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Mean-field Markov decision processes with common noise and

open-loop controls

Médéric MOTTE ∗ Huyên PHAM †

December 16, 2019

Abstract

We develop an exhaustive study of Markov decision process (MDP) under mean

field interaction both on states and actions in the presence of common noise, and when

optimization is performed over open-loop controls on infinite horizon. Such model,

called CMKV-MDP for conditional McKean-Vlasov MDP, arises and is obtained here

rigorously with a rate of convergence as the asymptotic problem ofN -cooperative agents

controlled by a social planner/influencer that observes the environment noises but not

necessarily the individual states of the agents. We highlight the crucial role of relaxed

controls and randomization hypothesis for this class of models with respect to classical

MDP theory. We prove the correspondence between CMKV-MDP and a general lifted

MDP on the space of probability measures, and establish the dynamic programming

Bellman fixed point equation satisfied by the value function, as well as the existence

of ǫ-optimal randomized feedback controls. The arguments of proof involve an original

measurable optimal coupling for the Wasserstein distance. This provides a procedure

for learning strategies in a large population of interacting collaborative agents.
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1 Introduction

Optimal control of McKean-Vlasov (MKV) systems, also known as mean-field control

(MFC) problems, has sparked a great interest in the domain of applied probabilities during

the last decade. In these optimization problems, the transition dynamics of the system and

the reward/gain function depend not only on the state and action of the agent/controller,

but also on their probability distributions. These problems are motivated from models of

large population of interacting cooperative agents obeying to a social planner (center of

decision), and are often justified heuristically as the asymptotic regime with infinite num-

ber of agents under Pareto efficiency. Such problems have found numerous applications in

distributed energy, herd behavior, finance, etc.

A large literature has already emerged on continuous-time models for the optimal control

of McKean-Vlasov dynamics, and dynamic programming principle (in other words time

consistency) has been established in this context in the papers [14], [16], [1], [7]. We point

out the work [13], which is the first paper to rigorously connect mean-field control to large

systems of controlled processes, see also the recent paper [9], and refer to the books [2], [5]

for an overview of the subject.

Our work and main contributions. In this paper, we introduce a general discrete

time framework by providing an exhaustive study of Markov decision process (MDP) under

mean-field interaction in the presence of common noise, and when optimization is performed
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over open-loop controls on infinite horizon. Such model is called conditional McKean-

Vlasov MDP, and shortly abbreviated in the sequel as CMKV-MDP. Our set-up is the

mathematical framework for a theory of reinforcement learning with mean-field interaction,

and is notably motivated by the recent popularization of targeted advertising, in which

controls are naturally of open-loop form as the individuals states are inaccessible. The

common noise is also a feature of interest to model the impact of public data on the

population and to understand how it may affect the strategy of the social planner/influencer.

Compared to continuous-time models, discrete-time McKean-Vlasov control problems

have been less studied in the literature. In [15], the authors consider a finite-horizon problem

without common noise and state the dynamic programming (Bellman) equation for MFC

with closed-loop (also called feedback) controls, that are restricted to depend on the state.

Very recently, the works [6], [11] addressed Bellman equations for MFC problems in the

context of reinforcement learning. The paper [11] considers relaxed controls in their MFC

formulation but without common noise, and derives the Bellman equation for the Q-value

function as a deterministic control problem that we obtain here as a particular case (see our

Remark 4.11). The framework in [6] is closest to ours by considering also common noise,

however with the following differences: these authors restrict their attention to stationary

feedback policies, and reformulate their MFC control problem as a MDP on the space

of probability measures by deriving formally (leaving aside the measurability issues and

assuming the existence of a stationary feedback control) the associated Bellman equation,

which is then used for the development of Q-learning algorithms. Notice that [6], [11] do not

consider dependence upon the probability distribution of the control in the state transition

dynamics and reward function.

Besides the introduction of a general framework including a mean-field dependence on

the pair state/action, our first main contribution is to rigorously connect CMKV-MDP to

a large but finite system of MDP with interacting processes. We prove the almost sure

and L
1 conditional propagation of chaos, i.e., the convergence, as the number of interacting

agents N tends to infinity, of the state processes and gains of the N -individual population

control problem towards the corresponding object in the CMKV-MDP. Furthermore, by

relying on rate of convergence in Wasserstein distance of the empirical measure, we give a

rate of convergence for the limiting CMKV-MDP under suitable Lipschitz assumptions on

the state transition and reward functions, which is new to the best of our knowledge.

Our second contribution is to obtain the correspondence of our CMKV-MDP with a

suitable lifted MDP on the space of probability measures. Starting from open-loop controls,

this is achieved in general by introducing relaxed (i.e. measure-valued) controls in the

enlarged state/action space, and by emphasizing the measurability issues arising in the

presence of common noise and with continuous state space. In the special case without

common noise or with discrete state space, the relaxed control in the lifted MDP is reduced

to the usual notion in control theory, also known as mixed or randomized strategies in

game theory. While it is known in standard MDP that an optimal control (when it exists)

is in pure form, relaxed control appears naturally in MFC where the social planner has

to sample the distribution of actions instead of simply assigning the same pure strategy

among the population in order to perform the best possible collective gain.
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The reformulation of the original problem as a lifted MDP leads us to consider an asso-

ciated dynamic programming equation written in terms of a Bellman fixed point equation

in the space of probability measures. Our third contribution is to establish rigorously the

Bellman equation satisfied by the state value function of the CMKV-MDP, and then by the

state-action value function, called Q-function in the reinforcement learning terminology.

This is obtained under the crucial assumption that the initial information filtration is gene-

rated by an atomless random variable, i.e., that it is rich enough, and calls upon original

measurable optimal coupling results for the Wasserstein distance. Moreover, and this is

our fourth contribution, the methodology of proof allows us to obtain as a by-product the

existence of an ǫ-optimal control, which is constructed from randomized feedback policies

under a randomization hypothesis. This shows in particular that the value function of

CMKV-MDP over open-loop controls is equal to the value function over randomized feed-

back controls, and we highlight that it may be strictly larger than the value function of

CMKV-MDP over “pure” feedback controls, i.e., without randomization. This is a notable

difference with respect to the classical (without mean-field dependence) theory of MDP as

studied e.g. in [3], [18].

Finally, we discuss how to compute the value function and approximate optimal ran-

domized feedback controls from the Bellman equation according to value or policy iteration

methods and by discretization of the state space and of the space of probability measures.

Reinforcement learning algorithms and practical implementation are postponed to a com-

panion paper with applications to model for targeted advertising in social networks.

Outline of the paper. The rest of the paper is organized as follows. Section 2 carefully

formulates both the N -individual model and the CMKV-MDP, and show their connection

by providing the rate of convergence of the latter to the limiting MFC when N goes to

infinity. In Section 3, we establish the correspondence of the CMKV-MDP with a lifted

MDP on the space of probability measures with usual relaxed controls when there is no

common noise or when the state space is discrete. In the general case considered in Section

4, we show how to lift the CMKV-MDP by a suitable enlargement of the action space in

order to get the correspondance with a MDP on the Wasserstein space. We then derive

the associated Bellman fixed point equation satisfied by the value function, and obtain

the existence of approximate randomized feedback controls. We conclude in Section 5 by

indicating some questions for future research. Finally, we collect in the Appendix some

useful and technical results including measurable coupling arguments used in the proofs of

the paper.

Notations. Given two measurable spaces (X1,Σ1) and (X2,Σ2), we denote by pr
1
(resp.

pr
2
) the projection function (x1, x2) ∈ X1×X2 7→ x1 ∈ X1 (resp. x2 ∈ X2). For a measurable

function Φ : X1 → X2, and a positive measure µ1 on (X1,Σ1), the pushforward measure

Φ ⋆ µ1 is the measure on (X2,Σ2) defined by

Φ ⋆ µ1(B2) = µ
(
Φ−1(B2)

)
, ∀B2 ∈ Σ2.

We denote by P(X1) the set of probability measures on X1, and C(X1) the cylinder (or

weak) σ-algebra on P(X1), that is the smallest σ-algebra making all the functions µ ∈

P(X1) 7→ µ(B1) ∈ [0, 1], measurable for all B1 ∈ Σ1.
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A probability kernel ν on X1 ×X2, denoted ν ∈ X̂2(X1), is a measurable mapping from

(X1,Σ1) into (P(X2), C(X2)), and we shall write indifferently ν(x1, B2) = ν(x1)(B2), for all

x1 ∈ X1, B2 ∈ Σ2. Given a probability measure µ1 on (X1,Σ1), and a probability kernel ν

∈ X̂2(X1), we denote by µ1 · ν the probability measure on (X1 × X2,Σ1 ⊗ Σ2) defined by

(µ1 · ν)(B1 ×B2) =

∫

B1×B2

µ1(dx1)ν(x1,dx2), ∀B1 ∈ Σ1, B2 ∈ Σ2.

Let X1 and X2 be two random variables valued respectively on X1 and X2, denoted Xi ∈

L0(Ω;Xi). We denote by L(Xi) the probability distribution of Xi, and by L(X2|X1) the

conditional probability distribution of X2 given X1. With these notations, when X2 =

Φ(X1), then L(X2) = Φ ⋆ L(X1).

When (Y, d) is a compact metric space, the set P(Y) of probability measures on Y is

equipped with the Wasserstein distance

W(µ, µ′) = inf
{∫

Y2

d(y, y′)µ(dy,dy′) : µ ∈ Π(µ, µ′)
}
,

where Π(µ, µ′) is the set of probability measures on Y × Y with marginals µ and µ′, i.e.,

pr
1
⋆µ = µ, and pr

2
⋆µ = µ′. Since (Y, d) is compact, it is known (see e.g. Corollary 6.13

in [20]) that the Borel σ-algebra generated by the Wasserstein metric coincides with the

cylinder σ-algebra on P(Y), i.e., Wasserstein distances metrize weak convergence. We also

recall the dual Kantorovich-Rubinstein representation of the Wasserstein distance

W(µ, µ′) = sup
{∫

Y
φ d(µ− µ′) : φ ∈ Llip(Y;R), [φ]lip ≤ 1

}
,

where Llip(Y;R) is the set of Lipschitz continuous functions φ from Y into R, and [φ]lip =

sup{|φ(y) − φ(y′)|/d(y, y′) : y, y′ ∈ Y, y 6= y′}.

2 The N-agent and the limiting McKean-Vlasov MDP

We formulate the mean-field Markov Decision Process (MDP) in a large population model

with indistinguishable agents i ∈ N
∗ = N \ {0}.

Let X (the state space) and A (the action space) be two compact Polish spaces equipped

respectively with their metric d and dA. We denote by P(X ) (resp. P(A)) the space of

probability measures on X (resp. A) equipped respectively with their Wasserstein dis-

tance W and WA. We also consider the product space X × A, equipped with the metric

d((x, a), (x′, a′)) = d(x, x′) + dA(a, a
′), x, x′ ∈ X , a, a′ ∈ A, and the associated space of

probability measure P(X ×A), equipped with its Wasserstein distance W . Let G, E, and

E0 be three measurable spaces, representing respectively the initial information, idiosyn-

cratic noise, and common noise spaces.

We denote by ΠOL the set of sequences (πt)t∈N (called open-loop policies) where πt is a

measurable function from G×Et × (E0)t into A for t ∈ N.

Let (Ω,F ,P) be a probability space on which are defined the following family of mutually

i.i.d. random variables
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• (Γi, ξi)i∈N⋆ (initial informations and initial states) valued in G× X

• (εit)i∈N⋆,t∈N (idiosyncratic noises) valued in E with probability distribution λε

• ε0 := (ε0t )t∈N (common noise) valued in E0.

Without loss of generality, we may assume that F contains an atomless random variable,

i.e., F is rich enough, so that any probability measure ν on X (resp. A or X ×A) can be

represented by the law of some random variable Y on X (resp. A or X ×A), and we write

Y ∼ ν, i.e., L(Y ) = ν. Given an open-loop policy π, we associate an open-loop control for

individual i ∈ N
∗ as the process αi,π defined by

αi,π = πt(Γ
i, (εis)s≤t, (ε

0
s)s≤t), t ∈ N.

In other words, an open-loop control is a non-anticipative process that depends on the

initial information, the past idiosyncratic and common noises, but not on the states of the

agent in contrast with closed-loop control.

Given N ∈ N
∗, and π ∈ ΠOL, the state process of agent i = 1, . . . , N in an N -agent

MDP is given by the dynamical system
{

Xi,N,π
0 = ξi

Xi,N,π
t+1 = F (Xi,N,π

t , αi,π
t , 1

N

∑N
j=1 δ(Xj,N,π

t ,αj,π
t )

, εit+1, ε
0
t+1), t ∈ N,

where F is a measurable function from X × A× P(X × A) × E × E0 into X , called state

transition function. The i-th individual contribution to the influencer’s gain over an infinite

horizon is defined by

JN,π
i :=

∞∑

t=0

βtf
(
Xi,N,π

t , αi,π
t ,

1

N

N∑

j=1

δ
(Xj,N,π

t ,αj,π
t )

)
, i = 1, . . . , N,

where the reward f is a mesurable real-valued function on X ×A×P(X ×A), assumed to

be bounded (recall that X and A are compact spaces), and β is a positive discount factor

in [0, 1). The influencer’s renormalized and expected gains are

JN,π :=
1

N

N∑

i=1

JN,π
i , V N,π := E

[
JN,π

]
,

and the optimal value of the influencer is V N := supπ∈ΠOL
V N,π. Observe that the agents

are indistinguishable in the sense that the initial pair of information/state (Γi, ξi)i, and

idiosyncratic noises are i.i.d., and the state transition function F , reward function f , and

discount factor β do not depend on i.

Let us now consider the asymptotic problem when the number of agents N goes to

infinity. In view of the propagation of chaos argument, we expect that the state process of

agent i ∈ N
∗ in the infinite population model to be governed by the conditional McKean-

Vlasov dynamics
{

Xi,π
0 = ξi

Xi,π
t+1 = F (Xi,π

t , αi,π
t ,P0

(Xi,π
t ,αi,π

t )
, εit+1, ε

0
t+1), t ∈ N.

(2.1)
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Here, we denote by P
0 and E

0 the conditional probability and expectation knowing the com-

mon noise ε0, and then, given a random variable Y valued in Y, we denote by P
0
Y or L0(Y )

its conditional law knowing ε0, which is a random variable valued in P(Y) (see Lemma

A.2). The i-th individual contribution to the influencer’s gain in the infinite population

model is

Jπ
i :=

∞∑

t=0

βtf
(
Xi,π

t , αi,π
t ,P0

(Xi,π
t ,αi,π

t )

)
, i ∈ N

∗,

and we define the conditional gain, expected gain, and optimal value, respectively by

Jπ := E
0
[
Jπ
i

]
= E

0
[
Jπ
1

]
, i ∈ N

∗ (by indistinguishability of the agents),

V π := E
[
Jπ

]
, V := sup

π∈ΠOL

V π. (2.2)

Problem (2.1)-(2.2) is called conditional McKean-Vlasov Markov decision process, CMKV-

MDP in short.

The main goal of this Section is to rigorously connect the finite-agent model to the

infinite population model with mean-field interaction by proving the convergence of the

N -agent MDP to the CMKV-MDP. First, we prove the almost sure convergence of the

state processes under some continuity assumptions on the state transition function.

Proposition 2.1 Assume that for all (x0, a, ν0, e
0) ∈ X ×A×P(X×A)×E0, the (random)

function

(x, ν) ∈ X × P(X ×A) 7−→ F (x, a, ν, ε11, e
0) ∈ X is continuous in (x0, ν0) a.s.

