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year-old trilobite arthropods from
Morocco

JeanVannier®, Muriel Vidal?, Robin Marchant3, Khadija El Hariri*, Khaoula Kouraiss*,
Bernard Pittet!, Abderrazak El Albani®, Arnaud Mazurier®® & Emmanuel Martin!

Interactions and coordination between conspecific individuals have produced a remarkable variety

of collective behaviours. This co-operation occurs in vertebrate and invertebrate animals and is well
expressed in the group flight of birds, fish shoals and highly organized activities of social insects. How
individuals interact and why they co-operate to constitute group-level patterns has been extensively
studied in extant animals through a variety mechanistic, functional and theoretical approaches.
Although collective and social behaviour evolved through natural selection over millions of years, its
origin and early history has remained largely unknown. In-situ monospecific linear clusters of trilobite
arthropods from the lower Ordovician (ca 480 Ma) of Morocco are interpreted here as resulting either
from a collective behaviour triggered by hydrodynamic cues in which mechanical stimulation detected
by motion and touch sensors may have played a major role, or from a possible seasonal reproduction
behaviour leading to the migration of sexually mature conspecifics to spawning grounds, possibly
driven by chemical attraction (e.g. pheromones). This study confirms that collective behaviour has a
very ancient origin and probably developed throughout the Cambrian-Ordovician interval, at the same
time as the first animal radiation events.

Modern arthropods provide numerous examples of collective behaviour! and group migrations. The pine proces-
sionary caterpillars use pheromone trails and stimuli from abdominal setae to travel head to tail in large groups
and over long distances in search of pupation sites (e.g.?). Similarly, the non-flying juveniles of the desert locust>-
engage in gregarious behaviour to form huge mobile foraging groups in reaction to a set of mechanical, olfac-
tory and visual stimuli associated with serotonin release®. Collective behaviour also occurs in marine crusta-
ceans such as spiny lobsters (Palinurus) which perform mass single-file migrations’~'' across open substrates
either in possible response to storm-induced environmental disturbances, or for reaching spawning grounds
(Palinurus ornatus'?). Consistent directional positioning is maintained via tactile contact between followers and/
or possible chemical cues'. Linear and unidirectional fossil clusters of conspecific trilobite arthropods occur in
the Palaeozoic, which have been assumed to result from feeding, reproduction, moulting or sheltering behav-
iours'%. They have been also assumed to be a solution for reducing hydrodynamic drag effects within the
moving groups®.. Much more enigmatic are the chain-like associations of bivalved euarthropods from the early
Cambrian Chengjiang biota, which have been interpreted to have resulted from collective behaviour and tenta-
tively compared with modern pelagic tunicate chains?***. Some non-linear trilobite clusters are seen as evidence
for egg deposition in hatching sites*, others as resulting from hypothetical gatherings for protection or moult-
ing?. Most of these reported cases of linear or multidirectional clusters lack potentially important constraints
on their interpretation such as the sedimentary environment where these animal groups lived and were buried.
Here we describe and analyse quantitatively, numerous linear clusters of Ampyx priscus from the Lower
Ordovician (upper Tremadocian-Floian, ca 480 Ma) Fezouata Shale of Morocco®*?, and show that these align-
ments of trilobites do not result from passive transportation and accumulation by currents but from a collective
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behaviour. Ampyx priscus was probably migrating in groups and used its long projecting spines to maintain a
single-row formation by physical contacts possibly associated with mechano-receptors and/or chemical commu-
nication. This group behaviour may have been a response to environmental stress due to periodic storms shown
by sedimentological evidence, or was associated with reproduction. This record of linear clustering in early euar-
thropods suggests that intraspecific group-level patterns comparable to those of modern animals already existed
480 million years ago in the early stages of the Great Ordovician Biodiversification Event™.

