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Different languages, similar encoding efficiency:
Comparable information rates across the human
communicative niche
Christophe Coupé1,2*, Yoon Mi Oh3,4*, Dan Dediu1,5, François Pellegrino1†

Language is universal, but it has few indisputably universal characteristics, with cross-linguistic variation being the
norm. For example, languages differ greatly in the number of syllables they allow, resulting in large variation in the
Shannon information per syllable. Nevertheless, all natural languages allow their speakers to efficiently encode and
transmit information. We show here, using quantitative methods on a large cross-linguistic corpus of 17 languages,
that the coupling between language-level (information per syllable) and speaker-level (speech rate) properties
results in languages encoding similar information rates (~39 bits/s) despite wide differences in each property indi-
vidually: Languages are more similar in information rates than in Shannon information or speech rate. These find-
ings highlight the intimate feedback loops between languages’ structural properties and their speakers’
neurocognition and biology under communicative pressures. Thus, language is the product of a multiscale com-
municative niche construction process at the intersection of biology, environment, and culture.
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INTRODUCTION
Language is universally used by all human groups, but it hardly dis-
plays undisputable universal characteristics, with a few possible excep-
tions related to pragmatic and communicative constraints (1, 2). This
ubiquity comes with very high levels of variation across the 7000 or so
languages (3). For example, linguistic differences between Japanese
and English lead to a ratio of 1:11 in their number of distinct syllables.
These differences in repertoire size result in large variation in the
amount of information they encode per syllable according to Shannon’s
theory of communication. Despite those differences, Japanese and
English endow their respective speakers with linguistic systems that
fulfill equally well one of the most important roles of spoken commu-
nication, namely, information transmission. We show here that the
interplay between language-specific structural properties (as reflected
by the amount of information per syllable) and speaker-level language
processing and production [as reflected by speech rate (SR)] leads lan-
guages to gravitate around an information rate (IR) of about 39 bits/s.
This finding, based on quantitative methods applied to a large cross-
linguistic corpus of 17 languages, highlights the intimate feedback loops
between languages and their speakers due to communicative pressures.
We suggest that this phenomenon is rooted in the human neurocogni-
tive capacity, probably present in our lineage for a long time (4), and
that human language can be analyzed as the product of a multiscale
communicative and cultural niche construction process involving bi-
ology, environment, and culture (5).

Each human language provides its speakers with a communication
system that fulfills their needs for transmitting information to their
peers. The Uniform Information Density hypothesis (6) and similar
approaches [e.g., (7) and (8)] suggested that speakers distribute
information along the speech signal following a smooth distribution
rather than high-amplitude fluctuations. Compatible with Shannon’s
theory, this optimization process guarantees the robust information
transmission at a rate close to the channel capacity. We adopt here
a quite different perspective, where we compare, across very different
languages, the average rates at which information is emitted. This ap-
proach enables us to estimate the channel capacity and to assesswhether
the large differences observed among languages in terms of encoding
result in analog differences in channel capacity or, conversely, whether
there exist compensating strategies that go beyond the local adaptation
operating during speechproduction. Therefore, we investigate the inter-
action between information encoding and average SR and, more specif-
ically, whether the variation among languages in IR is regulated by
communicative constraints. Thus, does too low an IR hinder commu-
nicative efficiency? And, at the other extreme, does pushing it too high
incur too heavy physiological and cognitive costs? While a negative
correlation between average SR and the informativeness of linguistic
constituents has been demonstrated in a small multilanguage corpus
(9), the distribution of IRs across human languages is almost totally
unknown despite its crucial importance for understanding human
spoken communication. While our data here come only from speech
production (information encoding), our results, nevertheless, implic-
itly address also speech perception (information retrieval) and proces-
sing, as they are all intimately coupled and coevolve during language
acquisition, use, and change (10).

We have chosen to focus here on the syllable as the information-
encoding unit for both linguistic and cognitive reasons.On the linguistic
side, despite a long-lasting debate in phonology about whether the syl-
lable is a universal unit in the world’s languages (11) being a corner-
stone of this controversy, analyzing the encoding of information in
terms of syllables does offer several advantages over other levels of lin-
guistic description (such as phonemes and morphemes). First, syllables
are much less prone than phonemes to complete deletion in casual
speech, allowingmore robust estimates of SR (12) [readers can also refer
to (9) for amore detailed discussion on thismatter].Moreover, we chose
the syllable over meaning-bearing units (morphemes or words), as the
latter levels relymore on a language-specific linguistic analysis, on top of
various methodological difficulties affecting their robust counting in a
cross-linguistic framework (see text S1 and fig. S1 for a discussion on the
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relation between meaning and information encoding). On the neuro-
cognitive side, the past decade has witnessed an abundance of models
and studies that underpin the pivotal role of the syllabic time scale for
speech comprehension, especially through the entrainment of cortical
oscillations by the speech signal [see (13–16), among others]. These
findings led to a view where “the sensitivity to syllable rate [is] arguably
the most fundamental property of speech perception and production”
(16), a view particularly relevant to our study here.

