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Abstract 19	

DNA double strand breaks (DSBs) are the most toxic DNA lesions given their oncogenic 20	

potential. Nevertheless, programmed DSBs (prDSBs) contribute to several biological 21	

processes. Formation of prDSBs is the price to pay to achieve these essential biological 22	

functions. Generated by domesticated PiggyBac transposases, prDSBs have been integrated in 23	

the life cycle of ciliates. Created by Spo11 during meiotic recombination, they constitute a 24	

driving force of evolution and ensure balanced chromosome content for successful 25	

reproduction. Produced by the RAG1/2 recombinase, they are required for the development of 26	

the adaptive immune system in many species. The co-evolution of processes that couple 27	

introduction of prDSBs to their accurate repair may constitute an effective safeguard against 28	

genomic instability. 29	

 30	

  31	
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Introduction 32	

 Living organisms are constantly exposed to genotoxic assaults, which can be of 33	

endogenous origin such as cellular respiration or exogenous sources such as radiations or 34	

chemical exposures. Several highly conserved DNA repair mechanisms have been selected 35	

during evolution to cope with these various damages and maintain genomic integrity. Among 36	

DNA lesions, DNA double strand breaks (DSBs) are considered the most toxic and at least 37	

two DNA repair pathways (homologous recombination (HR) and non-homologous end 38	

joining, or NHEJ) have evolved to cope with DSBs. In addition to repairing pathologic DSBs, 39	

these DNA repair pathways are also important for the repair of physiological DSBs or 40	

programmed DSBs (prDSBs) created during programmed genome rearrangements (PGR) in 41	

ciliates, meiotic recombination for sexual reproduction, and V(D)J recombination. Defects in 42	

these processes result in death of progeny (PGR), sterility or aneuploidy (meiotic 43	

recombination), and severe immune deficiency (V(D)J recombination). Therefore, the 44	

introduction of prDSBs is “the price to pay” for some physiological processes. One can argue 45	

that efficient ways to control prDSBs have co-evolved to avoid the deleterious consequences 46	

of their mis-repair. Here, we discuss the view that the timely and physical coupling of DNA 47	

damage and repair may represent an efficient safeguard during prDSBs. 48	

 49	

Coupling DNA damage and NHEJ-mediated repair of prDSBs? 50	

 NHEJ is one of the two main DSB repair mechanisms. It operates in all phases of the 51	

cell cycle, in contrast to HR, which is excluded from G0/G1. Its catalytic process can be 52	

schematically divided into three steps: (i) the heterodimer Ku70/80 identifies and is recruited 53	

to the break, prior to the recruitment of the DNA-dependent protein kinase catalytic subunit 54	

DNA-PKcs, forming the DNAPK holoenzyme; (ii) If needed, DNA ends are processed 55	

(“cleaned“) by DNA polymerases, nucleases, and kinases. The processing step is important 56	

during V(D)J recombination for the opening of RAG1/2-generated DNA hairpins by the 57	

nuclease Artemis;  (iii) the DSB is resealed by DNA ligaseIV assisted by the Xlf, MRI and 58	

PAXX accessory factors (see [1] for a recent review on the actors of NHEJ). 59	

Programmed Genome Rearrangement in ciliates: The prototypical example of 60	

DNA coupling between DNA damage and repair. 61	

In ciliates, which constitute a monophyletic group of unicellular eukaryotes, the 62	

somatic and germline functions of chromosomes are separated into two distinct types of 63	
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nuclei coexisting in the same cytoplasm [2-4]: (i) the diploid micronucleus (MIC), 64	

transcriptionally silent during vegetative growth, undergoes meiosis and transmits the parental 65	

germline genome to the zygotic nucleus of the following generation; (ii) the polyploid 66	

somatic macronucleus (MAC), responsible for gene expression, directs the cell phenotype but 67	

is destroyed at each sexual cycle (Figure 1A). Ciliates make their new MAC from a copy of 68	

the zygotic nucleus, through a process involving several rounds of whole-genome endo-69	

duplication and massive programmed genome rearrangements (PGR) triggered by the 70	

introduction of tens of thousands of prDSBs at multiple loci in the genome of the developing 71	

new MAC. 72	

During PGR, Paramecium tetraurelia eliminates 25 to 30% of germline DNA from its 73	

somatic genome [5, 6], including repeated sequences (transposable elements (TEs), 74	

minisatellites) and ~45,000 TE-related short and noncoding Internal Eliminated Sequences 75	