Results

The trilobite clusters described here from the upper Tremadocian Fezouata Shale (near Zagora, Morocco) are
overwhelmingly dominated by Ampyx priscus®'? with rare occurrences of asaphids and calymenids (Fig. 1,
Table 1; Supplementary Figs 1-5, Supplementary Tables 1-3) associated with them. Ampyx priscus Thoral,
1935°! is a raphiophorid trilobite characterized by a stout glabellar spine and a pair of very long librigenal spines
projecting posteriorly (Supplementary Text), which occurs at various horizons through the Fezouata Shale
(Supplementary Fig. 1a), as isolated individuals or in linear clusters (see also specimens figured by Chatterton
and Fortey'®, plate 1). Trilobites are preserved as internal or external moulds, and are frequently coated with iron
oxide. They show no remains of appendages and internal organs. Transverse thin sections (Fig. 1h) indicate that
the genal spines had an original tubular structure with a dorsal and ventral furrow and were probably hollow (e.g.
infilling; Fig. 1f,g). The glabellar spine is also ventrally striated near its base (Fig. 1j). The distal part of the genal
spines runs almost parallel to the longitudinal axis of the animal (Fig. 2a). In each cluster, trilobites are arranged
in alinear fashion with their anterior end facing one direction and lie on the surface of a single bedding plane with
the dorsal surface of their exoskeleton directed upwards. Only one specimen out of 105 lies upside down (Fig. 2d).
The number of A. priscus specimens in clusters varies from 3 to 22. Clusters with a low number of individuals,
may be fragmentary. No specimen is disarticulated (i.e.-cephalon including free cheeks, thoracic segments and
pygidium in connection), suggesting that they represent carcasses and not exuviae. Ampyx specimens distribute
within a relatively narrow size range (more than 75% with a total length (TL) between 16 and 22 mm; Table 1,
Supplementary Table 3, Supplementary Fig. 6) and belong to the holaspis stage characterized by a stable number
(six) of thoracic segments (Fig. 1b). They probably represent adult or subadult sexually mature animals. Only
one juvenile is found in these clusters (see Fig. 2a, most posterior specimen). The angle between the longitudinal
axis of two succeeding individuals (o) is usually low and rarely exceeds 45° (see o mean; Table 1, Supplementary
Table 3), and the rotation angles within each cluster are randomly clockwise or anticlockwise. This contributes to
forming an overall, relatively straight queue with minor local irregularities (Fig. 2). Trilobites facing a direction
opposite (o >90°) to that of their preceding associates are extremely rare (ca 2%; see Supplementary Table 3).
The distance between individuals (D; measured from occipital rings) is relatively short and rarely exceeds twice
the body length (TL; D mean < 45 mm; Table 1, Supplementary Table 3) giving the trilobite clusters a cohesive
appearance. Succeeding specimens are frequently in contact with each other via their long glabellar and genal
spines. The length of the glabellar spine (LglS) slightly exceeds TL, that of the genal spines (Lges) is at least twice
as long as TL. Overlapping individuals are frequent (Fig. 2). Comparable monospecific linear clusters domi-
nated by Ampyx priscus also occur in the upper Tremadocian of the Montagne-Noire, (Hérault, southern France)
and share important features with their Moroccan counterparts, such as the anterior polarity, a relatively short
inter-individual distance and low angle (o) variations (Supplementary Fig. 7).

Polished and thin sections through two rock slabs (Fig. 3; Supplementary Fig. 8) were used to characterize the
sedimentary background above and below the trilobite clusters. The sediment is a siltstone evenly composed of
well-sorted rounded grains (Fig. 3) of low granulometry (20-30 um) with a very low percentage of muscovite, clay
minerals, and is locally enriched with very fine layers or patches of organic matter (Fig. 3d, Supplementary Figs 8,
9a,b). The original structure of laminae is disturbed by horizontal or subhorizontal bioturbation (Supplementary
Fig. 9¢,d) which most probably result from the activity of small epibenthic or very shallow endobenthic inverte-
brates (e.g. euarthropods, worms). No deep burrows or other centimetric sedimentary structures are associated
with these trilobite clusters. Bioturbation is indicative of oxic conditions at and slightly below the water-sediment
interface. However, its low level of penetration suggests that the redox boundary was probably not deeper than
1.5-2 cm below the sea bed. Elemental mapping (Supplementary Fig. 10) reveals the dominance of Si, Al and K
and the ubiquitous presence of Fe (iron oxides and phyllosilicates) and the absence of Ca and S.