We studied a sample of 17 languages from 9 language families
spread across Europe and Asia, showing a remarkable diversity in
terms of linguistic and typological features at all levels, from phonetics
and phonology to morphology and syntax and to semantics and prag-
matics (see table S1). Focusing on their phonetics andphonology, these
languages vary in their number of phonemes (from 25 in Japanese and
Spanish to more than 40 in English and Thai), the number of distinct
syllables (from a few hundred in Japanese to almost 7000 in English),
tonal complexity (fromnone to six contrastive tones), and various other
phonological phenomena (e.g., vowel harmony is present in Finnish,
Hungarian, Korean, and Turkish). Thanks to its size and diversity, this
sample is adequate to reveal robust trends reflecting phenomena that
can potentially be extrapolated to human language in general.

We collected recordings of 170 native adult speakers of the afore-
mentioned 17 languages, each reading at their normal rate a standard-
ized set of 15 semantically similar texts across the languages (for a
total amount of approximately 240,000 syllables). Speakers became fa-
miliar with the texts, by reading them several times before being re-
corded, so that they understand the described situation and minimize
reading errors (see Materials and Methods below for more details). For
each recording, we extracted the duration [in seconds, excluding pauses
longer than 150ms, i.e., longer than typical phonemic silences (17)] and
the total number of syllables (NS) of the text’s “canonical”pronunciation.
This term refers to the standard pronunciation found in dictionaries
and lexical databases (12). For instance, the word “probably” in English
will be transcribed as [pɹɑ.bə.bli] and accounted for three syllables, even
if some speakers adopted a pronunciation variant such as [pɹɑ.bli]. By
adopting this convention, we considered the NS encoded in the signal
and potentially retrieved from it. We computed the ratio between the
NS and duration, which will be denoted as SR here (rather than the
more precise but also less transparent “canonical articulation rate”).
Using read speech (as opposed to spontaneous or conversational
speech), we constrained the speakers in terms of lexical and syntactic
strategies, and we encouraged them to adopt a clear speech pronunci-
ation. Moreover (and very important here), we emphasized the cross-
language comparability of the information encoded and retrievable (i.e.,
the canonical syllables), rather than the various reductions potentially
performed by the speakers. Indeed “[s]peakers can produce utterances
with more or less articulatory detail or even completely omit certain
words, while still conveying the samemessage” (18). Last, for German,
the canonical and realized SRs in a “normal, clearly spoken style”
(which is somewhat similar to read style) have been shown to exhibit
virtually no difference, even at the phonemic level, according to (19),
providing yet another argument for considering SR as relevant here
(unfortunately, because of the lack of cross-linguistic robustness of
the automatic estimation of realized SR, we could not check this in
our cross-linguistic database; see text S2 and fig. S2).

In parallel, from independently available written corpora in these
languages, we estimated each language’s information density (ID) as
the syllable conditional entropy to take word-internal syllable-bigram
dependencies into account.We then computed the average IR bymul-
Coupé et al., Sci. Adv. 2019;5 : eaaw2594 4 September 2019
tiplying the ID by the SR for each text read by each speaker in our
dataset. Individual SR varies in a ratio of more than one to two, with
the slowest speaker hovering around 4.3 syllables/s and the fastest one
reaching 9.1 syllables/s on average. ID, computed at the language level,
varies in a more limited but still substantial way (from 4.8 bits per syl-
lable for Basque to 8.0 bits per syllable for Vietnamese).
RESULTS
As a preliminary analysis, we checkedwhether our definition of ID pro-
vides a relevant measure of linguistic ID, using the syntagmatic density
of information ratio (SDIR), defined in (9), as a control. SDIR quantifies
the relative informational density of languageL compared to a reference
language, based on the semantic information expressed in the context
of a limited oral corpus (see Materials and Methods below for more
details). It thus provides the ground truth on the semantic information
conveyed by the sentences in the spoken corpus. Following (9), we used
Vietnamese as a reference, such that a language L with a ratio bigger
than one (or, respectively, less than one) is denser (respectively, less
dense) than Vietnamese in terms of semantic information. By contrast,
being estimated from a very large written lexical database, ID subsumes
an overall syllable usage disregarding any semantic consideration. The
preliminary analysis nevertheless shows that the two information quan-
tification approaches are connected; we obtain, for our data, a very high
correlation between ID and SDIR (Pearson’s r= 0.91, P= 3.4 × 10−7 and
Spearman’s r = 0.80, P = 0.00011), which suggests that, despite differ-
ences inmaterial (heterogeneous andwritten corpus versus parallel and
spoken corpus) and nature (an entropy measured on a large lexicon
versus a normalized ratio derived from small texts), our ID is a good
estimate of the average amount of information per syllable.

