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Abstract

The notion of a difference hierarchy, first introduced by Hausdorff, plays an
important role in many areas of mathematics, logic and theoretical computer
science such as descriptive set theory, complexity theory, and the theory of
regular languages and automata. Lattice theoretically, the difference hierar-
chy over a distributive lattice stratifies the Boolean algebra generated by it
according to the minimum length of difference chains required to describe the
Boolean elements. While each Boolean element is given by a finite difference
chain, there is no canonical such writing in general. We show that, relative to
the filter completion, or equivalently, the lattice of closed upsets of the dual
Priestley space, each Boolean element over the lattice has a canonical mini-
mum length decomposition into a Hausdorff difference chain. As a corollary,
each Boolean element over a co-Heyting algebra has a canonical difference
chain (and an order dual result holds for Heyting algebras). With a further
generalization of this result involving a directed family of closure operators
on a Boolean algebra, we give an elementary proof of the fact that if a regu-
lar language is given by a Boolean combination of universal sentences using
arbitrary numerical predicates then it is also given by a Boolean combination
of universal sentences using only regular numerical predicates.
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1. Introduction1

Hausdorff introduced the notion of a difference hierarchy in his work on2

set theory [17]. Subsequently, the notion has played an important role in3

descriptive set theory as well as in complexity theory. More recently, it4

has seen a number of applications in the theory of regular languages and5

automata [15, 4]. From a lattice theoretic point of view, the difference hier-6

archy over a distributive lattice D stratifies the universal Boolean envelope7

of D. This is the (unique up to isomorphism) Boolean algebra B containing8

D as a sublattice and generated (as a Boolean algebra) by D. We follow the9

tradition in lattice theory calling B the Booleanization of D. However, we10

warn any frame theorist reading the paper that this is not the same thing as11

the Booleanization of a frame [1], which generalizes the construction of the12

complete Boolean algebra of regular opens of a topological space.13

In the difference hierarchy over D, the stratification of the Booleanization14

B of D is made according to the minimum length of difference chains required15

to describe an element b ∈ B:16

b = a1 − (a2 − (. . . (an−1 − an)...)) (1)

where a1 ≥ a2 ≥ · · · ≥ an−1 ≥ an are elements of D. One difficulty in the17

study of difference hierarchies is that in general elements b ∈ B do not have18

canonical associated difference chains.19

Priestley duality [25] for distributive lattices uses the Stone space of the20

Booleanization equipped with a partial order to represent the lattice as the21

closed and open (henceforth called clopen) upsets of the associated Priestley22

space. Priestley duality provides an elucidating tool for the study of differ-23

ence hierarchies. For one, the minimum length of difference chains for an24

element b ∈ B has a nice description relative to the Priestley dual space25

X of D as the length of the longest chain of points x1 < x2 < · · · < xn26

in X so that xi belongs to the clopen corresponding to b if and only if i is27

odd. Further, if we allow difference chains of closed upsets of the Priestley28
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space, rather than clopen upsets, then every element b ∈ B has a canonical29

difference chain which is of minimum length. If in addition D is a co-Heyting30

algebra, then the elements of this canonical difference chain are clopen and31

thus every b ∈ B has a canonical difference chain in D. We present this ma-32

terial, which is closely related to work by Leo Esakia on skeletal subalgebras33

of closure algebras [9], in Section 3. We have chosen to present this first part34

in the language of point-set topology to provide a treatment which is more35

easily accessible for researchers not used to point-free topology.36

The main purpose of Section 5 is to obtain sufficient conditions so that,37

given a Boolean algebra B, a Boolean subalgebra B′, and a sublattice D of B,38

the intersection of B′ and D generates the intersection of B′ with the Boolean39

algebra generated by D. For this purpose we consider a situation where B40

is equipped with a family of closure operators whose meet-subsemilattices of41

closed elements form a directed family the union of which is a sublattice of B.42

Using Stone-Priestley duality in the point-free form of canonical extensions,43

we generalize the results of Section 3 and use them to derive the main theorem44

of the section.45

In turn, the results of Section 5 are used in Section 8 for an application in46

logic on words. More precisely, we give an elementary proof of the equality47

BΠ1[N ] ∩ Reg = BΠ1[Reg]. (2)

The idea is that this equality may be translated into an instance of the main48

theorem of Section 5 where B=P(A∗) is the Boolean algebra of all formal49

languages over the alphabet A, B′=Reg is the Boolean subalgebra of regular50

languages, and D = Π1[N ] is the sublattice of languages given by universal51

sentences using arbitrary numerical predicates. Universally quantifying over52

a finite number of variables yields a closure operator, and the directed union53

of the closed elements is exactly D = Π1[N ]. The equantion (2) was first54

proved by Macial, Péladeau and Thérien [20]. For more details, see [29].55

Before each of the main Sections 3, 5, and 8, we include the background56

needed. The aim is in this way to make the paper accessible both to lattice57

and frame theorists and to researchers working with formal languages and58

automata. Thus, in Section 2 we introduce the basics on lattices and duality,59

Section 4 is an introduction to canonical extensions, and Section 6 contains60

the preliminaries on recognition and logic on words. Section 7 provides a61

lattice theoretical perspective on logic on words, as well as its connections62

with model theory, which is the point of view adopted in Section 8. Although,63
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strictly speaking, the results of this section can not be considered as new, to64

the best our knowledge, the presentation of the material in this form is an65

original contribution of the paper. Finally, in Section 9 we discuss possible66

generalizations of the present work, and in particular, we give some examples67

of open problems that one could try to handle with the techniques developed68

here.69

2. Preliminaries on lattices and duality70

We consider all distributive lattices to be bounded and we view the classes71

of distributive lattices and of Boolean algebras as categories in which the72

morphisms are the algebraic homomorphisms, that is, the maps that preserve73

all the basic operations (including the bounds). For readers needing more74

detailed preliminaries on lattices and duality, we refer to [7].75

Priestley duality. The Priestley dual space of a distributive lattice D con-76

sists of the set S(D) of homomorphisms from D to the two-element lattice 277

(or equivalently, of the prime filters of D) ordered point-wise and equipped78

with the topology generated by the sets â = {x ∈ S(D) | x(a) = 1} and their79

complements, for a ∈ D. One can show that the resulting ordered topological80

space, (X,≤, π), is compact and totally order disconnected. That is, if x � y81

in X then there is a clopen upset V of X with x ∈ V and y 6∈ V . Totally82

order disconnected compact spaces are called Priestley spaces and the ap-83

propriate structure preserving maps are the continuous and order preserving84

maps. In the other direction, given a Priestley space (X,≤, π) the collection85

UpClopen(X,≤, π) of subsets of X that are clopen upsets forms a lattice of86

sets (this may also be seen as the Priestley morphisms into the Priestley space87

based on the two-element chain). Morphisms correspond contravariantly and88

the correspondence is given by pre-composition. These functors account for89

the dual equivalence of the category of distributive lattices and the category90

of Priestley spaces. On objects, this means that D ∼= UpClopen(S(D)) (via91

the map a 7→ â) for any distributive lattice D and X ∼= S(UpClopen(X)) (via92

the map x 7→ χx where χx is the characteristic function of the point x re-93

stricted to UpClopen(X)) for any Priestley space X. In addition, the double94

dual of a morphism, on either side of the duality, is naturally isomorphic to95

the original. For more details see [7, Chapter 11].96

Booleanization. The Booleanization, D−, of a distributive lattice D is a97

Boolean algebra with a lattice embedding D ↪→ D− so that any lattice98
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homomorphism h : D → B into a Boolean algebra, uniquely extends to a99

homomorphism h− : D− → B making the following diagram commutative:100

D D−

B

h
h−

101

It is well-known that for any embedding of D into any Boolean algebra, the102

Boolean algebra generated by the image is isomorphic to D−. The existence103

of such a map is a consequence of Stone-Priestley duality, but showing that104

this map is an embedding requires a non-constructive principle. For more on105

Booleanizations of lattices in a constructive manner, please see [21, 23, 16, 6].106

In the setting of Priestley duality, we have seen that D is isomorphic to107

the lattice of clopen upsets of its dual space X. It thus follows that D− is108

isomorphic to the Boolean subalgebra of P(X) generated by UpClopen(X).109

One can show that this is the Boolean algebra of all clopen subsets of X.110

That is, D− ∼= Clopen(X).111

Adjunctions and closure operators. Let P and Q be posets. We say that112

maps f : P � Q : g form an adjoint pair provided113

∀p ∈ P, q ∈ Q ( f(p) ≤ q ⇐⇒ p ≤ g(q) ) .

Note that in this case, f and g uniquely determine each other since114

f(p) =
∧
{q ∈ Q | p ≤ g(q)} and g(q) =

∨
{p ∈ P | f(p) ≤ q}.

We call f the lower adjoint of g and g the upper adjoint of f . One can115

show that lower adjoints preserve all existing suprema, while upper adjoints116

preserve all existing infima. In the case that the posets P and Q are complete117

lattices this gives a simple criterion for the existence of adjoints.118

Proposition 1. A map between complete lattices has a lower adjoint if and119

only if it preserves arbitrary meets, and it has an upper adjoint if and only120

if it preserves arbitrary joins.121

Adjoint pairs are intimately related to closure operators. Recall that, for122

a poset P , a function c : P → P is a closure operator provided123

∀p1, p2 ∈ P ( p1 ≤ c(p2) ⇐⇒ c(p1) ≤ c(p2) ).
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Proposition 2. If (f : P � Q : g) is an adjoint pair, then gf is a closure124

operator on P . Conversely, every closure operator c : P → P may be obtained125

in this way, e.g. (c′ : P � Im(c) : ι), where c′ is the co-restriction of c to its126

image and ι the inclusion map, is such an adjoint pair.127

Finally, since upper adjoints preserve all existing infima, one can show128

that if c : P → P is a closure operator and P admits a meet-semilattice129

structure, then Im(c) is a meet-subsemilattice of P . For more details, see [7,130

Chapter 7].131

Heyting and co-Heyting algebras. Heyting algebras are the algebras for in-132

tuitionistic propositional logic in the same sense that Boolean algebras are133

the algebras for classical propositional logic. The order dual notion is called134

a co-Heyting algebra. We will focus on co-Heyting algebras here as this is135

more convenient for the sequel, but any result about one notion has a corre-136

sponding order dual result about the other notion.137

Definition 3. A co-Heyting algebra is a distributive lattice equipped with an138

additional binary operation, /, which is the lower adjoint of the operation ∨139

in the sense that we have140

∀a, b, c ∈ D ( a/b ≤ c ⇐⇒ a ≤ b ∨ c ).

