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Abstract

Nucleation kinetics in a multicomponent supersaturated solid solution is ex-
amined. Attachment rate of atoms to a nucleus of a size close to the critical
one is determined combining a thermodynamic extremum principle and the
Fokker-Planck equation. Two limiting cases are examined; when bulk diffu-
sion controls the nucleation kinetics and when the process is limited by the
interfacial mobility. The mixed regime is also treated. Moreover, the growth
law in multicomponent alloys is derived in the general case, when both mech-
anisms are considered. Additionally, the attachment rate is derived, in the
classical framework, from a new macroscopic growth equations and the fun-
damental role of the interfacial mobility is examined. These new general
expressions, for the attachment rates and the growth laws, determined ei-
ther applying the thermodynamic extremum principle or derived from the
classical formalism are found to be consistent.
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1. Introduction

The kinetics of precipitation in a supersaturated solid solution is of major
concern in materials science. Indeed, it governs the microstructure and thus
the material properties. The early stages of precipitation phenomena are
often described in the framework of the classical nucleation theory (CNT)
[1–4]. The stationary nucleation rate, i.e. the number of new nuclei per unit
volume and unit time, in this formalism is expressed:

Jst = nZβ∗ exp

(
−W

∗

kT

)
(1)

with n the number of nucleation sites per unit volume, Z the Zeldovich factor,
β∗ the atomic attachment rate, W ∗ the nucleation barrier, k the Boltzman
constant and T the temperature. The above expression of the nucleation rate
first derived by Zeldovich [3], accounts for the so-called regression effects, and
holds for one dimensional nucleation theory, i.e. clusters are function of only
one parameter, typically their size or the number of atoms they contains.
Many refinements have been proposed [5–14] , for instance, additional vari-
ables have been added to the description for a better understanding of the
nucleation path, such as in binary systems, in focusing especially on the prop-
erties of pre- and post-critical clusters. Among the seminal theories is the
classical work by Reiss [7] who proposed that the nucleation barrier is given
by the minimum energy path along the nucleation landscape. Later, it has
been shown that the flux direction could in fact be driven by both kinetics
and thermodynamics [8, 9]. This theory has been extended to multicom-
ponent systems by Trinkaus [10]. Recently, a major improvement is due to
Alekseechkin [11] who develops a general formalism, the multivariable theory,
in which the nucleation rate is invariant with the space dimensionality and
includes the one-dimensional theory, as it must. Since, nucleation is of fun-
damental interest for both the scientific community and industry, especially
with the widespread availability of thermodynamic and kinetic databases, a
quantitative description of nucleation applicable to real materials is much
needed.

Despite technical progress in our understanding of nucleation, Eq. (1) re-
mains used in most of the numerical models of nucleation and more gener-
ally of precipitation [15–20], because of its simplicity. Coupling such a model
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to a thermodynamic database allows for a quantitative description of nucle-
ation thermodynamics, in computing accurately the quantities W ∗ and Z.
However, one of the challenging tasks when applying the CNT formalism is
to express the atomic attachment rate β∗ properly. Here it is important to
emphasize that depending on the space in which this coefficient is expressed,
it will take another name. In the size space {r} it is called the condensation
rate, βr(r), whereas in the nucleus number of atoms space {N} it is called
the atomic attachment rate, βN(r). Obviously their unit are different and
the conversion from one to another is easily made using [21]:

βN(r) =

(
4πr2

vat

)2

βr(r) (2)