We next attempted to model the SR and IR distributions using
linear mixed-effects regression, but we observed heteroscedasticity
of the residuals in both cases. Therefore, we decided to use generalized
additive models for location, scale, and shape (GAMLSS) (20, 21), as
they allowed us to model both the mean (m) and SD (s) of Gaussian
distributions, considering sex as fixed effect and text, language, and
speaker as randomeffects (with a log link function for s). This resulted
in a better fit to the data [as judged by the Akaike information crite-
rion, with AIC (SR, fixed s) − AIC (SR, modeled s) = 171.2 and AIC
(IR, fixed s)−AIC (IR, modeled s) = 167.5], a distribution of residuals
very close to normality, and a reduced heteroscedasticity to the point
where no additional corrections were necessary.

We found that IR is centered on amean of 39.15 bits/s with an SD
of 5.10 bits/s, while SR is centered on a mean of 6.63 syllables/s, with
an SD of 1.15 syllables/s (see Fig. 1). The fixed effect of sex is signif-
icant for both SR and IR, with females having significantly lower
means (SR, −0.17; IR, −1.01) and SDs (SR, −0.06; IR, −0.06); this
finding extends previous observations on English (22) to a larger
set of languages from different families and geographic areas. In ad-
dition, most of the variation in the random effects for bothmean and
SD is by language [SR, sb(m) = 0.87 and sb(s) = 0.15; IR, sb(m) = 3.10
and sb(s) = 0.16] and speaker (SR, sb(m) = 0.57 and sb(s) = 0.18; IR,
sb(m) = 3.39 and sb(s) = 0.19]. The model suggests that the relative
impact of the two random factors differs, language having the largest
impact on SR, while speaker has the largest on IR. In otherwords, while
SR is mainly clustered by language and relatively less so by speaker, the
influence of this language-level clustering is reduced for IR [family has a
very small effect beyond language, with SRsb(m) = 0.000019 andsb(s) =
0.00019 for SR and IR sb(m) = 0.00023 and sb(s) = 0.00011 for IR]. The
2 of 10
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style differences among the 15 texts have a much smaller effect, as re-
vealed by the small variation associated with text for both SR and IR
[SR, sb(m) = 0.11 and sb(s) = 0.0005; IR, sb(m) = 0.66 and sb(s) =
0.00028]. We included the speaker’s age (and its interactions with
the other factors) in the models, and we found that while, on the
one hand, its effects are as expected (i.e., a negative impact on SR),
on the other, its inclusion does not improve the model fit [according
to the AIC and BIC (Bayesian information criterion)]. Therefore, we
adopt the simpler models without age for the main analysis reported
here but the models including it are available in the analysis report
file S1.

To explore the relationship between SR and ID, we included ID as a
fixed effect in the GAMLSSmodeling of SR (here, we dropped language
as a random effect, since there is, by definition, a single ID value per
language, but we did include family): We found a significant negative
effect of ID not only on the mean of SR (b = −0.89, P < 2.2 × 10−16) but
also on its SD (b = −0.09, P= 6.4 × 10−7). This negative relationship (see
Fig. 2)—between two parameters derived from independent written
and oral corpora—indicates that there is a trade-off between SR and
ID, the languages with lower IDs being spoken faster, as also illustrated
by “classic” correlation estimates (Pearson’s r = −0.71 and Spearman’s
r = −0.70, in both cases with P < 2.2 × 10−16).
Coupé et al., Sci. Adv. 2019;5 : eaaw2594 4 September 2019
The visual inspection of the distributions of SR and IR (Fig. 1,
black areas) suggests that IR and SR differ in terms of the compact-
ness of their overall distribution and that languages are more similar
in terms of IR than SR. To assess this difference, we computed several
pairwise divergencemetrics between languages (Kolmogorov-Smirnov,
Kullback-Leibler, Jensen-Shannon, Hellinger, and chi-square diver-
gences; Fig. 3 and analysis report file S1) to quantify their dispersion in
the distribution of number of syllables per text (NS), SR, and IR.NS is
considered here as a proxy for information dilution, since the texts
are semantically similar across the languages. Using randomization
paired t tests (with 1000 permutations),we found that, for allmeasures,
languages are significantly more similar to each other in IR than inNS
and SR (all randomizationP< 10−4). Last, IRs are less dispersed around
their mean than SR, as shown by their coefficients of variation (17.3%
for SR versus 13.0% for IR) and also by several unimodality tests with
permutation (see analysis report file S1).
DISCUSSION
In this study, we investigated the relationship between ID (estimated
from written data) and SR (computed from parallel spoken data)
across 17 languages. By recording read parallel data rather than more
Fig. 1. SR and IR. The distribution of SR (in syllables per second) (left) and IR (in bits per second) (right) within the languages in our database (colored areas; colors
represent the language families) and across them (black areas at the top) using a Gaussian kernel density estimate. The black vertical lines spanning the whole plot
represent the means (solid lines) ± 1 SD (dashed lines). The short black vertical lines represent the actual data points.
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casual or spontaneous speech, we deliberately increased the compara-
bility across languages and speakers and constrained the degrees of
freedom available to each speaker [in line with (23)]. Having the same
texts read by all speakers controls for one of the main effects reported
in (24), namely the fact that, for a given language, “fast speakers are
likely to produce less informative content.” Therefore, while this cor-
pus is not appropriate for studying pragmatic and cognitive planning,
it does allow robust results inwhat concerns the differences across lan-
guages and speakers given a controlled linguistic content. In addition,
it does not require any preliminary data curation that could raise
methodological concerns and potentially induce biases.

