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Abstract

This article proposes an efficient explicit numerical model with a relaxed stability
condition for the simulation of heat, air and moisture transfer in porous material.
Three innovative approaches are combined to solve the system of two differential
advection–diffusion equations coupled with a purely diffusive equation. First, the
Du Fort–Frankel scheme is used to solve the diffusion equation, providing an ex-
plicit scheme with an extended stability region. Then, the two advection–diffusion
equations are solved using both the Scharfetter–Gummel numerical scheme for
the space discretisation and the two–step Runge–Kutta method for the time vari-
able. This combination enables to relax the stability condition by one order. The
proposed numerical model is evaluated on three case studies. The first one considers
quasi-linear coefficients. The theoretical results of the numerical schemes are con-
firmed by our computations. Indeed, the stability condition is relaxed by a factor
of 40 compared to the standard Euler explicit approach. The second case provides
an analytical solution for a weakly nonlinear problem. A very satisfactory accuracy
is observed between the reference solution and the one provided by the numerical
model. The last case study assumes a more realistic application with nonlinear coef-
ficients and Robin-type boundary conditions. The computational time is reduced 10
times by using the proposed model in comparison with the explicit Euler method.

Key words: transfer in porous media; numerical model; Scharfetter–Gummel scheme;
Du Fort–Frankel scheme; two-step Runge–Kutta method
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1 Introduction

The prediction of heat and moisture transfer in porous material is of great interest for
several applications such as food [1], civil construction [2] or soil evaporation [3]. Gen-
erally, the air transfer are neglected to simplify the mathematical model and particularly
its numerical resolution as realized in [4, 5]. However, the air transfer might impact sig-
nificantly the heat and mass processes by the presence of advective flux. Several recent
works demonstrated that the air transfer should not be neglected to ensure the reliability
of the model prediction. In [6], the impact of air transfer was highlighted using an ex-
perimental approach. In [7, 8], a numerical model, based on a commercial software, was
used to investigate the impact of air transfer on the heat and mass transfer in a porous
material. Recently, in [9], the numerical predictions have been compared to experimental
observation to evaluate the reliability of the model. It was clearly shown that the fidelity
of the model is improved when considering the three governing equations.
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The mathematical model for the prediction of heat, air and moisture transfer in porous
material is formulated as a system of two advection–diffusion differential equations com-
pleted with one exclusively diffusion equation (see [9, 10] for the derivation ):

c m ·
∂P 1

∂t
= ∇ ·

(

k m · ∇P 1 − a v · P 1

)

, (1a)

c q ·
∂T

∂t
= ∇ ·

(

k q · ∇T − a q · T
)

+ r 12 · ∇ ·

(

k v · ∇P 1 − a v · P 1

)

(1b)

− r 12 · c qv ·
∂P 1

∂t
+ r 12 · c qs ·

∂σ

∂t
,

c a ·
∂P

∂t
= ∇ ·

(

k a · ∇P
)

− ∇ ·

(

k v · ∇P 1 − a v · P 1

)

(1c)

+ c av ·
∂P 1

∂t
+ c at ·

∂T

∂t
+ c as ·

∂σ

∂t
,

where T ( x , t ) , P 1( x , t ) , P ( x , t ) are the temperature, vapor pressure, air pressure
and saturation rate in the porous material1. This model is used in several practical case
studies for the investigation of the physical phenomena as, for instance, in [8, 11]. Thus,
it is of capital importance to propose an efficient numerical model. The main issue in
the numerical resolution is twofold. First, from a physical point of view, the following
asymptotic inequality can be stated for the permeability coefficients:

k a ≫ max
{

k v , k m , k q

}

.

Therefore, in the framework of explicit approaches, a very restrictive stability Courant-

Friedrichs-Lewy (CFL) condition is imposed by the air transfer equation [12]. It neces-
sarily implies very fine time discretisation at the price of important computational efforts.
The second issue arises from the nonlinearities of the coefficients k , c and a that in-
duce sharp gradients and lead to oscillations of the solution. Thus, when using implicit
approaches, costly subiterations associated with Jacobian evaluation to treat the non-
linearities are required at each time step. Even if the stability restriction is overcome,
these subiterations increase the computational time of these approaches. In addition, to
satisfy the accuracy, the time step used generally scales with the one required within ex-
plicit approaches [13, Section 2.1]2. Some authors also report that numerical schemes such
as Crank–Nicolson combined with a central finite-difference scheme in space lead to
spurious oscillations for advection–diffusion equation [14].