(IESs), usually found as single-copy elements and scattered all along the ~100-Mbp germline 76	

genome. While repeated DNA is eliminated in a heterogeneous manner, IES excision in 77	

Paramecium is precise at the nucleotide level. Because IESs interrupt almost half of genes in 78	

the germline, their efficient and precise excision ensures that the somatic genome is correctly 79	

assembled, a prerequisite for accurate gene expression and progeny survival. 80	

Paramecium IESs are flanked by conserved TA dinucleotides. IES excision is initiated 81	

by 4-base staggered double-strand DNA cleavages centered on each flanking TA [7]. The 82	

endonuclease responsible for prDSB introduction at IES ends is a domesticated transposase 83	

called PiggyMac (Pgm), whose conserved DDD catalytic triad, characteristic of transposases 84	

from the PiggyBac family, is essential for its function [8, 9]. Pgm is expressed during MAC 85	

development and localizes specifically in the developing new MAC by the time DNA 86	

elimination takes place. Five groups of Pgm-like domesticated PiggyBac transposases 87	

(PgmL1 to PgmL5) assist Pgm in cleaving DNA [10]. Each PgmL can interact individually 88	

with Pgm and is essential for IES excision genome-wide. None of them harbors a fully 89	

conserved catalytic site, suggesting that they play an architectural role during assembly of the 90	

IES excision complex, with PgmL1 and PgmL3 fine-tuning the precise positioning of DNA 91	

cleavage at IES boundaries. Once introduced, chromosomal prDSBs are repaired by the 92	

Ligase IV- and Xrcc4-dependent classical NHEJ pathway (C-NHEJ) [11]. NHEJ-mediated 93	

DSB repair of excision sites must be efficient and precise in order to preserve the coding 94	

capacity of the rearranged somatic genome, especially for intragenic IESs. This precision is 95	

likely driven through the pairing of conserved TAs at each 5’ overhang, removal of the 96	
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terminal 5’ nucleotide, and addition of one nucleotide at recessed 3’ ends [7], ensuring that 97	

open reading frames are faithfully reconstituted upon IES excision. 98	

Functional studies of Ku70/Ku80, the earliest-acting NHEJ factors that bind broken DNA 99	

ends and protect them against extensive resection, suggest that different solutions to the 100	

problem have evolved among ciliate species. 101	

P. tetraurelia harbors two almost identical KU70 genes and three more divergent 102	

KU80 paralogs, a single of which (KU80c) is specifically expressed during MAC 103	

development [12]. In a similar way to Pgm, the development-specific Ku70/Ku80c 104	

heterodimer localizes in the new MAC during PGR and expression of KU70 or KU80c is 105	

essential for the recovery of a functional somatic genome. Ku80c interacts with Pgm when 106	

both proteins are co-expressed in a heterologous system, a property shared by PiggyBac 107	

transposases and Ku proteins from other organisms [13]. Strikingly, the depletion of Ku80c 108	

abolishes DNA cleavage at IES ends, resulting in retention of all 45,000 IESs genome-wide 109	

[12]. In Paramecium, therefore, Ku interaction with Pgm during MAC development is 110	

thought to license Pgm-dependent DNA cleavage through a mechanism that remains to be 111	

established. Such tight coupling between DSB introduction and repair would ensure that 112	

DSBs are introduced only if Ku proteins are present to channel broken ends to the NHEJ 113	

pathway (Figure 1B). 114	

In Tetrahymena thermophila, most of the ~12,000 IESs identified in the germline 115	

genome lie in non-coding regions [14]. They are also excised by domesticated transposases 116	

including a Pgm ortholog (Tpb2, see [15]) and a Pgm-like protein (Lia5, see [16]). Likewise, 117	

the C-NHEJ pathway carries out the repair of intergenic IES excision sites but Tpb2 does not 118	

require the presence of Ku80 to cleave IES ends [17], suggesting that excision of 119	