Notice that this property implies that the co-Heyting operation on a dis-141

tributive lattice, if it exists, is unique and is given by142

a/b =
∧
{c | a ≤ b ∨ c}.

Thus one may think of a co-Heyting algebra as a special kind of distributive143

lattice. Indeed, the following proposition, which is the order dual of the144

corresponding fact for Heyting algebras, see [10, Proposition 3], gives such a145

characterization.146

Proposition 4. A distributive lattice D is a co-Heyting algebra if and only147

if the inclusion of D in its Booleanization has a lower adjoint.148

Definition 5. The lower adjoint mentioned in Proposition 4 gives, for each149

b ∈ D−, the least over-approximation of b in D. We denote it by150

D− −→ D, b 7→ dbe =
∧
{c ∈ D | b ≤ c}.

and call it the ceiling function (of D).151
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It will be useful to understand which Priestley spaces correspond to co-152

Heyting algebras. The order dual characterization for Heyting algebras is153

due to Esakia [8] independently of Priestley’s work. We include a proof of154

the result for co-Heyting algebras to illustrate the correspondence between155

the algebraic and topological formulations.156

Theorem 6 ([8]). Let D be a distributive lattice and X its Priestley dual.157

Then D admits a co-Heyting structure if and only if for each V ⊆ X clopen,158

↑V is again clopen. When this is the case, the map d e : D− → D is naturally159

isomorphic to the map V 7→ ↑V on clopen subsets of X.160

Proof. This is a simple consequence of Proposition 4. Note that by total161

order disconnectedness of X, for any closed (and thus compact) K ⊆ X, we162

have163

↑K =
⋂
{W ⊆ X | K ⊆ W and W clopen upset}. (3)

Therefore, there is a least clopen upset (i.e., element of D) above V if and164

only if ↑V is clopen.165

Closed upsets in Priestley spaces. Note that closed subspaces of Priestley166

spaces are again Priestley spaces. In fact, the closed subspaces of a Priestley167

spaceX correspond to the lattice quotients of its dualD, cf. [7, Section 11.32].168

The following well-known fact about upsets of closed sets will be used169

extensively in the sequel. We include a proof for the sake of completeness.170

For a subset S ⊆ P of a poset P , we use min(S) to denote the set of minimal171

elements of S.172

Proposition 7. Let X be a Priestley space and K ⊆ X a closed subset.173

Then, ↑K = ↑min(K) and this is a closed subset of X.174

Proof. As seen in (3), ↑K is a closed subset of X whenever K ⊆ X is. Now175

consider X as the dual space of a distributive lattice D. Then the points176

of X are the prime filters of D. Let x be any element of K and let C be a177

maximal chain of prime filters contained in K with x ∈ C. Since C is a chain,178

it is easy to show that x0 =
⋂
x∈C x is again a prime filter. Also, if W = â179

is any clopen upset of X with K ⊆ W , then a ∈ y for all y ∈ K and thus180

a ∈ x0. It follows that x0 ∈ W for all clopen upsets W of X with K ⊆ W181

and thus x0 ∈ ↑K. Now by maximality of C it follows that x0 ∈ min(K) and182

x0 ≤ x. Thus ↑K = ↑min(K).183
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3. The difference hierarchy and closed upsets184

Let D be a distributive lattice and D− its Booleanization. Since D− is185

generated by D as a Boolean algebra and because of the disjunctive normal186

form of Boolean expressions, every element of D− may be written as a finite187

join of elements of the form a − b with a, b ∈ D. A fact, that is well known188

but somewhat harder to see is that every element of D− is of the form189

a1 − (a2 − (. . .− (an−1 − an)...)), (4)

for some a1, . . . , an ∈ D. The usual proof is by algebraic computation and190

is not particularly enlightening. It is also a consequence of our results here.191

We begin with a technical observation.192

Proposition 8. Let B be a Boolean algebra and let a1 ≥ · · · ≥ a2m be a193

decreasing sequence of elements of B. Then, the following equality holds:194

a1−(a2−(· · ·−(a2m−1−a2m)...)) = (a1−a2)∨(a3−(· · ·−(a2m−1−a2m)...)) (5)

where the join is disjoint, and by induction we obtain195

196

a1 − (a2 − (· · · − (a2m−1 − a2m)...)) =
m∨
n=1

(a2n−1 − a2n)

where the joinands are pairwise disjoint.197

Proof. Let us denote b = a3−(a4−(· · ·−(a2m−1−a2m)...). A simple algebraic198

computation yields a1 − (a2 − b) = (a1 − a2) ∨ (a1 ∧ b). Since a1, . . . , a2m199

is a decreasing chain and b ≤ a3, it follows that a1 ∧ b = b, which in turn200

yields (5).201

One problem with difference chain decompositions of Boolean elements202

over a distributive lattice, which makes them difficult to understand and203

work with, is that, in general, there is no ‘most efficient’ such decomposition.204

We give an example of a Boolean element over a distributive lattice that205

illustrates this problem.206

Example 9. Consider X = N ∪ {x, y} equipped with the topology of the207

one-point compactification of the discrete topology on N ∪ {x}. That is, the208

frame of opens of X is:209
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π = P(N ∪ {x}) ∪ {C ∪ {y} | C ⊆ N ∪ {x} is cofinite}.
The order relation on X is as depicted. That is, the only non-trivial order210

relation in X is x ≤ y. It is not hard to verify that X is a Priestley space.211

1 2

. . .

y

x

212

The clopen upsets of X are the finite subsets of N and the cofinite subsets213

of X containing y and they form the lattice D dual to X. Note that V = {x}214

is clopen in X and thus V ∈ D−. On the other hand, any clopen upset W215

of X containing V must be cofinite. We can write216

V = W −W ′

where W ′ = W −{x} is also a clopen upset of X. There is no smallest choice217

for W as ↑V = {x, y} is not open and thus not in D.218

However, if we look for difference chains for V relative to the lattice of219

closed subsets of X, then we have a least choice of difference chain, namely220

V = K1 −K2 where K1 = ↑V and K2 = K1 − V .221

We show that there is an algorithm for deriving, for each element of the222

Booleanization of a distributive lattice, a difference chain of closed upsets (cf.223

Theorem 14), and that, in the case of a co-Heyting algebra, this provides224

a difference chain of the form (4) for each element of its Booleanization225

(cf. Corollary 17). We show that the difference chain thus obtained is of226

minimum length and is element-wise contained in any other such sequence227

(cf. Proposition 15). For this reason we will call it the canonical difference228

chain of closed upsets for the Boolean element in question. Recall that a229

subset S ⊆ P of a poset is said to be convex provided x ≤ y ≤ z with230

x, z ∈ S implies y ∈ S.231

Definition 10. If P is a poset, S ⊆ P , and p ∈ P , then we say that p1 <232

p2 < · · · < pn in P is an alternating sequence of length n for p (with respect233

to S) provided234

(a) pi ∈ S for each i ∈ {1, . . . , n} which is odd;235
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(b) pi 6∈ S for each i ∈ {1, . . . , n} which is even;236

(c) pn = p.237

Further, we say that p ∈ P has degree n (with respect to S), written238

degS(p) = n, provided n is the largest natural number k for which there239

is an alternating sequence of length k for p. In particular, if there is no alter-240

nating sequence for p with respect to S (i.e. if p ∈ P −↑S) then degS(p) = 0.241

Notice that an element of finite degree is of odd degree if and only if it belongs242

to S. Also, if S is convex, then every element of S has degree 1, while every243

element of ↑S − S has degree 2. In general, there will be non-empty subsets244

of posets with respect to which no element has finite degree. However, that245

is not the case for clopen subsets of Priestley spaces.246

Proposition 11. Let X be a Priestley space and V a clopen subset of X.247

Then every element of X has finite degree with respect to V .248

Proof. The elements of the Booleanization of a distributive lattice D may be249

written as a finite disjunctions of differences of elements from D. Thus, if V250

is a clopen subset of a Priestley space X, then there is an m so that we may251

write252

V =
m⋃
i=1

(Ui −Wi),

where Ui,Wi ⊆ X are clopen upsets of X. In particular, since each Ui −Wi253

is convex and, by the Pigeonhole Principle, there is no alternating sequence254

with respect to V of length strictly greater than 2m.255

Lemma 12. Let X be a Priestley space and V a clopen subset of X. Let256

K1 = ↑V, K2 = ↑(↑V − V ).

Then, for each i ∈ {1, 2}, Ki is closed and257

Ki = {x ∈ X | degV (x) ≥ i} = ↑{x ∈ X | degV (x) = i}.

Proof. By Proposition 11, every element of X has a finite degree. Also if x ≤258

y, then it is clear that degV (x) ≤ degV (y). Furthermore, by Proposition 7,259

we have that ↑K = ↑min(K) for any closed set K. Now since both V and260
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↑V − V are closed, it suffices to show that the elements of min(V ) have261

degree 1, and the elements of min(↑V − V ) have degree 2. It is clear that262

degV (x) = 1 for any x ∈ min(V ). Now suppose x ∈ min(↑V − V ). Since263

x ∈ ↑V , there is x′ ∈ V with x′ ≤ x. Since x 6∈ V , this is an alternating264

sequence of length 2 for x. On the other hand, if x1 < x2 < · · · < xn = x is265

an alternating sequence for x, then x2 ∈ ↑V − V and thus x 6∈ min(↑V − V )266

unless n = 2 and x2 = x. Thus degV (x) = 2 for any x ∈ min(↑V − V ).267

Corollary 13. Let X be a Priestley space, V a clopen subset of X, and268

G1 ⊇ G2 ⊇ · · · ⊇ G2p a sequence of closed upsets in X satisfying269

V = G1 − (G2 − (· · · − (G2p−1 −G2p)...)). (6)

If K1 and K2 are as defined in Lemma 12, then270

K1 ⊆ G1, K2 ⊆ G2, and G1 −G2 ⊆ K1 −K2.