Several models from the literature are based on these approaches being constrained by
these issues. In [6, 8, 11], an implicit numerical model is proposed. To overcome the restric-
tions, authors simplify the boundary conditions [6] or use linear coefficients [8]. It is still an

1Other symbols are described in the nomenclature section.
2The order of accuracy is ε = O

(
∆t λ + ∆x µ

)
. Usually, λ = 1 for the implicit Euler and µ = 2

for central finite–differences. Thus, to reach a satisfactory accuracy, it is required to balance error terms
∆t

∆x 2
≃ 1 . It implies that ∆t = O

(
∆x 2

)
.
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open challenge to propose efficient numerical models that reduce computational costs and
maximize the accuracy of the solution. To address this issue, the present article presents an
explicit numerical model with much less restrictive stability conditions than the standard
CFL one. The proposed model is based on a combination of three innovative approaches:
(i) the Du Fort–Frankel scheme, (ii) the Scharfetter–Gummel approaches and
(iii) the two–step Runge–Kutta method. It results in a study at the frontier between
the domains of applied mathematics and heat and mass transfer in porous materials. To
our knowledge, these methods have very few practical applications and have never been
combined to solve the coupled governing equations of heat, air and mass transfer in porous
material.

The paper is organized as follows. In Section 2, the mathematical model is defined in a
dimensionless formulation. Then, the methods to build the efficient numerical model are
detailed in Section 3. The spatial and time discretization of the governing equations are
presented. In Section 4, the efficiency of the proposed numerical model is evaluated on
three case studies. The first one is quasi-linear and enables to verify the theoretical results
of the numerical schemes in terms of reducing the stability condition. The second one
proposes to evaluate the accuracy of the numerical model with a derived exact analytical
solution. The last case deals with more realistic ones considering nonlinear coefficients.

2 Formulation of the mathematical model

The achievement of the mathematical mode (1) to describe the physical phenomena
of heat, air and moisture transfer occurring in porous media is highlighted in [9]. A
one-dimensional problem is considered. While performing a mathematical and numerical
analysis of a given practical problem, it is of capital importance to obtain a unitless for-
mulation of governing equations [15, 16]. Thus, the following dimensionless quantities for
temperature, vapor pressure and total pressure fields are defined:

u :
(

x , t
)

7−→
P 1 (x , t )

T ◦
, v :

(

x , t
)

7−→
T (x , t )

P ◦
1

, w :
(

x , t
)

7−→
P (x , t )

P ◦
,

where the super-script ◦ denotes the reference value of the field, chosen according to the
physical situation. The saturation rate σ in the material is given by a function of the
dimensionless fields:

σ :
(

u , v , w
)

7−→ σ
(

u , v , w
)

.

The time and space domains are also transformed through a dimensionless representa-
tion:

x ⋆ :
[

0 , L
]

−→

[

0 , 1
]

t ⋆ :
[

0 , τ
]

−→

[

0 , τ ⋆
]

x 7−→
x

L
, t 7−→

t

t ◦
,
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where L
[

m

]

is the characteristic length of the material, τ
[

s

]

is the final time of the
simulation and t ◦ a reference time value.

c ⋆
ic :

(

u , v , w
)

7−→
c ic

(

u , v , w
)

c ◦
ic

,

k ⋆
ik :

(

u , v , w
)

7−→
k ik

(

u , v , w
)

k ◦
ik

,

a ⋆
ia :

(

u , v , w
)

7−→
a ia

(

u , v , w
)

a ◦
ia

,

where ic ∈
{

m , a , q , qv , qs , av , at , as
}

, ik ∈
{

m , q , a , v
}

and a ∈
{

v , q
}

. In

this way, dimensionless numbers are introduced. The Péclet number represents the
relative importance of the advection over the diffusion transfer processes for moisture,
vapor and heat quantities:

Pe m
def
:=

a ◦
v · L

k ◦
m

, Pe v
def
:=

a ◦
v · L

k ◦
v

, Pe q
def
:=

a ◦
q · L

k ◦
q

.

The Fourier number reflects the importance of the total transfer for moisture, heat or
air diffusion:

Fom
def
:=

k ◦
m · t ◦

c ◦
m · L 2

, Fo q
def
:=

k ◦
q · t ◦

c ◦
q · L 2

, Fo a
def
:=

k ◦
a · t ◦

c ◦
a · L 2

.