Then, for any π ∈ ΠOL, X
i,N,π
t

a.s.
→

N→∞
Xi,π

t , i ∈ N
∗, t ∈ N, and

W
( 1

N

N∑

i=1

δ
(Xi,N,π

t ,αi,π
t )

,P0
(Xi,π

t ,αi,π
t )

)
a.s.
−→
N→∞

0,
1

N

N∑

i=1

d(Xi,N,π
t ,Xi,π

t ) →
N→∞

0 a.s.

Furthermore, if we assume that for all a ∈ A, the function (x, ν) ∈ X × P(X × A) 7→

f(x, a, ν) is continuous, then

JN,π
i

a.s.
−→
N→∞

Jπ
i , JN,π a.s.

−→
N→∞

Jπ, V N,π −→
N→∞

V π, and lim inf
N→∞

V N ≥ V.

Proof. Fix π ∈ ΠOL. We omit the dependence of the state processes and control on π,

and denote by νNt := 1
N

∑N
i=1 δ(Xi,N

t ,αi
t)
, νN,∞

t := 1
N

∑N
i=1 δ(Xi

t ,α
i
t)
, and νt := P

0
(Xi

t ,α
i
t)
.

(1) We first prove the convergence of trajectories, for all i ∈ N
⋆,

P
[
lim

N→∞
(Xi,N

t , νNt ) = (Xi
t , νt)

]
= 1, P

[
lim

N→∞

1

N

N∑

i=1

d(Xi,N
t ,Xi

t) = 0
]
= 1,

by induction on t ∈ N.

- Initialization. For t = 0, we have Xi,N
0 = ξi = Xi

0, α
i
0 = π0(Γi), for all N ∈ N⋆ and i ∈ N

⋆,

which obviously implies that Xi,N
0

a.s.
→

N→∞
Xi

0 and 1
N

∑N
i=1 d(X

i,N
0 ,Xi

0) →
N→∞

0. Moreover,
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W(νN0 , ν0) = W(νN,∞
0 , ν0), which converges to zero a.s., when N goes to infinity, by the

weak convergence of empirical measures (see [19]), and the fact that Wasserstein distance

metrizes weak convergence.

- Hereditary Property. We have

Xi,N
t+1 = F (Xi,N

t , αi
t, ν

N
t , εit+1, ε

0
t+1) and Xi

t+1 = F (Xi
t , α

i
t, νt, ε

i
t+1, ε

0
t+1). (2.3)

By a simple conditioning, we notice that P
[
lim

N→∞
Xi,N

t+1 = Xi
t+1

]
= E

[
P
(
(Xi,N

t , νNt )N ,Xi
t , νt, α

i
t

)]
,

where

P
(
(xN , νN )N , x, ν, a)

)
= P

[
lim

N→∞
F (xN , a, νN , εit+1, ε

0
t+1) = F (x, a, ν, εit+1, ε

0
t+1)

]
.

By the continuity assumption on F , we see that P
(
(xN , νN )N , x, ν, a)

)
is bounded from

below by 1 lim
N→∞

(xN ,νN )=(x,ν), and thus

P
[
lim

N→∞
Xi,N

t+1 = Xi
t+1

]
≥ P

[
lim

N→∞
(Xi,N

t , νNt ) = (Xi
t , νt)

]
.

This proves by induction hypothesis that P
[
lim

N→∞
Xi,N

t+1 = Xi
t+1

]
= 1.

Let us now show that 1
N

∑N
i=1 d(X

i,N
t+1,X

i
t+1)

a.s.
→

N→∞
0. From (2.3), we have

d(Xi,N
t+1,X

i
t+1) ≤ ∆DN

F (Xi
t , α

i
t, νt, ε

i
t+1, ε

0
t+1)

with DN := max[d(Xi,N
t ,Xi

t),W (νNt , νt)], and

∆yF (x, a, ν, e, e0) := sup
(x′,ν′)∈D

{d(F (x′, a, ν ′, e, e0), F (x, a, ν, e, e0))1max[d(x′,x),W (ν′,ν)]≤y},

where D is a fixed countable dense set of the separable space X ×P(X ×A), which implies

that (y, x, a, ν, e, e0) 7→ ∆yF (x, a, ν, e, e0) is a measurable function. Fix ǫ > 0. Let ∆X

denote the diameter of the compact metric space X . We thus have, for any η > 0,

d(Xi,N
t+1,X

i
t+1) ≤ d(Xi,N

t+1,X
i
t+1)1DN≤η + d(Xi,N

t+1,X
i
t+1)1DN>η

≤ ∆ηF (Xi
t , α

i
t, νt, ε

1
t+1, ε

0
t+1) + ∆X1d(XN,i

t ,Xi
t)>η

+∆X1W (νNt ,νt)>η,

and thus

1

N

N∑

i=1

d(Xi,N
t+1,X

i
t+1)

≤
1

N

N∑

i=1

∆ηF (Xi
t , α

i
t, νt, ε

1
t+1, ε

0
t+1) +

∆X

ηN

N∑

i=1

d(Xi,N
t ,Xi

t) + ∆X1W (νNt ,νt)>η .

The second and third terms in the right hand side converge to 0 by induction hypothesis,

and by Proposition B.1, the first term converges to

E
0
[
∆ηF (X1

t , α
1
t , νt, ε

1
t+1, ε

0
t+1)

]
= E

0
[
E
[
∆ηF (x1t , a

1
t , νt, ε

1
t+1, e

0
t+1)

]
(x1

t ,a
1
t ,e

0
t+1

):=(X1
t ,α

1
t ,ε

0
t+1

)

]
.
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As η → 0, the inner expectation tends to zero by continuity assumption on F and by

dominated convergence. Then, the outer expectation converges to zero by conditional

dominated convergence, and will thus be smaller than ǫ
2 for η small enough, which implies

that 1
N

∑N
i=1 d(X

i,N
t+1,X

i
t+1) will be smaller than ǫ for N large enough.

Let us finally prove thatW (νNt+1, νt+1)
a.s.
→

N→∞
0. We haveW (νNt+1, νt+1)≤W (νNt+1, ν

N,∞
t+1 )

+ W (νN,∞
t+1 , νt+1). To dominate the first term W (νNt+1, ν

N,∞
t+1 ), notice that, given a variable

UN ∼ U({1, ..., N}), the random measure νNt+1 (resp. ν
N,∞
t+1 ) is, at fixed ω ∈ Ω, the law of the

pair of random variable (XUN ,N
t+1 (ω), αUN

t+1(ω)) (resp. (X
UN
t+1(ω), α

UN
t+1(ω)) where we stress that

only UN is random here, essentially selecting each sample of these empirical measures with

probability 1
N . Thus, by definiton of the Wasserstein distance, W (νNt+1, ν

N,∞
t+1 ) is dominated

by E[d(XUN ,N
t+1 (ω),XUN

t+1(ω))] =
1
N

∑N
i=1 d(X

i,N
t+1(ω),X

i
t+1(ω)), which has been proved to con-

verge to zero. For the second term, observe that αi
t+1 = πt+1(Γ

i, (εis)s≤t+1, (ε
0
s)s≤t+1), and

by Proposition A.1, there exists a measurable function ft+1 : X ×G×Et+1 × (E0)t+1 → X

such that Xi,N
t+1 = ft+1(Γ

i, (εis)s≤t+1, (ε
0
s)s≤t+1)) . From Proposition B.1, we then deduce

that W (νN,∞
t+1 , νt+1) converges to zero as N goes to infinity. This concludes the induction.

(2) Let us now study the convergence of gains. By the continuity assumption on f , we

have f(Xi,N
t , αi

t, ν
N
t )

a.s.
→

N→∞
f(Xi

t , α
i
t, νt) for all t ∈ N. Thus, as f is bounded, we get by

dominated convergence that JN,π
i

a.s.
→

N→∞
Jπ
i . Let us now study the convergence of JN,π to

Jπ. We write

|JN,π − Jπ| ≤
1

N

N∑

i=1

|JN,π
i − Jπ

i |+
∣∣∣ 1
N

N∑

i=1

Jπ
i − Jπ

∣∣∣ =: S1
N + S2

N .

The second term S2
N converges a.s. to zero by Propositions A.1 and B.1, as N goes to

infinity. On the other hand,

S1
N ≤

∞∑

t=0

βt∆N (f), with ∆N (f) :=
1

N

N∑

i=1

∣∣f(Xi,N
t , αi

t, ν
N
t )− f(Xi

t , α
i
t, νt)

∣∣.

By the same argument as above in (1) for showing that 1
N

∑N
i=1 d(X

i,N
t+1,X

i
t+1)

a.s.
→

N→∞
0, we

prove that ∆N (f) tends a.s. to zero as N → ∞. Since f is bounded, we deduce by

the dominated convergence theorem that S1
N converges a.s. to zero as N goes to infinity,

and thus JN,π a.s.
→

N→∞
Jπ. By dominated convergence, we then also obtain that V N,π =

E[JN ]
a.s.
→

N→∞
E[Jπ] = V π. Finally, by considering an ǫ-optimal policy πǫ for V , we have

lim inf
N→∞

V N ≥ lim
N→∞

V N,πǫ = V πǫ ≥ V − ǫ,

which implies, by sending ǫ to zero, that liminf
N→∞

V N ≥ V . ✷

Next, under Lipschitz assumptions on the state transition and reward functions, we

prove the corresponding convergence in L
1, which implies the convergence of the optimal

value, and also a rate of convergence in terms of the rate of convergence in Wasserstein

distance of the empirical measure.
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(HFlip) There exists KF > 0, such that for all a ∈ A, e0 ∈ E0, x, x′ ∈ X , ν, ν ′ ∈ P(X ×A),

E
[
d
(
F (x, a, ν, ε11, e

0), F (x′, a, ν ′, ε11, e
0)
)]

≤ KF

(
d(x, x′) +W (ν, ν ′)

)
).

(Hflip) There exists Kf > 0, such that for all a ∈ A, x, x′ ∈ X , ν, ν ′ ∈ P(X ×A),

d(f(x, a, ν), f(x′, a, ν ′)) ≤ Kf

(
d(x, x′) +W (ν, ν ′)

)
).

Remark 2.1 We stress the importance of making the Lipschitz assumption for F in ex-

pectation only. Indeed, most of the practical applications we have in mind concerns discrete

spaces X , for which F cannot be, strictly speaking, Lipschitz, since it maps from a continu-

ous space P(X ×A) to a discrete space X . However, F can be Lipschitz in expectation, e.g.

once integrated w.r.t. the idiosyncratic noise, and it is actually a very natural phenomenon.

✷

In the sequel, we shall denote by ∆X the diameter of the metric space X , and define

MN := sup
ν∈P(X×A)

E[W (νN , ν)], (2.9)

where νN is the empirical measure νN = 1
N

∑N
n=1 δYn , (Yn)1≤n≤N are i.i.d. random variables

with law ν. We recall in the next Lemma recent results about non asymptotic bounds for

the mean rate of convergence in Wasserstein distance of the empirical measure.

Lemma 2.1 We have MN →
N→∞

0. Furthermore,

• If X × A ⊂ R
d for some d ∈ N

⋆, then: MN = O(N− 1

2 ) for d = 1, MN =

O(N− 1

2 log(1 +N)) for d = 2, and MN = O(N− 1

d ) for d ≥ 3.

• If for all δ > 0, the smallest number of balls with radius δ covering the compact

metric set X ×A with diameter ∆X×A is smaller than O
((∆X×A

δ

)θ)
for θ > 2, then

MN = O(N−1/θ).

Proof. The first point is proved in [10], and the second one in [4]. ✷

Theorem 2.1 Assume (HFlip). For all i ∈ N
∗, t ∈ N,

sup
π∈ΠOL

E
[
d(Xi,N,π

t ,Xi,π
t )

]
= O(MN ), (2.10)

sup
π∈ΠOL

E

[
W

( 1

N

N∑

i=1

δ
(Xi,N,π

t ,αi,π)
,P0

(Xi,π
t ,αi,π)

)]
= O(MN ). (2.11)

Furthermore, if we assume (Hflip), then for any η > 0 and γ = min
[
1, | lnβ|

(ln 2KF )+
−η

]
, there

exists a constant C = C(KF ,Kf , β, γ) (explicit in the proof) such that for N large enough,

sup
π∈ΠOL

|V N,π − V π| ≤ CMγ
N ,

and thus |V N − V | = O(Mγ
N ). Consequently, any ε− optimal policy for the CMKV-MDP

is O(ε)-optimal for the N -agent MDP problem for N large enough, namely Mγ
N = O(ǫ).
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Proof. Given π ∈ ΠOL, denote by ν
N,π
t := 1

N

∑N
i=1 δ(Xi,N,π

t ,αi,π
t )

, νN,∞,π
t := 1

N

∑N
i=1 δ(Xi,π

t ,αi,π
t )

and νπt := P
0
(Xi,π

t ,αi
t)
. By definition, αi,π

t = πt(Γ
i, (εis)s≤t, (ε

0
s)s≤t), and by Lemma A.1, we

haveXi,π
t = fπ

t (ξ
i,Γi, (εis)s≤t, (ε

0
s)s≤t) for some measurable function fπ

t ∈ L0(X ×G× Et × (E0)t,X ).

By definition of MN in (2.9), we have

E

[
W (νN,∞,π

t , νπt )
]
≤ MN , ∀N ∈ N, ∀π ∈ ΠOL. (2.13)

Let us now prove (2.10) by induction on t ∈ N. At t = 0, Xi,N,π
0 = Xi,π

0 = ξi, and the

result is obvious. Now assume that it holds true at time t ∈ N and let us show that it

then holds true at time t + 1. By a simple conditioning argument, E[d(Xi,N,π
t+1 ,Xi,π

t+1)] =

E
[
∆
(
Xi,N,π

t ,Xi,π
t , αi

t, ν
N,π
t , νπt , ε

0
t+1

)]
, where

∆(x, x′, a, ν, ν ′, e0) = E[d(F (x, a, ν, εit+1, e
0), F (x′, a, ν ′, εit+1, e

0))]

≤ KF

(
d(x, x′) +W (ν, ν ′)

)
, (2.14)

by (HFlip). On the other hand, we have

E
[
W (νN,π

t , νπt )
]
≤ E

[
W (νN,π

t , νN,∞,π
t )

]
+ E

[
W (νN,∞,π

t , νπt )
]

≤ E[d(Xi,N,π
t ,Xi,π

t )] +MN , (2.15)

where we used the fact that W (νN,π
t , νN,∞,π

t ) ≤ 1
N

∑N
i=1 d(X

i,N,π
t ,Xi,π

t ), and (2.13). It

follows from (2.14) that

E
[
d(Xi,N,π

t+1 ,Xi,π
t+1)

]
≤ KF

(
2E[d(Xi,N,π

t ,Xi,π
t )] +MN

)
, ∀π ∈ ΠOL, (2.16)

which proves that sup
π∈ΠOL

E[d(Xi,N,π
t+1 ,Xi,π

t+1)] = O(MN ) by induction hypothesis, and thus

(2.10). Plugging (2.10) into (2.15) then yields (2.11).

Let us now prove the convergence of gains. From (Hflip), and (2.15), we have

|V N,π − V π| ≤ Kf

∞∑

t=0

βt
E

[
d(Xi,N,π

t ,Xi,π
t ) +W (νN,π

t , νπt )
]

≤ Kf

(
2

∞∑

t=0

βtδNt +
MN

1− β

)
, ∀π ∈ ΠOL, (2.17)

where we set δNt := sup
π∈ΠOL

E[d(Xi,N,π
t ,Xi,π

t )]. From (2.16), we have: δNt+1 ≤ 2KF δ
N
t +KFMN ,

t ∈ N, with δN0 = 0, and so by induction:

δNt ≤
KF

1− 2KF
MN + st

( KF

|2KF − 1|
MN

)
, st(m) := m(2KF )

t, m ≥ 0.

where we may assume w.l.o.g. that 2KF 6= 1. Observing that we obviously have δNt ≤ ∆X

(the diameter of X ), we deduce that

∞∑

t=0

βtδNt ≤
KF

(1− 2KF )(1− β)
MN + S

( KF

|2KF − 1|
MN

)
(2.18)

S(m) :=

∞∑

t=0

βtmin
[
st(m);∆X

]
, m ≥ 0.
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Since the sequence (MN )N converges to zero, we may restrict the study of the function S

to the interval [0,∆X ], and we notice that it satisfies the dynamic programming relation

S(m) = m+ βS
(
min[s1(m),∆X ]

)
, m ∈ [0,∆X ].