We argue that our results, based on a controlled linguistic material
and consisting of read speech, do reflect actual phenomena found in
more natural settings. As such, we found that the effects of text in the
SR and IR models are much smaller than those of speaker and
Coupé et al., Sci. Adv. 2019;5 : eaaw2594 4 September 2019
language, despite the stylistic differences among the 15 texts (some
corresponding to phone information request scenarios, e.g., P0, while
others are narratives, such as P8). This aspect rules out the existence
of text-related systematic bias across languages and suggests thatwhen
talking at a normal rate, each speaker’s average SR is quite robust to
variation in linguistic content (lexical frequency, syntactic structure,
phrase length, etc.). This is still fully compatible with the local changes
in SR that have been extensively demonstrated, in a few languages at
least [see (18, 24) among many others]. The limited effect of text also
suggests that the results reported here should hold for interactions in-
volving styles similar to the normal, clearly spoken style in Koreman’s
terminology (19). In other words, as long as the communication situa-
tion requires a correct decoding of the linguistic information encoded
by the speaker, we suggest that the trade-off presented above will be ob-
served.We can expect that its strengthwould gradually decrease along a
Fig. 2. Relationship between SR and ID across languages Colors represent the language families, and individual languages are identified by the labels on top (to
avoid overlapping labels, short black lines might show their actual position). While there is only one value of ID per language, there are as many values of SR per
language as texts read by individual speakers. The straight yellow line represents the linear regression [with 95% confidence interval (CI)], and the black curve repre-
sents the locally estimated scatterplot smoothing regression (with 95% CI) of SR on ID.
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continuum ranging from very carefully pronounced content to very
informal interactions where understanding is heavily reliant on con-
textual and pragmatic factors rather than on the linguistic information
itself.

Together, our findings show that while there is wide interspeaker
variation in speech and IRs, this variation is also structured by language.
Thismeans that an individual’s speech behavior is not entirely due to
individual characteristics but is further constrained by the language
being spoken. The effect of sex we found here is analogous to its effect in
other phenomena, such as, for example, body height or the fundamental
voice frequency. While both have universally constrained ranges in
humans (25, 26) and result from complex interactions between genetics
and environment (27, 28), they differ between languages/groups (26, 29)
and sexes (25, 26). Of relevance here, the statistically significant
difference betweenmales and females does not preclude universal tend-
encies or between-group patterns of variation (30).

However, languages seem to stably inhabit an optimal range of IRs,
away from the extremes that can still be available to individual speakers.
Languages achieve this balance through a trade-off between ID and
SR, resulting in a narrower distribution of IRs compared to SRs. In
the introduction, we rhetorically asked whether too low or too high
an IR would impede communicative and/or cognitive efficiency. Our
results here suggest that the answer to both questions is positive and that
human communication seems to avoid two extreme sociolinguistic pro-
files: on the one hand, high ID languages spoken fast by their speakers
(“high-fast”), and, on the other, low ID languages spoken slowly by their
speakers (“low-slow”). Both speakers and listeners have an interest in
avoiding high-fast languages: For the speaker, production comes at
higher costs both in terms of articulation (more complex and in-
frequent, less routinized syllables) and planning (since they are less pre-
dictable from the context), while for the listener, the resulting speech
flow may exceed channel capacity or at least be challenging in terms
of lexical access and syntactic parsing. Avoidance of high-fast languages
may thus result from a convergence of production- and perception-
oriented pressures, with similar factors being suggested in (24) to ex-
Coupé et al., Sci. Adv. 2019;5 : eaaw2594 4 September 2019
plain that in American English corpora of conversational speech, fast
speakers produced less informative content (both in terms of content
words and syntactic structure). On the other hand, low-slow languages,
if they existed, would present a twofold challenge: First, in terms of
general communicative efficiency, they would lead to longer turns in
interaction [in human interactions, turn duration is 2 s on average (1)].
A second—and probably related—factor is that theywould require their
speakers to keep longer chunks in working memory, for a given infor-
mational content. One can thus hypothesize that speakers from this
language would swiftly accelerate their articulation rate to compensate
for their language’s low ID.