Tetrahymena intergenic IESs has not imposed the same constraints on the system as 120	

compared with excision of Paramecium IESs, the majority of which are intragenic. T. 121	

thermophila also harbors 12 intragenic IESs that do not rely on Tpb2 for their elimination. 122	

Remarkably, their excision is extremely precise and carried out by two distinct domesticated 123	

PiggyBac transposases, Tpb1 and Tpb6 (Figure 1B), both of which are fused to a Ku80 124	

domain at their N-terminal end [18, 19]. Even though the biological importance of the Ku80 125	

domain still must be tested experimentally, it is tempting to speculate that Ku-transposase 126	

fusions have been selected in Tetrahymena to secure the precise excision of intragenic IESs. 127	

In ciliates, Ku80, whether as a separate factor (P. tetraurelia) or linked to the 128	

transposase (T. thermophila), appears to play an essential role, independent of its bona fide 129	

DNA repair factor function, upstream of the prDSB during PGR. 130	
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 131	

V(D)J recombination: coupling DNA damage and repair to avoid genomic 132	

instability? 133	

V(D)J recombination is the molecular process by which exons encoding the variable 134	

domain of immunoglobulins and T cell receptors are assembled prior to their expression, thus 135	

ensuring the generation of an almost infinite possibility of antigenic recognition specificities 136	

by the adaptive immune system B and T lymphocytes [20]. It is essentially a mechanism 137	

related to “cut and paste” transposition, in which previously scattered variable (V), diversity 138	

(D), and joining (J) segments are physically associated on the DNA by a combinatorial 139	

somatic rearrangement process. V(D)J recombination is initiated by a site specific prDSB 140	

introduced by the lymphoid specific, domesticated transposase RAG1 and RAG2 on 141	

recombination signal sequences (RSS) that flank all the rearranging V, D, and J segments [21, 142	

22], a catalytic mechanism that evolved from the ancient Transib transposon [23]. 143	

Although V(D)J recombination proceeds through the introduction of the most toxic 144	

DNA lesion, it is the “price to pay” for the development of an efficient adaptive immunity, 145	

and has been selected for this purpose since the jawless vertebrates [24]. Indeed, abortive 146	

V(D)J recombination caused by either the inability to introduce the prDSB by RAG1/2 or the 147	

inefficiency in processing/repairing these breaks results in the early arrest of B and T cell 148	

maturation and the ensuing Severe Combined Immune Deficiency (SCID) both in humans 149	

and mice [25]. Mouse models also revealed the substantial oncogenic power of V(D)J 150	

recombination with the early onset of aggressive pro-B cell lymphomas in mice harboring 151	

NHEJ deficiency coupled with TP53 targeted inactivation [26]. Likewise, RAG1/2 may have 152	

oncogenic mutator functions driving leukemias in humans, such as observed in the context of 153	

leukemias harboring the ETV6-RUNX1 chromosomal translocation [27]. 154	

V(D)J recombination occurs during the G0/G1 phase of the cell cycle, resulting in 155	

prDSBs that are repaired through NHEJ [28]. The NHEJ factor Cernunnos was identified 156	

through the analysis of immune compromised patients with clinical presentation resembling 157	

that of patients with Lig4 syndromes but lacking DNA Ligase IV mutations [29]. Cernunnos 158	

shares sequence homology and interacts with XRCC4 (X4), two features at the basis of its 159	

concomitant identification as XRCC4-like factor (Xlf) [30]. XRCC4 and Cernunnos/Xlf 160	

interact through their globular head domains, forming long filaments readily visible by 161	

electronic microscopy and live imaging [31-35]. Given this structure, it was proposed that the 162	
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X4/Xlf filament could form a synapse that would facilitate DNA end tethering for their 163	

subsequent ligation by NHEJ. 164	

It was anticipated that because Xlf represents a bona fide NHEJ factor, its deficiency 165	

would result in impaired V(D)J recombination. However, V(D)J recombination did not seem 166	

to be significantly affected in vivo in the lymphoid lineages either in Xlf-deficient human 167	

patients or mouse models [36-38]. First, B cell maturation in the bone marrow of Cernunnos 168	

patients was not arrested at the pro-B cell stage as expected and found in case of RAG1/2, 169	