Therefore, S can be viewed as the unique fixed point in the Banach space L∞([0,∆X ])

of the β-contracting operator H defined by [Hϕ](m) = m + βϕ(min[s1(m),∆X ]), and is

obtained as the limit of fixed point iterations: Sn+1 = HSn, n ∈ N, S0 ≡ 0. Fix γ ≥ 0 to

be determined later, and let us show by induction on n ∈ N, that Sn(m) ≤ Kγ,nm
γ , m ∈

[0,∆X ], for some suitable sequence (Kγ,n)n. By writing that Sn+1 = HSn at step n + 1,

and using the induction hypothesis, we have for all m ∈ [0,∆X ],

Sn+1(m) ≤ m+ βKγ,ns1(m)γ ≤
(
∆1−γ

X + βKγ,n(2KF )
γ
)
mγ .

By setting Kγ,n+1 := ∆1−γ
X + β(2KF )

γKγ,n, starting with Kγ,0 = 0, we see that the

required relation is satisfied at iteration n + 1. Now, by taking γ < | ln(β)|
(ln 2KF )+

, we have

Kγ,n = ∆1−γ
X

1−(β(2KF )γ)n

1−β(2KF )γ → Kγ :=
∆1−γ

X

1−β(2KF )γ , as n goes to infinity, and thus

S(m) ≤ Kγm
γ , ∀m ∈ [0,∆X ].

From (2.17)-(2.18), it follows that for N large enough (so that MN < ∆X |2KF−1|
KF

), and

taking γ = min
[
1, | lnβ|

(ln 2KF )+
− η

]
, for η > 0,

|V N,π − V π| ≤ CMγ
N , π ∈ ΠOL,

for some constant C that is explicit in terms of Kf , KF , β and γ. This concludes the proof.

✷

Remark 2.2 If the Lipschitz constant in (HFlip) satisfies β2KF < 1, then we can take γ

= 1 in the rate of convergence (2.12) of the optimal value, and this can be directly derived

from (2.17) since in this case
∑∞

t=0(β2KF )
t is finite and so

∑∞
t=0 β

tδNt = O(MN ). The

function S in the above proof is introduced for dealing with the case when β2KF > 1.

In particular case when F and f depend on the joint distribution ν ∈ P(X × A) only

through its marginals on P(X ) and P(A), which is the usual framework considered in

controlled mean-field dynamics, then a careful look in the above proof shows that the rate

of convergence of the CMKV-MDP will be expressed in terms of

M̃N := max
{

sup
µ∈P(X )

E[W(µN , µ)], sup
υ∈P(A)

E[WA(υN , υ)]
}
,

instead of MN in (2.9), where here µN (resp. υN ) is the empirical measure associated to µ

(resp. υ) ∈ P(X ) (resp. P(A)). From Lemma 2.1, the speed of convergence of M̃N is faster

than the one of MN . For instance when X ⊂ R, A ⊂ R, then M̃N = O(N−1/2), while MN

= O
(
N−1/2 log(1 +N)

)
. ✷
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3 Lifted MDP on P(X )

Theorem 2.1 justifies the CMKV-MDP as a macroscopic approximation of the N -agent

MDP problem with mean-field interaction. Observe that the computation of the condi-

tional gain, expected gain and optimal value of the CMKV-MDP in (2.2), only requires

the variables associated to one agent, called representative agent. Therefore, we place

ourselves in a reduced universe, dismissing other individuals variables, and renaming the

representative agent’s initial information by Γ, initial state by ξ, idiosyncratic noise by

(εt)t∈N. In the sequel, we shall denote by G = σ(Γ) the σ-algebra generated by the random

variable Γ, hence representing the initial information filtration, and by L0(G;X ) the set of

G-measurable random variables valued in X . We shall assume that the initial state ξ ∈

L0(G;X ), which means that the policy has access to the agent’s initial state through the

initial information filtration G.

An open-loop control for the representative agent is a process α, which is adapted to the

filtration generated by (Γ, (εs)s≤t, (ε
0
s)s≤t)t∈N, and associated to an open-loop policy by: αt

= απ
t := πt(Γ, (εs)s≤t, (ε

0
s)s≤t) for some π ∈ ΠOL. We denote by A the set of open-loop

controls, and given α ∈ A, ξ ∈ L0(G;X ), the state process X = Xξ,α of the representative

agent is governed by

Xt+1 = F (Xt, αt,P
0
(Xt,αt)

, εt+1, ε
0
t+1), t ∈ N, X0 = ξ. (3.1)

For α = απ, π ∈ ΠOL, we write indifferently Xξ,π = Xξ,α, and the expected gain V α = V π

equal to

V α(ξ) = E

[∑

t∈N

βtf(Xt, αt,P
0
(Xt,αt)

)
]
,

where we stress the dependence upon the initial state ξ. The value function to the CMKV-

MDP is then defined by

V (ξ) = sup
α∈A

V α(ξ), ξ ∈ L0(G;X ).

Let us now show how one can lift the CMKV-MDP to a (classical) MDP on the space

of probability measures P(X ). We set F0 as the filtration generated by the common noise

ε0. Given an open-loop control α ∈ A, and its state process X = Xξ,α, denote by {µt =

P
0
Xt
, t ∈ N}, the random P(X )-valued process, and notice from Proposition A.1 that (µt)t

is F0-adapted. From (3.1), and recalling the pushforward measure notation, we have

µt+1 = F
(
·, ·,P0

(Xt,αt)
, ·, ε0t+1

)
⋆
(
P
0
(Xt,αt)

⊗ λε

)
, a.s. (3.2)

As the probability distribution λε of the idiosyncratic noise is a fixed parameter, the above

relation means that µt+1 only depends on P
0
(Xt,αt)

and ε0t+1. Moreover, by introducing the

so-called relaxed control associated to the open-loop control α as

α̂t(x) = L0
(
αt|Xt = x

)
, t ∈ N,
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which is valued in Â(X ), the set of probability kernels on X ×A (see Lemma A.2), we see

from Bayes formula that P0
(Xt,αt)

= µt · α̂t. The dynamics relation (3.2) is then written as

µt+1 = F̂ (µt, α̂t, ε
0
t+1), t ∈ N,

where the function F̂ : P(X ) × Â(X )× E0 → P(X ) is defined by

F̂ (µ, â, e0) = F
(
·, ·, µ · â, ·, e0

)
⋆
(
(µ · â)⊗ λε

)
. (3.3)

On the other hand, by the law of iterated conditional expectation, the expected gain

can be written as

V α(ξ) = E

[∑

t∈N

βt
E
0
[
f(Xt, αt,P

0
(Xt,αt)

)
]]
,

with the conditional expectation term equal to

E
0
[
f(Xt, αt,P

0
(Xt,αt)

)
]
= f̂(µt, α̂t),

where the function f̂ : P(X ) × Â(X ) → R is defined by

f̂(µ, â) =

∫

X×A
f(x, a, µ · â)(µ · â)(dx,da). (3.4)

The above derivation suggests to consider a MDP with state space P(X ), action space

Â(X ), a state transition function F̂ as in (3.3), a discount factor β ∈ [0, 1), and a reward

function f̂ as in (3.4). A key point is to endow Â(X ) with a suitable σ-algebra in order

to have measurable functions F̂ , f̂ , and F
0-adapted process α̂ valued in Â(X ), so that the

MDP with characteristics (P(X ), Â(X ), F̂ , f̂ , β) is well-posed. This issue is investigated in

the next sections, first in special cases, and then in general case by a suitable enlargement

of the action space.

3.1 Case without common noise

When there is no common noise, the original state transition function F is defined from

X×A×P(X×A)×E into X , and the associated function F̂ is then defined from P(X )×Â(X )

into P(X ) by

F̂ (µ, â) = F
(
·, ·, µ · â, ·

)
⋆
(
(µ · â)⊗ λε

)
.

In this case, we are simply reduced to a deterministic control problem on the state space

P(X ) with dynamics

µt+1 = F̂ (µt, κt), t ∈ N, µ0 = µ ∈ P(X ),

controlled by κ = (κt)t∈N ∈ Â, the set of deterministic sequences valued in Â(X ), and

cumulated gain/value function:

V̂ κ(µ) =

∞∑

t=0

βtf̂(µt, κt), V̂ (µ) = sup
κ∈Â

V̂ κ(µ), µ ∈ P(X ),
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where the bounded function f̂ : P(X )× Â(X ) → R is defined as in (3.4). Notice that there

are no measurability issues for F̂ , f̂ , as the problem is deterministic and all the quantities

defined above are well-defined.

We aim to prove the correspondence and equivalence between the MKV-MDP and the

above deterministic control problem. From similar derivation as in (3.2)-(3.4) (by taking

directly law under P instead of P0), we clearly see that for any α ∈ A, V α(ξ) = V̂ α̂(µ),

with µ = L(ξ), and α̂ = Rξ(α) where Rξ is the relaxed operator

Rξ : A −→ Â

α = (αt)t 7−→ α̂ = (α̂t)t : α̂t(x) = L
(
αt|X

ξ,α
t = x

)
, t ∈ N, x ∈ X .

It follows that V (ξ) ≤ V̂ (µ). In order to get the reverse inequality, we have to show that

Rξ is surjective. Notice that this property is not always satisfied: for instance, when the σ-

algebra generated by ξ is equal to G, then for any α ∈ A, α0 is σ(ξ)-measurable at time t = 0,

and thus L(α0|ξ) is a Dirac distribution, hence cannot be equal to an arbitrary probability

kernel κ0 = â ∈ Â(X ). We shall then make the following randomization hypothesis.

Rand(ξ,G): There exists a uniform random variable U ∼ U([0, 1]), which is G-measurable

and independent of ξ ∈ L0(G;X ).

Remark 3.1 The randomization hypothesis Rand(ξ,G) implies in particular that Γ is

atomless, i.e., G is rich enough, and thus P(X ) = {L(ζ) : ζ ∈ L0(G;X )}. Furthermore,

it means that there is extra randomness in G besides ξ, so that one can freely randomize

via the uniform random variable U the first action given ξ according to any probability

kernel â. Moreover, one can extract from U , by standard separation of the decimals of

U (see Lemma 2.21 in [12]), an i.i.d. sequence of uniform variables (Ut)t∈N, which are G-

measurable, independent of ξ, and can then be used to randomize the subsequent actions.

✷

Theorem 3.1 (Correspondence in the no common noise case)

Assume that Rand(ξ,Γ) holds true. Then Rξ is surjective from A into Â, and we have

V (ξ) = V̂ (µ), for µ = L(ξ). Moreover, if αǫ ∈ A is an ǫ-optimal control for V (ξ), then

Rξ(α
ǫ) ∈ Â is an ǫ-optimal control for V̂ (µ), and conversely, if α̂ǫ ∈ Â is an ǫ-optimal

control for V̂ (µ), then any αǫ ∈ R−1
ξ (α̂ǫ) is an ǫ-optimal control for V (ξ).

Proof. In view of the above discussion, we only need to prove the surjectivity of Rξ. Fix

a control κ ∈ Â for the MDP on P(X ). By Proposition A.3, for all t ∈ N, there exists a

measurable function at : X × [0, 1] → A such that Pat(x,U) = κt(x), for all x ∈ X . It is then

clear that the control α defined recursively by αt := at(X
ξ,α
t , Ut), where (Ut)t is an i.i.d.

sequence of G-measurable uniform variables independent of ξ under Rand(ξ,Γ), satisfies

L(αt | Xξ,α = x) = κt(x) (observing that Ut is independent of Xξ,α
t ), and thus α̂ = κ,

which proves the surjectivity of Rξ. ✷

Remark 3.2 The above correspondence result shows in particular that the value function

V of the MKV-MDP is law invariant, in the sense that it depends on its initial state ξ only

via its probability law µ = L(ξ), for ξ satisfying the randomization hypothesis. ✷
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3.2 Case with discrete state space X

We consider the case with common noise but when the state space X is discrete, i.e., its

cardinal #X is finite, equal to n.

In this case, one can identify P(X ) with the simplex S
n−1 = {p = (pi)i=1,...,n ∈

[0, 1]n :
∑n

i=1 pi = 1}, by associating any probability distribution µ ∈ P(X ) to its weights

(µ({x}))x∈X ∈ S
n−1. We also identify the action space Â(X ) with P(A)n by associating any

probability kernel â ∈ Â(X ) to (â(x))x∈X ∈ P(A)n, and thus Â(X ) is naturally endowed

with the product σ-algebra of the Wasserstein metric space P(A).

Lemma 3.1 Suppose that #X = n < ∞. Then, F̂ in (3.3) is a measurable function

from S
n−1 × P(A)n × E0 into S

n−1, f̂ in (3.4) is a real-valued measurable function on

S
n−1 × P(A)n. Moreover, for any ξ ∈ L0(G;X ), and α ∈ A, the P(A)n-valued process α̂

defined by α̂t(x) = L0(αt|X
ξ,α
t = x), t ∈ N, x ∈ X , is F

0-adapted.

Proof. By Corollary A.1, it is clear, by measurable composition, that we only need to

prove that Ψ : (µ, â) ∈ (P(X ), Â(X )) 7→ µ · â ∈ P(X × A) is measurable. However, in this

discrete case, µ · â is here simply equal to
∑

x∈X µ(x)â(x) and, thus Ψ is clearly measurable.

✷

In view of Lemma 3.1, the MDP with characteristics (P(X ) ≡ S
n−1, Â(X ) ≡ P(A)n, F̂ , f̂ , β)

is well-posed. Let us then denote by Â the set of F0-adapted processes valued in P(A)n,

and given κ ∈ Â, consider the controlled dynamics in S
n−1

µt+1 = F̂ (µt, κt, ε
0
t+1), t ∈ N, µ0 = µ ∈ S

n−1, (3.5)

the associated expected gain and value function

V̂ κ(µ) = E

[ ∞∑

t=0

βtf̂(µt, κt)
]
, V̂ (µ) = sup

κ∈Â

V̂ κ(µ). (3.6)

We aim to prove the correspondence and equivalence between the CMKV-MDP and the

MDP (3.5)-(3.6). From the derivation in (3.2)-(3.4) and by Lemma 3.1, we see that for any

α ∈ A, V α(ξ) = V̂ α̂(µ), where µ = L(ξ), and α̂ = R0
ξ(α) where R

0
ξ is the relaxed operator

R0
ξ : A −→ Â

α = (αt)t 7−→ α̂ = (α̂t)t : α̂t(x) = L0
(
αt|X

ξ,α
t = x

)
, t ∈ N, x ∈ X .

(3.7)

It follows that V (ξ) ≤ V̂ (µ). In order to get the reverse inequality from the surjectivity of

R0
ξ , we need again as in the no common noise case to make some randomization hypothesis.

It turns out that when X is discrete, this randomization hypothesis is simply reduced to

the atomless property of Γ.

Lemma 3.2 Assume that Γ is atomless, i.e., G is rich enough. Then, any ξ ∈ L0(G;X )

taking a countable number of values, satisfies Rand(ξ,Γ).