with vat the atomic volume. Eq. (2) accounts for the equivalence in the vol-
ume added whatever the space, i.e. {r} or {N}. The atomic attachment
rate involved in Eq. (1) is then obtained as β∗ = βN(r∗). For the sake of
clarity in the following the subscript r is dropped out as expressions are ex-
clusively derived in the {r} space. Very often the expression of the atomic
attachment rate used in modelling works has no proper thermodynamic and
kinetic derivation [15, 22]. Expressions for binary alloys [5, 23] are sometimes
expanded to multicomponent alloys and concern limit cases where either the
reaction at interface or bulk volume diffusion limit the process. Another
expression of β∗ has been recently proposed for multicomponent alloys by
Philippe et al. [21] for bulk diffusion-limited nucleation in which the atomic
attachment rate accounts for both diffusion and capillarity. The macroscopic
growth law used in [21] to solve the Fokker-Planck equation is however only
valid for low-supersaturated systems. In the literature several treatments of
phase transformations based on a thermodynamic extremum principle (TEP)
may be found [24–29]. The first use of such an approach to derive an attach-
ment rate during nucleation was done by Svoboda et al. [24]. It is based on
the fact that during nucleation, various irreversible processes dissipate the
Gibbs energy until the system reaches equilibrium. The objective was to link
the treatment of growth with the one of nucleation. In 1991, Svoboda et al.
[25] proposed a mathematical treatment for applying their TEP. This math-
ematical tool does not add new physics but is aimed at deriving equations of
motions of a thermodynamic system out of equilibrium when diffusion con-
trols its evolution. Irreversible processes dissipate the total Gibbs energy of
such system. Based on Onsagers principle [30] and Ziegler’s TEP [31] the
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derivation in Svoboda’s work allows to link the variation of the Gibbs en-
ergy dissipation function with respect to some characteristic parameters of
the thermodynamic system and the variation of the total Gibbs energy with
respect to the variation of the same characteristic parameters with time. It is
actually like a balance equation describing the consumption of the available
driving force for the transformation. In 2004, Svoboda et al. [26] applied
this mathematical tool to the modelling of precipitation in multicomponent
systems. They derived in an elegant way a growth and shrinkage equation
based on diffusion fluxes in the matrix consuming the total Gibbs energy of
the system. By doing so they also identified an atomic attachment rate for
nucleation by comparing with both the growth law and attachment rate in
the binary case. The obtained expression for the attachment rate in multi-
component alloys is largely used in precipitation softwares [32, 33]. Never-
theless, this expression is not a proper derivation of the atomic attachment
rate using a thermodynamic extremum principle. Application of the TEP
was also described by Svoboda et al. [27] for non-steady grain growth. In
2006, Ågren and Hillert [34] compared the different extremum principles de-
scribed in the literature and examined their derivation and assumptions. In
2014, Fisher et al. [29] summarized the limits of application of the different
extremums principles and their potential for materials science. It was con-
cluded that Onsager’s and Ziegler’s TEPs are valid if the kinetic equation
for the dissipation can be expressed in a quadratic form of the fluxes. This
hypothesis is fulfilled if the mobility of the interface and/or volume diffusion
limit nucleation and growth.

In this work, Svoboda’s TEP treatment is applied to precipitation limited
by both bulk diffusion and interface mobility using a more general expres-
sion of the diffusive fluxes than the one used by Svoboda et al [26]. The
condensation and atomic attachment rates are then obtained combining this
treatment with the Fokker-Planck equation. It is also shown that applying
TEP equations or a treatment involving the driving pressure, sometimes used
in the literature, are strictly equivalent. Finally, a derivation of the macro-
scopic growth law without the use of the driving pressure is presented when
both bulk diffusion and interface mobility limit precipitation. Combined with
another treatment of the Fokker-Planck equation, the same expression of the
condensation rate is again derived. The objective of this work is therefore to
primarily derive a proper equation of the atomic attachment rate that can
be directly used in the expression of the nucleation rate. However it is also
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highlighted that applying the TEP gives rise to the same results than more
classical treatments which are in turn equivalent.

2. Thermodynamic extremum principle

In this work, only Onsager’s extremum principle [30] and Ziegler’s extremum
principle [31] which are almost equivalent, Ziegler’s one being the most gen-
eral, are used. The reader is referred to the papers from Hillert and Ågren
[34] and Fischer et al. [29] for details on others extremal principles.

Thermodynamic extremum principles are mathematical tools to derive evo-
lution equations of a thermodynamic system during an irreversible process
[24–26, 29, 30, 34]. It allows to describe the evolution of the macroscopic pa-
rameters characterizing the system knowing the initial thermodynamic state
of a closed thermodynamic system out of equilibrium. These macroscopic pa-
rameters are called characteristic parameters (CPs), qi , and their evolution
is described by time derivatives, q̇i . In the case of nucleation and growth of
a phase β in a supersaturated matrix α, the generalized coordinates could be
for instance the size of the precipitate, the concentrations of species or the
number of nuclei.

