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Abstract 

As the result of an intricate interplay between mechanical and biochemical cues, 

coordinated cell dynamics are at the basis of tissue development, homeostasis and repair. 

Numerous studies have addressed the interplay between these two inputs and their impact 

on cellular dynamics. These studies largely focus on bicellular junctions (BCJs). Recent works 

have illuminated that tricellular junctions (TCJs), the junctions where 3 cells contact, play 

important roles in epithelial tissues beyond their well-known structural function in 

preserving epithelial barrier integrity. Indeed, TJCs have recently been implicated in the 

regulation of collective cell migration, division orientation, cell proliferation and cell 

mechanical properties. More generally, the TCJ distribution aligns with the cell shape and 

mechanical stress orientation within the tissue, while their positioning encapsulates the 

packing topology. Importantly, known regulators of growth signalling and of  cell mechanical 

properties are also localized at TCJs. Therefore, TCJs emerge as spatial sites to sense and 

integrate biochemical and mechanical inputs to guide epithelial tissue dynamics. 
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Introduction 

As selective permeability barriers epithelial cell sheets cover organs separating them from the 

external milieu. To ensure paracellular barrier function cells are tightly packed and form 

specialized adhesive contacts along their apical-basal axes, at both the bicellular junctions 

(BCJs) and at the tricellular junctions (TCJs). In vertebrate tissues, cell-cell adhesion is 

mediated by the apical tight junctions (TJs), basal-lateral adherens junctions (AJs) and the 

desmosomes, while in invertebrate tissues adhesion is mediated by the apical AJs and the 

basal-lateral septate junctions (SJs) (Figure 1a, b) (for detailed structural information on AJs, 

TJs, SJs and TCJs see reviews [1–6]). Thus, BCJs and TCJs are core structures of epithelial 

tissues. They have been extensively studied from a structural point of view and shown to be 

critical for tissue barrier functions in numerous tissues.  

TCJ function and organization have been mainly studied at the level of TJ and SJ. The 

organization and structure of the tricellular vertebrate TJs and invertebrate SJs appear largely 

similar [3,5]. However, the apical-basal organization of the TJs and SJs is different and the TCJ 

molecular components do not share sequence homology, although they perform functionally 

analogous tasks (Figure 1a’, b’). TCJ barrier integrity in vertebrate systems is mediated by the 

Tricellulin and the Angulin protein family [7–9], while in Drosophila, barrier integrity is 

provided by Gliotactin (Gli) and Anakonda (Aka) (also known as Bark beetle, Bark) 

[10,11,12••]. Numerous works have focused on the roles of BCJ mechanical properties, their 

formation and remodelling in promoting tissue dynamics and regulating epithelial packing 

(reviews [13–15]). Recent studies now show that epithelial tissue dynamics and mechanics can 

be understood, if the function of TCJs is taken into account. After a brief description of the TCJ 

structure in vertebrate and invertebrate systems, we will focus primarily on the emerging roles 

of TCJs in epithelial cell division, migration, cell mechanics and stem cell maintenance.  

 

TCJ structure, protein composition and regulation 

Vertebrate and invertebrate TCJ structure and formation are best characterized at the level of 

the TJ and SJ, respectively. In vertebrate and invertebrate model systems TCJ channels, or 

pores, are present along the apical-basal axis at the contact interfaces between three cells. 

They are formed by a series of stacked diaphragms, tricellular channel diaphragms (TCD) in 

invertebrates or a central sealing element (CSE) in vertebrates (Figure 1a,b) (reviewed in [5,6]). 

In vertebrate systems, the bicellular TJs form strands that attach to the central sealing element 
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[16], while in invertebrates the bicellular SJ strands connect to the diaphragm along the apical-

basal axis forming a lateral limiting strand (LS) at the tricellular contact interface [17–19].  