This study provides the most extensive estimation of spoken IR to
date, whether in terms of numbers of speakers, languages, or language
families. Such an IR centered on 39 bits/s (with an SD of about 5 bits/s)
is certainly compatible with the rare estimates available for English,
Mandarin Chinese, and Spanish (31, 32). Themost notable result is that
languages aremuch closer in terms of IR than in SR. Despite the across-
language dispersion observed for ID and SR, their regulatory interaction
seems to give rise to a universal attractor. This result is far from trivial,
especially considering that the substantial freedom speakers have to
depart from their average SR without any apparent effort (33). Despite
this essential capacity enabling each speaker to adapt to specific situa-
tions of communication, a convergence is observed, and the deviation
from a flat distribution shown here could be explained by a soft con-
straint toward an average IR of around 39 bits/s.

Metaphorically, our data suggest that languages tend to inhabit a val-
ley of possible IRs with gradual slopes, which allow some speakers to
occupy peripheral positions farther away from the attractor in both
directions. We suggest that this valley in a fitness landscape illustrates
the concept of “good-enough” control proposed as an alternative to op-
timal control for biological systems (34) and that its existence is due to
functional and cognitive factors. Several recent proposals highlight that
the neural capacity to track speech dynamics through cortical oscilla-
tions is crucial for speech processing and understanding, especially in
the so-called q range (13), for which an optimal speech-brain alignment
would be essential for syllabic sampling (14). This line of research led
not only to an estimation of an auditory channel capacity of about
9 syllables/s for American English participants (13) but also to a much
more restricted “optimal” range around 4.5 syllables/s (16). This notion
of optimality is still to be refined, and it is not yet established whether
the auditory channel capacity is a matter of information or of acoustic
duration: These experiments manipulate SR within a given language
(generally English), and cross-linguistic assessments will be necessary
to estimate whether the boundaries of the q range depend on each in-
dividual’s mother tongue and to revisit the notion of optimal rate. More
specifically, we show here that between-language differences in IR are
much smaller than those in SRs. Consequently, given that all humans
are fully cognitively equipped regardless of their mother language, IR
provides a better candidate than SR for investigating invariance in
cognitive capacity. This line of investigation can shed new light on
the long-lasting difficulty faced in attempting to detect temporal regu-
larities and predictability in the acoustic signal. The apparent discrep-
ancy observed between the arguable existence of linguistic rhythmic
classes and the lack of temporal regularities is beyond the scope of this
paper, but interested readers can refer to (35) for a recent cross-linguistic
approach that found limited evidence for temporal predictability.

We suggest that this cross-linguistic tendency stems from the inter-
action between social and neurocognitive pressures that define an
optimal range for IR, around which the complex adaptive system
Fig. 3. Pairwise divergence between languages. The distribution of the Jensen-
Shannon divergence between pairs of languages for the NS, SR, and IR, also
showing the significant differences using a randomization paired t test (1000 per-
mutations). The IR-SR and IR-NS P values are <10−4, while the NS-SR P value is 0.30.
All other divergence measures produce essentially identical results. n.s., not sig-
nificant. ****P ≤ 0.0001.
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(consisting of each language and its speakers) hovers.While ID is mainly
a property derived from the language itself (its grammar, lexicon, and
long-term usage), SR reflects individual speakers’ behavior instantiating
language-level norms and constraints generated in their own biocogni-
tive apparatus. The interplay of this long-term collective property with
this individual short-term behavior, we propose, leads all individuals to
continuously monitor (consciously or not) and adapt their SR to the
specific linguistic and communicative context. Aprediction is thatwhen
a community implements linguistic changes that may cause the IR to
drift away from the optimal range, compensatory mechanisms that
affect SR (e.g., coarticulation) may bring the average IR back toward
optimal regions.