In order to derive the master equations of TEPs available in the literature
[30, 31], one starts with a fundamental equation from thermodynamics of
irreversible processes where the rate of entropy production, Ṡip due to in-
ternal processes in the system is expressed in the case of a closed system in
isothermal and isobaric conditions:

T Ṡip =
∑
i

XiJi (3)

where Xi is the driving force related to the flux Ji of the internal process.

In an isobarothermal system the rate of entropy production is directly related
to the variation of the Gibbs energy of the system as a function of time since
Ġ = −T Ṡip. Thus

−Ġ =
∑
i

XiJi (4)
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To make Eq. 4 useful for obtaining evolution equations in material sciences,
a dissipation potential was introduced by Onsager at the same time as his re-
ciprocal relations and kinetic phenomenological equations for diffusion fluxes
[30]. These dissipation potentials are related to the driving force and fluxes
dissipating the available driving force and were introduced to describe the
way the driving force is used by the various irreversible processes. Coupled
with these dissipation potentials, Onsager derived a Lagrangian function to
be maximized to reproduce the principle of the least dissipation. This math-
ematical treatment led to the master equation in Onsager’s TEP:

X =
1

T

1

2

∂Q

∂J
(5)

Eq. 5 can be rewritten as a function of the characteristic parameters and char-
acteristic parameter rates of the thermodynamic system. Then the evolution
of the total Gibbs energy of the system, G, with respect to the generalized co-
ordinates is proportional to the variation of the dissipation rate with respect
to the generalized velocities [24, 25, 29, 34]:

−∂G
∂qi

=
1

2

∂Q

∂q̇i
. (6)

where the left-hand side is a generalized driving force. Eq. (6) is the master
equation in Svoboda’s TEP. It allows to find the path of the process and
to derive the motion equations of the characteristic parameters during an
irreversible process. Applications of the TEP may be found for several phase
transformation problems in the literature [24–26, 28, 29].

As already mentioned, Eq. (1) is the expression of the stationary nucleation
rate in a ”one-dimensional space”, i.e. a single parameter, the size of a
nucleus, is considered. Likewise, most of the expressions for the condensation
rate have been expressed in this size space. We work in the same space here.
Then the generalized coordinate represents the size of the nucleus r and the
general velocity its growth or shrinkage rate ṙ and Eq. (6) rewrites:

−∂G
∂r

=
1

2

∂Q

∂ṙ
(7)

6



Solving Eq. (7) should then give information on the decomposition path in
the r space.

Ziegler generalized even more Onsager’s TEP by taking into account in the
Lagrangian expression to find the master equation the effect of constraints
on the system. This could be a mass conservation constraint for example. It
is worth mentionning that Ziegler’s TEP is sometimes called the ”thermody-
namic extremum principle” and his formulation is used in this work.

When applying Onsager or Ziegler’s TEP, the Gibbs energy of the system
must be expressed as a function of the characteristic parameters. On their
paper summarizing the use of thermodynamic extremal principles in materi-
als science, Fischer et al. [29] described the equations issued from Ziegler’s
TEP which can be used in materials science. If the fluxes may be expressed
linearly as a function of the CPs rates and the dissipation function in a
quadratic form of the fluxes consuming the driving force, they showed that
the dissipation function may be expressed as:

Q =
N∑
i=1

N∑
j=1

Uij (q1, q2, ..., qN) q̇iq̇j (8)

It can also be shown [29] that when applying Ziegler’s TEP:

N∑
k=1

Uikq̇k −
r∑

k=1

aikβk = −∂G
∂qi

(9)

where the βk are the Lagrange multipliers taking into account the poten-
tial constraints and making the tool more general than Onsager’s principle
and allowing solving more complex material transformations. Without any
considerations of constraints Eq. 9 rewrites

N∑
k=1

Uikq̇k = −∂G
∂qi

(10)

and if one considers only the nucleus size r as a characteristic parameter of
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the system and nucleation

U(r)ṙ = −∂W
∂r

(11)

where the matrix Uik becomes a scalar only function of r and W is the work
of forming a nucleus of size r.