Discussion

In situ preservation. Accumulation layers or shell beds are frequent in the fossil record. They typically con-
sist of disarticulated organisms and heterogenous exoskeletal fragments assembled together and often oriented
by currents. The Ampyx clusters from the Fezouata Shale have none of these diagnostic features. In contrast, they
are made up of articulated monospecific individuals and are not associated with sedimentary structures indica-
tive of sea bottom troughs or burrows. Moreover, the consistent anterior polarity of individuals could hardly be
explained by the action of currents. We reject the hypothesis of organisms mechanically accumulated along linear
submarine reliefs (e.g. between ripple-marks'*). Instead, these linear clusters most likely represent in situ clusters
which retain most of the original position of individuals at the time of their death. This interpretation is strongly
supported by geological evidence. Detailed sedimentological analyses?®?%333* show that the Fezouata Shale is
characterized by background sedimentation (mainly argillaceous siltstones) repeatedly disturbed by distal storm
sequences made of normally graded, very fine sands and coarse siltstones that locally exhibit small oscillation
structures, indicating that the depositional setting was located close to the storm wave base. This facies alternation
suggests a depositional setting that lays below the fair-weather wave base and above the storm wave base thus
corresponding to marine environments ranging from lower shoreface to lower offshore?®*>3*3 (Supplementary
Fig. 1b). This style of sedimentary dynamics regulated by storms controlled the settlement of animal communi-
ties and also played a major role in the preservation of fossils***. In the studied area (near Zagora, Morocco) the
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Figure 1. General morphology and parameters of the raphiophorid trilobite Ampyx priscus Thoral, 1935,
from the Lower Ordovician (Upper Tremadocian-Floian) Fezouata Shale of Morocco (Zagora area). (a-d)
BOM 2481, overall morphology and details of genal spines. (e) Parameters used in measurements. (f,g) MGL
096718, genal spine showing internal mineralized infilling. (h) AA.OBZ2.01.1, transverse thin section through
right genal spine (see general view in Supplementary Fig. 8d). (i) MGL 096727, genal spine. (j) ROMIP 57013,
external mould of glabellar and genal spine showing longitudinal ridge. a-d.f,g,i,j are light photographs.
Abbreviations are as follows: o, angle between the longitudinal axis of two successive individuals; D, distance
between two successive individuals in clusters (joins central part of occipital rings); df, dorsal furrow; dil, dorsal
inner lobe; dol, dorsal outer lobe; ges, genal spine; gl, glabella; gls, glabellar spine; if, mineralized infilling;

io, iron oxide; Lg, length of glabella; Lges, length of genal spine; Lgls, length of glabellar spine; Lp, length of
pygidium; om, organic matter; py, pygidium; su, suture; TL, total length; vf, ventral furrow; vil, ventral inner
lobe; vol, ventral outer lobe; Wc, width of cranidium; Wg, width of glabella; Wo, width of occipital ring; Wp,
width of pygidium; 1-6, Ist to 6th thoracic segment. Scale bars: 1 cmina-c, f,1,j; 5mmin gh; Immind.

raphiophorid trilobite biofacies to which Ampyx priscus belongs runs slightly above and below the storm wave
base (lower part of shoreface to upper part of offshore; see Supplementary Text and Supplementary Fig. 1b).