Proof. Let S be a countable set s.t. ξ ∈ S a.s., and P[ξ = x] > 0 for all x ∈ S. Fix x ∈ S

and denote by Px the probability “knowing ξ = x”, i.e., Px[B] := P[B,ξ=x]
P[ξ=x] , for all B ∈ F .
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It is clear that, endowing Ω with this probability, Γ is still atomless, and so there exists

a G-measurable random variable Ux that is uniform under Px. Then, the random variable

U :=
∑

x∈S Ux1ξ=x is a G-measurable uniform random variable under Px for all x ∈ S,

which implies that it is a uniform variable under P, independent of ξ. ✷

Theorem 3.2 (Correspondance with the MDP on P(X ) in the X discrete case)

Assume that G is rich enough. Then R0
ξ is surjective from A into Â, and V (ξ) = V̂ (µ), for

any µ ∈ P(X ), ξ ∈ L0(G;X ) s.t. µ = L(ξ). Moreover, if αǫ ∈ A is an ǫ-optimal control

for V (ξ), then R0
ξ(α

ǫ) ∈ Â is an ǫ-optimal control for V̂ (µ). Conversely, if α̂ǫ ∈ Â is an

ǫ-optimal control for V̂ (µ), then any αǫ ∈ (R0
ξ)

−1(α̂ǫ) is an ǫ-optimal control for V (ξ).

Proof. From the derivation in (3.5)-(3.7), we only need to prove the surjectivity of R0
ξ .

Fix κ ∈ Â and let πt ∈ L0((E0)t; Â(X )) be such that κt = πt((ε
0
s)s≤t). As X is discrete, by

definition of the σ-algebra on Â(X ), πt can be seen as a measurable function in L0((E0)t×

X ;P(A)). Let φ ∈ L0(A,R) be an embedding as in Lemma C.2. By Corollary A.1, we

know that φ ⋆ πt is in L0((E0)t × X ;P(R)). Given m ∈ P(R) we denote by F−1
m the

generalized inverse of its distribution function, and it is known that the mapping m ∈

(P(R),W) 7→ F−1
m ∈ (L1

caglad(R), ‖ · ‖1) is an isometry and is thus measurable. Therefore,

F−1
φ⋆πt

is in L0((E0)t × X ; (L1
caglad(R), ‖ · ‖1)). Finally, the mapping (f, u) ∈ (L1

caglad(R), ‖ ·

‖1)× ([0, 1],B([0, 1])) 7→ f(u) ∈ (R,B(R)) is measurable, since it is the limit of the sequence

n
∑

i∈Z 1[ i+1

n
, i+2

n
)(u)

∫ i+1

n
i
n

f(y)dy when n → ∞. Therefore, the mapping

at : (E
0)t × X × [0, 1] −→ A

((e0s)s≤t, x, u) 7−→ φ−1 ◦ F−1
φ⋆πt((e0s)s≤t,x)

(u)

is measurable. We thus define, by induction, αt := at((ε
0
s)s≤t,X

ξ,α
t , Ut). By construction

and by the generalized inverse simulation method, it is clear that α̂t = κt. ✷

Remark 3.3 We point out that when both state space X and action space A are discrete,

equipped with the metrics d(x, x′) := 1x 6=y, x, x
′ ∈ X and dA(a, a

′) := 1a6=a′ , a, a
′ ∈ A,

the transition function F̂ and reward function f̂ of the lifted MDP on P(X ) inherits the

Lipschitz condition (HFlip) and (Hflip) used for the propagation of chaos. Indeed, it is

known that the Wasserstein distance obtained from d (resp. dA) coincides with twice the

total variation distance, and thus to the L1 distance when naturally embedding P(X ) (resp.

P(A)) in [0, 1]#X (resp. [0, 1]#A). Thus, embedding Â(X ) in M#X ,#A([0, 1]), the set of

#X ×#A matrices with coefficients valued in [0, 1], we have

‖F̂ (µ, â, e0), F̂ (ν, â′, e0)‖1 ≤ (1 +KF )(2‖µ − µ′‖1 + sup
x∈X

‖âx,· − â′x,·‖1).

We obtain a similar property for f . In other words, lifting the CMKV-MDP not only turns

it into an MDP, but also its state and action spaces [0, 1]#X and [0, 1]#X×#A are very

standard, and its dynamic and reward are Lipschitz functions with factors of the order of

KF and Kf according to the norm ‖ · ‖1. Thus, due to the standard nature of this MDP,

most MDP algorithms can be applied and their speed will be simply expressed in terms of

the original parameters of the CMKV-MDP, KF and Kf . ✷
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Remark 3.4 As in the no common noise case, the correspondence result in the X discrete

case shows notably that the value function of the CMKV-MDP is law-invariant.

The general case (common noise and continuous state space X ) raises multiple issues

for establishing the equivalence between CMKV-MDP and the lifted MDP on P(X ). First,

we have to endow the action space Â(X ) with a suitable σ-algebra for the lifted MDP to

be well-posed: on one hand, this σ-algebra has to be large enough to make the functions

F̂ : P(X )× Â(X )×E0 → P(X ) and f̂ : P(X )× Â(X ) → R measurable, and on the other

hand, it should be small enough to make the process α̂ = R0
ξ(α) F

0-adapted for any control

α ∈ A in the CMKV-MDP. Beyond the well-posedness issue of the lifted MDP, the second

important concern is the surjectivity of the relaxed operator R0
ξ from A into Â. Indeed, if

we try to adapt the proof of Theorem 3.2 to the case of a continuous state space X , the

issue is that we cannot in general equip Â(X ) with a σ-algebra such that L0((E0)t; Â(X ))

= L0((E0)t × X ;P(A)), and thus we cannot see πt ∈ L0((E0)t; Â(X )) as an element of

L0((E0)t × X ;P(A)), which is crucial because the control α (such that α̂ = κ) is defined

with αt explicitly depending upon πt((ε
0
s)s≤t,Xt).

In the next section, we shall fix these measurability issues in the general case, and prove

the correspondence between the CMKV-MDP and a general lifted MDP on P(X ). ✷

4 General case and Bellman fixed point equation in P(X )

We address the general case with common noise and possibly continuous state space X ,

and our aim is to state the correspondence of the CMKV-MDP with a suitable lifted MDP

on P(X ) associated to a Bellman fixed point equation, characterizing the value function,

and obtain as a by-product an ǫ-optimal control. We proceed as follows:

(i) We first introduce a well-posed lifted MDP on P(X ) by enlarging the action space

to P(X × A), and call Ṽ the corresponding value function, which satisfies: V (ξ) ≤

Ṽ (µ), for µ = L(ξ).

(ii) We then consider the Bellman equation associated to this well-posed lifted MDP on

P(X ), which admits a unique fixed point, called V ⋆.

(iii) Under the randomization hypothesis for ξ, we show the existence of an ǫ-randomized

feedback policy, which yields both an ǫ-randomized feedback control for the CMKV-

MDP and an ǫ-optimal feedback control for Ṽ . This proves that V (ξ) = Ṽ (µ) =

V ∗(µ), for µ = L(ξ).

(iv) Under the condition that G is rich enough, we conclude that V is law-invariant and

is equal to Ṽ = V ⋆, hence satisfies the Bellman equation.

Finally, we show how to compute from the Bellman equation by value or policy iteration

approximate optimal strategy and value function.
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4.1 A general lifted MDP on P(X )

We start again from the relation (3.2) describing the evolution of µt = P
0
Xt
, t ∈ N, for a

state process Xt = Xξ,α
t controlled by α ∈ A:

µt+1 = F (·, ·,P0
(Xt ,αt)

, ·, ε0t+1) ⋆ (P
0
(Xt,αt)

⊗ λε), a.s. (4.1)

Now, instead of decoupling as in Section 3, the conditional law of the pair (Xt, αt), as

P
0
(Xt,αt)

= µt · α̂t where α̂ = R0
ξ(α) is the relaxed control in (3.7), we directly consider

the control process αt = P
0
(Xt,αt)

, t ∈ N, which is F
0-adapted (see Proposition A.1), and

valued in the space of probability measures A := P(X × A), naturally endowed with the

σ-algebra of its Wasserstein metric. Notice that this A-valued control α obtained from

the CMKV-MDP has to satisfy by definition the marginal constraint pr
1
⋆αt = µt at any

time t. In order to tackle this marginal constraint, we shall rely on the following coupling

results.

Lemma 4.1 (Measurable coupling)

There exists a measurable function ζ ∈ L0(P(X )2 × X × [0, 1];X ) s.t. for any (µ, µ′) ∈

P(X ), and if ξ ∼ µ, then

• ζ(µ, µ′, ξ, U) ∼ µ′, where U is an uniform random variable independent of ξ.

• (i) When X ⊂ R:

E
[
d(ξ, ζ(µ, µ′, ξ, U))

]
= W(µ, µ′).

(ii) In general when X Polish: ∀ ε > 0, ∃η > 0 s.t.

W(µ, µ′) < η ⇒ E
[
d(ξ, ζ(µ, µ′, ξ, U))

]
< ε.

Proof. See Appendix C. ✷

Remark 4.1 Lemma 4.1 can be seen as a measurable version of the well-known coupling

result in optimal transport, which states that given µ, µ′ ∈ P(X ), there exists ξ and ξ′

random variables with L(ξ) = µ, L(ξ′) = µ′ such that W(µ, µ′) = E
[
d(ξ, ξ′)]. A similar

measurable optimal coupling is proved in [8] under the assumption that there exists a

transfer function realizing an optimal coupling between µ and µ′. However, such transfer

function does not always exist, for instance when µ has atoms but not µ′. Lemma 4.1 builds

a measurable coupling without making such assumption (essentially using the uniform

variable U to randomize when µ has atoms). ✷

From the measurable coupling function ζ as in Lemma 4.1, we define the coupling

projection p : P(X ) ×A → A by

p(µ,a) = L
(
ζ(pr1 ⋆ a, µ, ξ

′, U), α0

)
, µ ∈ P(X ),a ∈ A,

where (ξ′, α0) ∼ a, and U is a uniform random variable independent of ξ′.
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Lemma 4.2 (Measurable coupling projection)

The coupling projection p is a measurable function from P(X ) × A into A, and for all

(µ,a) ∈ P(X ) ×A:

pr
1
⋆ p(µ,a) = µ, and if pr1 ⋆ a = µ, then p(µ,a) = a.

Proof. The only result that is not trivial is the measurability of p. Observe that p(µ,a) =

g(µ,a, ·, ·, ·) ⋆ (a⊗ U([0, 1])) where g is the measurable function

g : P(X ) × P(X ×A)×X ×A× [0, 1] −→ X ×A

(µ,a, x, a, u) 7−→ (ζ(pr1 ⋆ a, µ, x, u), a)

We thus conclude by Corollary A.1. ✷

By using this coupling projection p, we see that the dynamics (4.1) can be written as

µt+1 = F̃ (µt,αt, ε
0
t+1), t ∈ N, (4.2)

where the function F̃ : P(X ) ×A× E0 → P(X ) defined by

F̃ (µ,a, e0) = F (·, ·,p(µ,a), ·, e0) ⋆
(
p(µ,a)⊗ λε

)
,

is clearly measurable. Let us also define the measurable function f̃ : P(X ) ×A → R by

f̃(µ,a) =

∫

X×A
f(x, a,p(µ,a))p(µ,a)(dx,da).

The MDP with characteristics (P(X ),A = P(X × A), F̃ , f̃ , β) is then well-posed. Let

us then denote by A the set of F0-adapted processes valued in A, and given an open-loop

control ν ∈ A, consider the controlled dynamics

µt+1 = F̃ (µt,νt, ε
0
t+1), t ∈ N, µ0 = µ ∈ P(X ), (4.3)

with associated expected gain/value function

Ṽ ν(µ) = E

[∑

t∈N

βtf̃(µt,νt)
]
, Ṽ (µ) = sup

ν∈A
Ṽ ν(µ). (4.4)

Given ξ ∈ L0(G;X ), and α ∈ A, we set α = L0
ξ(α), where L0

ξ is the lifted operator

L0
ξ : A −→ A

α = (αt)t 7−→ α = (αt)t : αt = P
0
(Xξ,α

t ,αt)
, t ∈ N.

By construction from (4.2), we see that µt = P
0
Xξ,α

t

, t ∈ N, follows the dynamics (4.3) with

the control ν = L
0
ξ(α) ∈ A. Moreover, by the law of iterated conditional expectation, and

the definition of f̃ , the expected gain of the CMKV-MDP can be written as

V α(ξ) = E

[∑

t∈N

βt
E
0
[
f(Xξ,α

t , αt,P
0
(Xξ,α

t ,αt)
)
]]

= E

[∑

t∈N

βtf̃(P0
Xξ,α

t

,αt)
]

= Ṽ α(µ), with µ = L(ξ). (4.5)

It follows that V (ξ) ≤ Ṽ (µ), for µ = L(ξ). Our goal is to prove the equality, which implies in

particular that V is law-invariant, and to obtain as a by-product the corresponding Bellman

fixed point equation that characterizes analytically the solution to the CMKV-MDP.
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4.2 Bellman fixed point on P(X )

We derive and study the Bellman equation corresponding to the general lifted MDP (4.3)-

(4.4) on P(X ). By defining this MDP on the canonical space (E0)N, an open-loop control

ν = (νt)t ∈ A is identified with the open-loop policy ν = (νt)t where νt is a measurable

function from (E0)t into A via the relation νt = νt(ε
0
1, . . . , ε

0
t ), with the convention that ν0

= ν0 is simply a constant in A. Given ν ∈ A, and e0 ∈ E0, we denote by ~ν(e0) = (~νt(e
0))t

∈ A the shifted open-loop policy defined by ~νt(e
0)(.) = νt+1(e

0, .), t ∈ N. Given µ ∈ P(X ),

and ν ∈ A, we denote by (µµ,ν
t )t the solution to (4.3), which satisfies the flow property

(
µµ,ν
t+1,νt+1

)
≡

(
µ
µµ,ν
1

t , ~νt(ε
0
1)
)
, t ∈ N,

where ≡ means equality in law under P. This implies that the expected gain of this MDP

in (4.4) satisfies the relation

Ṽ ν(µ) = f̃(µ,ν0) + βE
[
Ṽ ~ν(ε01)(µµ,ν

1 )
]

Recalling that µµ,ν
1 = F̃ (µ,ν0, ε

0
1), and by definition of Ṽ as the value function, we deduce

that

Ṽ (µ) ≤
[
T Ṽ

]
(µ), (4.6)

where T is the Bellman operator on L∞(P(X )), the set of bounded real-valued functions

on P(X ), defined for any W ∈ L∞(P(X )) by

[T W ](µ) := sup
a∈A

{
f̃(µ,a) + βE

[
W

(
F̃ (µ,a, ε01)

)]}
, µ ∈ P(X ). (4.7)

This Bellman operator is consistent with the lifted MDP derived in Section 3, with cha-

racteristics (P(X ), Â(X ), F̂ , f̂ , β), although this MDP is not always well-posed. Indeed,

its corresponding Bellman operator is well-defined as it only involves the random variable

ε01 at time 1, hence only requires the measurability of e0 7→ F̂ (µ, â, e0), for any (µ, â) ∈

P(X )× Â(X ) (which holds true), and it turns out that it coincides with T .