3. Basic equations for describing nucleation

In the phenomenological approach used for deriving the classical nucleation
kinetic equations like Eq. (1), the evolution of the distribution function of
clusters is described by the Fokker-Planck (FP) equation. Applied in the
one-dimensional r space, i.e. when the distribution function is a function of
r only, the FP equation is:

∂f(r)

∂t
= −∂J(r)

∂r
(12)

where

J(r) = −β(r)
∂f(r)

∂r
+ f(r)ṙ (13)

J(r) is the flux of clusters in the r space, f(r)dr is the number of clusters
of size in the range r to r + dr, β(r) is the transition frequency of a cluster
from r to r + dr, the condensation rate, i.e. expressed in the size space {r}.
The first term in Eq. (13) represents random fluctuations in size caused by
thermal disorder and the second term, referred to as the drift, represents the
thermodynamically driven growth or shrinkage of clusters. ṙ(r) corresponds
to the growth or shrinkage rate in the size space. The first term is always
positive whereas the second term is negative for subcritical clusters and pos-
itive for supercritical clusters. In nucleation, where the crucial phenomena
is growth of subcritical clusters, ṙ(r) is always negative.

For a system in equilibrium, stable or metastable, the distribution of het-
erophase fluctuations is given by:

f0(r) = const× exp

(
−W (r)

kT

)
(14)
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with subscript 0 denoting equilibrium. For the supercritical system we clearly
have ∂W/∂r < 0, and Eq. 14 is not valid above the critical size.

For the equilibrium distribution J(r) = 0 and f(r) = f0(r). Combination of
Eqs. (12)–(14) then gives

ṙ(r) = −β(r)

kT

∂W (r)

∂r
(15)

It implies that ṙ(r) < 0 for subcritical sizes where ∂W/∂r > 0. Eq. (15)
was also derived by Philippe et al. [21], but they considered a constant
β. Eq. 15 is a key equation because it allows the evaluation of β from the
knowledge of ṙ(r) and W (r). It is interesting to note that Eq. 15 is similar to
Eq. 11 highlighting the analogy between the phenomenological equation and
the mathematical tool. It indicates that this tool contains the same physics
as the classical equations and might be powerful when phenomenological
equations are not available or with unknown parameters as β(r).

We consider a case when the matrix α has a homogeneous content of species
j, xαj and there is a driving force to precipitate a β phase. Assuming spher-
ical incompressible particles with isotropic interfacial energy σ the work of
formation of a spherical nucleus, or the Gibbs energy as a function of r is
then written as:

W (r, x1, ..., xn) = G(r, x1, ..., xn) = − 4π

3Vm
r3∆Gm + 4πr2σ (16)

∆Gm is the driving force normalized per mole of β neglecting the capillarity
effect. It is defined as positive when the β phase is thermodynamically stable
and is given by

∆Gm =
∑
i

xβi µ
α
i (xαj )−Gβ

m (17)

Vm is the molar volume. The chemical potentials µαj are evaluated for the
actual matrix composition xαj which at every instant will be approximated as

homogeneous but may vary in time. The composition of β, xβj , is obtained
from a multidimensional tangent plane to the β Gibbs-energy curve parallel
to the tangent plane of α for the matrix composition under consideration.
Another way of expressing this is to say that ∆Gm (positive or negative) is
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the addition to the molar Gibbs energy of the β phase that would cause the
two phases to be in equilibrium. Actually, this is how the driving force is
calculated in Thermo-Calc [35].

The generalized driving force −∂G/∂r, right-hand side in Eq. 11, is obtained
from Eq. 16 as

−∂G
∂r

=
4π

Vm
r2∆Gm − 8πrσ (18)

The capillarity effect thus reduces the generalized driving force for formation
of a particle with radius r and there is a critical value r∗ where it vanishes,
the critical size. As mentioned this particle size represents an unstable equi-
librium; if the particle is smaller it will dissolve and if it is bigger it will grow.
The critical size is obtained from Eq.18 as

r∗ = 2σVm/∆Gm (19)

If the Gibbs energy of the precipitate phase is always higher than that of
the matrix the driving force ∆Gm will always be negative and Eq. (19) will
result in a negative critical radius, i.e. the particle could never grow but will
always dissolve. According to the mean-field approximation an assembly of
β particles in a homogeneous α matrix is considered and we may introduce
the critical size from Eq. (19) and rephrase Eq. 18 into