The amount of sediment deposited during a storm event was probably sufficient to entomb trilobites and other
epibenthic animals in situ but not powerful enough to take them away. This process is usually invoked to explain
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TL TL TL D
Clusters | N max min mean oamax |omin | amean | max | Dmin | D mean
LCO1 11 19.1 149 |16.5 34.6 0.1 15.8 43.4 1.7 24.2
LC02 4 14.7 142 | 144 15.8 11.1 11.9 36.7 14.8 249
LC03 9 26.0 20.1 |21.9 21.5 1.5 8.8 43.5 17.8 325
LC04 8 19.6 149 | 175 12.0 3.7 7.4 71.3 8.6 33.0
LC06 5 18.7 13.0 |16.8 14.6 1.0 14.0 65.2 36.3 4438
LC09 3 22.6 19.4 |21.0 48.6 329 40.7 31.6 30.7 31.1
LC15 16 23.8 14.1 | nd 152.3 0 53.8 90.0 7.6 27.4
LC17 5 20.6 16.8 | 18.6 38.7 0.7 15.3 23.3 9.4 194
LC18 22 20.6 15.6 |18.3 60.7 15 17.3 46.1 2.5 18.8
LC19 6 20.2 189 |19.9 26.7 3.6 13.5 29.8 10.0 16.2
LC20 5 21.4 17.6 |19.9 13.8 0.2 6.4 48.7 11.8 25.7
LC21 11 21.1 8.6 |16.5 154 0.2 7.4 71.8 6.4 27.4

Table 1. Summary table of measurements of Ampyx priscus linear clusters from the Lower Ordovician
(Upper Tremadocian-Floian) Fezouata Shale of Morocco (Zagora area). See Supplementary Tables 1 and 3.
Abbreviations are as follows: o, inter-individual angle; D, inter-individual distance; LC, linear cluster ; nd, no
data; N, number of trilobite (Ampyx priscus) specimens; TL, total length.

the exceptional and in situ preservation of marine animals from major Palaeozoic Lagerstatten such as those of
the Fezouata Shale*?*** or the Maotianshan Shale (Chengjiang biota®®). Hydrogen sulphide released in water by
the storm-generated stirring of anoxic sediment has been proposed to explain the sudden death and in situ pres-
ervation of some Devonian trilobite clusters?*. Similarly, water poisoning may have also participated in rapidly
killing Ampyx since neither sedimentary disturbances nor body attitudes indicate strong reaction of trilobites to
escape burial. Many trilobites (e.g.”’), including Ampyx priscus (Supplementary Fig. 11) had the capacity to enroll
as do modern terrestrial isopods when threatened. The extreme rarity of enrolled specimens in linear clusters
would support the hypothesis of a very sudden death either induced by water poisoning or by rapid deposition
of sediment which hindered enrollment in most specimens. The absence of sulphur in the sediment surrounding
trilobite clusters (see elemental mapping; Supplementary Fig. 10) might result from diagenetic processes. The
most plausible scenario that led to the preservation of the Ampyx clusters from the Fezouata Shale is the following
(Fig. 4). Natural linear clusters of trilobites were entombed by sediment generated by distal storms. The upwards
migration of the redox boundary created almost immediate lethal conditions around them and maintained car-
casses in anoxic conditions, thus limiting scavenging activities and other degradation processes. In summary,
we reject the notion that the linear clusters of trilobites result from passive transportation and accumulation by
currents and favour a possible behavioural origin.