From a molecular point of view, in vertebrates, Tricellulin mediates the connection between 

the TJ strands and central sealing element via the Angulin proteins (Angulin1-3) [8,9,20]. In 

invertebrates the molecular link between the lateral limiting strands and the tricellular 

channel diaphragms has been proposed to be mediated by the Gli protein [10,21], while the 

connection between the tricellular channel diaphragms and Gli is mediated by Aka [12••]. Aka 

is a transmembrane domain with a large extracellular domain. Based on experimental data 

and computer simulations, it is proposed that the geometry of the TCJ facilitates the self-

organization of the extracellular domains of Aka proteins from three adjacent cells into a 

tripartite septum in the TCJ lumen (Figure 1a’)[12••]. 

 To understand how TCJs are formed and remodeled, it is essential to determine how 

proteins are trafficked and targeted to the TCJs. Currently, the cellular and molecular 

mechanisms regulating protein targeting and localization to the TCJ are still not fully 

understood. However, the Auld lab has provided insight into this central question in 

Drosophila by analyzing how Gli levels are regulated at the TCJ. The localization and levels of 

Gli are regulated at the protein level by phosphorylation-dependent endocytosis and 

degradation facilitated by the SJ protein discs large (Dlg) [22–24] and the C-terminal Src kinase 

(Csk) [25••]. Moreover, Gli mRNA levels are regulated though a feedback mechanism that 

utilizes the bone morphogenetic protein (BMP) pathway to upregulate a microRNA, miR-184, 

which targets the 3’UTR of Gli for degradation [26].  

Combined these studies show that TCJs are complex molecular structures, of which the 

molecular composition needs to be strictly controlled to ensure barrier integrity. 

 

TCJ formation during epithelial tissue remodeling and division 

In order to preserve barrier function during homeostasis or morphogenesis, remodelling and 

de novo formation of BCJs and TCJs needs to be tightly coupled with local cellular dynamics 

such as cell elimination by extrusion, apoptosis, delamination [27] or fusion [28], cell addition 

upon division [29] or cell insertion [30], or changes in cell positions during cell-cell 

rearrangements [31]. Two studies have addressed how de novo TCJs are formed in the mouse 

ear skin epithelium [32,33••]. The mouse ear skin is a multi-layered epithelium composed of 

1) an outer barrier, the stratum corneum (SC), 2) followed by the TJ barrier, the stratum 
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granulosum (SG), 3) the stratum spinosum (SS) and 4) the proliferative layer, the stratum 

basale (SB). Cells from the proliferative layer traverse though the stratum spinosum and 

stratum granulosum to finally reach the stratum corneum. Yokouchi et al. [33••] 

demonstrated that during this upward migration the cells form a specialized 3D shape filling 

structure resembling a Kelvin’s tetrakaidecahedron (14-sided solid with six rectangular and 

eight hexagonal sides) and establish Tricellulin/Angulin-1 positive TCJs with the cells of the 

stratum granulosum to preserve barrier integrity when entering the stratum granulosum 

layer. The second study addressed how antigen-presenting dendritic cells of the skin, the 

Langerhans cells, located between the stratum spinosum and stratum basale layers, generate 

dendrites that penetrate the stratum granulosum to uptake antigens in the space between 

the stratum granulosum and stratum corneum  layers and within the stratum corneum  [32]. 

When a dendrite penetrates the TJ of the stratum granulosum layer, Tricellulin accumulates 

at the tricellular contact sites between two stratum granulosum cells and the dendritic cell to 

establish new TCJs, thus preserving barrier integrity.  

In parallel to these studies on the remodelling of TCJ, the de novo TCJ formation in 

monolayered proliferative epithelia is currently emerging as an active and important field of 

research. De novo BCJ formation at the level of the AJs upon cell division within epithelial 

tissues has been extensively characterized. Combined, these studies demonstrate that the 

formation of a new BCJ relies on an intricate interplay between the dividing cell and its 

neighbouring cells [34,35,36••]. One recent study in Xenopus provides insights into TCJ 

formation at the level of the TJs during cell division and how this is coordinated with AJ 

formation [37••]. In cells of the Xenopus gastrula epithelium new TCJs are formed during the 

final stages of cytokinesis. Upon midbody formation and AJ establishment, the TCJ proteins 

Angulin-1 and Tricellulin are recruited to the nascent TCJs, which closely appose to the 

midbody to form two mature TCJs between each daughter cell and its two neighboring cells. 