Speakers are obviously not limited to manipulating the phono-
logical level of their languages to achieve an efficient communication,
and an obvious extension of this study will be to take grammatical
information into account. This can be achieved by considering a longer
context when estimating the syllable ID (thus, going beyond the pre-
vious syllable within the same word) or by moving to units longer
than the syllable (such as words). Doing this will, however, force
one to depart from the “mere encoding” considered here and get closer
to higher levels of language-specific strategies, generating new chal-
lenges in terms of (semantic and pragmatic) information quantification
[see (36) for a discussion from the angle of overt and hidden linguistic
complexity], challenges that require different methods and data and
that we leave for future research.

To conclude from a broad evolutionary perspective, we thus see
human language as inhabiting a biocultural niche spanning two
scales. At a local scale, each system consisting of a given language
and its speakers represents one instantiation of a cultural niche con-
struction process (5, 37) in a specific context involving the ecological
(38), biological (39), social (40), and cultural (41) environments. At a
global scale, all of these language speakers’ local systems are subjected
to universal communicative pressures characterizing the human-specific
communication niche and consequently fulfilling universal functions
of communication essential for the human species.
er 23, 2024
MATERIALS AND METHODS
Data and code availability
The data are contained in two TAB-separated CSV files, the R code for
the analysis and plotting is contained in an RMarkdown script, and all
the results andplots (obtained by compiling this RMarkdown script) are
in an HTML analysis report; all these files are freely available under an
open-source license in the Supplementary Materials and in the GitHub
repository https://github.com/keruiduo/SupplMatInfoRate.

Data
We analyzed here the data from 17 languages from 9 language families,
listed below as family [language name (ISO 639-3 code)]: Austroasiatic
[Vietnamese (VIE)], Basque [Basque (EUS)], Indo-European [Catalan
(CAT), German (DEU), English (ENG), French (FRA), Italian (ITA),
Spanish (SPA), and Serbian (SRP)], Japanese [Japanese (JPN)], Korean
[Korean (KOR)], Sino-Tibetan [Mandarin Chinese (CMN) and Yue
Chinese/Cantonese (YUE)], Tai-Kadai [Thai (THA)], Turkic [Turkish
(TUR)], and Uralic [Finnish (FIN) and Hungarian (HUN)]. For each
language, we collected existing or new oral and text corpora and per-
formed analyses considering syllable as the reference unit. Syllable is
both regarded as “a unit in the organization of the sounds of an utter-
ance” (42) and as a salient unit for cognitive processing by psycholin-
Coupé et al., Sci. Adv. 2019;5 : eaaw2594 4 September 2019
guists and neuroscientists.We opted for the syllabic level to focus on the
direct mapping between semantic information and speech signal (seen
as a sequence of syllabic “bricks”), bypassing the mental lexicon, which
is highly dependent on the language morphological characteristics. The
linguistic implications go beyond the scope of this paper and are not
further discussed.

The oral corpus (see text S3 for details) is initially derived from the
MULTEXT (Multilingual Text Tools and Corpora, ID: ELRA-S0060)
parallel corpus (43). For British English, German, and Italian, we
considered 15 short texts from this corpus, all composed of three
to five semantically connected sentences carefully translated by a native
speaker from the British English original. For the other 14 languages,
two of the authors (C.C. orY.O.) supervised the translation and recording
of new datasets by native speakers of the target language, preferably of a
specific variety whenever possible (e.g., Mandarin spoken in Beijing,
Serbian in Belgrade, and Korean in Seoul). No strict control of age or
other sociolinguistic variables was imposed, but speakers (170 in
total, 85 females) were mainly students or members of academic
institutions. This data collection complied with ethical regulations at
the Université de Lyon, and given its nature, it did not require a formal
approval by an Ethics Committee. After providing informed consent,
speakers were asked to read each text first silently once and then aloud
at least two times, allowing familiarization and reducing reading errors.
The ROCme! software (44) was used for presentation of the experiment
instructions and texts, aswell as for recordings. The textswere presented
one by one on the screen in random order, one sentence at a time
following a self-paced reading paradigm, with the second or the third
aloud recording being analyzed here. Thus, in total, we have 2265 data
points (i.e., each data point consists of a text t read by a speaker s in
language L; some speakers did not read all texts). For each such data
point, we measured the total speech duration (D; in seconds) and
the total NS of the text’s canonical transcription (denoted NS). Pauses
longer than 150 ms were identified and discarded through visual in-
spection of the waveforms and spectrograms.We computed the SR for
text t in language L read by speaker s (SRL

t;s) as

SRL
t;s ¼

NSLt
DL
t;s

ð1Þ

and the syntagmatic density of information ratio [SDIRL; defined in
(9)] for language L as

SDIRL ¼ 1
NT

∑
NT

t¼1

NSVIEt

NSLt
ð2Þ

with NT = 15 (number of distinct texts in the oral corpus). It can be
seen that, by definition, an SDIRL >1 represents a language L denser
thanVietnamese in terms of semantic information (since it requires less
syllables than Vietnamese to encode a similar semantic content), while
an SDIRL <1 represents a language L less dense than Vietnamese.