Collective behaviour. Various types of trilobite linear clusters have been reported from the Palaeozoic of
Morocco'®, Canada', Poland**?! and other regions (e.g. Portugal'®), but often lack detailed characterization and
key information on their depositional setting. Although some of them tend to be clearly monospecific (e.g. those
dominated by Ampyx and Trimerocephalus'®*'), others are associated with diverse invertebrates (e.g. bivalves,
echinoderms, hyoliths) and contain disarticulated exoskeletons, or consist of randomly oriented individuals.
Chatterton et al.'* and Chatterton and Fortey'¢ interpreted these clusters as possibly resulting from the congrega-
tion of trilobites within sub-horizontal burrows made by other animals such as worms but provide no evidence
of burrow margins around the trilobite clusters. Our lithological sections (Fig. 3 and Supplementary Figs 8-10)
do not reveal any coloured outlines or disturbances in the sediment surrounding trilobites and thus rule out the
hypothesis that trilobites may have sheltered collectively in burrows before being trapped and buried in situ.
Chemical cues or visual attraction to food often drive modern animals to gather and form monospecific clusters
of scavengers over carcasses. These aggregations result from individual taxic responses (e.g. myodocope ostra-
cods*®®) and do not strictly correspond to a coordinated group behaviour. The trilobite clusters described here
are unlikely to represent such aggregations unless individuals gathered to feed on narrow linear food patches.
Moreover, their consistent unidirectional polarity and the lack of associated food remains or traces in sediment
make this hypothesis improbable. Another option related to feeding is that Ampyx may have fed on suspended
particles thus prompting individuals to orientate themselves in the direction of current. If so, we would rather find
trilobites lying side by side facing the same direction than aligned in queues.

We propose that the linear clusters formed by Ampyx priscus result from the coordinated gathering and loco-
motion of individuals and therefore suggests a collective and synchronized behaviour. We hypothesize that these
trilobites moved in small groups on the seafloor, keeping a single-row formation by physical contacts via their
long projecting spines and antennules and/or through chemical communication. Similarly, extant spiny lobsters
perform mass single-file migrations by maintaining tactile contact between the tail fan of one individual and
the antennular ramus and the tips of the anterior-most walking legs of its follower”!?. Such mechanical contacts
appear to be essential for group cohesion and for optimal coordinated locomotion. Experimental studies® have
shown that the gregarious behaviour of desert locusts was linked to an increase of neurotransmitter (seroto-
nin) driven by mechanical stimuli, visual or olfactory pathways*-*!. Knowing that Ampyx priscus was blind,
we hypothesize that mechanosensory stimulation via both genal and glabellar spines, or/and chemical cues,
may have been a major trigger that maintained group behaviour. No trace fossils seem to be associated with the
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Figure 2. Linear clusters of the raphiophorid trilobite Ampyx priscus Thoral, 1935°!, from the Lower
Ordovician (upper Tremadocian-Floian) Fezouata Shale of Morocco (Zagora area). (a,b) AA. TER.OL12 (see
Supplementary Fig. 2a). (¢) MGL 096727 (see Supplementary Fig. 5a). (d) AA.TER.OL13 (see Supplementary
Fig. 2b). (e) BOM 2461 (see Supplementary Fig. 2f). (a,e) are light photographs. Line drawings from
photographs. Segmented blue lines in (b-d) join the central part of occipital rings of trilobites. Red arrows
indicate the position of polished section in Fig. 3. Abbreviations are as follows: (x), Asaphellus aff. jujuanus
(asaphid trilobite); (y), juvenile asaphid trilobite. Scale bars: 1 cm.

trilobite clusters. Possible reasons for this are that either Ampyx made no deep imprints into the sediment or that
the substrate conditions were unfavourable to preserving traces.

