/inria-00510158
http://hal.inria.fr/inria-00510158
http://dx.doi.org/10.1111/j.1467-8659.2010.01827.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01827.x
http://doi.acm.org/10.1145/1576246.1531360
http://doi.acm.org/10.1145/1576246.1531360
http://dx.doi.org/10.1145/1576246.1531360

N. Pavie, G. Gilet, J.-M. Dischler, E. Galin, D. Ghazanfarpour / Volumetric Spot Noise for Procedural 3D Shell Texture Synthesis

Figure 8: Volumetric patterns applied on several model. Pattern applied on the first bunny from the left uses the "ring" kernel profile (a)
composed of 2 Gaussians and a semi regular distribution profile (b). The second bunny uses a single Gaussian kernel profile (c) with a
random distribution profile (d), and a density map (e) is added to limit distribution over specific area. Both bunnies use ≈ 50k impulses and
run at ≈ 2 frames per second. The lichen pattern applied on the dragon and the plan is created using a color map (f), a density map (g), a
kernel composed of 3 Gaussians (h) and a random distribution (i). It uses ≈ 400k impulses runs at ≈ 1.5 frames per second. All results were
rendered using 32 samples per ray per evaluated kernel.

(JCGT) 2, 2 (December 2013), 122–141. URL: http://jcgt.org/
published/0002/02/09/. 4, 5

[MDM10] MARCHESIN S., DISCHLER J.-M., MONGENET C.: Per-
pixel opacity modulation for feature enhancement in volume rendering.
Visualization and Computer Graphics, IEEE Transactions on 16, 4 (July
2010), 560–570. doi:10.1109/TVCG.2010.30. 2

[ME04] MORA B., EVERT D. S.: Instant volumetric understanding
with order-independent volume rendering. Computer Graphics Forum
23, 3 (2004), 489–497. URL: http://dx.doi.org/10.1111/j.
1467-8659.2004.00780.x, doi:10.1111/j.1467-8659.
2004.00780.x. 2

[MK06] MAGDA S., KRIEGMAN D.: Reconstruction of volumet-
ric surface textures for real-time rendering. In Proceedings of the
17th Eurographics Conference on Rendering Techniques (Aire-la-Ville,
Switzerland, Switzerland, 2006), EGSR 06, Eurographics Associa-
tion, pp. 19–29. URL: http://dx.doi.org/10.2312/EGWR/
EGSR06/019-029, doi:10.2312/EGWR/EGSR06/019-029. 2

[NK03] NAGY Z., KLEIN R.: Depth-peeling for texture-based volume
rendering. In Computer Graphics and Applications, 2003. Proceedings.
11th Pacific Conference on (2003), IEEE, pp. 429–433. 2, 4

[NL13] NIESSNER M., LOOP C.: Analytic displacement map-
ping using hardware tessellation. ACM Trans. Graph. 32, 3
(July 2013). URL: http://doi.acm.org/10.1145/2487228.
2487234, doi:10.1145/2487228.2487234. 2

[PBFJ05] PORUMBESCU S. D., BUDGE B., FENG L., JOY K. I.: Shell
maps. ACM SIGGRAPH 2005 Papers (2005), 626–633. URL: http://
doi.acm.org/10.1145/1186822.1073239, doi:10.1145/
1186822.1073239. 1

[PGDG16] PAVIE N., GILET G., DISCHLER J.-M., GHAZANFARPOUR
D.: Procedural texture synthesis by locally controlled spot noise. In Pro-
ceedings of WSCG (August 2016). To appear. URL: http://wscg.
zcu.cz/wscg2016/full/F67-full.pdf. 1, 2

[PH89] PERLIN K., HOFFERT E. M.: Hypertexture. SIGGRAPH Com-
put. Graph. 23, 3 (July 1989), 253–262. URL: http://doi.acm.
org/10.1145/74334.74359, doi:10.1145/74334.74359.
2