−∂G
∂r

= 8πσr2
[ 1

r∗
− 1

r

]
(20)

We have now discussed the right-hand side in Eq. 11 and in the next section
we shall turn to the left-hand side, i.e. the dissipation. Indeed in order to
identify U(r) and in turn express β, an expression of the dissipation rate Q
is needed, see Eqs. (8), (11) and (15).
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4. Application of the TEP to nucleation and growth

In this section we first directly apply the equations introduced in section 1
from the TEP’s treatment and evaluate the dissipation rate Q as a function
of the characteristic parameters rates, i.e. the growth rate in 1D. However,
the same type of equations, but involving the so-called driving pressure, are
sometimes also applied in the literature to derive the growth rate. Therefore
to highlight the strict equivalence between the two treatments, we show in
the second part how one can obtain the dissipation rate from the driving
pressure.

To expressQ, one should identify the various irreversible processes dissipating
the available driving force. That would make possible the identification of
the matrix U needed to obtain Eq. 9. The dissipation function Q is actually
the variation of the Gibbs energy as a function of time, Q = Ġ. In this
work where the goal is to emphasize the usefulness of the TEP for finding
the evolution equation during nucleation, we first consider that the internal
process consuming the available driving force is unique and is the diffusion
of atoms in the matrix. In that case:

Qtot = Qdiff = −
∫

JT∇ΦdV (21)

with JT the transpose of the columnar diffusion fluxes vector J, and ∇Φ
the chemical potential gradient which is the driving force for diffusion, where
Φj is the diffusion potential e.g. in the number-fixed frame of reference
Φj = µj − µN when N is chosen as reference element. Assuming spherical
symmetry and a flux expressed only in the radial direction, Eq. 21 may be
written approximately as:

Qdiff ≈ −4πr3JT∇Φr (22)
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The diffusion fluxes are [36]

Jαi = − 1

Vm

N−1∑
j

Lαij∇Φj (23)

Lαij is the phenomenological matrix in the frame of reference under consider-
ation. In order to simplify the notation we use matrix vector notation and
drop the index α and write Eq. (23) as

J = − 1

Vm
L∇Φ (24)

L is the symmetric (N − 1) × (N − 1) matrix with the coefficients Lαij. It
should be emphasized that we can let L be a N×N matrix and the treatment
will then cover also the lattice-fixed frame of reference. L generally depends
on composition. Again assuming a simple spherical symmetry with variation
only in the radial direction ζ we have∇Φ = ∂Φ/∂ζ . Compared to Svoboda’s
treatment [26] Eq. (24) is more general due to the use of the phenomenological
equation for diffusion.

The flux balance equation in dyadic notation is

ṙ

Vm
∆x = −J (25)

where ∆x is a columnar vector with elements xβi − xαi .

Combining Eqs. (22), (24) and (25)

Qdiff =
4πr3

Vm
∆xTL−1∆xṙ2 (26)

Comparing with the TEP equation Eq. (8), we can identify the matrix Uij
that is a single coefficient U(r) in a 1D-treatment:

U(r) =
4πr3

Vm
∆xTL−1∆x. (27)

It is worth mentioning that this result could also have been obtained by
introducing the driving pressure P tot as it is shown below. Nevertheless using
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the driving pressure to derive ṙ involves both the use of the thermodynamics
of irreversible processes and the use of phenomenological kinetic equations for
diffusion fluxes, i.e. the same basic equations than for deriving the TEP tool
equations. Indeed Eq. 21 derived with the expression of the rate of entropy
production may be rewritten in terms of driving pressure introducing that
the driving pressure for a particle of radius r to grow is expressed from ∆Gm

and subtracting the retarding effect of capillarity.

P tot(r) =
∆Gm

Vm
− 2σ

r
(28)

A positive value yields growth whereas a negative shrinkage. The value 0
occurring at the critical size represents the unstable (critical) equilibrium
with the matrix.