Microscopic observations were unable to locate potential sites (e.g. sensilla pores*?) of mechano- or chemore-
ception on the exoskeleton of A. priscus due to unfavourable conditions of preservation (internal/external moulds
with rare cuticular remains). Its remarkably long spiny projections seem to offer optimal conditions for individu-
als to contact via multiple points (Supplementary Fig. 12) thus increasing the probability for communication via
mechanosensory stimulation. This unusual exoskeletal configuration may have facilitated alignment and cohe-
sion within the group. Interestingly, Ampyxinella (Eoampyxinella) villebruni, a raphiophorid trilobite affiliated
to Ampyx (Supplementary Fig. 13), which lacks a frontal glabellar spine, forms linear clusters characterized by
a lower directional consistency compared with those of Ampyx priscus. Chemical communication plays a cru-
cial role in the inter-individual relationships of a wide range of extant animals including crustaceans (e.g.*~*°).
Various types of chemosensory sensilla occur over the crustacean body, some of them such as olfactory aes-
thetascs concentrating on antennules*2. Such receptors are assumed to be present in Cambrian mandibulates such
as Waptia*®¥’. Similarly, pores housing a central seta found in Cambrian agnostids*® and trilobites (e.g.*’) may
have had a comparable chemosensory function. Chemical communication is often invoked to explain the group
behaviour of other trilobites (e.g. blind phacopid Trimerocephalus*>*"*°) and indeed may have played an impor-
tant role in the collective behaviour of Ampyx. However, none of these trilobites provide detailed information on
the nature and location of possible receptors.

Fifty-seven percent of the studied clusters from the Fezouata Shale have one and more rarely two non-Ampyx
trilobite elements which are dominantly complete carapaces of asaphids (mainly Asaphellus aff. jujuanus), caly-
menids (Parabathycheilus sp.) and dalmanitids; (Toletanaspis sp.) (see Supplementary Table 2). Four of these
complete trilobites follow the direction of the Ampyx cluster in which they seem to be incorporated, whereas
the remaining individuals point towards the opposite (2) or intermediate directions (2). In contrast with Ampyx,
these trilobites had eyes and therefore may have been able to visually detect, track and possibly follow individuals
moving in their surroundings. However, the small number of data does not allow for determining whether they
may have joined the Ampyx groups for some opportunistic reasons or may simply have crossed their migratory
path by pure coincidence. As far as we know from the literature’"'!, no other crustacean species participates in the
migration of extant spiny lobsters.
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Figure 3. Sediment associated with trilobite clusters. (a,b) AA.TER.OIL13 (see also Supplementary Figs 8-10),
part and counterpart, from the Lower Ordovician (upper Tremadocian-Floian) Fezouata Shale of Morocco
(Zagora area). (c) Polished section, general view. (d,e) Thin sections showing details of sedimentary structure.
(f) Thin section showing grain size and local enrichment in organic matter (lower part). Red arrows indicate
bedding plane with Ampyx clusters. Location of thin sections indicated by green lines and numbers (see also
Supplementary Figs 9-11). Scale bars: 10cm in a, b; 1 cm in c—e; 50 um in f.

Triggers and drivers, functions and benefits

Spawning congregations and synchronized moulting. Congregation of sexually mature individuals are frequent
in extant euarthropods and are often related to reproduction or moulting (e.g.!**!). In modern horseshoe crabs,
spawning is synchronous with sexually mature individuals gathering along the shore in large numbers for mating
(e.g.>>7). This behaviour is synchronized through both visual and pheromone communication®®. Ampyx may
have performed comparable group migrations to distant spawning grounds during the reproductive season, as
proposed by Blazejowki et al.?° for other trilobites. This hypothesis is supported by the fact that Ampyx clusters
almost exclusively consist of adult or sub-adult holaspid stages. However, no morphological traits (e.g. body
size, spines®”*%) point to co-existing dimorphs within clusters. Synchronized moulting is frequent in modern
crustaceans (e.g. krill*®) and insects and is assumed to have occurred also in Cambrian euarthropods such as
the trilobite Balcoracania dailyi® from the lower Cambrian (Series 2, Stage 4) of Australia and Canadaspis and
Alalcomenaeus® from the middle Cambrian Burgess Shale (Series 3, Stage 5) of British Columbia, Canada. This
phenomenon brings together a large number of conspecific individuals but does not create any directional polar-
ity among the group (e.g. linear gatherings). Moreover, synchronized moulting, by definition, releases numerous
exuviae which are absent from the Ampyx clusters.