Proof. By (6), we have V ⊆ G1. Also, since G1 is an upset we have K1 =271

↑V ⊆ G1. Now, since G1 − G2 ⊆ V we have G1 − V ⊆ G2 and as G2272

is an upset, it follows that ↑(G1 − V ) ⊆ G2. Also, K1 ⊆ G1 implies K2 =273

↑(K1−V ) ⊆ ↑(G1−V ) and thus, K2 ⊆ G2. In particular, we have G1−G2 ⊆274

V −K2 ⊆ K1 −K2.275

An iteration of Lemma 12 leads to the main result of this section.276

Theorem 14. Let X be a Priestley space and V a clopen subset of X. Define277

a sequence of subsets of ↑V as follows:278

K1 = ↑V, K2i = ↑(K2i−1 − V ), and K2i+1 = ↑(K2i ∩ V ),

for i ≥ 1. Then, K1 ⊇ K2 ⊇ . . . is a decreasing sequence of closed upsets of279

X and, for every n ≥ 1, we have280

Kn = {x ∈ X | degV (x) ≥ n} = ↑{x ∈ X | degV (x) = n}. (7)

In particular,281

V =
m⋃
i=1

(K2i−1 −K2i) = K1 − (K2 − (. . . (K2m−1 −K2m)...)), (8)

where 2m− 1 = max{degV (x) | x ∈ V }.282
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Proof. Note that if (7) holds, then (8) holds since K2i−1 − K2i will consist283

precisely of the elements of V of degree 2i − 1 and since each element of V284

has an odd degree less than or equal to the maximum degree achieved in V .285

For the first statement and for (7), the proof proceeds by induction on286

the parameter i used in (8). The case i = 1 is exactly Lemma 12. For287

the inductive step, suppose the statements hold for n ≤ 2i and notice that288

K2i+1 = ↑(K2i ∩ V ) and K2i+2 = ↑(K2i+1 − V ) are in fact the sets K1 and289

K2 of Lemma 12 when we apply it to the Priestley space X ′ = K2i and its290

clopen subset V ′ = K2i∩V . Thus, to complete the proof, it suffices to notice291

that, for every x ∈ X ′, we have degV (x) = degV ′(x) + 2i.292

Using Corollary 13 we can now prove the minimality of the chain in (8).293

Proposition 15. Let X be a Priestley space and V ⊆ X be a clopen subset294

of X. Let G1 ⊇ G2 ⊇ · · · ⊇ G2p be a decreasing sequence of closed upsets of295

X satisfying296

V =

p⋃
i=1

(G2i−1 −G2i) = G1 − (G2 − (. . . (G2p−1 −G2p)...)). (9)

Then, taking (Ki)i≥1 as defined in Theorem 14, we have p ≥ m and, for297

every n ∈ {1, . . . , p}, the following inclusions hold:298

K2n−1 ⊆ G2n−1, K2n ⊆ G2n, and
n⋃
i=1

(G2i−1−G2i) ⊆
n⋃
i=1

(K2i−1−K2i). (10)

Proof. We proceed by induction on n. The case n = 1 is the content of299

Corollary 13. Now suppose that (10) holds for a certain n ∈ {1, . . . , p}. As300

in the proof of Theorem 14, we consider the new Priestley spaceX ′ = K2n and301

its clopen subset V ′ = X ′ ∩ V . Setting G′i = X ′ ∩Gi for each i ∈ {1, . . . , p},302

we obtain a decreasing sequence of closed upsets of X ′ that form a difference303

chain for V ′. On the other hand, by the induction hypothesis we have304

n⋃
i=1

(G′2i−1−G′2i) =

(
n⋃
i=1

(G2i−1 −G2i)

)
∩K2n ⊆

(
n⋃
i=1

(K2i−1 −K2i)

)
∩K2n = ∅

so that the first 2n sets do not contribute to the writing of V ′ as a difference.305

It follows that the sequence G′2n+1 ⊇ G′2n+2 ⊇ · · · ⊇ G′2p is a difference chain306
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of closed upsets of X ′ for V ′. Now applying Corollary 13 to this sequence,307

we see that308

K2n+1 = ↑(K2n ∩ V ) = ↑V ′ ⊆ G′2n+1 ⊆ G2n+1

and309

K2n+2 = ↑(K2n+1 − V ) = ↑(↑V ′ − V ′) ⊆ G′2n+2 ⊆ G2n+2.

We also obtain that (G2n+1−G2n+2)∩K2n = G′2n+1−G′2n+2 ⊆ K2n+1−K2n+2.310

On the other hand, by Theorem 14, we have311

(G2n+1 −G2n+2)−K2n ⊆ V −K2n =
n⋃
i=1

(K2i−1 −K2i).

We thus conclude that312

n+1⋃
i=1

(G2i−1 −G2i) ⊆
n+1⋃
i=1

(K2i−1 −K2i)

as required for the inductive step.313

Note that, for V =
⋃m
i=1(K2i−1 − K2i) as in Theorem 14, each of the314

unions
⋃j
i=1(K2i−1 − K2i) is an open subset of X, while

⋃m
i=j(K2i−1 − K2i)315

is closed (j = 1, . . . ,m). In the next example, we illustrate Theorem 14 in a316

case where m = 2, (K1 −K2) is not closed, and (K3 −K4) is not open.317

Example 16. Let X = N ∪ {x, y} be the same topological space as in Ex-318

ample 9, that is, the one-point compactification by y of the discrete space319

N ∪ {x}, but now ordered by 1 < 2 < · · · < y and 1 < x < y. The order on320

X and the dual lattice are depicted below:321

1

2

3

y

x

..
.

↑3

↑2
↑3 ∪ {x}

↑2 ∪ {x}

X = ↑1

∅

...

...

322
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Consider the clopen subset V = N ∪ {y} of X. Then, we have:323

K1 = X, K2 = {x, y}, K3 = {y}, and K4 = ∅.

So K1−K2=N is open but not closed and vice versa for K3−K4={y}.324

As a consequence of Theorem 6, Theorem 14 and Proposition 15 we have325

the following corollary.326

Corollary 17. Let D be a co-Heyting algebra and b ∈ D−. Define the327

following sequence (recall Definition 5):328

a1 = dbe, a2i = da2i−1 − be, and a2i+1 = da2i ∧ be, for i ≥ 1.

Then, the sequence {ai}i≥1 is decreasing, and there exists m ≥ 1 such that329

a2m+1 = 0. For the least such m we have330

b = a1 − (a2 − (. . . (a2m−1 − a2m)...)) (11)

and, for every other writing331

b = c1 − (c2 − (. . . (c2p−1 − c2p)...))

as a difference chain with c1 ≥ · · · ≥ c2p in D, we have p ≥ m, ci ≥ ai for i ∈332

{1, . . . , 2p}, and for each n ≤ p we have
∨n
i=1(c2i−1−c2i) ≤

∨n
i=1(a2i−1−a2i).333

We have a order dual algorithm for getting difference chains for Boolean334

elements over Heyting algebras. To obtain these sequences we use the floor335

function b c : D− → D (its existence is the order dual of Proposition 4).336

Corollary 18. Let D be a Heyting algebra and b ∈ D−. Define a sequence337

of elements in D as follows:338

a1 = b¬bc, a2i = ba2i−1 ∨ bc, a2i+1 = ba2i ∨ ¬bc, for i ≥ 1.

Then, the sequence {ai}i≥0 is increasing, and there exists m ≥ 1 such that339

a2m+1 = 1. For the least such m we have340

b = a2m − (a2m−1 − (. . . (a2 − a1)...))
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and, for every other writing341

b = c2p − (c2p−1 − (. . . (c2 − c1)...))

as a difference chain with c1 ≤ · · · ≤ c2p in D, we have p ≥ m, ci ≤ ai for i ∈342

{1, . . . , 2p}, and for each n ≤ p we have
∨n
i=1(c2i−1−c2i) ≥

∨n
i=1(a2i−1−a2i).343

Proof. Apply Corollary 17 to the co-Heyting algebra D′ = {¬a | a ∈ D} to344

get, for any b ∈ B = D− = (D′)−, a difference chain of elements in D′:345

d1 = dbe, d2i = dd2i−1 − be, and d2i+1 = dd2i ∧ be,

where the ceiling function is the one of D′. Since a − b = ¬b − (¬a), by346

Proposition 8, we may write b ∈ B as347

b = ¬d2m − (¬d2m−1 − (. . . (¬d2 − ¬d1)...)),

and we have348

¬d1 = b¬bc, ¬d2i = b¬d2i−1 ∨ bc, and ¬d2i+1 = b¬d2i ∨ ¬bc,

since ¬due = b¬uc for all u ∈ B, where the ceiling function is the one for349

D′ while the floor function is the one for D. Each ai in the statement of the350

corollary is the ¬di of the proof.351

Since finite distributive lattices are co-Heyting algebras, Corollary 17 ap-352

plies. Combined with the fact that every distributive lattice is the direct353

limit of its finite sublattices and that the Booleanization is the direct limit of354

the Booleanizations of these finite sublattices, we have a proof of the original355

observation by Hausdorff.356

Corollary 19. Every Boolean element over any distributive lattice may be357

written as a difference chain of elements of the lattice.358

The results of this section were proved using Priestley duality. This makes359

them non-constructive. However, we could have proved them in a point-free360

setting (with very similar proofs). We trust that anyone interested in the361

constructive aspect can see for themselves that this is the case. In Section 5362

we will continue in the point-free setting of so-called canonical extensions as363

this makes the more involved proofs there simpler.364
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4. Preliminaries on canonical extensions365