Artemis, or DNA ligaseIV deficiencies. Second, Xlf KO mouse did not experience severe 170	

immune deficiency, only a slight decrease in lymphocyte numbers. Third, Xlf deficiency did 171	

not result in V(D)J recombination-driven chromosomal translocation or development of pro-B 172	

cell lymphoma when introduced on a TP53-/- background as observed with all the other models 173	

of NHEJxTP53 combined inactivations. Together, it appears that Cernunnos/Xlf is 174	

dispensable for V(D)J recombination although its absence clearly results in a major DNA 175	

repair defect when it comes to random or accidental DNA lesions such as the ones inflicted by 176	

ionizing radiations (IR).  177	

One striking difference between IR- and V(D)J-driven DSBs is the presence of RAG1/2 178	

in the latter. The RAG1/2 complex is known to remain on the DSB it has initiated as the post 179	

cleavage complex (PCC) [21], providing a possible means to tether DNA ends, which would 180	

be redundant to the expected function of the X4/Xlf filament (Figure 2A). Under this 181	

hypothesis, the sole presence of the PCC would provide a DNA repair synapse 182	

complementing the absence of the X4/Xlf filament during V(D)J recombination while such 183	

synapse would be missing at genotoxic-driven DSBs. The stability of the PCC relies on the C 184	

terminus region of RAG2, a region outside of the core and not essential for V(D)J 185	

recombination, as shown in vitro and in vivo in the RAG2cc mouse model specifically 186	

engineered to restrict RAG2 to its core domain [39, 40]. V(D)J recombination is not grossly 187	

affected in RAG2cc or Xlf-/- single mutant conditions, but is fully abrogated in RAG2ccxXlf-/- 188	

mice, resulting in SCID animals devoid of mature B and T lymphocytes [41]. Based on these 189	

observations a 2-synapse model (Fig. 2A) was proposed in which the PCC complex on one 190	

hand and the X4/Xlf filament on the other hand help maintain genome integrity during V(D)J 191	

recombination. A similar functional redundancy operating specifically during V(D)J 192	

recombination was observed between Xlf and ATM or H2AX [42], and 53BP1 [43, 44] as 193	

well as between Xlf and the recently described NHEJ factors PAXX [45-50] or MRI [51] thus 194	

establishing a “synthetic dysfunction“ among these factors (Fig. 2B). RAG2cc and ATM or 195	

PAXX combined deficiencies do not result in impaired V(D)J recombination, suggesting that 196	
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these three factors are epistatic, opposite to that of Xlf (Figure 2B) [41, 49]. It will be 197	

interesting to better understand the status of XRCC4 in this two-tier mechanism given its 198	

physical interaction with Xlf. However, XRCC4 KO mice are embryonic lethal and 199	

demonstrate impaired V(D)J recombination in fetuses because XRCC4 is required for DNA-200	

ligase IV stability [52, 53]. Hence, XRCC4 KO phenocopies DNA-Lig4 KO condition. In 201	

contrast, the absence of immune deficiency in human primordial dwarfism with microcephaly 202	

syndrome caused by hypomorphic (yet severe) XRCC4 mutations suggests that, like Xlf, 203	

XRCC4 is not required for V(D)J recombination [54]. 204	

The demonstration of these functional interplays between RAG2, Xlf, and other DNA 205	

repair factors during V(D)J recombination suggests the possible existence of a “coupling” of 206	

DNA damage and repair during V(D)J recombination like the one described during PGR in 207	

ciliates. The challenge is now to fully understand how functional links between the RAG1/2 208	

complex and the DNA repair apparatus translate into physical interaction of key components. 209	

Interestingly with regard to the analogy with PGR in ciliates, Raval et al. reported on the 210	

interaction of RAG1 with the Ku70/Ku80 complex	 [55]. Moreover, an interaction between 211	