We can also express Ġ as

Ġ =
∂G

∂r
ṙ (29)

when only one characteristic parameter is considered. Therefore according
to Eq. (18) combined with Eq. (28) we obtain:

Ġ = −4πr2P totṙ (30)

Therefore relating Eq. (30) to Eq. (26) we obtain:

P totṙ =
r

Vm
ṙ2∆xTL−1∆x (31)

that may be developed to obtain an expression similar to Eq. (26), the dif-
ference being that Eq. (31) gives the dissipation per area of particle matrix
interface.

Eq. (26) and Eq. (31) are positively quadratic forms of ṙ as it must when
a precipitate is only defined by its size. Including also the dissipation by
interface friction, Eq. (31) becomes

Qtot =
4πr3

Vm
v2∆xTL−1∆x +

4πr2

M int
v2 (32)
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with M int the interface mobility.

When using the driving pressure expressions, Eq. (28) and Eq. (31), it is
possible to derive the growth rate as:

ṙ =
1

r

∆Gm(r)(
Vm

M intr
+ ∆xTL−1∆x

) =
1

r

2σVm(
Vm

M intr
+ ∆xTL−1∆x

) [ 1

r∗
− 1

r

]
(33)

The expression without interface friction:

ṙ =
1

r

∆Gm − 2σVm/r

∆xTL−1∆x
=

1

r

2σVm

∆xTL−1∆x

[
1

r∗
− 1

r

]
(34)

i.e. when M int → ∞, may be directly obtained combining Eqs. (11), (15),
(20) and (27) and is close to the one derived by Philippe and Voorhees [37]
for low supersaturated multicomponent alloys:

ṙ =
1

r

1

∆xTL
−1

∆x

[
∆xTGα∆xα − 2σVm

r

]
(35)

It was indeed shown by Philippe et al. [38] that the driving force for nu-
cleation in low supersaturated alloy is ∆Gm = ∆xTGα∆xα with Gα the
Hessian of the Gibbs energy density of α evaluated at equilibrium concentra-
tions, L is the mobility matrix of size (N − 1)× (N − 1) such as D = LGα

with D the interdiffusion matrix in α, as Gα both L and D are evaluated at
equilibrium concentrations. The matrix L contains both kinetic and thermo-
dynamic information. ∆xα is the supersaturation tie-line, i.e. xαj − xαj with

∆xα the equilibrium composition. ∆xT is the equilibrium tie-line vector,
xβj − xαj . In the limit M int →∞, Eq. (34) and Eq. (35) are then equivalent
if

∆xTL
−1

∆x = ∆xTL−1∆x (36)

that holds for low-supersaturated systems.

5. The atomic attachment rate β∗

Let us now use the expression for U(r) derived in the previous section,
Eq. (27), together with one of the equation in the TEP treatment, Eq. (11),
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and the FP equation, Eq. (15). When comparing Eqs. (11) and (15) , β(r)
writes:

β(r) =
kT

U(r)
(37)

When replacing U(r) by its expression, Eq. (27), in the case of diffusion-
limited nucleation, we finally obtain:

β(r) =
kTVm

4πr3∆xTL−1∆x
(38)

It is worth mentioning that the relation Eq. (37) between β and U was also
proposed by Svoboda et al. in [24] on their work on cavity nucleation and
could also be found when developing equations in [25]. Nevertheless, because
the expressions of the dissipation rate were different, the same relation does
not hold for β itself, i.e. Eq. (38). The derivation in our work is much more
general because based on Eq. (24) which is the most general equation de-
scribing diffusive fluxes. Besides, due to the increasing availability of kinetic
databases, Eq. (38) may be solved for fixed thermodynamic conditions. The
tie-line is the one found when studying precipitation kinetics [39].

Eq. (38) expressed for the critical radius is similar to the expression derived
by Philippe et al. [21] β∗ = kTVm/

(
4πr∗3∆xTL−1∆x

)
when Eq. (36) holds,

i.e. for low-supersaturated system, and for the critical radius. The expression
in [21] is valid when the concentration variable drops out of consideration.
They showed using the formalism of the multivariable theory [11] that it is
the case when the curvature of the precipitate phase Gibbs energy is very
large.