Proposition 4.1 For any W ∈ L∞(P(X )), and µ ∈ P(X ), we have

[T W ](µ) = sup
â∈Â(X )

[T̂ âW ](µ) = sup
a∈L0(X×[0,1];A)

[TaW ](µ), (4.8)

where T̂ â and T
a are the operators defined on L∞(P(X )) by

[T̂ âW ](µ) = f̂(µ, â) + βE
[
W

(
F̂ (µ, â, ε01)

)]
,

[TaW ](µ) = E

[
f(ξ, a(ξ, U),L(ξ, a(ξ, U))) + βW

(
P
0
F (ξ,a(ξ,U),L(ξ,a(ξ,U)),ε1,ε01)

)]
, (4.9)

for any (ξ, U) ∼ µ ⊗ U([0, 1]) (it is clear that the right-hand side in (4.9) does not depend

on the choice of such (ξ, U)). Moreover, we have

[T W ](µ) = sup
α0∈L0(Ω;A)

E

[
f(ξ, α0,L(ξ, α0)) + βW

(
P
0
F (ξ,α0,L(ξ,α0),ε1,ε01)

)]
. (4.10)
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Proof. Fix W ∈ L∞(P(X )), and µ ∈ P(X ). Let a be arbitrary in A. Since p(µ,a) has

first marginal equal to µ, there exists by Corollary A.2 a probability kernel â ∈ Â(X ) such

that p(µ,a) = µ · â. Therefore, F̃ (µ,a, e0) = F̂ (µ, â, e0), f̃(µ,a) = f̂(µ, â), which implies

that [T W ](µ) ≤ supâ∈Â(X )[T̂
âW ](µ) =: T1.

Let us consider the operator R defined by

R : L0(X × [0, 1];A) −→ Â(X )

a 7−→ â : â(x) = L
(
a(x,U)

)
, x ∈ X , U ∼ U([0, 1]),

and notice that it is surjective from L0(X × [0, 1];A) into Â(X ), by Lemma A.3. By noting

that for any a ∈ L0(X × [0, 1];A), and (ξ, U) ∼ µ ⊗ U([0, 1]), we have L
(
ξ, a(ξ, U)

)
=

µ · R(a), it follows that [TaW ](µ) = [T̂ R(a)W ](µ). Since R is surjective, this yields T
1 =

supa∈L0(X×[0,1];A)[T
aW ](µ) =: T2.

Denote by T
3 the right-hand-side in (4.10). It is clear that T2 ≤ T

3. Conversely, let α0

∈ L0(Ω;A). We then set a = L(ξ, α0) ∈ P(X ×A), and notice that the first marginal of a

is µ. Thus, p(µ,a) = L(ξ, α0), and so

f̃(µ,a) =

∫

X×A
f(x, a,p(µ,a))p(µ,a)(dx,da) = E

[
f(ξ, α0,L(ξ, α0))

]

F̃ (µ,a, ε01) = F (·, ·,p(µ,a), ·, ε01) ⋆
(
p(µ,a)⊗ λε

)
= P

0
F (ξ,α0,L(ξ,α0),ε1,ε01)

.

We deduce that T3 ≤ [T W ](µ), which gives finally the equalities (4.8) and (4.10). ✷

By standard and elementary arguments, we state the basic properties of the Bellman

operator T .

Lemma 4.3 (i) The operator T is contracting on L∞(P(X )) with Lipschitz factor β, and

admits a unique fixed point in L∞(P(X )), denoted by V ⋆, hence solution to:

V ⋆ = T V ⋆.

(ii) Furthermore, it is monotone increasing: for W1,W2 ∈ L∞(P(X )), if W1 ≤ W2, then

T W1 ≤ T W2.

As a consequence of Lemma 4.3, we can easily show the following relation between the

value function Ṽ of the general lifted MDP, and the fixed point V ⋆ of the Bellman operator.

Lemma 4.4 For all µ ∈ P(X ), we have

Ṽ (µ) ≤ V ⋆(µ).

Proof. From (4.6), we have: Ṽ ≤ T Ṽ =: V1. By iterating this inequality with the operator

T , and using the monotonic increasing property of T , we get Ṽ ≤ T nṼ =: Vn. Since the

fixed point V ⋆ of the contracting operator T is the limit of Vn, as n goes to infinity, this

proves the second inequality Ṽ ≤ V ⋆. ✷
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4.3 Building ǫ-optimal randomized feedback controls

We aim to prove rigorously the equality Ṽ = V ⋆, i.e., the value function Ṽ of the general

lifted MDP satisfies the Bellman fixed point equation: Ṽ = T Ṽ , and also to show the

existence of an ǫ-optimal control for Ṽ . Notice that it cannot be obtained directly from

classical theory of MDP as we consider here open-loop controls ν ∈ A while MDP usually

deals with feedback controls on finite-dimensional spaces. Anyway, following the standard

notation in MDP theory with state space P(X ) and action space A, and in connection with

the Bellman operator in (4.7), we introduce, for π ∈ L0(P(X );A) (the set of measurable

functions from P(X ) into A) called (measurable) feedback policy, the so-called π-Bellman

operator T π on L∞(P(X )), defined for W ∈ L∞(P(X )) by

[T πW ](µ) = f̃(µ,π(µ)) + βE
[
W

(
F̃ (µ,π(µ), ε01)

)]
, µ ∈ P(X ). (4.11)

As for the Bellman operator T , we have the basic properties on the operator T π.

Lemma 4.5 Fix π ∈ L0(P(X );A).

(i) The operator T π is contracting on L∞(P(X )) with Lipschitz factor β, and admits a

unique fixed point denoted Ṽ π.

(ii) Furthermore, it is monotone increasing: for W1,W2 ∈ L∞(P(X )), if W1 ≤ W2, then

T πW1 ≤ T πW2.

Remark 4.2 It is well-known from MDP theory that the fixed point Ṽ π to the operator

T π is equal to

Ṽ π(µ) = E

[∑

t∈N

f̃(µt,π(µt))
]
,

where (µt) is the MDP in (4.3) with the feedback and stationary control νπ = (νπ
t )t ∈ A

defined by νπ
t = π(µt), t ∈ N. In the sequel, we shall then identify by misuse of notation

Ṽ π and Ṽ νπ

as defined in (4.4). ✷

Our ultimate goal being to solve the CMKV-MDP, we introduce a subclass of feedback

policies for the lifted MDP.

Definition 4.1 (Lifted randomized feedback policy)

A feedback policy π ∈ L0(P(X );A) is a lifted randomized feedback policy if there exists a

measurable function a ∈ L0(P(X ) × X × [0, 1];A), called randomized feedback policy, such

that
(
ξ, a(µ, ξ, U)

)
∼ π(µ), for all µ ∈ P(X ), with (ξ, U) ∼ µ⊗ U([0, 1]).

Remark 4.3 Given a ∈ L0(P(X ) × X × [0, 1];A), denote by πa ∈ L0(P(X );A) the asso-

ciated lifted randomized feedback policy, i.e., πa(µ) = L
(
ξ, a(µ, ξ, U)

)
, for µ ∈ P(X ), and

(ξ, U) ∼ µ ⊗ U([0, 1]). By definition of the Bellman operator T πa

in (4.11), and observing

that p(µ,πa(µ)) = πa(µ) = L
(
ξ, aµ(ξ, U)

)
, where we set aµ = a(µ, ·, ·) ∈ L0(X × [0, 1] : A),

we see (recalling the notation in (4.9)) that for all W ∈ L∞(P(X )),

[T πa

W ](µ) = [TaµW ](µ), µ ∈ P(X ). (4.12)
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On the other hand, let ξ ∈ L0(G;X ) be some initial state satisfying the randomization

hypothesis Rand(ξ,G), and denote by αa ∈ A the randomized feedback stationary control

defined by αa

t = a(P0
Xt
,Xt, Ut), where X = Xξ,αa

is the state process in (3.1) of the CMKV-

MDP, and (Ut)t is an i.i.d. sequence of uniform G-measurable random variables independent

of ξ. By construction, the associated lifted control αa = L0
ξ(α

a) satisfies αa

t
= P

0
(Xt,αa

t )
=

πa(µt), where µt = P
0
Xt
, t ∈ N. Denoting by V a := V αa

the associated expected gain of

the CMKV-MDP, and recalling Remark 4.2, we see from (4.5) that V a(ξ) = Ṽ νπ
a

(µ) =

Ṽ πa

(µ), where µ = L(ξ). ✷

We show a verification type result for the general lifted MDP, and as a byproduct for

the CMKV-MDP, by means of the Bellman operator.

Proposition 4.2 (Verification result)

Fix ǫ ≥ 0, and suppose that there exists an ǫ-optimal feedback policy πǫ ∈ L0(P(X );A) for

V ⋆ in the sense that

V ⋆ ≤ T πǫV ⋆ + ǫ.

Then, νπǫ ∈ A is ǫ
1−β -optimal for Ṽ , i.e., Ṽ πǫ ≥ Ṽ − ǫ

1−β , and we have Ṽ ≥ V ⋆ − ǫ
1−β .

Furthermore, if πǫ is a lifted randomized feedback policy, i.e., πε = πaǫ , for some aε ∈

L0(P(X ) × X × [0, 1];A), then under Rand(ξ,G), αaǫ ∈ A is an ǫ
1−β -optimal control for

V (ξ), i.e., V aǫ(ξ) ≥ V (ξ)− ǫ
1−β , and we have V (ξ) ≥ V ⋆(µ)− ǫ

1−β , for µ = L(ξ).

Proof. Since Ṽ πǫ = T πǫ Ṽ πǫ , and recalling from Lemma 4.4 that V ⋆ ≥ Ṽ ≥ Ṽ πǫ , we have

for all µ ∈ P(X ),
∣∣∣(V ⋆ − Ṽ πǫ)(µ)

∣∣∣ ≤
∣∣∣T πǫ(V ⋆ − Ṽ πǫ)(µ) + ǫ

∣∣∣ ≤ β‖V ⋆ − Ṽ πǫ‖+ ǫ,

where we used the β-contraction property of T πǫ in Lemma 4.5. We deduce that ‖V ⋆−Ṽ πǫ‖

≤ ǫ
1−β , and then, Ṽ ≥ Ṽ πǫ ≥ V ⋆ − ǫ

1−β , which combined with V ⋆ ≥ Ṽ , shows the first

assertion. Moreover, if πε = πaǫ is a lifted randomized feedback policy, then by Remark

4.3, and under Rand(ξ,G), we have V aǫ(ξ) = Ṽ πǫ(µ). Recalling that V (ξ) ≤ Ṽ (µ), and

together with the first assertion, this proves the required result. ✷

Remark 4.4 If we can find for any ǫ > 0, an ǫ-optimal lifted randomized feedback policy

for V ⋆, then according to Proposition 4.2, and under Rand(ξ,G), one could restrict to

randomized feedback policies in the computation of the optimal value V (ξ) of the CMKV-

MDP, i.e., V (ξ) = sup
a∈L0(P(X )×X×[0,1];A) V

a(ξ). Moreover, this would prove that V (ξ) =

Ṽ (µ) = V ⋆(µ), hence V is law-invariant, and satisfies the Bellman fixed equation.

Notice that instead of proving directly the dynamic programming Bellman equation

for V , we start from the fixed point solution V ⋆ to the Bellman equation, and show via a

verification result that V is indeed equal to V ⋆, hence satisfies the Bellman equation.

By the formulation (4.8) of the Bellman operator in Proposition 4.1, and the fixed

point equation satisfied by V ⋆, we know that for all ǫ > 0, and µ ∈ P(X ), there exists aµǫ
∈ L0(X × [0, 1];A) such that

V ⋆(µ) ≤ [Taµǫ V ⋆](µ) + ǫ. (4.13)
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The crucial issue is to prove that the mapping (µ, x, u) 7→ aǫ(µ, x, u) := aµǫ (x, u) is measu-

rable so that it defines a randomized feedback policy aǫ ∈ L0(P(X )×X × [0, 1];A), and an

associated lifted randomized feedback policy πaǫ . Recalling the relation (4.12), this would

then show that πaǫ is a ǫ-optimal lifted randomized feedback policy for V ⋆, and we could

apply the verification result. ✷

We now address the measurability issue for proving the existence of an ǫ-optimal ran-

domized feedback policy for V ⋆. The basic idea is to construct as in (4.13) an ǫ-optimal

aµǫ ∈ L0(X × [0, 1];A) for V ⋆(µ) when µ lies in a suitable finite grid of P(X ), and then

“patchs” things together to obtain an ε-optimal randomized feedback policy. This is made

possible under some uniform continuity property of V ⋆, and we shall require the following

Lipschitz assumptions on the original state transition and reward functions F and f .

(H′
lip) There exists K > 0, such that for all a ∈ A, e0 ∈ E0, x, x′ ∈ X , ν, ν ′ ∈ P(X × A),

such that pr
2
⋆ ν = pr

2
⋆ ν ′,

E
[
d
(
F (x, a, ν, ε11, e

0), F (x′, a, ν ′, ε11, e
0)
)]

≤ K
(
d(x, x′) +W(pr

1
⋆ ν,pr

1
⋆ ν ′)

)

d(f(x, a, ν), f(x′, a, ν ′)) ≤ K
(
d(x, x′) +W(pr

1
⋆ ν,pr

1
⋆ ν)

)
.

Remark 4.5 Under Assumption (H′
lip), we see that once pr

i
⋆ ν = pr

i
⋆ ν ′, i = 1, 2,

then F (x, a, ν, ε11, e
0) = F (x, a, ν ′, ε11, e

0), and f(x, a, ν) = f(x, a, ν ′). In other words, the

functions F and f depend on ν only through its marginal distribution on X and on A, and

we shall write by misuse of notation: F (x, a, µ, υ, e, e0) = F (x, a, µ ⊗ υ, e, e0), f(x, a, µ, υ)

= f(x, a, µ ⊗ υ), for µ ∈ P(X ), υ ∈ P(A). Assumption (H′
lip) is then written as: there

exists K > 0, such that for all a ∈ A, e0 ∈ E0, x, x′ ∈ X , µ, µ′ ∈ P(X ), υ ∈ P(A),

E
[
d
(
F (x, a, µ, υ, ε11, e

0), F (x′, a, µ′, υ, ε11, e
0)
)]

≤ K
(
d(x, x′) +W(µ, µ′)

)

d(f(x, a, µ, υ), f(x′, a, µ′, υ)) ≤ K
(
d(x, x′) +W(µ, µ′)

)
.

✷

Proposition 4.3 Assume that (H′
lip) holds true. Then, for all γ ∈

[
0,min

(
1, | ln(β)|

(ln 2K)+
−η

)]
,

with η > 0, V ⋆ is γ-Hölder with constant Kγ =
2K∆1−γ

X

1−β(2K)γ :

∣∣V ⋆(µ)− V ⋆(µ′)
∣∣ ≤ KγW(µ, µ′)γ , ∀µ, µ′ ∈ P(X ).

Proof. Notice that V ⋆ is the limiting point in L∞(P(X )) of the iterative sequence Vn+1 =

T Vn, and we shall prove the γ-Hölder property by induction. Fix γ ∈ [0, 1]. We start from

V0 ≡ 0 which is obviously γ-Hölder, and assume that at iteration n, Vn is γ-Hölder with a

constant Kn. Under (H′
lip), (see Remark 4.5), recall the expression (4.10) of the Bellman

operator T :

T W (µ) = sup
α0∈L0(Ω;A)

E

[
f
(
ξ, α0, µ,L(α0)

)
+ βW

(
P
0
F (ξ,α0,µ,L(α0),ε1,ε01)

)]
, µ ∈ P(X ),
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for any ξ ∈ L0(Ω;X ) s.t. L(ξ) = µ. For any µ, µ′ ∈ P(X ), let us consider an optimal

coupling (ξ, ξ′) ∈ L0(Ω;X ) for the Wasserstein distance, i.e., E[d(ξ, ξ)] = W(µ, µ′). Under

(H′
lip), we then have

|Vn+1(µ)− Vn+1(µ
′)| ≤ 2KW(µ, µ′)

+ β sup
α0∈L0(Ω,;A)

E

[∣∣Vn

(
P
0
F (ξ,α0,µ,L(α0),ε1,ε01)

)
− Vn

(
P
0
F (ξ′,α0,µ′,L(α0),ε1,ε01)

)∣∣
]
.