The text corpora were acquired from various sources containing
large amounts of written text (see table S2 for details). After an initial
data curation, each corpus was phonetically transcribed and automati-
cally syllabified using a rule-based program written by one of the
authors (Y.O.), except (i) when syllabification was already provided
with the dataset (for English, French, German, and Vietnamese for
the multisyllabic words) and (ii) when the corpus was syllabified by
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https://github.com/keruiduo/SupplMatInfoRate


SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org on Septem

ber 23, 2024
an automatic grapheme-to-phoneme converter (for Catalan, Spanish,
and Thai). In addition, no syllabification was required for Sino-Tibetan
languages (Cantonese and Mandarin Chinese) since each ideogram
corresponds to a single syllable. When applicable, syllables bearing
specific tone or accent were considered as distinct in the inventory. For
more information on the data and its processing, see (45).

For each language L, we computed information-theoretical metrics
derived from Shannon’s seminal theory to estimate the average amount
of information transmitted per syllable. More precisely, we estimated
the first- and second-order entropies of the syllable distribution. The
first-order entropy is the standard Shannon entropy (ShE)

ShE ¼ �∑
x
pðxÞ:log2ðpðxÞÞ ð3Þ

where p(x) is the maximum likelihood estimates of the syllable
unigram probabilities observed in the corpus.

The second-order entropy is the main information index used here,
and it is thus denoted by ID. It refers to conditional entropy where the
context in which each syllable occurs is taken into account. We char-
acterized this context as the identity of the previous syllable or a null
marker for syllables occurring word initially (thus, no bigrams span
across word boundaries)

ID ¼ �∑
x;y
pðx; yÞ:log2

pðx; yÞ
pðxÞ

� �
ð4Þ

where p(x, y) is the maximum likelihood estimates of the syllable
bigram probabilities observed in the corpus.

The numerical difference between the first- and second-order entro-
pies differs among languages, being larger for languages where across-
syllable binding is tighter because ofmorphology. Given that, for several
languages, the text corpora only provide word frequencies (and not raw
texts), we considered within-word context only. In future studies, a
broader and across-word context could be considered so that we can
refine the entropy estimations, but the very strong correlation observed
between ID and the syntagmatic density of semantic information pre-
viously used in (9) suggests that the second-order entropy is a relevant
proxy of ID.

Last, for each data point (i.e., one text read by one speaker), we com-
puted the Shannon IR (ShIR) and conditional IR (for short, IR) as

ShIR ¼ ShE ⋅ SR ð5Þ

IR ¼ ID ⋅ SR ð6Þ

ShE and ShIR offer approximations of upper boundaries for each
language since they do not take any context into account, despite the
large amount of redundancy and dependency induced by morphology
in human languages. For this reason, we reported here only the results
from conditional entropy ID and conditional IR, since they provide
much better estimations of the actual information transmitted during
speech communication.

Statistical analysis
We describe below the various statistical analyses we performed, each
under a dedicated subheading.
Coupé et al., Sci. Adv. 2019;5 : eaaw2594 4 September 2019
Intraclass correlations for text, language, and speaker
A priori, we expected that productions (respectively) of the same text, in
the same language, or by the same speaker are not independent, which
means that we should model them as random effects (46). As a prelimi-
nary analysis, we first estimated howmuch of the variation is explained by
each of these factors (i.e., how similar their productions are) using linear
mixedmodels (LMMs; as implemented byR’s lmer() function in the lme4
package) to compute the linear intraclass correlations for the random
effects text (representing the 15 short texts that were read by the speakers),
language (representing the 17 languages) embedded within family (there
are 9 language families, each language belonging to a unique family), and
speaker (representing the 170 speakers), separately for the dependent
variables NS, SR, and IR. For SR and IR, we used the AIC and the BIC
to select the best fitting LMM,which, in both cases, included sex as a fixed
effect and all three random effects; using R’s lmer notation:

lmer(SR ~ 1 + Sex + (1 | Text) + (1 | Family/Language) + (1 |
Speaker))

lmer(IR ~ 1 + Sex + (1 | Text) + (1 | Family/Language) + (1 |
Speaker))

Generalized additive models for location, scale, and shape
While the fit obtained using LMMs is relatively good, the inspection of
the diagnostic plots revealed slightly but potentially relevant deviations
from the assumptions of this class of models (46), prompting us to use
GAMLSS (20), as implemented by R’s gamlss() function in package
gamlss. This class of models is muchmore flexible than LMMs, allowing
us tomodel not only themean (location) but also the variance (scale) and
the shape of the distribution, and, while relatively recent, it has already
been successfully applied to problems in the language sciences (21).