[PO06] POLICARPO F., OLIVEIRA M. M.: Relief mapping of non-
height-field surface details. In Proceedings of the 2006 Symposium on
Interactive 3D Graphics and Games (New York, NY, USA, 2006), I3D
’06, ACM, pp. 55–62. URL: http://doi.acm.org/10.1145/
1111411.1111422, doi:10.1145/1111411.1111422. 2

[RPZ02] REN L., PFISTER H., ZWICKER M.: Object space EWA surface
splatting: A hardware accelerated approach to high quality point render-
ing. In Computer Graphics Forum (Eurographics 2002) (Sept. 2002),
pp. 461–470. 3

[vW91] VAN WIJK J. J.: Spot noise texture synthesis for data visualiza-
tion. SIGGRAPH Comput. Graph. 25, 4 (July 1991), 309–318. URL:
http://doi.acm.org/10.1145/127719.122751, doi:10.
1145/127719.122751. 2

[WE98] WESTERMANN R., ERTL T.: Efficiently using graphics hard-
ware in volume rendering applications. In Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1998), SIGGRAPH ’98, ACM, pp. 169–
177. URL: http://doi.acm.org/10.1145/280814.280860,
doi:10.1145/280814.280860. 2

[ZJMB11] ZHAO S., JAKOB W., MARSCHNER S., BALA K.: Build-
ing volumetric appearance models of fabric using micro ct imaging.
ACM Trans. Graph. 30, 4 (July 2011), 44:1–44:10. URL: http://
doi.acm.org/10.1145/2010324.1964939, doi:10.1145/
2010324.1964939. 2

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS M.: Ewa
volume splatting. In Visualization, 2001. VIS ’01. Proceedings (Oct
2001), pp. 29–538. doi:10.1109/VISUAL.2001.964490. 2, 3, 4

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

http://jcgt.org/published/0002/02/09/
http://jcgt.org/published/0002/02/09/
http://dx.doi.org/10.1109/TVCG.2010.30
http://dx.doi.org/10.1111/j.1467-8659.2004.00780.x
http://dx.doi.org/10.1111/j.1467-8659.2004.00780.x
http://dx.doi.org/10.1111/j.1467-8659.2004.00780.x
http://dx.doi.org/10.1111/j.1467-8659.2004.00780.x
http://dx.doi.org/10.2312/EGWR/EGSR06/019-029
http://dx.doi.org/10.2312/EGWR/EGSR06/019-029
http://dx.doi.org/10.2312/EGWR/EGSR06/019-029
http://doi.acm.org/10.1145/2487228.2487234
http://doi.acm.org/10.1145/2487228.2487234
http://dx.doi.org/10.1145/2487228.2487234
http://doi.acm.org/10.1145/1186822.1073239
http://doi.acm.org/10.1145/1186822.1073239
http://dx.doi.org/10.1145/1186822.1073239
http://dx.doi.org/10.1145/1186822.1073239
http://wscg.zcu.cz/wscg2016/full/F67-full.pdf
http://wscg.zcu.cz/wscg2016/full/F67-full.pdf
http://doi.acm.org/10.1145/74334.74359
http://doi.acm.org/10.1145/74334.74359
http://dx.doi.org/10.1145/74334.74359
http://doi.acm.org/10.1145/1111411.1111422
http://doi.acm.org/10.1145/1111411.1111422
http://dx.doi.org/10.1145/1111411.1111422
http://doi.acm.org/10.1145/127719.122751
http://dx.doi.org/10.1145/127719.122751
http://dx.doi.org/10.1145/127719.122751
http://doi.acm.org/10.1145/280814.280860
http://dx.doi.org/10.1145/280814.280860
http://doi.acm.org/10.1145/2010324.1964939
http://doi.acm.org/10.1145/2010324.1964939
http://dx.doi.org/10.1145/2010324.1964939
http://dx.doi.org/10.1145/2010324.1964939
http://dx.doi.org/10.1109/VISUAL.2001.964490