If we now express U(r) when interface friction and diffusion are both consid-
ered as possible rate-limiting mechanisms, the condensation rate becomes:

β(r) =
kTVm
4πr2

(
r∆xTL−1∆x +

Vm
Mint

)−1

(39)

β∗ is subsequently obtained converting Eq. (39) in the appropriate {N} space
with Eq. (2):

β∗ = βN(r∗) =
4πr∗2kTVm

v2at

(
r∆xTL−1∆x +

Vm
Mint

)−1

(40)
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The expression derived in this work is function of the nucleus size and ac-
counts for capillarity and diffusion-flux couplings with the matrix L.

6. Kinetic theory of nucleation

In this part we show that the expression of β∗ obtained in the previous
section applying the TEP equations may also be derived employing macro-
scopic growth law and another form of the Fokker-Planck equation. It em-
phasizes another route for solving the Fokker-Planck equation and expressing
the atomic attachment rate but does not contain another physics than what
has been derived in the previous sections.

6.1. The role of the interfacial mobility in nucleation

In the general formalism introduced by Alekseechkin [11], the kinetics coef-
ficient of the nucleation theory (diffusivities in the Fokker-Planck equation)
are determined from the macroscopic equations of motion of a nucleus in
the considered space. Very often macroscopic thermodynamics is employed
to describe the work of nucleus formation, but the kinetic coefficients are
deduced from microscopic considerations such as the kinetic processes on the
interface. In contrast, in the following, the diffusivities and thus the nucle-
ation rate are determined by macroscopic parameters, and such approach
can therefore be seen as fully macroscopic. Let us first examine the case
where growth is controlled by the intrinsic mobility of the interface and not
by diffusion. We assume that the interface linearly responds to a difference
in energy, thus, we write for the normal interface velocity:

v =
M int

Vm
∆G (41)

where M int is the intrinsic mobility of the interface (in m4J−1s−1) and ∆G
is given by

∆G =
N∑
j=1

xβ,ij

(
µαj
(
xα,ij , Pα

)
− µβj

(
xβ,ij , P

β
))

(42)

16



µαj is the chemical potential in the α phase of element j, µβj in the β phase. As
it must, local equilibrium at the interface systematically implies no interface
motion. xα,ij and xβ,ij are the compositions on both sides of the interface for
a precipitate of radius r. We assume mechanical equilibrium

P β = Pα +
2σ

r
(43)

and use
µβj (P β) = µβj (Pα) + V β

j (P β − Pα) (44)

with V β
j the partial molar volume. Observing that

N−1∑
j=1

xβ,ij

(
µαj
(
xα,ij , Pα

)
− µβj

(
xβ,ij , P

α
))

= ∆Gm (45)

as we consider that both the precipitates and the matrix are homogeneous
in composition, Eq. (41) writes

ṙ = 2σM int

(
1

r∗
− 1

r

)
(46)

Thus, a precipitate, with a composition xα,ij at its interface, is in equilibrium

(v = 0) if its size is r∗, which is set by the matrix composition xα,ij . If its
actual size r is smaller, the precipitate shrinks, or grows when r > r∗ . Then,
we use the same approach detailed in [21], the work of formation of a nucleus
W (r) is represented as a quadratic form near its saddle point ∗c:

W = W ∗ +
1

2
Hrr(r − r∗)2 (47)

where

Hrr =
∂2W

∂r2
(48)

and W ∗ = W (r∗) is the nucleation barrier. Assuming a constant β, Eq. (15)
can be expressed as

ṙ = −Dr

kT
(r − r∗) (49)

with Dr = βHrr (not to be confused with the interdiffusion matrix). Eq. (49)
is a motion equation in the size space. Therefore, expanding the macroscopic
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growth equation Eq. (46) around the critical size allows for the determination
of the coefficient Dr and then the condensation rate in the size space βr for
interface-limited growth regime. Using Hrr = −8πσ [21], we find for βr (in
m2/s):

βr =
kTM int

4πr∗2
(50)

or in the n-space (with n the number of atoms in the cluster)

βn =
kTM int

v2at
4πr∗2 (51)

with vat the atomic volume and where we have used βr/βn = (4πr2c )
2
/v2at [21].