Here we provide the required information on canonical extensions. For366

further details, please see [10] and [12].367

Canonical extensions. Let D be a distributive lattice and X its dual Priestley368

space. Then, Priestley duality implies that the Stone map369

D −→ Up(X,≤), a 7→ â

is an embedding of D into the complete lattice Up(X,≤) of upsets of the poset370

underlying X. An embedding into a complete lattice is called a completion,371

and canonical extension, first introduced by Jónsson and Tarski [18], comes372

about from the fact that the above completion can be uniquely characterized373

in abstract terms among all the completions of D. Indeed, it is the unique374

completion e : D ↪→ C (up to isomorphism) satisfying the following two375

properties:376

(dense) Each element of C is a join of meets and a meet of joins of elements377

in the image of D;378

(compact) For S, T ⊆D with
∧
e[S]≤

∨
e[T ] in C, there are finite subsets379

S ′⊆S and T ′⊆T with
∧
e[S ′]≤

∨
e[T ′].380

Thus, instead of working with the dual space of a distributive lattice D, we381

will work with its canonical extension, denoted Dδ. It comes with an em-382

bedding D ↪→ Dδ, which is compact and dense in the above sense. As stated383

above this implies (modulo a non-constructive axiom) that Dδ is isomorphic384

to Up(X,≤), where X is the Priestley space of D, and that the embedding385

e is naturally isomorphic to the map a 7→ â. In what follows, to lighten the386

notation, we will assume (WLOG) that the embedding e is an inclusion so387

that D sits as a sublattice in Dδ.388

Filter and ideal elements. Since D sits in Dδ as the clopen upsets sit in389

Up(X,≤), the join-closure of D in Dδ corresponds to the lattice of open390

upsets of X. One can show that these are in one-to-one correspondence391

with the ideals of D. Thus we denote the join-closure of D in Dδ by I(Dδ)392

and call the elements of I(Dδ) ideal elements of Dδ. Similarly the meet-393

closure of D in Dδ corresponds to the lattice of closed upsets of X and one394

can show that these are in one-to-one correspondence with the filters of D.395
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Accordingly we denote the meet-closure of D in Dδ by F (Dδ) and call its396

elements filter elements of Dδ. Note that, relative to the concepts of filter397

and ideal elements, the density property of Dδ states that every element of398

Dδ is a join of filter elements and a meet of ideal elements.399

Another abstract characterization of F (Dδ) is that it is the free down-400

directed meet completion of D. As such it is uniquely determined by the401

following two properties [13, Proposition 2.1]:402

(filter dense) Each element of F (Dδ) is a down-directed meet of elements403

from D;404

(filter compact) For S⊆F (Dδ) down-directed and a∈D, if
∧
S≤a, then405

there is s∈S with s≤a.406

Notice, that in the particular case of a Boolean algebra B, the order on407

the dual space is trivial and thus Bδ is isomorphic to the full powerset of the408

dual space X of B. Also, the ideal elements of Bδ correspond to all the opens409

of X while the filter elements of Bδ correspond to all the closed subsets of X.410

Ceiling functions at the level of canonical extensions. We saw in Proposi-411

tion 4, that if D is a co-Heyting algebra, then the inclusion of D in its412

Booleanization, D−, has a lower adjoint d e : D− → D. Here we will show,413

that on the level of canonical extensions any embedding has a lower adjoint414

with nice properties for filter elements.415

Consider a situation where we have a Boolean algebra B and a sublattice416

D of B. Then the embedding of D in B extends to a complete embedding417

Dδ ↪→ Bδ [12, Theorem 3.2] which restricts to embeddings for the filter418

elements as well as for the ideal elements [12, Theorem 2.19]. Since the419

embedding is complete, it has both an upper and a lower adjoint, see Propo-420

sition 1. We are interested in the lower adjoint, which we will study via the421

corresponding closure operator ( ) : Bδ → Dδ ↪→ Bδ, cf. Proposition 2. Thus422

we have, for v ∈ Bδ,423

v =
∧
{u ∈ Dδ | v ≤ u} =

∧
{y ∈ I(Dδ) | v ≤ y},

where the second equality follows by the density property of Dδ. We are424

particularly interested in the restriction of this closure operator to the filter425

elements.426
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Proposition 20. Let B be a Boolean algebra and D a sublattice of B, and427

let ( ) : Bδ → Bδ be the closure operator associated with D ≤ B as above.428

Then the following properties hold:429

(a) for each u ∈ Bδ, u is the least element of Dδ which lies above u;430

(b) the map ( ) : Bδ → Bδ sends filter elements to filter elements;431

(c) the map ( ) : F (Bδ)→ F (Bδ) preserves down-directed meets.432

Proof. Part (a) follows by the definition of adjoints. For (b), let v ∈ F (Bδ)433

and let y ∈ I(Dδ) with v ≤ y. Since y =
∨
{a ∈ D | a ≤ y}, by compactness,434

there is ay ∈ D with v ≤ ay ≤ y. Thus, we have435

v =
∧
{y ∈ I(Dδ) | v ≤ y} =

∧
{ay ∈ D | v ≤ y} ∈ F (Dδ) ⊆ F (Bδ).

For (c), let S be a down-directed subset of F (Bδ) with v =
∧
S. By (b),436

v ∈ F (Dδ), and thus v =
∧
{a ∈ D | v ≤ a}. Let a ∈ D with v ≤ a, then437 ∧

S ≤ a and by the filter compactness property of F (Bδ), there is wa ∈ S438

with wa ≤ a. Therefore we have439

∧
{w | w ∈ S} ≤

∧
{wa | v ≤ a ∈ D} ≤

∧
{a | v ≤ a ∈ D} = v.

On the other hand, since v ≤ w for each w ∈ S, by monotonicity of the440

closure operator, we also have v ≤
∧
{w | w ∈ S} and thus the closure441

operator, restricted to F (Bδ), preserves down-directed meets.442

Remark 21. Notice that if B is the Booleanization of D, and X is the443

Priestley space of D, then Bδ ∼= P(X), Dδ ∼= Up(X,≤), and the closure444

operator is the map S 7→ ↑S. Furthermore, Proposition 20(b) tells us that445

if K ⊆ X is closed then so is ↑K. That is, it is the canonical extension446

formulation of the second assertion in Proposition 7. We did not prove447

Proposition 20(c) in topological terms, but we could have. It says that if448

{Wi}i∈I is a down-directed family of closed subsets of a Priestley space, then449 ⋂
i∈I

↑Wi = ↑(
⋂
i∈I

Wi).

A statement that is not true in general for down-directed families of subsets450

of a poset.451

18



5. The difference hierarchy and families of closure operators452

Our main aim in this section is Theorem 27 and, more specifically, the453

Corollary 30, which will provide a simple proof of an important result in454

logic on words in Section 8. We will be working in the following general455

setting. We have a Boolean algebra B and D a sublattice of B. Recall456

that the Boolean subalgebra of B generated by D is (up to isomorphism)457

the Booleanization D− of D. Accordingly, we work with D− as being this458

generated subalgebra of B.459

We start by formulating Theorem 14 in terms of canonical extensions and460

closure operators. As in the previous section, we let ( ) : Bδ → Dδ ⊆ Bδ be461

the closure operator which is the lower adjoint of the (complete) embedding462

Dδ ↪→ Bδ. Given b ∈ B, we define the sequence {kn}n≥1 in Dδ as follows:463

k1 = b, k2n = k2n−1 − b, and k2n+1 = k2n ∧ b, for n ≥ 1. (12)

Notice that {kn}n≥1 is a decreasing sequence of filter elements of Dδ. More-464

over, in the case where B = D−, by Remark 21, this is exactly the canonical465

extension incarnation of the sequence {Kn}n∈N for V = b̂ in Theorem 14. We466

thus have the following:467

Theorem 22. Let D be a distributive lattice, B = D− and, for b ∈ D−,468

consider the sequence {kn}n≥1 of Dδ as defined in (12). Then, there exists469

m ≥ 1 such that k2m+1 = 0, and470

b = k1 − (k2 − (. . . (k2m−1 − k2m)...)) =
m∨
l=1

(k2l−1 − k2l).

We will need the following slight generalization of Theorem 22.471

Corollary 23. Let B be a Boolean algebra and D a sublattice of B. If b ∈ D−472

and {kn}n≥1 is the sequence defined in (12), then there exists m ≥ 1 such473

that k2m+1 = 0 and474

b = k1 − (k2 − (. . . (k2m−1 − k2m)...)) =
m∨
l=1

(k2l−1 − k2l).

Proof. The embedding e : D ↪→ B factors through D− so that e = e2e1 where475

e1 : D ↪→ D− and e2 : D− ↪→ B. These maps all lift to complete embeddings476
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with eδ = eδ2e
δ
1 [12, Theorem 3.2 and Theorem 2.33], and these all have lower477

adjoints, f, f2, and f1, respectively. It follows that f = f1f2. In a picture:478 (
Dδ (D−)δ Bδ

)
=

(
Dδ Bδ

)eδ1

f1

eδ2

f2

eδ

f
479

Now the closure operator associated with D− is the map c1 = eδ1f1, whereas480

the closure operator associated with B is the map c = eδf . The difference481

between Theorem 22 and Corollary 23 is that in the former c1 is used to482

produce the sequence {kn}n≥1, and in the latter c is used. Thus the corollary483

follows if we can show that for all x ∈ (D−)δ we have c(x) = c1(x), or484

including the action of the inclusion eδ2, that c(eδ2(x)) = eδ2(c1(x)). This is485

verified by the following calculation.486

c(eδ2(x)) = (eδfeδ2)(x) = (eδ2e
δ
1f1f2e

δ
2)(x) = eδ2(c1([f2e

δ
2](x))) = eδ2(c1(x))

since f2e
δ
2 = id(D−)δ .487

Motivated by the application to logic on words presented in Section 8, we488

will now work in the following more general setting:489

Definition 24. Let B be a Boolean algebra and I a directed partially or-490

dered set. A directed family of closure operators on B indexed by I is a family491

of closure operators {( )
i

: B → B}i∈I satisfying the following conditions:492

(a) The meet-subsemilattices Si := {b ∈ B | bi = b} for i ∈ I form an493

I-directed family of subsets of B. That is, Si ⊆ Sj whenever i ≤ j.494

(b) D :=
⋃
i∈I Si is a sublattice of B. That is, if a, b ∈ Si then there is j495

with a ∨ b ∈ Sj.496

We start by showing that we have the following relationship between the497

closure operators ( )
i

and the one given by D.498

Proposition 25. Let B be a Boolean algebra and {( )
i

: B → B}i∈I a499

directed family of closure operators on B. Then, for each x ∈ B, we have:500

x =
∧
i∈I

xi

where the meet is taken in Bδ.501
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Proof. For each x ∈ B, x ≤ xi ∈ Si ⊆ D ⊆ Dδ. Also x is the least element502

of Dδ above x. Thus x ≤
∧
i∈I x

i. On the other hand, by Proposition 20(b),503

since x ∈ B ⊆ F (Bδ), we have x ∈ F (Dδ). That is, x =
∧
{a ∈ D | x ≤ a}.504

Now let a ∈ D with x ≤ a. Then, since D =
⋃
i∈I Si, there is j ∈ I with505

a ∈ Sj. Now using the fact that x ≤ a and the monotonicity of ( )
j

we obtain506 ∧
i∈I

xi ≤ xj ≤ aj = a.