RAG1 and another critical DNA repair factor, MDC1, was also reported [56]. The existence 212	

of a physical link between RAG1/2 and the DNA repair machinery certainly accredits the 213	

hypothesis of a DNA damage-repair coupling during V(D)J recombination. 214	

 215	

Meiotic recombination: Homologous Recombination is also concerned  216	

 As opposed to NHEJ, homologous recombination uses DNA sequence homology on 217	

an intact DNA template to repair the broken DNA molecule after a DSB. The repair template 218	

can be located on the sister chromatid, on a homologous chromosome, or elsewhere in the 219	

genome. The first step of homologous recombination is the resection of the 5’ ends of the 220	

DSB, first by the MRE11 complex, then by EXO1 and BLM/DNA2, which generates 221	

protruding 3’ ends that invade the repair DNA template, through the action of a RecA-related 222	

recombinase, such as Rad51	[57]. In somatic cells, the preferred DNA repair template is the 223	

sister chromatid and therefore, homologous recombination is restricted to the G2/M phases of 224	

the cell cycle. During the meiotic prophase of sexually reproducing organisms, the 225	

topoisomerase-like protein Spo11 initiates meiotic recombination by introducing hundreds 226	

of prDSBs along chromosomes. These prDSBs are important for recognition and pairing of 227	

homologs and a few of them will be repaired by crossovers, generating a physical link 228	

between homologs essential for their accurate segregation into the future gametes [58]. 229	
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Meiotic recombination is a risky business for genome integrity of germ cells. Indeed, 230	

the burden of prDSBs that are introduced by Spo11 during meiotic recombination is at high 231	

risk of generating unwanted translocations or chromosome rearrangements, and their 232	

formation is therefore highly controlled by the use of several processes specific to meiotic 233	

cells. First, the DSB formation and repair steps both take place in a specific chromosome 234	

compartment, the chromosome axis, from which chromatin loops emanate, and which will 235	

be the place where the homologs become fully aligned within the synaptonemal complex 236	

(Figure 3). The DNA sequences that are cleaved by Spo11 are preferentially located on the 237	

chromatin loops, although these sequences interact with proteins present along the 238	

chromosome axis, implying a spatial folding of the loop towards the chromosome axis during 239	

recombination. Spo11-accessory proteins link double-strand break sites to the chromosome 240	

axis in early meiotic recombination [59]. This allows both to easily control the number of 241	

prDSBs generated, and also to physically “isolate” the cleaved DNA sequence from non-242	

allelic/non-homologous sequences. This physical tethering of the sequence to be cleaved 243	

onto the chromosome axis is facilitated by a specific histone modification, H3K4me3, which 244	

bridges the DSB sequences to the DSB proteins located on the chromosome axis [60] thus 245	

ensuring that meiotic prDSBs are formed within the correct spatial context. Another 246	

regulation is exerted at the level of the “DSB forming complex”. Indeed, in all organisms 247	

studied, the catalytic subunit Spo11 alone is not sufficient for DSB formation to take place, 248	

and multiple other proteins (9 in budding yeast, at least 5 in mammals) are required [61-63]. 249	

Mainly discovered in budding yeast, these proteins now appear conserved among many 250	

organisms, although they lack clear sequence homology, which renders them difficult to 251	

identify. These proteins form several proposed subcomplexes that interact together to promote 252	

DSB formation: a “core complex” composed of Spo11 (homolog of the catalytic TopoVI-A 253	

subunit) and a homolog of the TopoVI-B subunit [64, 65], a “RMM” complex proposed to 254	

interact directly with the chromosome axis, and other components that can vary depending on 255	

the species [61]. Among the Spo11 protein partners required for DSB formation or 256	

localization, several are also important for DSB repair: the Mre11 complex (in budding yeast, 257	

the worm C. elegans, and maybe in mammals), Narya in the fruit fly Drosophila, and 258	