Now, by induction hypothesis, we have

∣∣Vn

(
P
0
F (ξ,α0,µ,L(α0),ε1,ε01)

)
− Vn

(
P
0
F (ξ′,α0,µ′,L(α0),ε1,ε01)

)∣∣

≤ Kn

∣∣W
(
P
0
F (ξ,α0,µ,L(α0),ε1,ε01)

,P0
F (ξ′,α0,µ′,L(α0),ε1,ε01)

)∣∣γ ,

and by definition of the Wasserstein distance

W
(
P
0
F (ξ,α0,µ,L(α0),ε1,ε01)

,P0
F (ξ′,α0,µ′,L(α0),ε1,ε01)

)
≤ E

[
d
(
F (ξ, α0, µ,L(α0), ε1, e), F (ξ′, α0, µ

′,L(α0), ε1, e)
)]

e:=ε0
1

≤ 2K W(µ, µ′),

where we used again (H′
lip) and the fact that E[d(ξ, ξ)] = W(µ, µ′). We then deduce that

∣∣Vn+1(µ)− Vn+1(µ
′)
∣∣ ≤ 2KW(µ, µ′) + βKn(2K)γW(µ, µ′)γ

≤ (2K∆1−γ
X + βKn(2K)γ)W(µ, µ′)γ ,

since W(µ, µ′) ≤ ∆X and γ ≤ 1. We then see that induction hypothesis at iteration n+ 1

holds true by setting Kn+1 := 2K∆1−γ
X + βKn(2K)γ , which leads to the expression Kn =

2K∆1−γ
X

1−(β(2K)γ )n

1−(β(2K)γ ) . Therefore, by taking γ ∈
[
0,min

(
1, | ln(β)|

(ln 2K)+
− η

)]
, with η > 0, we

have β(2K)γ < 1, and the sequence Kn converges to Kγ :=
2K∆1−γ

X

1−(β(2K)γ ) , which shows the

required γ-Hölder property for V ⋆ = limn Vn with the constant Kγ . ✷

The next result provides a suitable discretization of the set of probability measures.

Lemma 4.6 (Quantization of P(X ))

Fix η > 0. There exists a finite subset Mη = {µ1, . . . , µNη} ⊂ P(X ), such that for all µ ∈

P(X ), there exists µi ∈ Mη satisfying W(µ, µi) ≤ η.

Proof. As X is compact, there exists a finite subset Xη ⊂ X such that d(x, xη) ≤ η/2

for all x ∈ X , where xη denotes the projection of x on Xη. Given µ ∈ P(X ), and ξ

∼ µ, we denote by ξη the quantization, i.e., the projection of ξ on Xη, and by µη the

discrete law of ξη. Thus, E[d(ξ, ξη)] ≤ η/2, and therefore W(µ, µη) ≤ η/2. The probability

measure µη lies in P(Xη), which is identified with the simplex of [0, 1]#Xη . We then use

another grid Gη = { i
nη

: i = 0, . . . , nη} of [0, 1], and project its weights µη(y) ∈ [0, 1],

y ∈ Xη, on Gη, in order to obtain another discrete probability measure µη,nη . From the

dual Kantorovich representation of Wasserstein distance, it is easy to see that for nη large

enough, W(µη, µη,nη ) ≤ η/2, and so W(µ, µη,nη ) ≤ η. We conclude the proof by noting

that µη,nη belongs to the set Mη of probability measures on Xη with weights valued in the

finite grid Gη, hence Mη is a finite set of P(Xη), of cardinal Nη = n
#Xη−1
η . ✷
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We can conclude this paragraph by showing the existence of an ǫ-optimal lifted ran-

domized feedback policy for the general lifted MDP on P(X ), and obtain as a by-product

the corresponding Bellman fixed point equation for its value function and for the optimal

value of the CMKV-MDP under randomization hypothesis.

Theorem 4.1 Assume that (H′
lip) holds true. Then, for all ǫ > 0, there exists a lifted

randomized feedback policy πaǫ , for some aǫ ∈ L0(P(X ) × X × [0, 1];A), that is ǫ-optimal

for V ⋆. Consequently, under Rand(ξ,G), the randomized feedback stationary control αaǫ ∈

A is ǫ
1−β -optimal for V (ξ), and we have V (ξ) = Ṽ (µ) = V ⋆(µ), for µ = L(ξ), which thus

satisfies the Bellman fixed point equation.

Proof. Fix ǫ > 0, and given η > 0, consider a quantizing grid Mη = {µ1, . . . , µNη} ⊂

P(X ) as in Lemma 4.6, and an associated partition Ci
η, i = 1, . . . , Nη , of P(X ), satisfying

Ci
η ⊂ Bη(µ

i) :=
{
µ ∈ P(X ) : W(µ, µi) ≤ η

}
, i = 1, . . . , Nη .

For any µi, i = 1, . . . , Nη , and by (4.13), there exists aiǫ ∈ L0(X × [0, 1];A) such that

V ⋆(µi) ≤ [TaiǫV ⋆](µi) +
ǫ

3
. (4.14)

From the partition Ci
η, i = 1, . . . , Nη of P(X ), associated to Mη, we construct the function

aǫ : P(X )×X × [0, 1] → A as follows. Let let h1, h2 be two measurable functions from [0, 1]

into [0, 1], such that if U ∼ U([0, 1]), then (h1(U), h2(U)) ∼ U([0, 1])⊗2. We then define

aǫ(µ, x, u) = aiǫ
(
ζ(µ, µi, x, h1(u)), h2(u)

)
, when µ ∈ Ci

η, i = 1, . . . , Nη , x ∈ X , u ∈ [0, 1],

where ζ is the measurable coupling function defined in Lemma 4.1. Such function aε is

clearly measurable, i.e., aε ∈ L0(P(X ) × X × [0, 1];A), and we denote by πε = πaε the

associated lifted randomized feedback policy, which satisfies

[T πεV ⋆](µi) = [TaiǫV ⋆](µi), i = 1, . . . , Nη, (4.15)

by (4.12). Let us now check that such πǫ yields an ǫ-optimal randomized feedback policy

for η small enough. For µ ∈ P(X ), with (ξ, U) ∼ µ⊗ U([0, 1]), we set U1 := h1(U), U2 :=

h2(U), and define µη = µi, when µ ∈ Ci
η, i = 1, . . . , Nη, and ξη := ζ(µ, µη, ξ, U1). Observe

by Lemma 4.6 that W(µ, µη) ≤ η, and by Lemma 4.1 that (ξη, U2) ∼ µη ⊗ U([0, 1]). We

then write for any µ ∈ P(X ),

[T πǫV ⋆](µ)− V ⋆(µ) =
(
[T πǫV ⋆](µ)− [T πǫV ⋆](µη)

)
+

(
[T πǫV ⋆](µη)− V ⋆(µη)

)

+
(
V ⋆(µη)− V ⋆(µ)

)

≥
(
[T πǫV ⋆](µ)− [T πǫV ⋆](µη)

)
−

ǫ

3
−

ǫ

3
, (4.16)

where we used (4.14)-(4.15) and the fact that |V ⋆(µη) − V ⋆(µ)| ≤ ǫ/3 for η small enough

by uniform continuity of V ⋆ in Proposition 4.3. Moreover, by observing that aǫ(µ, ξ, U) =

aǫ(µη, ξη, U2) =: α0, so that πǫ(µ) = L(ξ, α0), πǫ(µη) = L(ξη, α0), we have

[T πǫV ⋆](µ) = E

[
f(Y ) + βV ⋆(P0

F (Y,ε1,ε01
)
]
,

[T πǫV ⋆](µη) = E

[
f(Yη) + βV ⋆(P0

F (Yη ,ε1,ε01
)
]
,
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where Y = (ξ, α0,πǫ(µ)), and Yη = (ξη, α0,πǫ(µη)). Under (H′
lip), by using the γ-Hölder

property of V ⋆ with constant Kγ in Proposition 4.3, and by definition of the Wasserstein

distance (recall that ξ ∼ µ, ξη ∼ µη), we then get
∣∣[T πǫV ⋆](µ)− [T πǫV ⋆](µη)

∣∣ ≤ 2KE
[
d(ξ, ξη)

]

+βKγE

[
E
[
d
(
F (ξ, α0,πǫ(µ), ε1, e), F (ξη , α0,πǫ(µη), ε1, e)

)]
e:=ε0

1

]

≤ 2K(1 + βKγ)E
[
d(ξ, ξη)

]
.

Now, by the coupling Lemma 4.1, E
[
d(ξ, ξη)

]
can be made as small as possible provided that

η ≥ W(µ, µη) is small enough, and therefore,
∣∣[T πǫV ⋆](µ)− [T πǫV ⋆](µη)

∣∣ ≤ ǫ/3. Plugging

into (4.16), we obtain T πǫV ⋆(µ) − V ⋆(µ) ≥ −ǫ, for all µ ∈ P(X ), which means that πǫ

is ǫ-optimal for V ⋆. The rest of the assertions in the Theorem follow from the verification

result in Proposition 4.2. ✷

Remark 4.6 We stress the importance of the coupling Lemma in the construction of ǫ-

optimal control in Theorem 4.1. Indeed, as we do not make any regularity assumption on

F and f with respect to the “control arguments”, the only way to make [T πǫV ⋆](µ) and

[T πǫV ⋆](µη) close to each other is to couple terms to have the same control in F and f .

This is achieved by turning µ into µη, ξ into ξη and set α0 = aǫ(µ, ξ, U) = aǫ(µη, ξη, U2).

Turning µ into µη is a simple quantization, but turning ξ into ξη is obtained thanks to the

coupling Lemma. ✷

4.4 Relaxing the randomization hypothesis

We consider the general case by relaxing the randomization hypothesis and by assuming

only that the initial information filtration G is rich enough.

We need to state some uniform continuity property on the value function V of the

CMKV-MDP.

Lemma 4.7 Assume that (H′
lip) holds true. Then, for all γ ∈

[
0,min

(
1, | ln(β)|

(ln 2K)+
− η

)]
,

with η > 0, and setting Kγ =
2K∆1−γ

X

1−β(2K)γ , we have

sup
α∈A

∣∣V α(ξ)− V α(ξ′)
∣∣ ≤ Kγ

(
E
[
d(ξ, ξ′)

])γ
, ∀ξ, ξ′ ∈ L0(G;X ).

Consequently, V is γ-Hölder on L0(G;X ) endowed with the L1-distance.

Proof. Fix ξ, ξ′ ∈ L0(Ω,X ), and consider an arbitrary α = απ ∈ A associated to

an open-loop policy π ∈ ΠOL. By Proposition A.1, there exists a measurable function

ft,π ∈ L0(X × G × Et × (E0)t;X ), s.t. Xξ,α
t = ft,π(ξ,Γ, (εs)s≤t, (ε

0
s)s≤t), thus P

0
Xξ,α

t

=

L(ft,π(ξ,Γ, (εs)s≤t, (e
0
s)s≤t))e0s=ε0s,s≤t. We thus have

W(P0
Xξ,α

t

,P0

Xξ′,α
t

) ≤ E

[
d
(
ft,π(ξ,Γ, (εs)s≤t, (e

0
s)s≤t), ft,π(ξ

′,Γ, (εs)s≤t, (e
0
s)s≤t)

)]
e0s=ε0s,s≤t

,

and so

E

[
W(P0

Xξ,α
t

,P0

Xξ′,α
t

)
]
≤ E

[
d(Xξ,α

t ,Xξ′,α
t )

]
, (4.17)

28



Under the Lipschitz condition on f in (H′
lip), we then have

|V α(ξ)− V α(ξ′)| ≤ 2K

∞∑

t=0

βt
E
[
d(Xξ,α

t ,Xξ′,α
t )

]
. (4.18)

By conditioning, and from the transition dynamics of the state process, we see that for

t ∈ N, E
[
d(Xξ,α

t+1,X
ξ′,α
t+1 )

]
= E

[
∆(αi

t,X
ξ,α
t ,P0

(Xξ,α
t ,αt)

,Xξ′,α
t ,P0

(Xξ′ ,α
t ,αt)

, ε0t+1)
]
, where

∆(a, x, ν, x′, ν ′, e0t+1) = E
[
d(F (x, a, ν, εt+1, e

0
t+1), F (x′, a, ν ′, εt+1, e

0
t+1))

]
.

By the Lipschitz condition on F in (H′
lip), we thus have

E
[
d(Xξ,α

t+1,X
ξ′,α
t+1 )

]
≤ KFE[d(X

ξ,α
t ,Xξ′,α

t ) +W(P0
Xξ,α

t

,P0

Xξ′ ,α
t

)] ≤ 2KFE
[
d(Xξ,α

t ,Xξ′,α
t )

]
,

where the last inequality comes from (4.17). Denoting by δt(ξ, ξ
′) := supα∈A E

[
d(Xξ,α

t ,Xξ′,α
t )

]
,

and noting that δ0(ξ, ξ
′) = |ξ − ξ′|, it follows by induction that

δt(ξ, ξ
′) ≤ st(|ξ − ξ′|), st(m) := m(2K)t, m ≥ 0, t ∈ N.

By the same arguments as in Theorem 2.1, and choosing γ as in the assertion of the theorem,

we obtain that

∞∑

t=0

βtδt(ξ, ξ
′) ≤

∆1−γ
X

1− β(2K)γ
(
E
[
d(ξ, ξ′)

])γ
, ξ, ξ′ ∈ L0(G;X ),

and conclude with (4.18). ✷

Theorem 4.2 Assume that G is rich enough and (H′
lip) holds true. Then, for any ξ ∈

L0(G;X ), V (ξ) = Ṽ (µ), where µ = L(ξ). Consequently, V is law-invariant, identified with

Ṽ , and satisfies the Bellman fixed point equation Ṽ = T Ṽ . Moreover, for all ǫ > 0, there

exists an ǫ-optimal randomized feedback control for V (ξ).

Proof. As X is compact, there exists a finite subset Xη ⊂ X such that d(x, xη) ≤ η for all

x ∈ X , where xη denotes the projection of x on Xη. Fix ξ ∈ L0(G;X ), and set µ = L(ξ).

Let us then consider a random variable ξ′ ∼ µ defined on another probability universe along

with an independent uniform law U ′. We set Γ′ := (ξ′, U ′), and G′ = σ(Γ′). By construction

the randomization hypothesisRand(ξ′,G′) holds true, and we then have V (ξ′) = Ṽ (µ) from

Theorem 4.1. Consider now the quantized random variables ξη and ξ′η, which have the same

law, and satisfy respectively the randomization hypothesis Rand(ξη ,G) and Rand(ξ′η,G
′)

from Lemma 3.2. From Theorem 4.1, we deduce that V (ξη) = Ṽ (L(ξη)) = V (ξ′η). By

uniform continuity of V , it follows by sending η to zero, that V (ξ) = V (ξ′), and thus

V (ξ) = Ṽ (µ), which proves the required result.

Finally, the existence of an ǫ-optimal control for V (ξ) is obtained as follows. From the

uniform continuity of V in Lemma 4.7, there exists η small enough so that |V (ξ) − V (ξη)|

≤ ǫ/2. We then build according to Theorem 4.1 an ǫ/2-optimal control for V (ξη), which

yields an ǫ-optimal (randomized feedback stationary) control for V (ξ). ✷

29



Remark 4.7 From Theorems 4.1 and 4.2, under the condition that G is rich enough and

(H′
lip) holds true, the value function V of the CMKV-MDP is law-invariant, and the supre-

mum in the Bellman fixed point equation for V ≡ Ṽ with the operator T can be restricted

to lifted randomized feedback policies, i.e.,

V = T V = sup
a∈L0(P(X )×X×[0,1];A)

T aV

where we set T a := T πa

equal to

[T aW ](µ) = E

[
f(Y a(µ, ξ, U)) + βW (P0

F (Y a(µ,ξ,U),ε1,ε01
)
]
,

with Y a(µ, x, u) := (x, a(µ, x, u),πa(µ)), and (ξ, U) ∼ µ⊗ U([0, 1]). ✷

Remark 4.8 (G rich enough and dynamic programming) The condition that G is

rich enough is crucial for obtaining the Bellman fixed point equation for the value function

V . Let us illustrate this fact with a counter-example similar to Example 3.1 in [11]. Consider

X = {−1, 1} = A, ε1 ∼ B(1/2), F (x, a, ν, e, e0) = ax, f(x, a, ν) = −W(pr1 ⋆ ν,B(1/2)).