The size dependence of βn (in s−1) is analogous to the well-known result for
binary [3], but for a different physics:

β∗ =
Dxα

a2
4πr∗2 (52)

when growth is controlled by the jump frequency of solute atoms, D is the
interdiffusion coefficient, in multicomponent the slower diffuser is often used
as a good approximation. A jump frequency Γ is also used instead of D.
However, our result (Eq. (50) or Eq. (51)), in case growth controlled by the
interface response to a thermodynamic disequilibrium, contains the interfa-
cial mobility, M int , as it must. A similar expression has been derived in
[40] but that contains a thermodynamic term and describes growth of super-
critical clusters (far enough from the critical size).

6.2. General case

The growth equation, Eq. (25), in multicomponent system, can be written
in dyadic notation using diffusivities D as

∆x
dr

dt
=

D

r

[
∆xα −∆xα,i

]
(53)

where ∆x is the equilibrium tie-line vector, xβj −xαj ; ∆xα is the supersatura-

tion tie-line, i.e. xαj −xαj . ∆xα,i gives the actual composition at the interface

18



of a precipitate, xα,ij − xαj . In the limit of low supersaturation ∆x = ∆x.
As we are interested by the general case and contrary to Eq. (35), we do not
assume local equilibrium, consequently the interfacial compositions are un-
known. This disequilibrium makes the interface to move at a velocity given
by Eq. (46). Still in the limit of low supersaturation, it can be shown that

v = ṙ =
M int

Vm
∆xTGα

(
∆xα,i −∆xα,r

)
(54)

with ∆xα,r = xα,rj − xαj where xα,rj is the composition at the interface of a
precipitate or radius r in equilibrium with the matrix, i.e. the composition
given by the Gibbs-Thomson equation [37]. Interestingly, we find that the
interface linearly responds to the difference in composition between the ac-
tual interfacial composition and its value at equilibrium. In multicomponent
alloys, a precipitate in equilibrium with the matrix satisfies [37]:

∆xα,r = ∆xα − D−1∆C

∆xTL
−1

∆x

[
∆xTGα∆xα − 2σVm

r

]
(55)

as the composition at the interface is not only set by the capillary effect, con-
trary to binaries, but is also dependent on the diffusion process. Combining
Eqs. (53)–(55) gives:

ṙ =
2σVm
r

(
1

r∗
− 1

r

)(
∆xTL

−1
∆x +

Vm
rM int

)−1

(56)

which is analogous to Eq. (33). Expanding the growth law near the critical
size and using Eq. (49), we find the following general expression for the
condensation rate:

βr =
kTVm
4πr∗2

(
r∗∆xTL

−1
∆x +

Vm
M int

)−1

(57)

This new expression contains both diffusion and the effect of the interfacial
mobility. When the last effect is negligible, i.e. when the interfaces response
to a thermodynamic disequilibrium is fast enough (M int →∞), as compared
with solute diffusion, the bulk diffusion-controlled regime is recovered [21]:

βr =
kTVm

4πr∗3∆xTL
−1

∆x
(58)
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and for low interfacial mobility, the interface-limited regime, Eq. (50), is
recovered. Both results are consistent with the TEPs expressions (Eq. (39)).

7. Conclusion

In the present work, we have derived using Svoboda’s TEP a new expression
of the atomic attachment rate for both bulk diffusion and interface reaction
limited nucleation and a new expression for the growth rate in multicompo-
nent alloys. We show that this mathematical tool is actually similar in its
physical description to the classical expression with the driving pressure used
in previous works. We have also performed the analysis in a more classical
framework, combining macroscopic equations for growth and nucleation the-
ory. We show that both approaches contain the same physics and are consis-
tent. When considering the same limiting mechanisms during nucleation and
growth, TEP mathematical treatment may be a useful tool to derive motion
equations of the characteristic parameters of the thermodynamic systems.
When modelling precipitation, it is thus interesting because it allows being
consistent in describing nucleation, growth and coarsening. Knowledge of
the kinetic phenomenological coefficients allows for a quantitative calcula-
tion of the atomic attachment rate and thus of the nucleation rate. Those
new expressions can be used in multicomponent alloys and accounts for both
thermodynamic and kinetic information, as it must. It would be of a major
interest to extend the TEP treatment in a multivariable space to consider
the influence of the nucleus concentration on the nucleation process.
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