This mode of cytokinesis results in the creation of a bicellular neighbor-neighbor interface, 

which has also been reported in the chick epiblast cells [35].  In many different epithelia and 

model systems, including Xenopus, Drosophila, Hydra, and the zebrafish cell division results in 

the formation of a daughter-daughter cell interface [38–44]. This raises the question of 

whether the creation of a daughter-daughter interface requires a different mode of TCJ 

establishment. Our recent findings show that within the Drosophila notum tissue, TCJ 

maturation at the level of the SJ initiates after the apical daughter-daughter AJ has been 
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formed (Wang et al., submitted). Upon AJ formation, the daughter cells and their neighboring 

cells remain connected to the midbody forming a 4-cell structure.  This 4-cell structure 

resolves as the midbody undergoes a basal movement. This midbody basal movement is 

concomitant with the formation of a new SJ between the two daughter cells and the 

establishment of new TCJs between the two daughter cells and one neighboring cell. 

 

TCJs as cell shape and stress orientation sensors: Cell division orientation 

Cell division orientation contributes to cell fate specification, tissue organization and 

morphogenesis [29]. Within tissues the direction of the cell shape anisotropy generally aligns 

with the tissue stress axis, and, accordingly, divisions tend to be oriented along the global 

tissue stress axis [28,45–49]. Recently, it was shown that within the Drosophila pupal 

epithelium the TCJ distribution (TCJ bipolarity) aligns with the principal cell shape axis when 

cells are elongated, and with the direction of the mechanical stress within the tissue [50••]. 

Importantly, the conserved Dynein-associated protein Mud (NuMA in mammals), which 

controls the pulling forces on the astral microtubules to orient the spindle during mitosis [51], 

is recruited to the TCJs. Mud accumulation at TCJs occurs at the level of the SJs, in G2 

interphase where it remains during mitosis. The TCJ localization of Mud is independent of the 

classical Gαi/Pins (LGN in mammals) regulators of Mud localization [51]. Instead, Mud TCJ 

localization depends on the TCJ protein Gli and on the SJ protein Dlg, which regulates Gli 

localization [22–24,50••]. While the cell shape anisotropy is lost upon mitotic rounding, the 

anisotropy of TCJ bipolarity remains relatively constant. Therefore, the TCJ distribution of Mud 

in the rounded mitotic cell encapsulates both the interphase cell geometry, and, possibly, the 

tissue stress axis ensuring division orientation along the cell shape and global tissue 

mechanical stress orientations (Figure 2). Importantly, a similar TCJ-based mechanism for 

division orientation was recently reported in the Xenopus animal cap cells [52]. In this context, 

it was shown that the loss of C-Cadherin abrogated spindle orientation relative to the TCJ 

distribution and it was proposed that C-Cadherin enrichment at the TCJs recruits the 

LGN/NuMA complex to orient the spindle.  

Independently of the exact mechanisms of Mud TCJ recruitment, these studies 

establish that the TCJ distribution allows cell to “sense” the orientation of cell shape and 

mechanical stress anisotropy. As the TCJ distribution controls division orientation and TCJ 

bipolarity aligns both with the cell shape and tissue stress axes, the information encapsulated 
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by their position may further promote the dissipation of tissue stress and regulate epithelial 

cell packing during tissue development [41,46,53].  

 

TCJs as tissue planar polarity cues 

While the epithelial cells are polarized along their apical basal axis (apical-basal polarity), a 

conserved feature of epithelial tissues is that the cells are also polarized within the plane of 

the tissue (planar cell polarity, PCP), [54,55]. The Drosophila wing epithelium has served as a 

paradigm to study the mechanisms of PCP by the Frizzled (Fz) PCP pathway. Within the 

Drosophila wing, cells form polarized ridges at their cell apical membranes. In addition, each 

cell produces a distally pointed hair with the hair pedicle located at the peak of the ridge [56]. 