More precisely, to preserve simplicity and interpretability, we
comparedGaussian distributions with fixed versusmodeled SD s (both
model the mean m). To select among alternative models, we used AIC.
For both SR and IR,modeling SD (with all three random effects and sex
as fixed effect) results in a better fit to the data. For thesemodels, the link
function of the mean is the identity, but for the SD, it is the natural log-
arithm to ensure that the predicted values are always positive. In gamlss
notation, the models are as follows:

gamlss(formula = SR ~ 1 + Sex + random(Text) + random
(Language) + random(Family) + random(Speaker), sigma.formula =
~1 + Sex + random(Text) + random(Language) + random(Family)
+ random(Speaker), family = NO)

gamlss(formula = IR ~ 1 + Sex + random(Text) + random
(Language) + random(Family) + random(Speaker), sigma.formula =
~1 + Sex + random(Text) + random(Family) + random(Language)
+ random(Speaker), family = NO)

We also modeled the relationship between SR and ID using
gamlss as follows (here, language is meaningless as a random effect
as there is only one ID value per language, but family is still poten-
tially meaningful):

gamlss(formula = SR ~ 1 + ID + Sex + random(Text) + random
(Speaker) + random(Family), sigma.formula = ~1 + ID + Sex +
random(Text) + random(Speaker) + random(Family), family = NO).

Unimodality
Although SR and IR distributions are composite, the differences in-
duced by the underlying groups (sex, language, text, and speaker) are
compatible with overall unimodal distributions (30). To judge this
unimodality, we also used two quantitative approaches, in addition to
the visual inspection of the histograms. In the first approach, we fitted
7 of 10
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Gaussian mixtures to the actual distributions, assessing between one
and five Gaussian components, using the gamlssMX() function in the
gamlss.mx package [for example, for SR with one component:
gamlssMX(formula = SR ~ 1, family = NO, K = 1)], and we used
AIC to select the best fitting mixtures. However, despite being simple,
modeling our distributions with a mixture of Gaussians might not suf-
ficiently capture how “unimodal” these distributions are because the
model might need more than one component to fit, for example, a lep-
tokurtic distribution. Mixtures of distributions other than Gaussian
could be considered here, but we lack relevant arguments for choosing
one distribution over another.

The second approach uses three unimodality tests: the Silverman
test, the dip test, and the bimodality coefficient (BC). The Silverman test
(47) tests the null hypothesis that an underlying density has at most
kmodes; its null hypothesis is that the underlying density has at most
kmodes (H0: number of modes≤ k), and the result is the bootstrapped
P value for rejecting a unimodal distribution (our implementation is
based on the code available at www.mathematik.uni-marburg.de/~sto-
chastik/R_packages). The dip test computes Hartigans’ dip statistic D
(48) and the associated (interpolated) P value for rejecting a unimodal
distribution (as implemented in the R package diptest). The BC is based
on an empirical relationship between bimodality and the third and
fourth statistical moments of a distribution (skewness and kurtosis)
and is proportional to the division of squared skewness by uncorrected
kurtosis. The underlying logic is that a bimodal distribution will have
very low kurtosis, an asymmetric character, or both, all of which in-
crease BC, with values exceeding 0.555 (the value representing a
uniform distribution) suggesting bimodality. We implemented it as
BC = (s2 + 1)/(k + 3 · ((n − 1)2 / ((n − 2) · (n − 3)))), following (49).
Unfortunately, these tests tend to disagree (see analysis report file S1),
and the problem of unimodality testing is far from settled (49). For all
SR and IR and for each of these tests, we performed four randomization
procedures to obtain an estimate of the “specialness” of the observed
unimodality estimate: permutation model 1 (PM1), randomly permute
the SR values freely among speakers, texts, and languages; PM2, ran-
domly permute the ID values among languages; PM3, randomly per-
mute the speaker average SR values among speakers (irrespective of
language); and PM4, randomly permute the language average SR values
among languages. Each of these procedures results in a distribution of
expected test (or P) values that can be compared with the observed es-
timates actually obtained.

Pairwise distances between languages
NS, SR, and IR each have a distribution of values within a given
language; thus, differences in the distribution of any of these three varia-
bles can be computed for any language pair. For each of the three varia-
bles, we computed all the possible 17 · (17 − 1)/2 = 136 differences
between the pairs of languages, and we compared these distributions
using paired permutation t tests (with 1000 permutations).We used five
methods for computing these differences [all implemented by R’s
function distance() in package philentropy]: Hellinger distance,
Jensen-Shannon divergence, Kolmogorov-Smirnov distance, Kullback-
Leibler divergence, and chi-square divergence, and we found that
all strongly agree.
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