PRDM9, which, is essential for their targeting to specific DNA sequences in humans and 259	

mice, despite not being essential for DSB formation.  260	

The MRE11 complex 261	
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The MRE11 complex is well known for the signaling and processing of DSBs [66]. Its 262	

endonuclease activity is required to process meiotic DSBs, by removing the Spo11 protein 263	

together with a short oligonucleotide from DSB ends [67]. In addition, at least in the budding 264	

yeast S. cerevisiae and in the nematode C. elegans, this complex is integrated in the process 265	

that is required for prDSB formation by Spo11 [68, 69]. The functions of the MRE11 266	

complex in DSB formation and repair are genetically separable, and its function for DSB 267	

formation seems to involve mainly the Mre11 and Rad50 subunits [70, 71]. In mammals, 268	

whether the MRE11 complex is needed for Spo11-induced DSB formation is not clear at the 269	

moment, because members of the MRE11 complex are essential for viability, so only 270	

hypomorphic mutants of the MRE11 complex could be tested in the mouse for their effect on 271	

fertility, and they showed only defects in meiotic DSB repair [72]. Conditional knock out of 272	

the Mre11 complex specifically in meiotic cells would be required to know if it is also 273	

required for meiotic DSB formation in mammals. In budding yeast, components of the 274	

MRE11 complex appear to directly interact with other DSB formation proteins [73], implying 275	

a specialization of the MRE11 complex for the immediate signaling and processing of these 276	

programmed meiotic DSBs. Likewise, in the plant Arabidopsis thaliana, although not strictly 277	

required for meiotic DSB formation, a member of the MRE11 complex directly interacts with 278	

a protein required for DSB formation ([74] and	Mathilde Grelon, personal communication). It 279	

is attractive to propose that incorporating the signaling and repair Mre11 complex in the step 280	

of meiotic DSB formation allows the immediate processing of meiotic DSBs into the 281	

homologous recombination pathway.  282	

Narya 283	

Another example of coupling between meiotic DSB formation and repair comes from 284	

the fruit fly Drosophila, where a protein, Narya, fulfills functions both for formation and 285	

repair of meiotic DSBs with a crossing over, to ensure proper homolog segregation and 286	

successful meiosis [75]. Narya is a RING finger protein that is redundant with another related 287	

protein, Nanya, for meiotic DSB formation and repair. It also interacts with Vilya, a third 288	

protein of the family, required for DSB formation and interacting with MEI22, one of the 289	

Drosophila DSB proteins [76]. Interestingly, a separation-of-function allele of Narya, in its 290	

RING finger domain, shows that Narya is not only involved in DSB formation, but also 291	

required for their repair as a crossover. In addition, the three proteins show two sequential 292	

localization patterns; first, early with DSB sites and then, to crossover sites [75, 76]. This 293	

illustrates again a double function for meiotic DSB formation and their repair into crossovers 294	

within a single protein, therefore directly coupling these two steps of meiotic recombination. 295	
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PRDM9 296	

The histone methyltransferase PRDM9, responsible for targeting meiotic prDSBs to 297	

its consensus DNA binding sequence in many organisms including mice and humans, is also 298	

critical for meiotic prDSB repair. In its absence, Spo11 forms meiotic prDSBs at “default” 299	

chromatin accessible locations within functional genomic elements, which are not well 300	

repaired for unclear reasons [77, 78]. In addition, if PRDM9 is present on only one homolog 301	

owing to a polymorphism affecting its consensus binding sequence, this also creates problems 302	

in DSB repair [79]. This suggests that the symmetric binding of PRDM9 to both homologs, 303	

thanks to its sequence specificity, facilitates the repair, perhaps by bringing close together into 304	

the chromosome axis the two chromatid sequences that will experience the recombination 305	

event (Figure 3). In favor of this hypothesis, PRDM9 physically interacts with several 306	

components of the chromosome axis [80]. PRDM9 therefore represents yet another example 307	

of coupling prDSB formation and repair within a single protein during programmed meiotic 308	

recombination.  309	

 310	

Concluding remarks 311	

 Besides meiosis, PGR, and V(D)J recombination, prDSBs have been identified during 312	

signal-induced transcription in several experimental settings (see [81] for a recent review). 313	