This planar polarized organization of the cells requires Frizzled PCP signalling and depends on 

their regular hexagonal packing during pupal stages [47,56,57]. Mutations in Gli disrupt the 

alignment of the hairs independently of classical Frizzled PCP signalling [58]. Gli localizes at 

the TCJs during early pupal wing development and translocates together with the SJ protein 

Coracle to a more apical position, where they form ribbon structures, which are the 

presumptive ridges, beneath the prehair base during later stages. Upon loss of Gli function, 

the formation of these ribbons was compromised and cells appear more disorganized. This 

study demonstrates that TCJs impact on PCP and possibly on cell packing. 

PCP signaling has also been implicated in the directional migration of epithelial cell 

sheets or collective migrations. Collective cell migrations are essential for tissue 

morphogenesis and wound healing, and their dysregulation can lead to tumorigenesis 

(reviewed in [59]). Within the Drosophila ovary, the follicular epithelium covering the germ 

cells undergoes a stereotypic collective migration whereby the entire tissue crawls on the 

basement membrane and rotates around the germ cells to elongate the future egg [60–62]. 

This rotation is driven by whip-like actin protrusions that emanate from the basal TCJs [63••]. 

The direction of these protrusions is regulated by a basal planar signalling network involving 

the Fat2 proto-cadherin, the DLar receptor tyrosine phosphatase and the WAVE regulatory 

complex protein Abi, which are all enriched at the basal TCJs during early stages [63••,64–66]. 

It was proposed that the TCJ localization of Fat2 promotes the polarization of the actin 

cytoskeleton through a yet unknown mechanism to initiate the collective migration [63••]. 

Although compelling evidence indicates that Fat2 and DLar regulate follicle cell migration, the 
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interplay between these two signalling pathways remains elusive, since Fat2 and DLar do not 

directly interact [64,67].  

Combined, these findings illustrate that TCJs act as signalling hubs for PCP signalling 

guiding cell polarity independently of the classical Frizzled PCP pathway. It will be interesting 

to explore whether TCJ-dependent PCP signalling exists in other tissues and contexts. 

 

Mechanical regulation at TCJs 

TCJs sustain the junctional tension generated by three or more BCJs during cell 

rearrangements [68–70]. The forces exerted on the TCJs are not constant, but continuously 

fluctuate due to the changes in BCJ length and tension associated with morphogenetic 

processes (reviewed in [31] and [71–78]). Accordingly, several studies have now revealed how 

the BCJ and TCJ mechanical properties are coordinated and provide feedback for each other. 

BCJs are generally under tensile stress and are thus pulling on the TCJs [53]. As TCJs are 

mechanically coupled to the BCJs, TCJs are likely to respond to these forces generated along 

the BCJs. Indeed, several studies reported that changes in the BCJ tension or adhesion lead to 

changes in the molecular composition of TCJs. Increasing junctional tension by adding the drug 

calyculin A or ATP to embryonic tissues of Xenopus causes the accumulation of the F-actin 

binding protein Vinculin at TCJs. Upon wounding in cultured MDCK monolayers, an actomyosin 

purse string is formed, which participates in the closing of the wound. The tension generated 

by the constriction of this purse string induces the localization of α-Catenin in its stretched 

conformation and of Vinculin at the TCJs [79]. Similarly, increased BCJ tension after double 

knock-down of the ZO-1 and ZO-2 TJ proteins in MDCK monolayers increases the TCJ 

localization of Afadin, E-Cadherin, Vinculin and of α-Catenin in its stretched conformation [80]. 

Conversely, reducing BCJ tension by depleting the scaffolding protein Anillin results in an 

impaired junctional integrity and in a reduced amount of active MyosinII at the TCJs in 

gastrula-stage Xenopus embryos [81].  

TCJs not only respond to changes in BCJ tension, but also feedback on the BCJ tension 

[82]. When Caco2 cells are grown at subconfluent conditions, the TCJ associated Tricellulin 

recruits the Cdc42 GEF Tuba, which activates Cdc42 to promote the assembly of an actomyosin 

meshwork at the TCJs as well as BCJs. Accordingly, the loss of the Tricellulin induced BCJ 

curving and changed tissue topology indicative of defects in BCJ tension [82]. Lastly, in the 

mammalian gut epithelial tissue, loss of EpCAM dependent cell-cell adhesion at BCJs results in 
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a hypercontractility at the TCJs [83••], due to the accumulation of myosins IIa and IIb at the 

TCJs. This increases the contractility along the apical-basal axis of the cells, which leads to the 

abnormal expansion of the cell apical domain and epithelial dysplasia (Figure 3a,b). Thus, the 

tight regulation of contractile forces at TCJs is essential to maintain tissue integrity and 

homeostasis [83••]. 