Hydrodynamic cues. Field and laboratory studies on extant spiny lobsters from the Bahamas region have high-
lighted the possible relation between collective migrations and environmental disturbances’"!!. A drop in water
temperature, higher water turbidity and intense current induced by seasonal storms are assumed to be the main
triggers for the mass migrations of these crustaceans, which always take place from highly disturbed shallow
coastal areas to the edge of oceanic channels. Most migrants are late juveniles and adults but do not congregate for
spawning. The hypothesis that hydrodynamic cues may have driven a comparable behaviour in Ampyx is realis-
tic considering that these trilobites were potentially exposed to periodic environmental disturbances generated by
storms (see sedimentological evidence above). Ampyx is known to occur preferentially across the storm wave base
and preferentially in the lower shoreface and upper offshore environments?®*>62 (Supplementary Fig. 1b) suggest-
ing possible migrations from storm-influenced to quieter and deeper areas. We hypothesize that its behaviour
may have been a collective response to physical stress. Collective migrations of modern crustaceans are assumed
to have important advantages over individual ones. Travelling in queues decreases hydrodynamic drag and saves
energy (e.g. spiny lobsters®!?) and also tends to reduce the probability of detection and attacks from predators by
creating confusion in their visual perception (e.g.%®). Ampyx clusters have a relatively small number of individuals
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event layer 1

event layer 2

Figure 4. Scenario to explain the in situ preservation of the Ampyx linear clusters from the Lower Ordovician
(Upper Tremadocian-Floian) of Morocco. (a) Deposition of a distal tempestite (event layer 1). (b) Epibenthic
(e.g. trilobites) and shallow endobenthic (e.g. possible worms) organisms settle and generate bioturbation
above red-ox boundary. (¢) Second storm event layer entombs epibenthic fauna in situ; red-ox boundary
moves upwards (white arrows). (d) New faunal recolonization. According to Vaucher et al.*, distal storm
deposits are relatively thin (less than 5cm) and consist of a waning (base) and waxing (top) phases (subdivision
not represented in this diagram), and depositional environment is that of the distal lower shoreface with a
possible water depth of approximately 30-70 m. Bioturbation is based on polished and thin sections (Fig. 3 and
Supplementary Figs 8 and 9). Abbreviations are as follows: bt, bioturbation; tr, trilobite group (Ampyx); trc,
trilobite carcasses (Ampyx); w, worm; wsi, water-sediment interface.

and contrast with the long queues seen in spiny lobsters. This might be explained by a natural tendency of tri-
lobites to form smaller groups or by the dispersion of original larger linear clusters by currents. Hydrodynamic
signals (direction of storm back current) possibly relayed by sensory setae over the carapace or appendages may
also have played an important role in the polarization of locomotion but tactile contacts and/or chemical com-
munication were probably essential to maintaining group cohesion.

In summary, two options can be seen as the most likely (Fig. 5): (1) that of a collective behaviour triggered
by hydrodynamic cues in which mechanical stimulation detected by motion and touch sensors may have played
a major role; (2) that of a possible seasonal reproduction behaviour leading to the migration of sexually mature
conspecifics to spawning grounds, possibly driven by chemical attraction (e.g. pheromones). These options are
not mutually exclusive. Ampyx may have alternatively responded to environmental stress and reproduction sig-
nals by adopting the same behaviour.

Origin of collective behaviour. Ampyx shows that collective behaviour in arthropods has a very deep
ancestry back to the lower Palaeozoic. This behaviour was necessarily associated with a communication system
between individuals involving motion and mechanical sensors, chemical signals and possibly neurotransmitters
(e.g. serotonin®). Although this behaviour was not mediated by sight because Ampyx was blind, it implies neural
complexity and the ability to process signals. Numerous arthropods had already evolved sophisticated brains
(e.g.**), and sensory organs such as antennae and compound eyes (e.g.*”%-%") by the Cambrian although their
exact functional capabilities often remain conjectural.