In other words, the reward is maximal and equal to 0 when the law of the state is a

Bernoulli(1/2) on X , and minimal equal to −1/2 when the law of the state is a Dirac (δ−1

or δ1). Assume that Γ = 1 a.s., so that that G is the trivial σ-algebra. In this case, ξ =: x

and α0 are then necessarily determinist, and thus Xξ,α
1 = α0ξ has to be determinist as

well, which yields rewards at t = 0, 1 both equal to −1
2 . By choosing a control α0 = 1,

α1 = ε1 and αt = 1 afterwards, we have P
0
Xx,α

t
= δx for t = 0, 1, and P

0
Xx,α

t
= B(1/2)

afterwards. This control is clearly optimal, and the associated gain is V (ξ) = −1+β
2 . If

V satisfied the DPP, we would have V (x) = sup
a∈A

(−1/2 + βV (ax)), which is equivalent to

−1+β
2 = −1

2 − β 1+β
2 , and this is clearly false.

Intuitively, the reason why the DPP is not satisfied in the previous example is that

from time t = 1 we have the possibility to randomize actions using ε1, whereas at time

t = 0 no randomization was possible (even by quantizing, because G is not rich enough).

As discussed in the next remark, the possibility to randomize implies that the game from

time 1 is more advantageous than the game from time 0, which contradicts the idea behind

the DPP that from time 1, we are in the same game, but only starting from a different

state. ✷

Remark 4.9 (Open-loop vs feedback controls and randomization hypothesis) In

Theorem 4.1, we build under randomization hypothesis, an ǫ-optimal control of the form

αt = aǫ(P
0
Xt
,Xt, Ut) (randomized feedback controls), for any ǫ > 0, which implies that

optimizing over open-loop controls gives the same optimal value than optimizing over ran-

domized feedback controls. In standard (non-McKean-Vlasov) MDPs, it is well known that

we can even restrict to controls of the form αt = a(Xt), i.e., (not randomized) feedback

controls. Randomizing actions is thus not necessary in standard MDPs. However, in the

case of McKean-Vlasov MDPs, it can be crucial to optimize our gain (even when the reward

does not depend upon the law of the control). To illustrate this, let us consider the same

example as in Remark 4.8, and assume that we start from ξ = 1 a.s.
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• If we use a feedback control (not randomized), it is clear that the law of Xt will always

be a Dirac, and thus the gain will be equal to
∑∞

t=0 β
t(−1

2 ) = − 1
2(1−β) which is the

worst possible gain.

• However, with open-loop controls, even when the randomization hypothesisRand(ξ,G)

is not satisfied, if at some point we can use the past noise to randomize (even just

slightly), there will be some times where the law of the state is not a Dirac and the

gain will then be strictly greater than − 1
2(1−β) . In our case, we have seen in the

previous remark that we could reach V = −1+β
2 .

• Finally, if G was rich enough, for instance if Γ ∼ U([0, 1])), then Rand(ξ,G) would

hold true, and we could freely randomize from the beginning by choosing α0 =

1G<1/2 ∼ B(1/2) (thus X1 ∼ B(1/2)), and then, fixing αt = 1 for all t ∈ N⋆, we

would have Xt ∼ B(1/2) for all t ∈ N
⋆. With this strateggy, the total gain would be

equal to −1
2 , which is the best possible gain given that we start from ξ = 1 a.s.

To summarize, this example shows that the optimal value under Rand(ξ,G) is here strictly

greater than the optimal value over open-loop controls without Rand(ξ,G), which is itself

strictly greater than the optimal value over feedback controls. This highlights that in

general the supremum over “randomized feedback” ≥ “open-loop” ≥ “feedback” controls,

and that the inequalities can be strict, the underlying idea being that the more (and sooner)

we can randomize, the better it is. We finally point out that the randomization hypothesis

Rand(ξ,G) is natural, since in practice, nothing prevents us from using (pseudo-)uniform

variables in our strategies to randomize our actions. ✷

4.5 Computing value function and ǫ-optimal strategies in CMKV-MDP

Having established the correspondence of our CMKV-MDP with lifted MDP on P(X ), and

the associated Bellman fixed point equation, we can design two methods for computing the

value function and optimal strategies:

(a) Value iteration. We approximate the value function V = Ṽ = V ⋆ by iteration

from the Bellman operator: Vn+1 = T Vn, and at iteration N , we compute an approximate

optimal randomized feedback policy aN by (recall Remark 4.7)

aN ∈ arg max
a∈L0(P(X )×X×[0,1];A)

T aVN .

From aN , we then construct an approximate randomized feedback stationary control αaN

according to the procedure described in Remark 4.3.

(b) Policy iteration. Starting from some initial randomized feedback policy a0 ∈ L0(P(X )×

X × [0, 1];A), we iterate according to:

• Policy evaluation: we compute the expected gain Ṽ πa0 of the lifted MDP

• Greedy strategy: we compute

ak+1 ∈ arg max
a∈L0(P(X )×X×[0,1];A)

T aṼ π
ak .
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We stop at iteration K to obtain aK , and then construct an approximate randomized

feedback control αaK according to the procedure described in Remark 4.3.

Practical computation. Since a randomized feedback control α is a measurable function

a of (P0
Xξ,α

t

,Xξ,α
t , Ut), we would need to compute and store the (conditional) law of the

state process, which is infeasible in practice when X is a continuous space. In this case, to

circumvent this issue, a natural idea is to discretize the compact space X by considering

a finite subset Xη = {x1, . . . , xNη} ⊂ X associated with a partition Bi
η, i = 1, . . . , Nη , of

X , satisfying: Bi
η ⊂

{
x ∈ X : d(x, xi) ≤ η

}
, i = 1, . . . , Nη, with η > 0. For any x ∈ X ,

we denote by [x]η (or simply xη) its projection on Xη, defined by: xη = xi, for x ∈ Bi
η,

i = 1, . . . , Nη.

Definition 4.2 (Discretized CMKV-MDP) Fix η > 0. Given ξ ∈ L0(G;Xη), and a

control α ∈ A, we denote by Xη,ξ,α the McKean-Vlasov MDP on Xη given by

Xη,ξ,α
t+1 =

[
F (Xη,ξ,α

t , αt,P
0
(Xη,ξ,α

t ,αt)
, εt+1, ε

0
t+1)

]
η
, t ∈ N, Xη,ξ,α

0 = ξ,

i.e., obtained by projecting the state on Xη after each application of the transition function

F . The associated expected gain V α
η is defined by

V α
η (ξ) = E

[ ∞∑

t=0

βtf
(
Xη,ξ,α

t , αt,P
0
(Xη,ξ,α

t ,αt)

)]
.

Notice that the (conditional) law of the discretized CMKV-MDP on Xη is now valued

in a finite-dimensional space (the simplex of [0, 1]Nη ), which makes the computation of the

associated randomized feedback control accessible, although computationally challenging

due to the high-dimensionality (and beyond the scope of this paper). The next result

states that an ǫ-optimal randomized feedback control in the initial CMKV-MDP can be

approximated by a randomized feedback control in the discretized CMKV-MDP.

Proposition 4.4 Assume that G is rich enough and (H′
lip) holds true. Fix ξ ∈ L0(G;X ).

Given η > 0, let us define ξη the projection of ξ on Xη. As Rand(ξη,G) holds true, let us

consider an i.i.d. sequence (Uη,t)t∈N of G-measurable uniform variables independent of ξη.

For ǫ > 0, let aǫ be a randomized feedback policy that is ǫ-optimal for the Bellman fixed

point equation satisfied by V . Finally, let αη,ǫ be the randomized feedback control in the

discretized CMKV-MDP recursively defined by αη,ǫ
t = aǫ(P

0
Xη,ǫ

t
,Xη,ǫ

t , Uη,t), t ∈ N, where we

set Xη,ǫ
t := X

η,ξη ,αǫ,η

t . Then, for any δ > 0 and γ ∈
[
0,min

(
1, | lnβ|

(ln 2K)+
− δ

)]
, the control

αη,ǫ is O(ηγ + ǫ)-optimal for the CMKV-MDP X with initial state ξ.

Proof. Step 1. For δ > 0 and γ ∈
[
0,min

(
1, | lnβ|

(ln 2K)+
− δ

)]
, let us show that

sup
α∈A

∞∑

t=0

βt
E
[
d(Xξ,α

t ,X
η,ξη ,α
t )

]
≤ Cηγ , (4.19)

for some constant C that depends only on K, β and γ. Indeed, notice by definition of the

projection on Xη, and by a simple conditioning argument that for all α ∈ A, and t ∈ N,

E
[
d(Xξ,α

t+1,X
η,ξη ,α
t+1 )

]
≤ η + E

[
∆
(
Xξ,α

t ,X
η,ξη ,α
t , αt,P

0
(Xξ,α

t ,αt)
,P0

(X
η,ξη,α

t ,αt)
, ε0t+1

)]
,
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where

∆(x, x′, a, ν, ν ′, e0) = E[d(F (x, a, ν, εt+1, e
0), F (x′, a, ν ′, εt+1, e

0))].

Under (H′
lip), we then get

E
[
d(Xξ,α

t+1,X
η,ξη ,α
t+1 )

]
≤ η +KE

[
d(Xξ,α

t ,X
η,ξη ,α
t ) +W(P0

Xξ,α
t

,P0

X
η,ξη,α

t

)
]

≤ η + 2KE
[
d(Xξ,α

t ,X
η,ξη ,α
t )

]
,

by the same argument as in (4.17). Hence, the sequence (E
[
d(Xξ,α

t ,X
η,ξη ,α
t )

]
)t∈N satisfies

the same type of induction inequality as in (2.16) in Theorem 2.1 with η instead of MN , and

thus the same derivation leads to the required result (4.19). From the Lipschitz condition

on f , we deduce by the same arguments as in (4.17) in Lemma 4.7 that

sup
α∈A

∣∣V α(ξη)− V α
η (ξη)

∣∣ = O(ηγ). (4.20)

Step 2. Denote by µ = L(ξ), and µη = L(ξη), and observe that W(µ, µη) ≤ E[d(ξ, ξη)] ≤

η. We write

V αη,ǫ

(ξ)− V (ξ) =
[
V αη,ǫ

(ξ)− V αη,ǫ

(ξη)
]
+

[
V αη,ǫ

(ξη)− V αη,ǫ

η (ξη)
]

+
[
V αη,ǫ

η (ξη)− V (ξη)
]
+
[
V (ξη)− V (ξ)

]
=: I1 + I2 + I3 + I4.

The first and last terms I1 and I4 are smaller than O(ηγ) by the γ-Hölder property of V α

and V in Lemma 4.7. By (4.20), the second term I2 is of order O(ηγ) as well for η small

enough. Regarding the third term I3, notice that by definition, V αη,ǫ

η (ξη) corresponds to

the gain associated to the randomized feedback policy aǫ for the discretized CMKV-MDP.

Denote by πǫ the lifted randomized feedback policy associated to aǫ, and recall by Remark

4.3 the identification with the lifted MDP: V αη,ǫ

η (ξ′) = Ṽ πǫ
η (µ′), µ′ = L(ξ′), where Ṽ πǫ

η is

the expected gain of the lifted MDP associated to the discretized CMKV-MDP, hence fixed

point of the operator

[T aǫ
η W ](µ′) = E

[
f(Y aǫ(µ′, ξ′, U)) + βW

(
P
0[
F (Y aǫ(µ′,ξ′,U),ε1,ε01)

]
η

)]
,

Y a(µ, x, u) = (x, a(µ, x, u),πa(µ)) and (ξ′, U) ∼ µ′⊗U([0, 1]). Recalling that V (ξ′) = Ṽ (µ′),

µ′ = L(ξ′), with Ṽ fixed point to the Bellman operator T , it follows that

I3 = Ṽ πǫ
η (µη)− Ṽ (µη) =

(
[T aǫ

η Ṽ πǫ
η ](µη)− [T aǫ

η Ṽ ](µη)
)
+

(
[T aǫ

η Ṽ ](µη)− [T aǫ Ṽ ](µη)
)

+
(
[T aǫ Ṽ ](µη)− Ṽ (µη)

)
=: I13 + I23 + I33 .

By definition of aǫ, we have |I33 | ≤ ǫ. For I23 notice that the only difference between the

operators T aǫ
η and T aǫ is that F is projected on Xη. Thus,

∣∣∣[T aǫ
η Ṽ ](µη)− [T aǫ Ṽ ](µη)

∣∣∣ ≤ βE
[∣∣Ṽ

(
P
0
[F (Yη,ε1,ε01)]η

)
− Ṽ

(
P
0
F (Yη ,ε1,ε01)

)∣∣
]
,

33



where Yη = (ξη, aǫ(µ, ξη , U),πǫ(µη)). It is clear by definition of the Wasserstein distance

and the projection on Xη that

W
(
P
0
[F (Yη,ε1,ε01)]η

,P0
F (Yη ,ε1,ε01)

)
≤ E

0[d(F (Yη , ε1, ε
0
1), [F (Yη , ε1, ε

0
1)]η)] ≤ η.

From the γ-Hölder property of Ṽ in Proposition 4.3, we deduce that I23 = O(ηγ). Finally,

for I13 , since T aǫ
η is a β-contracting operator on (L∞(Mη), ‖ · ‖η,∞), we have

∣∣[T aǫ
η Ṽ πǫ

η ](µη)− [T aǫ
η Ṽ ](µη)

∣∣ ≤ β‖Ṽ πǫ
η − Ṽ ‖η,∞,

and thus |Ṽ πǫ
η (µη)− Ṽ (µη)| = |I3| ≤ |I13 |+ |I23 |+ |I33 | ≤ β‖Ṽ πǫ

η − Ṽ ‖η,∞+O(ηγ + ǫ). Taking

the sup over µη ∈ Mη on the left, we obtain that ‖Ṽ πǫ
η −Ṽ ‖η,∞ ≤ 1

1−βO(ηγ+ǫ) = O(ηγ+ǫ),

and we conclude that |I3| ≤ ‖Ṽ πǫ
η − Ṽ ‖η,∞ ≤ O(ηγ + ǫ), which ends the proof. ✷

Remark 4.10 Back to the N -agent MDP problem with open-loop controls, recall from

Section 2, that it suffices to find an ǫ-optimal open-loop policy πǫ ∈ ΠOL for the CMKV-

MDP, as it will automatically be O(ǫ)-optimal for the N -agent MDP with N large enough.

For instance, the construction of an ǫ-optimal control αǫ given by Proposition 4.4 can be

associated to an ǫ-optimal open-loop policy πǫ such that αǫ = απǫ
(where πǫ

t is a measurable

function of (Γ, (εs)s≤s≤t, (ε
0
s)s≤s≤t)). The processes O(ǫ)-optimal for the i-th agent αǫ,i

t

is then the result of the same construction but with (Γi, εi, ε0) instead of (Γ, ε, ε0), i.e.

replacing ξ by ξi, Uη,t by U i
η,t, and (Γ, ε, ε0) by (Γi, εi, ε0) in Proposition 4.4. Notice that

this construction never requires the access the individual’s states Xi,N .