 

TCJs as regulators of stem cell homeostasis and tissue growth signaling 

The role of TCJs as regulators of epithelial integrity is not restricted to the mammalian gut. 

Recently, Resnik-Docampo and colleagues showed that the age-associated loss of the barrier 

function in the Drosophila midgut is associated with an impaired TCJ organization and results 

in stem cell over-proliferation [84••]. They found that the loss of Gli at the TCJs of the midgut 

enterocytes promotes such age-associated barrier dysfunction by preventing terminal 

differentiation and increasing intestinal stem cell proliferation (Figure 4). The intestinal stem 

cell over-proliferation is due to the loss of Gli function in the differentiated enterocytes, which 

promotes Jun N-terminal kinase (JNK) signaling pathway in the intestinal stem cell. However, 

the link between TCJs and JNK signaling appears more complex and could be tissue dependent. 

Indeed, as opposed to the loss of Gli in the midgut, the over-expression of Gli in the Drosophila 

wing disc induces an increase in cell proliferation by upregulating the JNK pathway [24]. As Gli 

over-expression induces cell delamination and apoptosis, this increase in proliferation was 

proposed to reflect a compensatory mechanism necessary to buffer the cell loss. Since the 

loss of Gli function and the overexpression of Gli trigger JNK pathway activation, one can 

envision that both conditions cause tissue injury resulting in elevated JNK stress signaling and 

increased proliferation. 

The role of TCJs in regulating growth signaling likely extends beyond the control of the 

JNK pathway. Indeed, several proteins that have been implicated in the Hippo growth control 

pathway are enriched at TCJs at the level of the AJs. The actin-associated proteins Zyxin and 

Enabled, which promote tissue growth through the Hippo pathway were found enriched at 

the TCJs in different Drosophila epithelial tissues [85–87]. Likewise, the Warts kinase, which 

phosphorylates the transcription factor Yorkie to inhibit growth, and its interaction partner, 

the actin-associated protein Ajuba, appear enriched at TCJs in the Drosophila wing disc 

epithelium [88,89]. Lastly, Hippo signalling activity at TCJs may be coordinated by Csk. Csk 

activity controls the levels of Gli at TCJs preventing Gli spreading in BCJs [25••]. Based on 
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genetic epistasis experiments, it was proposed that Csk regulates tissue growth upstream of 

Ajuba, Zyxin and Warts [90]. As described above, TCJs have been shown to play a conserved 

role in the regulation of cell division orientation [50,52]. It is therefore interesting to note that 

the Warts kinase phosphorylates Mud to promote its cortical localization and planar spindle 

orientation [91]. Thus, TCJs may integrate growth signalling and geometrical inputs to regulate 

division.  

 

Conclusions and future considerations 

As discussed in this opinion, recent findings clearly demonstrate that TCJs have additional 

functions well beyond their previously known structural function in preserving epithelial 

barrier integrity. Rather than behaving as passive structures sitting at the corners of BCJs, TCJs 

are active structures that respond to changes in BCJ tension and feedback to regulate BCJ 

mechanical properties. Because, i) the TCJ distribution aligns with the cell geometric and stress 

patterns, and captures the cell topological information, ii) TCJs respond to changes in BCJ 

tension and can feedback on BCJ tension, iii) key regulators of cell mechanical properties and 

growth signalling are localized at TCJs, TCJs may act as signalling hotspots, of which spatial 

distributions allow cells to integrate mechanical and biochemical inputs to guide local cell 

dynamics, while preserving tissue barrier function and topology. Perhaps one of the biggest 

challenges to understand the specific contribution of TCJs versus BCJs on cellular dynamics 

will be to specifically perturb or modify protein functions at either of these junctions. 