We thus have507 ∧
i∈I

xi ≤
∧
{a ∈ D | x ≤ a} = x.

Now, for each i ∈ I, we define the {cn,i}n≥1 as follows:508

c1,i = b
i
, c2n,i = c2n−1,i − b

i
, and c2n+1,i = c2n,i ∧ b

i
(13)

Lemma 26. The following properties hold for the sequences as defined above:509

(a) i ≤ j implies kn ≤ cn,j ≤ cn,i for all n ∈ N and i, j ∈ I;510

(b) kn =
∧
i∈I cn,i for all n ∈ N.511

Proof. Define k0 = c0,i = 1 for all i ∈ I. Also, define bn = b for n odd and512

bn = ¬b for n even then we have, for all n ≥ 1, kn+1 = kn ∧ bn and similarly513

for the cn,i. Proceeding by induction on n, we suppose (a) holds for n ∈ N514

and that i ≤ j. Note that since Si ⊆ Sj ⊆ D, we have x ≤ xj ≤ xi for all515

x ∈ B. Also, by the induction hypothesis kn ≤ cn,j ≤ cn,i, and thus we have516

kn ∧ bn ≤ cn,j ∧ bn ≤ cn,j ∧ bn
j ≤ cn,j ∧ bn

i ≤ cn,i ∧ bn
i
.

That is, kn+1 ≤ cn+1,j ≤ cn+1,i as required.517

For (b), again the case n = 0 is clear by definition and we suppose518

kn =
∧
i∈I cn,i. Then we have519

kn+1 = kn ∧ bn = (
∧
i∈I

cn,i) ∧ bn =
∧
i∈I

(cn,i ∧ bn).

Now applying Proposition 20(c) and then Proposition 25, we obtain520
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kn+1 =
∧
i∈I

cn,i ∧ bn =
∧
i∈I

∧
j∈I

cn,i ∧ bn
j
.

Now given i, j ∈ I, since I is directed, there is k ∈ I with i, j ≤ k. By521

Lemma 26(a) we have cn,k ≤ cn,i. Combining this with the fact that Sj ⊆ Sk522

we obtain523

cn,k ∧ bn
k ≤ cn,i ∧ bn

k ≤ cn,i ∧ bn
j

and thus524

kn+1 =
∧

(i,j)∈I2
cn,i ∧ bn

j
=
∧
k∈I

cn,k ∧ bn
k

=
∧
k∈I

cn+1,k.

We are now ready to state and prove our main theorem.525

Theorem 27. Let B be a Boolean algebra and {( )
i

: B → B}i∈I a directed526

family of closure operators on B. For each b ∈ B let {kn}n≥1 be the sequence527

of filter elements as defined in (12) and {cn,i}n≥1,i∈I be the sequence defined528

in (13). If b ∈ D− ⊆ B, then, there is m ∈ N and i ∈ I so that, for each529

j ∈ I with i ≤ j we have530

b = k1 − (k2 − . . .− (k2m−1 − k2m)...) =
m∨
l=1

(k2l−1 − k2l)

= c1,j − (c2,j − . . .− (c2m−1,j − c2m)...) =
m∨
l=1

(c2l−1,j − c2l,j).

Proof. Note that for b ∈ D− the fact that the first line of the conclusion531

holds is simply the content of Corollary 23. The fact that the second line532

holds follows inductively from Lemma 28 below.533

Lemma 28. Let b, b′ ∈ B and v ∈ Bδ be such that v ∧ k2l+1 = 0 and534

b′ ≤ k2l+2. Suppose b = v ∨ (k2l+1 − k2l+2) ∨ b′. Then there is an i ∈ I so535

that, for each j ∈ I with i ≤ j we have b = v ∨ (c2l+1,j − c2l+2,j) ∨ b′.536

Proof. Since both v and k2l+1−k2l+2 are below ¬k2l+2 we have b ≤ ¬k2l+2∨b′,537

or equivalently, b∧k2l+2 ≤ b′. Now by Lemma 26(b) we have b∧
∧
i∈I c2l+2,i ≤538

b′ and by compactness there is an i1 ∈ I so that for all j ∈ I with i1 ≤ j we539
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have b ∧ c2l+2,j ≤ b′, or equivalently, b ≤ ¬c2l+2,j ∨ b′. Now, for each j ∈ I540

with i1 ≤ j541

b = (¬k2l+1 ∧ b) ∨ (k2l+1 ∧ b) = v ∨ (k2l+1 ∧ b)
≤ v ∨ (k2l+1 ∧ (¬c2l+2,j ∨ b′)) = v ∨ (k2l+1 ∧ ¬c2l+2,j) ∨ (k2l+1 ∧ b′)
≤ v ∨ (k2l+1 − c2l+2,j) ∨ b′

≤ v ∨ (k2l+1 − k2l+2) ∨ b′ = b.

Consequently, for each j ∈ I with i1 ≤ j we have b = v∨ (k2l+1− c2l+2,j)∨ b′.542

Now, since c2l+2,j = c2l+1,j − b
j ≥ c2l+1,j − b, and thus, b ≥ c2l+1,j − c2l+2,j,543

using also the inequality c2l+1,j ≥ k2l+1 given by Lemma 26(a), we may544

deduce545

b = v ∨ b ∨ b′ ≥ v ∨ (c2l+1,j − c2l+2,j) ∨ b′

≥ v ∨ (k2l+1,j − c2l+2,j) ∨ b′ = b.

It then follows that for all j ∈ I with j ≥ i1 we have546

b = v ∨ (c2l+1,j − c2l+2,j) ∨ b′.

Remark 29. Notice that Corollary 19, stating that Boolean elements over547

a lattice are difference chains of elements of the lattice, can also be seen548

as a consequence of Theorem 27. Let D be any distributive lattice and549

B its Booleanization. For each finite sublattice D′ of D, the embedding550

D′ ↪→ D ↪→ B has an upper adjoint g′ : B → D′ given by g′(b) =
∧
{a ∈551

D′ | b ≤ a} = min{a ∈ D′ | b ≤ a}. Thus, Theorem 27 applies and we552

get Corollary 19. In fact, in this way, we obtain more information as we see553

that the minimum length chain in D is equal to the minimum length chain554

in F (Dδ), or equivalently, in the lattice of closed upsets of the dual space of555

D. In turn, this is the same as the maximum length of difference chains in556

the dual with respect to the clopen corresponding to the given element.557

In Section 8 we will give an application of the following consequence of558

Theorem 27, which needs its full generality.559
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Corollary 30. Let B be a Boolean algebra and {( )
i

: B → B}i∈I a directed560

family of closure operators on B. Let B′ ≤ B be a Boolean subalgebra closed561

under each of the closure operators ( )
i

for i ∈ I. Then,562

(D ∩B′)− = D− ∩B′,

where we view the Booleanization of any sublattice of B as the Boolean sub-563

algebra of B that it generates.564

Proof. Since D ∩ B′ is contained in both of the Boolean algebras D− (also565

viewed as a subalgebra of B) and B′, the Booleanization of D∩B′ is contained566

in their intersection.567

For the converse, let b ∈ D−∩B′. By Theorem 27, there exists an index j568

so that b can be written as a difference chain569

b = c1,j − (c2,j − (· · · − (c2m−1,j − c2m,j) . . . )),

where c1,j = b
j
, c2n,j = c2n−1,j − b

j
and c2n+1,j = c2n,j ∧ b

j
, for n ≥ 1.570

But then, by hypothesis that B′ is closed under ( )
j

and a straightforward571

induction argument, it follows that c1,j ≥ · · · ≥ c2m,j is a chain in [B′]
j
⊆572

D ∩B′. Thus, b belongs to (D ∩B′)−.573

Remark 31. We remark that the closure of B′ under the operators ( )
i

for574

i ∈ I implies that the closure operator ( )
i

: B′ → B′ on B′, whose image575

is S ′i = B′ ∩ Si, is such that {S ′i}i∈I is an I-directed family of subsets of B′.576

Moreover, D′ =
⋃
i∈I S

′
i is precisely the distributive lattice D ∩B′.577

We give an example to show that the conclusion of Corollary 30 is by no578

means true in general.579

Example 32. Let B = P({a, b, c}) be the eight-element Boolean algebra.580

Further, let D be the sublattice generated by {a} and {a, b} and let B′ be581

the Boolean subalgebra generated by {b}. Then B is, up to isomorphism, the582

Booleanization of D, and thus D− ∩ B′ = B′, whereas D ∩ B′ = (D ∩ B′)−583

is the two-element Boolean subalgebra of B.584

In order to formulate the application to the theory of formal languages,585

we will need some concepts from logic on words.586
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6. Preliminaries on formal languages and logic on words587