The vaporization latent heat is transformed into a dimensionless ratio r ⋆ def
:=

r 12

r ◦
12

. Other

parameters are also introduced to characterize the importance of coupling among the phe-
nomena:

γ
def
:=

r ◦
12 · P ◦

1 · k ◦
1

T ◦ · k ◦
q

, δ
def
:=

P ◦
1 · k ◦

1

P ◦ · k ◦
a

,

The Kossovitch number quantities of heat of the evaporation process to the wetting
body:

Ko qv
def
:=

r ◦
12 · c ◦

qv · P ◦
1

c ◦
q · T ◦

.

Likewise, analogous numbers are introduced :

Ko qs
def
:=

r ◦
12 · c ◦

qs

c ◦
q · T ◦

, Ko av
def
:=

c ◦
av · P ◦

1

c ◦
a · P ◦

, Ko as
def
:=

c ◦
as

c ◦
a · P ◦

, Koat
def
:=

c ◦
at · T ◦

c ◦
a · P ◦

.
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For the boundary conditions, the Biot number quantifies the transfer by diffusion (of
moisture or heat) to the transfer between the material and the ambient air:

Bi m
def
:=

α m · L

k m

, Bi q
def
:=

α q · L

k q

, Bi v
def
:=

r ◦
12 · α m · L

k v

,

where α q

[

W/m
2 · K

]

and α m

[

s/m

]

are the surface heat and vapor transfer coefficients,
respectively.

Consequently, the dimensionless one-dimensional formulation of the heat, air and mois-
ture transfer in porous material can be written as:

c ⋆
m ·

∂u

∂t ⋆
= Fom ·

∂

∂x ⋆

(

k ⋆
m ·

∂u

∂x ⋆
− Pe m

· a ⋆
v · u

)

, (2a)

c ⋆
q ·

∂v

∂t ⋆
= Fo q ·

∂

∂x ⋆

(

k ⋆
q ·

∂v

∂x ⋆
− Pe q

· a ⋆
q · v

)

(2b)

+ Fo q · γ · r ⋆
·

∂

∂x ⋆

(

k ⋆
v ·

∂u

∂x ⋆
− Pe v

· a ⋆
v · u

)

− Ko qv · c ⋆
qv · r ⋆

·
∂u

∂t ⋆
+ Ko qs · c ⋆

qs · r ⋆
·

∂σ

∂t ⋆
,

c ⋆
a ·

∂w

∂t ⋆
= Foa ·

∂

∂x ⋆

(

k ⋆
a ·

∂w

∂x ⋆

)

− Foa · δ ·
∂

∂x ⋆

(

k ⋆
v ·

∂u

∂x ⋆
− Pe v

· a ⋆
v · u

)

(2c)

+ Ko av · c ⋆
av ·

∂u

∂t ⋆
+ Ko as · c ⋆

as ·
∂σ

∂t ⋆
+ Koat · c ⋆

at ·
∂v

∂t ⋆
,

with the following boundary conditions at the air-material interface:

k ⋆
m ·

∂u

∂x ⋆
− Pe m

· a ⋆
m u = Bi m ·

(

u − u ∞

)

· η ,

k ⋆
q ·

∂v

∂x ⋆
− Pe q

· a ⋆
q · v + γ · r ⋆

·

(

k ⋆
v ·

∂u

∂x ⋆
− Pe v

· a ⋆
v · u

)

=

Bi q ·

(

v − v ∞

)

· η + γ · Bi v · r ⋆
·

(

u − u ∞

)

· η ,

w = w ∞ .

At the end, the mathematical model is represented by a system of three coupled nonlinear
partial differential equations. The first two equations are based on the advection and dif-
fusion phenomena while the third equation is purely based on diffusion with coupling done
through source terms. The moisture equation (2a) influences Eqs. (2b) and (2c) directly
through source terms in their respective right-hand sides. The air transfer equation (2c),
impacts the other balances through the advection coefficient a ⋆ , which is proportional to
the spatial derivative w. It should be noticed that the dimensionless numbers are con-
stants. Parameters c ⋆ , k ⋆ and a ⋆ depend on the fields u , v and w enforcing the coupling
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between the equations of system (2). These coefficients translate the nonlinearity of the
problem and represent the deviation from the reference state.

3 The numerical model

3.1 Numerical strategy

After presenting the mathematical model, the numerical method to solve the governing
equation is presented. For the sake of notation compactness, the super-script ⋆ is omitted
in this section. Before, the numerical strategy is commented with the issue of reducing
the computational effort and maximizing the accuracy of the solution. First, due to the
nonlinearities of the problem, an explicit scheme is preferred since implicit approaches
require costly subiterations to treat them at each time step. Secondly, as mentioned in the
Introduction, the air transfer can be faster that for heat and moisture. So the following
inequalities can be set for the Fourier numbers:

Foa ≫ max
{

Fo v , Fo m , Fo q

}

.