Furthermore, the localization and activities of proteins at TCJs are regulated along the cell 

apical-basal axis. Dissecting the interplay between BCJs and TCJs along the apical-basal axis 

should provide exciting new avenues to better understand cellular dynamics and growth 

control during tissue development, homeostasis and repair.  
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Figure 1. Cell-cell adhesion structures in Drosophila and mammals. 

(a, b) Schematics showing the organization of the invertebrate and vertebrate cell-cell 

adhesion sites along the apical-basal axis (a,b), and cross sections of the TCJ at the level of the 

septate junction (SJ) and tight junction (TJ) (a’,b’). In invertebrate tissues, adhesion is 

mediated by the apical adherens junctions (AJs) and the septate junctions (SJs), while, in 

vertebrate tissues, cell-cell adhesion is mediated by the tight junctions (TJs), AJs and 

desmosomes (for reviews see [1–6]). In Drosophila the AJs are located above the SJs, while 

the functionally equivalent structures in vertebrates, the TJs, are located above the AJs. In 

both invertebrates and vertebrates, at the level of the SJ or TJ, respectively, TCJ channels or 

pores are present along the apical-basal axis formed by a series of stacked diaphragms, 

tricellular channel diaphragms (TCD) in invertebrates or a central sealing element (CSE) in 

vertebrates (a,b) (reviewed in [5,6]). In vertebrate systems, the bicellular TJs form strands that 

attach to the central sealing element [16], while in invertebrates the bicellular SJ strands 

connect to the diaphragm along the apical-basal axis forming a lateral limiting strand (LS) at 

the tricellular contact interface [17–19]. At the dihedral angles of 120° at the Drosophila TCJ 

the Aka proteins from three cells form a trimer and recruit Gli [10,12••]. In turn, Gli interacts 

with the lateral limiting strand (LS) connecting the SJs with the TCDs to form a mature TCJ and 

to provide a protective barrier (a’). In mammalian cells, the Angulin family of proteins Angulin-

1, (also known as lipolysis-stimulated lipoprotein receptor), Angulin-2 (also known as 

immunoglobulin like domain-containing receptor) and Angulin-3 (also known as 

immunoglobulin like domain-containing receptor 2, C1orf32 or LISCH-like) likely interact 

though their extracellular Ig-like domains with the CSE, while their intracellular domains can 

interact with Tricellulin which in turn connects to the TJ strands to form a mature TCJ and 

provide barrier function (b’) (reviewed in [5,6] and [7–9,20]). 

 

Figure 2. TCJ distribution controls cell division orientation. 

During G2 phase Mud (red) localizes at TCJs and remains associated with TCJs during mitosis, 

where it regulates the pulling forces on the astral microtubules to orient the mitotic spindle 

[50••]. The TCJ distribution (TCJ bipolarity, red bars) aligns on average with the orientation of 

cell shape (blue bars) and the stress direction (black bars). Upon mitosis cells round up and 

the cell shape anisotropy is lost, while the TCJ bipolarity is maintained. Thus, the Mud TCJ 
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distribution controls the division orientation along the interphase cell shape and tissue stress 

directions. 

 

Figure 3. Increased contractility at TCJs promotes apical cell area increase and dysplasia. 

(a, b) Schematic showing the effect of the loss of EpCAM mediated cell-cell adhesion in the 

mammalian gut epithelium on the cellular level (a) and the tissue level (b). Upon EpCAM loss 

of function actomyosin accumulates at the TCJs resulting in an increase in contractility along 

the apical-basal cell axis at TCJs (a) [83••]. As a result the apical cell area (blue area) increases 

(b), triggering epithelial dysplasia and the formation of tufts in the gut epithelium (b, 

arrowheads). 

 

Figure 4. TCJ prevent intestinal dysplasia and premature aging. 

Schematic of the Drosophila midgut. Intestinal stem cell (ISC), Enteroblast (EB), 

Enteroendocrine (EE), Enterocyte (EC). Upon loss of TJC integrity (1) the JNK pathway is 

upregulated in the ECs (2) [84••]. In turn JNK signaling promotes ISCs to proliferate, while 

terminal differentiation of EBs is prevented resulting in intestinal dysplasia (3). Finally, the 

paracellular barrier is compromised and flies eventually die prematurely (4). 
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