Formal languages. An alphabet is a finite set A, a word over A is an ele-588

ment of the free A-generated monoid A∗, and a language is a set of words589

over some alphabet. For a word w ∈ A∗, we use |w| to denote the length590

of w, that is, if w = a1 . . . an with each ai ∈ A, then we have |w| = n.591

Given a homomorphism f : A∗ → M into a finite monoid M , we say that592

a language L ⊆ A∗ is recognized by f provided there is a subset P ⊆ M593

such that L = f−1(P ), or equivalently, if L = f−1(f [L]). The language L594

is recognized by a finite monoid M provided there is a homomorphism into595

M recognizing L. Finally, a language is said to be regular if it is recognized596

by some finite monoid. Notice that the set of all regular languages forms a597

Boolean algebra. Indeed, if a language is recognized by a given finite monoid598

then so is its complement, and if L1 and L2 are recognized, respectively, by599

M1 and M2, then L1 ∩ L2 is recognized by the Cartesian product M1 ×M2.600

(The more commonly encountered definitions of ‘regular language’ refer to601

finite automata or regular expressions; one can show that these are indeed602

the same as the regular languages defined here.)603

The following well-known technical result [28] will be needed in Section 8.604

Lemma 33. Let f : A∗ → B∗ be a homomorphism. Then the forward image605

under f of a regular language over A is a regular language over B.606

We are interested in languages defined by first-order formulas of logic on607

words which we briefly introduce now. For further details please see [29,608

Chapter II].609

Syntax of first-order logic on words. Fix an alphabet A. We denote first-610

order variables by x, y, z, x1, x2, . . . . First-order formulas are inductively611

built as follows. For each letter a ∈ A, we consider a letter predicate, also612

denoted by a, which is unary. Thus, for any variable x, a(x) is an (atomic)613

formula. A k-ary numerical predicate is a function R : N→ P(Nk) satisfying614

R(n) ⊆ {1, . . . , n}k for every n ∈ N. That is, R is an element of the Boolean615

algebra Πn∈NP({1, . . . , n}k). When we fix a set R of numerical predicates,616

we will assume it forms a Boolean subalgebra of Πn∈NP({1, . . . , n}k). Each k-617

ary numerical predicate R and any sequence x1, . . . , xk of first-order variables618

define an (atomic) formula R(x1, . . . , xk). Finally, Boolean combinations619

of formulas are formulas, and if ϕ is a formula and x1, . . . , xk are distinct620

variables, then ∀x1, . . . , xk ϕ is a formula. In order to simplify the notation,621
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we usually also consider the quantifier ∃: the formula ∃x1, . . . , xk ϕ is an622

abbreviation for ¬∀x1, . . . , xk ¬ϕ. As usual in logic, we say that a variable623

x occurs freely in a formula provided it is not in the scope of a quantifier624

that quantifies over x, and a formula is said to be a sentence provided it625

has no free variables. Quantifier-free formulas are those that are Boolean626

combinations of atomic formulas.627

Semantics of first-order logic on words. Let us fix an alphabet A and a set628

of numerical predicates R. To each non-empty word w = a1 . . . an ∈ A∗629

with ai ∈ A, we associate the relational structure Mw = (↓n,A ∪R), where630

↓n = {1, . . . , n}, aw = {i ∈ ↓n | ai = a}, for each a ∈ A, and Rw = R(n),631

for each R ∈ R. Models of first-order sentences are words, while models of632

formulas with free variables are the so-called structures. For a set of distinct633

variables x = {x1, . . . , xk}, an x-structure is an element of A∗× (↓ |w|)x. We634

identify maps from x to ↓ |w| with k-tuples i = (i1, . . . , ik) ∈ (↓ |w|)k. Given635

a word w ∈ A∗ and a vector i = (i1, . . . , ik) ∈ (↓ |w|)x, we denote by wx=i636

the x-structure based on w equipped with the map given by i. Moreover,637

if x = {x1, . . . , xk} and y = {y1, . . . , y`} are disjoint sets of variables, i =638

(i1, . . . , ik) ∈ (↓ |w|)x and j = (j1, . . . , j`) ∈ (↓ |w|)y, then wx=i,y=j denotes639

the z-structure wz=k, where z = x ∪ y and k = (i1, . . . , ik, j1, . . . , j`).640

We denoted the set of all x-structures by A∗ ⊗ x. Let ϕ(x) be a formula641

all of whose free variables are in x. A model of ϕ(x) is an x-structure that642

satisfies ϕ(x), using the standard interpretation of quantifiers in formulas.643

We denote by Lϕ(x) the set of all models of the formula. We will say that644

the formula defines this set of x-structures.645

Example 34. Suppose A = {a, b}. The sentence ϕ = ∃x, y (x < y ∧ a(x) ∧646

b(y)) is read: “there are positions x and y such that x comes before y and647

there is an a at position x and a b at position y”. Thus, ϕ defines the regular648

language Lϕ given by the regular expression A∗aA∗bA∗.649

It is worth remarking how this informal intuitive interpretation matches650

up with our definitions of the syntax and semantics of first-order formulas.651

The subformula x < y is the binary numerical predicate, which, formally652

speaking, maps each n ∈ N to the set {(i, j) | 1 ≤ i < j ≤ n} ⊆ (↓n)2. Since653

ϕ has no free variables, Lϕ is a set of ∅-structures—that is, simply a set of654

words over A.655

We give an example involving formulas that contain free variables.656
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Example 35. Again, let A = {a, b}. Let us define a numerical predicate,657

which we denote informally by x = y
2
. Formally, this maps each n ∈ N to the658

set {(i, 2i) | 1 ≤ i ≤ n/2}. The quantifier-free formula ψ1(x, y) given by659 (
x =

y

2

)
∧ b(y)

defines a set of {x, y}-structures. It is convenient to think of each such660

structure as a word over A in which each of the two variables labels a position661

in the word. Thus, for example, ab(a, x)ba(b, y)aa represents the structure662

abababaax=3,y=6, which is a model of ψ1(x, y).663

Let ψ2 be the formula ∃x ψ1(x, y). This formula has a single free variable664

y, says that y labels an even-numbered position, which contains the letter b.665

So, for example, ababa(b, y)aa ∈ Lψ2(y).666

Further, let ψ3 denote the formula ∃x, y ψ1(x, y). Its set of models Lψ3667

consists of all words that contain the letter b in an even-numbered position.668

This is again a regular language, given by the regular expression (A2)∗AbA∗.669

Regular languages of structures. We now give a more formal account of a670

device we used informally in the examples above. We fix a set of distinct671

variables x = {x1, . . . , xk}. Then, 2x is isomorphic to the powerset P(x).672

There is a natural embedding of the set of all x-structures into the free673

monoid (A × 2x)∗. Indeed, to an x-structure wx=i, where i = (i1, . . . , ik),674

we may assign the word (a1, S1) . . . (an, Sn), where w = a1 . . . an with each675

ai ∈ A and, for ` ∈ ↓n, S` = {xj ∈ x | ij = `}. It is not hard to see676

that this mapping defines an injection A∗ ⊗ x ↪→ (A × 2x)∗. Moreover,677

an element (a1, S1) . . . (an, Sn) of (A × 2x)∗ represents an x-structure under678

this embedding precisely when the non-empty sets among S1, . . . , Sn form a679

partition of x. From hereon, we view A∗⊗x as a subset of (A×2x)∗ without680

further mention.681

Since we view x-structures as words over A×2x, we can talk about regular682

languages of structures. Moreover, it is easy to see that the set A∗ ⊗ x of683

all x-structures is itself a regular language: To see this, let x ∈ x be any684

variable. Let N = {0, 1,m} be the three-element monoid in which 0 is685

absorbent, 1 is the identity, and m2 = 0, and let f : (A × 2x)∗ → N be686

the unique homomorphism satisfying f(a, S) = m if x ∈ S and f(a, S) =687

1 otherwise. This homomorphism recognizes, via {m}, the set of words688

(a1, S1) · · · (an, Sn) such that the variable x occurs exactly once among the689

Si. The set of structures A∗ ⊗ x is the intersection of these languages over690
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all x ∈ x, and thus is a regular language itself, since the family of regular691

languages is closed under finite intersection.692

As a result, a language L of structures is a regular language if and only693

if it consists of all the x-structures in some regular language L′ over A× 2x,694

because we then have L = L′∩(A∗⊗x). We will make use of this observation695

in the next section.696

Example 36. We consider again the formulas of Example 35. The set L697

of structures defined by ψ1(x, y) is a non-regular language: Consider the698

homomorphism α : (A×2{x,y})∗ → {c, d}∗ defined by mapping every letter of699

the form (e, ∅) to c and all other letters to d. Then α[L] = {ckdckdc`}k,`≥0. If700