Therefore, in the framework of explicit Euler approaches, the stability condition is im-
posed by the air transfer equation (2c) [12]:

∆t 6
∆x 2

Foa
· inf

Dom c a ∩ Dom k a







c a

(

u , v , w
)

k a

(

u , v , w
)






.

To circumvent the highlighted difficulties, the numerical strategy proposes first to solve
equation (2c) by using the Du Fort–Frankel scheme to relax extensively its stability
condition. Then, for the heat and mass advection–diffusion equations (2a) and (2b), the
Scharfetter–Gummel numerical scheme is used. Preliminary studies [17, 18] showed
the efficiency of the approach to extend the stability conditions and the accuracy of the
solution. As a last step of the proposed methodology, the time discretisation of these two
equations, an innovative two-step Runge–Kutta approach is used of the time discreti-
sation of these two advection–diffusion equations, enabling to extend further the stability
region of the numerical scheme [19]. Since the method of lines is used to solve the problem,
first the spatial discretisation is presented for each equation of the system (2). Then, the
time integration to solve the système of coupled ordinary differential equations is detailed.

A uniform discretisation is considered for space and time intervals. The discretisa-
tion step parameters are denoted using ∆x for space and ∆t for time. The spatial cell

C j
def
:=

[

x j −
1

2

, x j + 1

2

]

is shown in Figure 1(a). The discrete values of the function u are

denoted by u n
j

def
:= u( x j , t n ) with j ∈

{

1 , . . . , N
}

and n ∈
{

1 , . . . , N t

}

.
To explain the numerical method, the system of Eqs. (2) will be written using a simpler

notation, removing the super-script ⋆ , gathering the dimensionless numbers and consider-
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(a) (b)

Figure 1. Stencils of the Scharfetter–Gummel(a) and Du Fort–Frankel(b)
schemes.

ing a linear problem for x ∈

[

0 , 1
]

and t > 0 :

∂u

∂t
=

∂f

∂x
, (3a)

∂v

∂t
=

∂g

∂x
+ S , (3b)

∂w

∂t
=

∂h

∂x
+ Σ , (3c)

where

f
def
:= k 1 ·

∂u

∂x
− a 1 · u ,

g
def
:= k 22 ·

∂v

∂x
− a 22 · v + k 21 ·

∂u

∂x
− a 21 · u , S

def
:= − c 21 ·

∂u

∂t
+ c 2s ·

∂σ

∂t
,

h
def
:= k 33 ·

∂w

∂x
− k 31 ·

∂u

∂x
+ a 31 · u , Σ

def
:= c 31 ·

∂u

∂t
+ c 32 ·

∂v

∂t
+ c 3s ·

∂σ

∂t
.

The extension to the nonlinear problem is detailed in Section 3.4. One can note that, in
the system of Eqs. (3), the partial coefficients c 1 , c 2 and c 3 has been omitted for the sake
of clarity in front of the partial derivatives ∂u

∂t
, ∂v

∂t
and ∂w

∂t
, respectively. Their integration

do not present any specific difficulties since the system is triangular. So at each time step,
the inversion of the storage coefficients is straightforward using analytical approach.
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3.2 Spatial discretisation

3.2.1 The moisture mass balance equation (3a),

The discretisation of Eq. (3a) gives the following semi-discrete difference differential
relation:

du j

dt
=

1

∆x
·

[

f j+ 1

2

− f j−
1

2

]

.

Initially proposed in [20], the Scharfetter–Gummel scheme assumes that the numer-

ical flux is constant on the dual cell C ⋆
j

def
:=

[

x j , x j+1

]

, which is illustrated in Figure 1(a).

According to the definition of f , the following boundary value problem can be written
[21, 22] to determine the numerical flux:

k 1 ·
∂u

∂x
− a 1 · u = f j+ 1

2

, ∀ x ∈ C
⋆
j , ∀ j ∈

{

2 , . . . , N − 1
}

, (4a)

u = u j , x = x j , (4b)

u = u j+1 , x = x j+1 . (4c)

It is important to remark that the the boundary value problem (4) has two unknowns

f j+ 1

2

and u : C
⋆ def

:=
⋃

j ∈ [[1,N ]]

C
⋆
j −→ R with two boundary conditions. Therefore, the

exact expression of the flux in the dual cell can be computed as [23]:

f j+ 1

2

=
d 1

∆x
·



B

(

Θ
)

· u j+1 − B

(

− Θ
)

· u j



 , (5)

where B stands for the reciprocal Bernoulli function B : R −→ R > 0

B ( y )
def
:=

y

e y − 1
, Θ

def
:=

a 1 · ∆x

k 1
.