Remark 4.11 (Q function) In view of the Bellman fixed point equation satisfied by the

value function V of the CMKV-MDP in terms of randomized feedback policies, let us

introduce the corresponding state-action value function Q defined on P(X )× Â(X ) by

Q(µ, â) = [T̂ âV ](µ) = f̂(µ, â) + βE
[
V
(
F̂ (µ, â, ε01)

)]
,

From Proposition 4.1, and since V = T V , we recover the standard connection between the

value function and the state-action value function, namely V (µ) = supâ∈Â(X )Q(µ, â), from

which we obtain the Bellman equation for the Q function:

Q(µ, â) = f̂(µ, â) + βE
[

sup
â′∈Â(X )

Q
(
µâ
1, â

′
)]
, (4.21)

where we set µâ
1 = F̂ (µ, â, ε01). Notice that this Q-Bellman equation extends the equation

in [11] (see their Theorem 3.1) derived in the no common noise case and when there is

no mean-field dependence with respect to the law of the control. The Bellman equation

(4.21) is the starting point in a model-free framework when the state transition function

is unknown (in other words in the context of reinforcement learning) for the design of Q-

learning algorithms in order to estimate the Q-value function by Qn, and then to compute

a relaxed control by

âµn ∈ arg max
â∈Â(X )

Qn(µ, â), µ ∈ P(X ).
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From Lemma A.3, one can associate to such probability kernels âµn, a function an : P(X )×

X × [0, 1] → A, such that L(an(µ, x, U)) = âµn(x), µ ∈ P(X ), x ∈ X , where U is an uniform

random variable. In practice, one has to discretize the state space X as in Definition 4.2,

and then to quantize the space P(X ) as in Lemma 4.6 in order to reduce the learning

problem to a finite-dimensional problem for the computation of an approximate optimal

randomized feedback policy an for the CMKV-MDP. ✷

5 Conclusion

We have developed a theory for mean-field Markov decision processes with common noise

and open-loop controls, called CMKV-MDP, for general state space and action space. Such

problem is motivated and shown to be the asymptotic problem of a large population of

cooperative agents under mean-field interaction controlled by a social planner/influencer,

and we provide a rate of convergence of the N -agent model to the CMKV-MDP. We prove

the correspondence of CMKV-MDP with a general lifted MDP on the space of probability

measures, and emphasize the role of relaxed control, which is crucial to characterize the so-

lution via the Bellman fixed point equation. Approximate randomized feedback controls are

obtained from the dynamic programming Bellman equation in a model-based framework,

and future work under investigation will develop algorithms in a model-free framework, in

other words in the context of reinforcement learning with many interacting and cooperative

agents.

A Some useful results on conditional law

Lemma A.1 Let (S,S), (T,T ) be two measurable spaces, then

(1) the map x ∈ (S,S) 7→ δx ∈ (P(S), C(S)) is measurable.

(2) The map (µ, ν) ∈ (P(S), C(S)) × (P(T ), C(T )) 7→ µ ⊗ ν ∈ (P(S × T ), C(S × T )) is

measurable.

(3) If F ∈ L0(S;T ), then the map µ ∈ (P(S), C(S)) 7→ F⋆µ ∈ (P(T ), C(T )) is measurable.

Proof. (1). Fix A ∈ S, then x 7→ δx(A) = 1A(x) is clearly a measurable function. (2). Fix

(A,B) ∈ S × T , then (µ, ν) 7→ (µ ⊗ ν)(A× B) = µ(A)ν(B) is a measurable function. (3).

Fix B ∈ T , then µ 7→ (F ⋆ µ)(B) = µ(F−1(B)) is a measurable function. ✷

Corollary A.1 Let (S,S), (T,T ), and (U,U) be three measurable spaces, and F ∈ L0((S,S)×

(T,T ); (U,U)) be a measurable function, then the function F̂ : (P(S), C(S)) × (T,T ) →

(P(U), C(U)) given by F̂ (µ, x) := F (·, x) ⋆ µ is measurable.

Proof. This is a consequence of Lemma A.1 and the measurable composition (µ, x) 7→

(µ, δx) 7→ µ⊗ δx 7→ F ⋆ (µ⊗ δx) = F̂ (µ, x). ✷
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Definition A.1 (Conditional law) Fix two measurable spaces (S,S) and (T,T ), and

let X,Y be two random variables on (Ω,F ,P) valued respectively on S and T . Then a

conditional law of Y knowing X is a σ(X)-measurable (P(T ), C(T ))-valued random variable

P
X
Y , also denoted L(Y |X), such that

P
X
Y (A) = P[Y ∈ A | X], ∀A ∈ T a.s.

Furthermore, given x ∈ S, the conditional law of Y knowing X = x, denoted P
X=x
Y or

L(Y |X = x), is the image of x by any probability kernel â ∈ T̂ (S) such that L(Y |X) = â(X)

a.s.

Lemma A.2 (Conditional law) Let (S,S) and (T,T ) be two measurable spaces.

1. If (S,S) is a Borel space, there exists a conditional law of Y knowing X.

2. If Y = ϕ(X,Z) where Z ⊥⊥ X is a random variable valued in a measurable space V

and ϕ : S × V → T is a measurable function, then L(ϕ(x,Z)) |x=X is a conditional

law of Y knowing X. In the case S = S1 × S2, X = (X1,X2), and Y = ϕ(X1, Z),

then P
X
Y = L(ϕ(x1, Z)) |x1=X1

, and thus P
X
Y is σ(X1)-measurable in (P(T ), C(T )).

Proof. The first assertion is stated in Theorem 5.3 in [12]., and the second one follows

from Fubini’s theorem. ✷

Corollary A.2 Fix a Borel space (S,S) and a measurable space (T,T ). Then for any joint

law π ∈ P(S × T ) with marginal law µ ∈ P(S), there exists a probability kernel ν from S

to P(T ) s.t. π = µ · ν.

Lemma A.3 (Kernels and randomization) Fix a Borel space (S,S) and a measurable

space (T,T ). For any probability kernel ν from S to P(T ), there exists a measurable function

φ : S × [0, 1] → T s.t. ν(s) = L(φ(s, U)), for all s ∈ S, where U is a uniform random

variable.

Proof. See Lemma 2.22 in [12]. ✷

Proposition A.1 Given an open-loop control α ∈ A, and an initial condition ξ ∈ L0(X ;G),

the solution Xξ,α to the conditional McKean-Vlasov equation is such that: for all t ∈ N,

Xξ,α
t is σ(ξ,Γ, (ε)s≤t, (ε

0
s)s≤t)-measurable, and P

0
(Xξ,α

t ,αt)
is F0

t -measurable.

Proof. We prove the result by induction on t. It is clear for t = 0. Assuming that it holds

true for some t ∈ N, we write

Xξ,α
t+1 = F (Xξ,α

t , αt,P
0
(Xξ,α

t ,αt)
, εt+1, ε

0
t+1), t ∈ N.

By induction hypothesis, there is a measurable function ft+1 : X ×G×Et+1 × (E0)t+1 →

X s.t. Xξ,α
t+1 = ft+1(ξ,Γ, (εs)s≤t+1, (ε

0
s)s≤t+1), and thus Xξ,α

t+1 is σ(ξ,Γ, (ε)s≤t+1, (ε
0
s)s≤t+1)-

measurable and P
0
(Xξ,α

t+1
,αt+1

)
is σ(ε0s, s ≤ t+ 1)-measurable by Lemma A.2. ✷
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B Wasserstein convergence of the empirical law

Proposition B.1 (Conditional Wasserstein convergence of the empirical measure)

Let E,F be two measurable spaces and G a compact Polish space. Let X be an E-valued

random variable independent from a family of i.i.d. F -valued variables (Ui)i∈N, and a

measurable function f : E × F → G. Then

W
( 1

N

N∑

i=1

δf(X,Ui),P
X
f(X,U1)

)
a.s.
−→
N→∞

0.

Proof. It suffices to observe that the probability of this event is one by conditioning w.r.t.

X and use the analog non-conditional result, which follows from the fact that Wasserstein

distance metrizes weak convergence (as G is compact), and the fact that empirical measure

converges weakly. ✷

C Proof of coupling results

Lemma C.1 Let U, V be two independent uniform variables, and F a distribution function

on R. We have

(
F−1(U), F (F−1(U))− U

)
d
= (F−1(U), V∆F (F−1(U)),

where we denote ∆F := F − F−.

Proof. Notice that F (F−1(U)) − U is the position (from top to bottom) of U in the

set {u ∈ [0, 1], F−1(u) = F−1(U)} and is thus smaller than ∆F (F−1(U)). Now, given a

measurable function f ∈ L0(A× [0, 1];R), we have

E

[
f
(
F−1(U), F (F−1(U))− U)

]
(C.1)

= E
[
f(F−1(U), 0)1∆F (F−1(U))=0

]
+ E

[
f(F−1(U), F (F−1(U)) − U))1∆F (F−1(U))>0

]
.

The second term can be decomposed as

∑

∆F (c)>0

E

[
f
(
c, F (c) − U

)
1F−1(U)=c

]
=

∑

∆F (c)>0

∫ 1

0
f (c,∆F (c)u)) ∆F (c)du.

where the equality comes from a change of variable. Summing over ∆F (c) > 0, we obtain

E
[
f
(
F−1(U), V∆F (F−1(U))

)
1∆F (F−1(U))>0

]
, and combined with (C.1), we get

E

[
f
(
F−1(U), F (F−1(U))− U)

]
= E

[
f
(
F−1(U), V∆F (F−1(U))

)]
,

which proves the result. ✷
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Lemma C.2 Let X be a compact Polish space, then there exists an embedding φ ∈ L0(X ,R)

such that

1. φ and φ−1 are uniformly continuous,

2. for any probability measure µ ∈ P(X ), we have Im
(
F−1
φ⋆µ

)
⊂ Im(φ). In particular,

φ−1 ◦ F−1
φ⋆µ is well posed.

Proof. 1. Without loss of generality, we assume that X is bounded by 1. Fix a countable

dense family (xn)n∈N in X . We define the map φ1 : x ∈ X 7→ (d(x, xn))n∈N ∈ [0, 1]N. Let

us endow [0, 1]N with the metric d((un)n∈N, (vn)n∈N) :=
∑

n≥0
1
2n |un − vn|. φ1 is clearly

injective and uniformly continuous (even Lipschitz). The compactness of X implies that

its inverse φ−1
1 is uniformly continuous as well. Let us now consider φ2 : ([0, 1]

N,d) 7→ [0, 1]

where φ2((un)n∈N) essentially groups the decimals of the real numbers un, n ∈ N, in a single

real number. More precisely, let ι : N → N
2 be a surjection, then we define the k-th decimal

of φ2((un)n∈N) as the (ι(k))2-th decimal of u(ι(k))1 (with the convention that for a number

with two possible decimal representations, we choose the one that ends with 000...). φ2 is

clearly injective, uniformly continuous, as well as its inverse φ−1
2 . Thus, φ := φ2 ◦φ1 defines

an embedding of X into R, such that φ and φ−1 are uniformly continuous.

2. F−1
φ⋆µ being caglad, and Im(φ) being closed (by compactness of X ), it is enough to prove

that F−1
φ⋆µ(u) ∈ Imφ for almost every u ∈ [0, 1] (in the Lebesgue sense). However, given a

uniform variable U , we have F−1
φ⋆µ(U) ∼ φ ⋆ µ, and thus

P(F−1
φ⋆µ(U) ∈ Im(φ)) = PY∼µ(φ(Y ) ∈ Im(φ)) = 1.

✷

Proof of Lemma 4.1

(1) We first consider the case where X ⊂ R. Let us call Fµ the distribution function of µ ∈

P(X ), and F−1
µ its generalized inverse. Let us define the function ζ : P(X )×P(X )×X×[0, 1]

→ X by

ζ(µ, µ′, x, u) := F−1
µ′

(
Fµ(x)− u∆Fµ(x)

)
,

which is measurable by noting that the measurability in µ, µ′ comes from the continuity of

P(X ) → L1
caglad([0, 1],X )

µ 7→ F−1
µ .

By construction, we then have for any ξ ∼ µ, and U, V two independent uniform variables,

independent of ξ

(ξ, ζ(µ, µ′, ξ, V )) = (ξ, F−1
µ′

(
Fµ(ξ)− V∆Fµ(ξ)

)
)

d
= (F−1

µ (U), F−1
µ′

(
Fµ(F

−1
µ (U))− V∆Fµ(F

−1
µ (U))

)
)

= (F−1
µ (U), F−1

µ′

(
Fµ(F

−1
µ (U))− V∆Fµ(F

−1
µ (U))

)
)

d
=

(
F−1
µ (U), F−1

µ′ (U)
)
,
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where the last equality holds by Lemma C.1. It is well-known (see e.g. Theorem 3.1.2

in [17]) that
(
F−1
µ (U), F−1

µ′ (U)
)
is an optimal coupling for (µ, µ′), and so W(µ, µ′) =

E
[
d(ξ, ζ(µ, µ′, ξ, V ))

]
.

(2) Let us now consider the case of a general compact Polish space X . Denoting by ζR the

”ζ” from the case ”X ⊂ R”, and considering an embedding φ ∈ L0(X ,R) as in Lemma C.2,

let us define

ζ(µ, µ′, x, u) := φ−1(ζR(φ ⋆ µ, φ ⋆ µ′, φ(x), u)),

which is well posed by definition of ζR and Lemma C.2. Now, fix ξ ∼ µ, U a uniform

variable independent of ξ, and define ξ′ := ζ(µ, µ′, ξ, U). By definition of ζ, its clear that

ξ′ ∼ µ′, and

E
[
d(φ(ξ), φ(ξ′))

]
= W(φ ⋆ µ, φ ⋆ µ′). (C.2)

Fix ǫ > 0. We are looking for η, δ > 0 such that

W(µ, µ′) < η ⇒ W(φ ⋆ µ, φ ⋆ µ′) < δ ⇔ E
[
d(φ(ξ), φ(ξ′))

]
< δ ⇒ E[d(ξ, ξ′)] < ǫ.

Let us first show that there exists δ > 0 such that E[d(φ(ξ), φ(ξ′))] < δ ⇒ E[d(ξ, ξ′)] < ǫ.

Fix γ > 0 such that d(x, x′) < γ ⇒ d(φ−1(x), φ−1(x′)) < ǫ
2 . Denoting by ∆X the diameter

of X , we then have

E[d(ξ, ξ′)] ≤ E[d(ξ, ξ′)1d(φ(ξ),φ(ξ′))<γ ] +
∆X

γ
E
[
d(φ(ξ), φ(ξ′))

]
≤

ǫ

2
+

∆X

γ
E
[
d(φ(ξ), φ(ξ′))

]
,

so that we can choose δ = γ
∆X

ǫ
2 . On the other hand, by uniform continuity of φ and

by definition of the Wasserstein metric, there exists η > 0 such that d(µ, µ′) < η ⇒

W(φ ⋆ µ, φ ⋆ µ′) < δ. From (C.2), we thus conclude that d(µ, µ′) < η ⇒ E[d(ξ, ξ′)] < ǫ. ✷
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[17] S.T. Rachev and L. Rüschendorf. Mass transportation problems. Springer Verlag, 1998.

[18] R.S. Sutton and A.G. Barto. Reinforcement learning: an introduction. Cambridge, MA, 2017,

2nd edition.

[19] A. Van der Vaart and J.A. Wellner. Weak convergence of empirical processes. Springer Verlag,

1996.

[20] C. Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften

[Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. Old and

new.

40


	Introduction
	The N-agent and the limiting McKean-Vlasov MDP
	Lifted MDP on P(X)
	Case without common noise
	Case with discrete state space X

	General case and Bellman fixed point equation in P(X)
	A general lifted MDP on P(X)
	Bellman fixed point on P(X)
	Building -optimal randomized feedback controls
	Relaxing the randomization hypothesis
	Computing value function and -optimal strategies in CMKV-MDP

	Conclusion
	Some useful results on conditional law
	Wasserstein convergence of the empirical law
	Proof of coupling results