L were regular, then Lemma 33 implies that so is α[L]. However, well-known701

elementary techniques of the theory of automata show that this is not the702

case. (See, e.g. [29, Chapter I], or a standard textbook like Sipser [26].)703

On the other hand, the set of structures defined by ψ2(y) is regular: It is704

just the language given by the regular expression (A2)∗A(b, {y})A∗.705

Fragments of first-order logic. Formulas will always be considered up to se-706

mantic equivalence, even if not explicitly said. We denote by FO[N ] the set707

of all first-order sentences with arbitrary numerical predicates (up to seman-708

tic equivalence). For formulas whose free variables are in x, we will write709

FOx[N ]. And for a set R of numerical predicates, FO[R] denotes the set710

of first-order sentences using numerical predicates from R. Notice that, as711

a Boolean algebra, FO[N ] is naturally equipped with a partial order, which712

in turn may be characterized in terms of semantic containment: ϕ ≤ ψ if713

and only if Lϕ ⊆ Lψ. For this reason, we will identify formulas and the714

corresponding languages of models switching freely between ϕ and Lϕ. In715

particular, we see FO[N ] as a Boolean subalgebra of P(A∗) and FOx[N ] as716

a Boolean subalgebra of P(A∗ ⊗ x).717

Quantifier alternation. We can measure the complexity of first-order formu-718

las by the minimum number of alternations of quantifiers that is needed to719

express them in prenex-normal formula, that is, in the form720

ψ = Q1x1 . . . Qmxm ϕ(x1, . . . ,xm), (14)

where ϕ is a quantifier-free formula, Q1, . . . , Qm ∈ {∀,∃} and Q` = ∀ if and721

only if Q`+1 = ∃ for each ` = 1, . . . ,m − 1. It is a well-known fact that722

for every first-order formula there is a semantically equivalent one in prenex-723

normal form. For m ≥ 1 and a set of numerical predicates R, Πm[R] consists724
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of all the sentences of FO[R] that are semantically equivalent to a sentence725

of the form (14) where Q1 = ∀. This is the alternation hierarchy over R.726

In particular, we have Πm[R] ⊆ Π`[R] whenever m ≤ `. Similarly, Σm[R]727

denotes the set of all sentences that are semantically equivalent to a sentence728

of the form (14) with Q1 = ∃, and Σm[R] ⊆ Σ`[R] whenever m ≤ `. It is729

not hard to see that both Πm[R] and Σm[R] are closed under disjunction730

and conjunction but not under negation in general. In other words, Πm[R]731

and Σm[R] are lattices, but not Boolean algebras. We denote by BΠm[R]732

and by BΣm[R] the Boolean algebras generated by Πm[R] and by Σm[R],733

respectively, that is,734

BΠm[R] = (Πm[R])− and BΣm[R] = (Σm[R])−.

Clearly, we have BΠm[R] = BΣm[R] ⊆ Πm+1[R],Σm+1[R].735

When R consists of just the order relation <, then the languages defined736

by first-order sentences are all regular. In this case, the alternation hierarchy737

has been extensively studied. An outstanding open problem is to determine738

effectively whether a given first-order definable regular language belongs to739

the mth level of the hierarchy. The only cases for which this is known is when740

m ≤ 2 (see [24]).741

In this paper we are only concerned with the first level of the hierarchy742

over different bases of numerical predicates. For notational convenience, we743

will work with the fragment Π1[R], although everything we prove for Π1[R]744

admits a dual statement for Σ1[R]. Every formula of Π1[R] is of the form745

ψ = ∀x ϕ(x), for some quantifier-free formula ϕ(x). Inside Π1[R], we classify746

formulas according to the size of x: we let Πk
1[R] consist of all equivalence747

classes of such formulas for which there is a representative ψ for which x748

has k variables. We remark that, Πk
1[R] is closed under conjunction, since749

the formulas ∀x ϕ(x) ∧ ∀x ψ(x) and ∀x (ϕ(x) ∧ ψ(x)) are semantically750

equivalent. However, it is easy to see that, in general, Πk
1[R] fails to be751

closed under disjunction, as we now show.752

Example 37. Let ϕ(x) = a(x) and ψ(x) = b(x). Then, ∀x ϕ(x) defines the753

language a∗, while ∀x ψ(x) defines the language b∗ and thus these are both754

in Π1
1[N ]. The disjunction ∀x ϕ(x) ∨ ∀x ψ(x) defines the language a∗ ∪ b∗,755

while ∀x (ϕ(x) ∨ ψ(x)) defines the language {a, b}∗. Indeed, one can show756

that ∀x ϕ(x) ∨ ∀x ψ(x) is not in Π1
1[N ] while it is in Π2

1[N ] as witnessed by757

the sentence ∀x1, x2 (ϕ(x1) ∨ ψ(x2)).758
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We will use Reg to denote the set of first-order sentences ϕ for which Lϕ759

is a regular language. We will also use Reg to denote the set of numerical760

predicates for which the associated language of structures is regular. In [2]761

it is shown that762

FO[N ] ∩ Reg = FO[Reg].

In other words, if a first-order sentence defines a regular language L, then L763

can be defined using only regular numerical predicates. This is proved as a764

consequence of results in circuit complexity.765

It is conjectured that this equality holds at each level of the alternation766

hierarchy, in other words that, for m ≥ 0, we have767

BΠm[N ] ∩ Reg = BΠm[Reg]. (15)

For m > 1, this question is open. In Section 8, we will use the results of768

Section 5 to provide a proof of the case m = 1. This was first proved in [20],769

and a different proof appears in [30]. The proof in [20] relies on some hard770

results in semigroup theory and ideas from circuit complexity, and the one771

in [30] on Ramsey theory coupled with the algebra of finite semigroups. In772

contrast, our argument is entirely different and quite elementary.773

Example 38. In an earlier example, we saw that the sentence774

∃x, y
(
x =

y

2
∧ b(y)

)
defines the regular language (A2)∗AbA∗ over A = {a, b}. On the other hand775

x = y
2

is a non-regular numerical predicate. The dual equality of (15) for776

existential fragments and m = 0 implies that the same language can be777

defined by a sentence of Σ1[Reg]. Such a sentence is given by778

∃y ((y ≡ 0 (mod 2)) ∧ b(y)),

in which the numerical predicate is regular.779

7. A lattices-and-duality perspective on logic on words780

Universal quantifiers as adjoints. Again, we fix a finite alphabet A and a set781

of variables x. We consider the projection map given by782
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π : A∗ ⊗ x � A∗, wx=i 7→ w.

This gives rise, via the duality between sets and complete and atomic Boolean783

algebras, to the complete embedding of Boolean algebras784

π−1 = ( )⊗ x : P(A∗) ↪→ P(A∗ ⊗ x), L 7→ π−1(L) = L⊗ x

This embedding, being a complete homomorphism between complete lattices,785

has an upper adjoint which we may call ∀ (and a lower adjoint ∃). These are786

given by787

∀ : P(A∗ ⊗ x) � P(A∗)

K 7→ ∀K = max{L ∈ P(A∗) | L⊗ x ⊆ K}
= {w ∈ A∗ | ∀i ∈ {1, . . . , |w|}x, wx=i ∈ K}
= (π[Kc])c

and similarly788

∃ : P(A∗ ⊗ x) � P(A∗)

K 7→ ∃K = min{L ∈ P(A∗) | K ⊆ L⊗ x}
= {w ∈ A∗ | ∃i ∈ {1, . . . , |w|}x, wx=i ∈ K}
= π[K]

As is well-known in categorical logic, ∀ and ∃ are the semantic incarnations789

of the classical universal and existential quantifiers, respectively. Explicitly,790

for the universal quantifier, when K = Lϕ(x) is definable by a formula ϕ(x),791

we have792

∀Lϕ(x) = {w ∈ A∗ | ∀i ∈ {1, . . . , |w|}x, wx=i � ϕ(x)} = L∀x ϕ(x). (16)

Recognition, model theoretic types, and duality. Let LOGx denote the Boolean793

algebra of formulas with free variables in x relative to some logic (up to se-794

mantic equivalence), e.g. LOGx = FOx[N ]. Further, let X be the dual space795
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of this Boolean algebra and let x-Str denote the set (or class) of intended796

models for this logic, e.g. x-Str = A∗ ⊗ x. Then we have a mapping797

typ : x-Str −→ X

(M, i) 7→ {ϕ(x) | M � ϕ(i)}
(17)

which sends a model to the ultrafilter of formulas that it satisfies. In model798

theory, the image of this map is known as the type of the given model. In799

language theory, this kind of map is used to study the logic itself since it is800

encoded via recognition. That is, this map topologically recognizes the logic801

in the sense that the Boolean algebra LOGx is isomorphic to the Boolean802

subalgebra of those L ⊆ P(x-Str) such that803

L = typ−1(V ) for some clopen V ⊆ X.

In classical model theory, Gödel’s Completeness Theorem tells us that every804

type x ∈ X is realized (by some model). However, for this to be the case805

here, we would need to consider not just the finite models of our logic but the806

so-called pseudo-finite models. Then the map in (17) becomes surjective and807

topological methods may be applied. This is closely related to recognition808

by profinite monoids as studied in language theory, where these ideas are809

combined with those of monoid recognition as described above. See [14, 19]810

for a study of the connections between model theoretic type theory and811

recognition in language theory and [11] for a study of the connections between812

Stone duality and recognition in language theory.813

Here, we will be able to work just with the finite models. This is because814

the logic fragment we want to consider here consists of the quantifier-free815

formulas in FOx[N ] and, as we will see in Corollary 40, these form a complete816

and atomic Boolean algebra and thus fall within the discrete duality between817

sets and complete and atomic Boolean algebras.818

Quantifier-free formulas. Consider a set of distinct variables x = {x1, . . . , xk}.819

We will give an algebraic characterization of the languages of the form Lϕ(x)820

for ϕ(x) a quantifier-free formula whose free variables are in x.821

We first provide a characterization of these languages via discrete duality,822

bringing out the connection between recognition and the notion of types from823

model theory as described above. For this purpose, we say that L ⊆ X is set824

theoretically recognized by f : X → Y provided there is a subset P ⊆ Y with825

L = f−1(P ).826
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We will need the following notation: For w = a1 . . . an with each ai ∈ A827

and i = (i1, . . . , ik), we write w(i) for the tuple (ai1 , . . . , aik). For a vector828

of letters a = (a1, . . . , ak) ∈ Ax, we denote by a(x) the conjunction a1(x1) ∧829

· · · ∧ ak(xk).830

Lemma 39. Let K ⊆ A∗ ⊗ x. Then, K is given by a quantifier-free first-831

order formula over x if and only if is it set theoretically recognized by the832

map833

cA : A∗ ⊗ x→ Nk+1 × Ak, wx=i 7→ (|w| , i, w(i)).

Proof. First suppose that K = c−1
A (P ) for some P ⊆ Nk+1 × Ak. For each834

a ∈ Ak and n ∈ N, let835

R a(n) = {i ∈ (↓n)k | (n, i, a) ∈ P}.
Then R a is a (k-ary) numerical predicate for each a ∈ Ak and it is not836

difficult to see that c−1
A (P ) = Lϕ(x) for837

ϕ(x) =
∨

a∈Ak
(a(x) ∧R a(x)) .