These activity-induced prDSBs occur primarily in early response genes and are introduced by 314	

the topoisomerase IIb. This is in particular the case in the response of MCF-7 cells to 315	

estradiol [82] or activation through glucocorticoid receptors [83]. prDSBs also occur in vivo 316	

and in vitro upon neuronal activity [84, 85]. Interestingly, in the case of the glucocorticoid 317	

receptor-induced transcriptional activation, recruitment of Top2b and Ku70/86 via the BRG1 318	

transcription activator-containing chromatin-remodeling complex is required at GR-319	

responsive promoters [83]. This suggests that a subset of DNA repair factors may be in place 320	

before prDSBs, thus accrediting the hypothesis of a possible coupling of DNA damage and 321	

repair during signal-induced transcription. Finally, beside Pgm in ciliates and RAG1/2, two 322	

other domesticated transposases have been identified in human cells, the piggyBac 323	

transposable element-derived 5 (PGBD5) [86]	 and THAP9, related to the Drosophila P-324	

element transposase [87], the exact functions of which are presently unknown. The 325	

deregulated expression of PGBD5 in rhabdoid tumors in children participates in the 326	

oncogenic transformation by promoting site-specific DNA rearrangements within tumor 327	

suppressor genes [88]. Whether this deleterious activity of PGBD5 is counteracted in its 328	
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physiological context by a mechanism related to DNA damage-repair coupling is of course 329	

speculative but represents an interesting issue to follow. If this were to be true, it would 330	

reinforce the idea that DNA damage-repair coupling may represent an essential step in the 331	

transposase domestication process. 332	

 Altogether coupling DNA damage and repair may have co-evolved with prDSBs to 333	

ensure their efficient repair and thus avoid any associated genomic instability. Several 334	

questions remain to be addressed: (i) what are the exact mechanisms governing this coupling, 335	

(ii) given the oncogenic power of DSBs, what would be the consequences of losing this 336	

coupling (see Outstanding Questions)? 337	

 338	
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 564	

Highlights 565	

• Several biological processes (meiosis, V(D)J recombination, PGR in ciliates, signal-566	

induced transcription) proceed via introduction of programmed DSBs (prDSBs). 567	

• DSBs being the most toxic DNA lesions, as potentially oncogenic, prDSBs are likely 568	

associated with very efficient, multi-layered DNA repair mechanisms. Coupling DNA 569	

damage and repair is one critical layer. 570	

• Ku80 is a critical factor to link DNA damage and repair during PGR in ciliates 571	

• The C terminus of RAG2 may be responsible for the DNA damage-repair coupling 572	

during V(D)J recombination as a safeguard against genome instability. 573	

• During meiotic recombination, a specific pathway ensures that meiotic DSBs are 574	

formed within the correct spatial chromosomal context. 575	

• The MRE11 complex is required for the formation of prDSBs by Spo11 during 576	

meiotic recombination. 577	

• DNA damage-repair coupling may represent an essential step in the domestication 578	

process of PiggyMac, RAG1/2 and other transposases. 579	

 580	

Outstanding Questions Box  581	

• What are the exact mechanisms and critical players of DNA damage-repair coupling 582	

during prDSBs? 583	

• What are the downstream consequences of uncoupling DNA damage-repair during 584	

prDSBs driven processes (for example: genetic instability and tumor development, 585	

cellular degeneracy)? 586	
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• Is DNA damage-repair coupling a general rule that applies to all biological processes 587	

that proceed through prDSBs? 588	

 589	

Glossary  590	

• DSBs: DNA double strand breaks can be “accidental” as a result of environment insult 591	

or “programmed” (prDSBs) as part of essential physiological processes (meiosis, 592	

V(D)J recombination, PGR in ciliates). 593	

• HR: The Homologous Recombination DNA repair pathway is one of the two main 594	

mechanisms, with NHEJ, to repair DSBs. It operates exclusively in S phase of the cell 595	

cycle when a sister chromatid is available as template. 596	

• Meiosis: Meiosis is the process of chromosome segregation during the formation of 597	

gametes. prDSBs are introduced by Spo11 during meiosis 598	

• MRE11 complex: Composed of meiotic recombination 11 (MRE11), RAD50 and 599	

Nijmegen breakage syndrome 1 (NBS1 or Nibrin, Xrs2 in budding yeast). Acts in the 600	

sensing and signaling of DSBs. The endonuclease activity of MRE11 is essential for 601	

the processing of protein-linked meiotic DSBs. 602	

• NHEJ: The Non Homologous End Joining DNA repair pathway is one of the two 603	

main mechanisms, with HR, to repair DSBs. It operates in all phases of the cell cycle. 604	