Ampyx shows how a 480-million-year-old euarthropod may have integrated its neural complexity into a tem-
porary collective behaviour related to seasonal reproduction or triggered by environmental cues. This behaviour
is likely to have been widespread among trilobites throughout the Palaeozoic (e.g. Devonian'®). Another case of
enigmatic collective behaviour has been reported in shrimp-like bivalved euarthropods from the early Cambrian
Chengjiang biota, which form seemingly closely tied chain-like monospecific associations (Synophalos*>*, ca
520 Ma). These chains strongly recall the migratory queues of spiny lobsters, processionary moth caterpillars
or ants but are interpreted*>*® as being assembled in the water column and then deposited on the sea bottom
through passive sinking. This scenario would suppose an extremely robust interlocking system between individ-
uals and a synchronized group locomotion that have no counterparts in extant arthropods. Males of extant clam
shrimps have specialized organs to clasp the edge of the female’s carapace during pairing®®. However, their behav-
iour is limited to two sexual partners. Although much information is missing concerning the Synophalos clusters
(e.g. appendages, relation to sediment, measurements), it appears more likely that, as with Ampyx, they represent
epibenthic arthropods migrating in groups and buried in situ by storm-related or turbiditic sedimentary events.
Collective behaviour associated with communication and recognition systems probably evolved through natural
selection as the Cambrian radiation proceeded, and developed more extensively during the Great Ordovician
Biodiversification Event when ecosystems became increasingly complex. Improving the chances of reproduc-
tion and survival to environmental stress are among the advantages that such behaviour may have conferred to
euarthropods.
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Figure 5. Two non-exclusive hypotheses to explain the linear clusters of Ampyx priscus from the Lower
Ordovician of Morocco. (a-c) Response to oriented environmental stress (e.g. storms); hydrodynamic signal
(higher current velocity represented by white arrows) received by motion sensors triggers re-orientation

of individuals; mechanical stimulation and/or possible chemical signals cause gathering, alignment and
locomotion in group. (d-f) Seasonal reproductive behaviour; chemical signals (e.g. pheromones; see red circles
and red arrows) cause attraction and gathering of sexually receptive individuals (males and females) and
migration to spawning grounds. The alignment of individual may have been controlled by mechanical stimuli
(as in a—c). Olfactive and mechanical sensors were probably located on the antennules (pink areas 4, 5), and
genal and glabellar spines (green areas 1-3), respectively. The exact location of mechanoreceptors is uncertain
(possibly on high-relief exoskeletal features such as the glabella).

Methods

Fossils specimens were photographed using a digital camera (D3X-Nikon with Nikon Micro-Nikkor 60 mm lens)
and measured (lengths, distances, angles) from high-resolution digital images by using Image J, a public domain
processing program. Polished and lithological thin sections were made using standard methods and observed
under binocular stereo-microscope (Leica MZ125 and Leica DM750P). Elemental maps were acquired using a
Tornado M4 micro-XRF system (Bruker, Germany) equipped with a silicon drift detector and a Rh source operat-
ing at 50kV and 600 nA. A spot size of 40 um was employed with dwell times of 7 ms/pixel, and mapping was per-
formed under vacuum. Image processing included spectral deconvolution and 3-pixel averaging. Tomographic
images of ROMIP 57013 were obtained via the same methods and with the same machine as in Kouraiss et al.®.

Data availability

All figured specimens are deposited in fossil collections: Cadi Ayyad University, Faculty of Sciences and
Techniques, Marrakesh, Morocco (AA numbers); Musée Cantonal de Géologie, Lausanne, Suisse (MGL);
Museum d’Histoire Naturelle de Marseille, France (MHNM); Royal Ontario Museum, Toronto, Canada
(ROMIP); Palaeontological Collections, Patrick Bommel, Bizes-Minervois, France (BOM); Palacontological
Collections, Laurent Lacombe, Ouveillan, France (LAC). Correspondence and requests for materials should be
addressed to JV.
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