On the other hand, for a ∈ A and i ∈ {1, . . . , k}838

La(xi) = c−1
A (Nk+1 × {a ∈ Ak | ai = a})

and for R ⊆ Nm+1 an m-ary numerical predicate, and (not necessarily dis-839

tinct) variables y1, . . . , ym ∈ x, we have840

LR(y1,...,ym) = c−1
A (R′ × Ak)

where (i1, . . . , ik) ∈ R′(n) if and only if (j1, . . . , jm) ∈ R(n) where js = it if841

and only if ys = xt.842

Now, we obtain an algebraic characterization of the quantifier free formu-843

las. That is, a characterization in the form of recognition by a monoid rather844

than just by a set. for this purpose, let ε /∈ A be a new symbol and denote845

Aε = A ∪ {ε}. We consider the homomorphism Θx : (A× 2x)∗ → (Aε × 2x)∗846

given by847

Θx(a, S) =

{
(a, S), if S 6= ∅;
(ε, S), if S = ∅.
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Notice that, given x-structures vx=i and wx=j, we have848

Θx(vx=i) = Θx(wx=j) ⇐⇒ |v| = |w| , i = j, and v(i) = w(j). (18)

Using this observation, it is straightforward to show:849

Corollary 40. Let L ⊆ A∗ ⊗ x be a language. Then, the following are850

equivalent:851

(a) L is definable by a quantifier-free formula;852

(b) L = Θ−1
x (Θx[L]);853

(c) there is a subset P ⊆ A∗ε ⊗ x such that L = Θ−1
x (P ).854

In particular, the set of all quantifier-free formulas of FOx[N ] forms a com-855

plete and atomic Boolean algebra.856

8. An application to Logic on Words857

In this section we combine Corollary 30 and Remark 31 to prove the858

equality859

BΠ1[N ] ∩ Reg = BΠ1[Reg]. (19)

The idea is the following. Combining the fact that universal quantification860

may be seen as an adjoint and our algebraic characterization of quantifier-861

free formulas we obtain a directed family of adjunctions on P(A∗) with joint862

image equal to Π1[N ] allowing us to fit into the setting of Theorem 27. Finally863

we show that these adjunctions restrict correctly to the regular fragment864

thus allowing us to apply Corollary 30 and Remark 31, thereby concluding865

that (19) holds.866

Let x be a set of k variables. Universal quantification (as an adjoint) and867

recognition of quantifier-free formulas are based on the following two maps,868

respectively869

A∗
π
� A∗ ⊗ x

Θx−→ A∗ε ⊗ x
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Dually this gives rise to

P(A∗) P(A∗ ⊗ x) P(A∗ε ⊗ x)

∃

π−1

∀

Θx[ ]

Θ−1
x

(Θx[( )c])c

In particular, we have a (correct) composition of adjunctions as follows870

P(A∗) P(A∗ ⊗ x) P(A∗ε ⊗ x)
π−1

∀

Θx[ ]

Θ−1
x

That is,871

fk = Θx[π−1( )] : P(A∗)←−−−−−−→ P(A∗ε ⊗ x) : ∀(Θ−1
x ( )) = gk

is an adjunction and, combining quantification as adjunction with the de-872

scription of quantifier-free formulas in Corollary 40(c), we have L ⊆ A∗ is in873

Πk
1[N ] if and only if L = ∀(Θ−1

x (P )) = gk(P ) for some P ⊆ A∗ε ⊗ x. That is,874

(fk, gk) is an adjunction with associated closure operator875

dLek := gkfk(L) = ∀Θ−1
x (Θx[L⊗ x]),

and Im( d ek) = Im(gk) = Πk
1[N ]. Notice that, since d ek is a closure876

operator on P(A∗), we have877

L ⊆ dKek ⇐⇒ dLek ⊆ dKek,
for everyK,L ⊆ A∗. Therefore, dLek may be seen as the best over-approximation878

of L by a language definable in Πk
1[N ]. Accordingly, we are in the situation879

of Theorem 27 with880

B = P(A∗) and D =
⋃
k∈N

Im(gk) =
⋃
k∈N

Πk
1[N ] = Π1[N ].

We now aim to apply Corollary 30 with B′ = Reg, the Boolean algebra of all881

regular languages over A. This is possible given the following fact.882
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Lemma 41. For each k ∈ N, if L ⊆ A∗ is regular, then so is dLek.883

Proof. Fix k ∈ N and suppose L ⊆ A∗ is regular. We proceed through the884

four maps whose composition defines d ek.885

Claim 1. L⊗ x is regular.886

Note that if µ : A∗ → M is a finite monoid recognizing L, then π∗ : (A ×887

2x)∗ → A∗ composed with µ, where π∗ is the homomorphism extending the888

projection of A× 2x onto A, recognizes L⊗ x once we restrict to structures.889

As we remarked earlier, the set of all x-structures is itself regular so it follows890

from closure under intersection that L⊗ x is itself regular.891

Claim 2. Θx[L⊗ x] is regular.892

This follows from the previous claim and Lemma 33.893

Claim 3. Θ−1
x (Θx[L⊗ x]) is regular.894

This is immediate as the inverse image with respect to a homomorphism895

between free monoids of a regular language is always regular: If Θx[L⊗x] is896

recognized by f ′ : (Aε×2x)∗ →M ′ then the composition f ′◦Θx : (A×2x)∗ →897

M ′ recognizes Θ−1
x (Θx[L⊗ x]).898

Claim 4. ∀(Θ−1
x (Θx[L⊗ x])) is regular.899

As observed in Section 7, the upper adjoint ∀ is given by K 7→ (π[Kc])c900

where π : A∗⊗x→ A∗ is the restriction of π∗ : (A× 2x)∗ → A∗ to structures.901

It follows that π[Kc] = π∗[Kc∩ (A∗⊗x)]. Now, since K = Θ−1
x (Θx[L⊗x]) is902

regular, Kc is also regular and Kc∩ (A∗⊗x) is regular. Further, it follows by903

Lemma 33 that π∗[(Θ−1
x (Θx[L⊗x]))c∩A⊗x] is regular. Finally, we conclude904

that its complement ∀(Θ−1
x (Θx[L⊗ x])) = (π∗[(Θ−1

x (Θx[L⊗ x]))c ∩ A⊗ x])c905

is regular as required.906

As a consequence, Corollary 30 applies and we obtain:907

Corollary 42. Considering each of the following Booleanizations as subal-908

gebras of P(A∗), we have909

(Π1[N ] ∩ Reg)− = (Π1[N ])− ∩ Reg.

Finally, applying Remark 31 in this particular case, we see that910

Π1[N ] ∩ Reg =
⋃
k∈N

gkfk[Reg].

The languages in gkfk[Reg] are exactly the languages dLek for L regular.911

By the proof of Lemma 41, we have that dLek = ∀(Θ−1
x (P )) where P =912
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Θx[L ⊗ x] ⊆ (Aε × 2x)∗, and, by Claim 2 in particular, we have that P is913

regular. That is, dLek = L∀xϕ(x) where the atomic formula ϕ(x) is regular,914

or equivalently, dLek ∈ Π1[Reg].915

On the other hand if ϕ(x) is an atomic formula that is regular, then the916

arguments in Claims 3 and 4 show that L∀xϕ(x) is regular. Thus917

gkfk[Reg] = Πk
1[Reg]

and we have918

(Π1[Reg])− = (
⋃
k∈N

Πk
1[Reg])− = (Π1[N ] ∩ Reg)− = (Π1[N ])− ∩ Reg.

We thus obtain the desired result:919

Theorem 43. The following equality holds:920

BΠ1[Reg] = BΠ1[N ] ∩ Reg.

9. Final remarks921

Can the techniques of this paper be pushed further? A few possible922

directions suggest themselves. As we mentioned earlier, Theorem 43 is not923

new, but the techniques of our proof are completely different from what was924

used before.925

In [30], a more general result is proved, concerning modular quantifiers:926

If x is a set of k variables and 0 ≤ j < m, t > 0, then we allow quantified927

formulas of the form928

∃(j,m,t)x ϕ(x).

Such formulas are interpreted as follows: If w ∈ A∗, then w |= ∃(j,m,t)x ϕ(x)929

if the number of k-tuples i such that930

(w, i) |= ϕ(x)

is both congruent to j modulo m and at least t. Observe that with m = t = 1,931

this is just ordinary existential quantification. If ϕ(x) is quantifier-free, then932

∃(j,m,t)x ϕ(x) is called a generalized Σ1-sentence. The main result of [30]933

is that the analogue of Theorem 43 holds for Boolean combinations of such934
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generalized Σ1-sentences, as well as for Boolean combinations of ordinary935

Σ1-sentences. It would be interesting to know whether the approach of the936

present paper can be used to give a different proof of this result.937

What about rising higher in the alternation hierarchy? The identity938

FO[N ] ∩ Reg = FO[Reg],

proved in [2], is equivalent to well-known lower bounds results in circuit939

complexity, and the only proof known depends on the circuit complexity940

results. Yet this equality appears to be saying something fundamental, and941

rather simple, about automata and logic: If you can define a regular language942

with a sentence that uses unrestricted numerical predicates, then you can943

define it using just regular numerical predicates. Can the methods used here944

provide a different proof of this fact? One might first try to show that945

BΠ2[N ] ∩ Reg ⊆ FO[Reg].

It should be cautioned that things are not so neat when we get to Π2 formulas,946

and that this would require the development of new techniques.947

Combining the two directions of generalization - from ordinary to modular948

quantifiers, and from Π1 formulas to formulas with more levels of quantifier949

alternation - one might conjecture950

FOMOD[N ] ∩ Reg = FOMOD[Reg].

Here, FOMOD[R] represents all the formulas one can build, starting from951

numerical predicates in R, using both modular quantification and Boolean952

operations. This conjecture is equivalent to the long-open question in circuit953

complexity of whether the complexity class ACC0 is strictly contained in954

NC1 (see [2] and [29]).955
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