• PGR: Programmed Genome Rearrangement that reproducibly eliminates large 605	

fractions of germline DNA (25 to 95% according to species) during formation of the 606	

Macronucleus (MAC) during the ciliate sexual cycle 607	

• PiggyMac (Pgm): Domesticated transposase responsible for PGR in the ciliate 608	

Paramecium. 609	

• RAG1 & RAG2: The Recombination Activating Gene 1 & 2 constitute the 610	

domesticated transposase initiating V(D)J recombination in immature B and T 611	

lymphocytes. 612	

• SCID: Severe Combined Immune Deficiency is a rare condition in humans (and 613	

engineered mouse models) characterized by a profound defect in the 614	

development/function of the adaptive immune system. Impaired V(D)J recombination 615	

results in SCID. 616	

• Spo11: Catalytic subunit of a topoisomerase-like complex that introduces prDSBs 617	

during meiosis 618	



	 21	

• V(D)J Recombination: Lymphoid-specific somatic DNA rearrangement process of 619	

immunoglobulin and T cell receptor (TCR) genes initiated by the RAG1/2 factors 620	

aimed at generating the antigenic diversity (repertoire) of the adaptive immune 621	

system. 622	

 623	

Figure Legends  624	

Figure 1: Coupling between DSB formation and repair during programmed genome 625	

rearrangements in ciliates 626	

A) In the ciliate Paramecium tetraurelia, vegetative cells harbor two MICs (black) and one 627	

MAC (gray). During sexual reproduction, MICs undergo meiosis, a single meiotic product 628	

divides and yields two gametic nuclei (black), while all others are degraded (light gray). 629	

During conjugation, following reciprocal exchange of gametic nuclei between mating 630	

partners, the resident and incoming nuclei fuse to give a diploid zygotic nucleus (black); 631	

during autogamy (a self-fertilization process), the zygotic nucleus results from the fusion of 632	

both gametic nuclei from the same cell. The zygotic nucleus then divides twice: two of the 633	

resulting nuclei become the new MICs (black) and the other two differentiate into new MACs 634	

(hatched purple and blue). Programmed DNA elimination takes place during MAC 635	

development. Following mitosis of the new MICs, the new MACs segregate into each 636	

daughter cell. Throughout the whole process, the old MAC is fragmented and is eventually 637	

lost after a few cell divisions. B) In Paramecium, the presence of Ku is required for Pgm to 638	

cleave DNA at IES ends, indicative of tight coupling between DSB formation and repair. 639	

Tetrahymena intragenic IESs are excised by domesticated transposases (Tpb1 and Tpb6) 640	

fused to a Ku80-like domain, the functional importance of which has not been established.  641	

 642	

Figure 2: Coupling between DSB formation and repair during V(D)J Recombination? 643	

A) Two complementary synapses (the XLF/XRCC4 filament and the RAG1/2 post cleavage 644	

complex) ensure DNA end tethering during V(D)J recombination. The loss of both synapses 645	

results in major genomic instability with the development of lymphomas. B) Synthetic 646	

dysfunction of V(D)J recombination highlights two complementary axes during the repair 647	

phase of V(D)J recombination. RAG2 participates in the ATM-PAXX-MRI axis, 648	

complementary to the XLF-XRCC4 axis.  649	

 650	
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Figure 3: Coupling between DSB formation and repair during programmed meiotic 651	

recombination. 652	

During meiosis, homologous chromosomes experience homologous recombination, which 653	

promotes their pairing, crossover and physical attachment through the chiasmata. 654	

Chromosomes are organized around a protein axis (blue and red lines for maternal and 655	

paternal chromosomes), from which chromatin loops emanate (gray). DSBs (yellow 656	

lightening) are formed to initiate recombination, which culminates into at least one crossover 657	

pair of homologs. Programmed DSBs occur at hotspot sequences, which become transiently 658	

tethered to the chromosome axis where DSB proteins (including the catalytic subunit Spo11) 659	

are located. Among these, the Mre11 complex is necessary both for the formation of DSBs by 660	

Spo11 and for their repair, highlighting the specialized coupling between DSB formation and 661	

repair during meiosis. Other examples of such coupling are discussed in the text. 662	

 663	

 664	

 665	

 666	