Furthermore, the exact solution u can be computed from the boundary value problem (4):

u ( x ) = −
1

a 1

· f j+ 1

2

+ K j · e

a 1 · x

k 1 , ∀ x ∈ C
⋆
j , (6)

where

K j
def
:=

(

u j − u j+1

)

1 − e Θ
· e

−

a 1 · x j

k 1

is a defined constant, which depends on the boundary value problem data.
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Two important consequences can be obtained from these two results. First, the semi-
discrete difference differential relation for Eq. (3a) becomes:

du j

dt
=

d 1

∆x
·



B

(

Θ
)

· u j+1 −

(

B

(

Θ
)

+ B

(

− Θ
)
)

· u j + B

(

− Θ
)

· u j−1



 . (7)

Then, the exact solution avoids any need of interpolation to compute the field in the whole
domain of the material, i.e. in between the nodes.

3.2.2 The energy balance equation (3b)

The Scharfetter–Gummel numerical scheme is also used for the the spatial discreti-
sation of Eq. (3b). The semi-discrete difference relation yields:

dv j

dt
=

1

∆x
·

[

g j+ 1

2

− g j−
1

2

]

+ S j . (8)

Similarly, the numerical flux g j+ 1

2

is assumed to be constant on the dual cell C ⋆
j . So, the

following boundary value problem can be written:

k 22 ·
∂v

∂x
− a 22 · v = g j+ 1

2

− k 21 ·
∂u

∂x
+ a 21 · u

︸ ︷︷ ︸

known

, ∀ x ∈ C
⋆
j , ∀ j ∈

{

2 , . . . , N − 1
}

,

(9a)

v = v j , x = x j , (9b)

v = v j+1 , x = x j+1 . (9c)

By Eq. (6), the exact solution u ( x ) is already known for x ∈ C ⋆
j . Thus, Eq. (9a) can be

replaced to reformulate the boundary value problem:

k 22 ·
∂v

∂x
− a 22 · v = g j+ 1

2

− k 21 ·
a 1

k 1
· K j · e

a 1 · x

k 1 (10a)

+ a 21 ·

(

−
1

a 1

· f j+ 1

2

+ K j · e

a 1 · x

k 1

)

, ∀ x ∈ C
⋆
j ,

∀ j ∈
{

2 , . . . , N − 1
}

,

v = v j , x = x j , (10b)

v = v j+1 , x = x j+1 . (10c)

Two unknowns of Eq. (10), v and g j+ 1

2

, can be computed. The computation is accom-

plished in the supplementary MapleTM file. This approach considers a full coupling between
Eqs. (3a) and (3b).
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The coupling source term S j
def
:= − c 21 ·

du j

dt
+ c 2s ·

dσ j

dt
is evaluated using Eq. (7) for

the first right-hand side term − c 21 ·
du j

dt
. For the second right-hand side term c 2s ·

dσ j

dt
,

a backward finite–difference approach in the time domain is used:

dσ j

dt

∣
∣
∣
∣
∣

t = t n

=
1

∆t
·

(

σ
(

u n
j , v n

j

)

− σ
(

u n−1
j , v n−1

j

)
)

. (11)

3.2.3 The moist air mass balance equation (3c)

For Eq. (3c), we have the following semi-discrete difference differential elation:

dw j

dt
=

1

∆x
·

[

h j+ 1

2

− h j−
1

2

]

+ Σ j ,

where the numerical flux h j+ 1

2

is given by:

h j+ 1

2

=

(

k 33 ·
∂w

∂x
− k 31 ·

∂u

∂x
+ a 31 · u

)∣
∣
∣
∣
∣

j+ 1

2

. (12)

From Eq. (6), we have the exact solution of u ( x ) that enables to compute the second and
third terms of the right-hand side of Eq. (12):

− k 31 ·
∂u

∂x

∣
∣
∣
∣
∣

j+ 1

2

+ a 31 · u j+ 1

2

(6)
= − k 31·

a 1

k 1
· K j · e

a 1 · x j+ 1

2

k 1

+ a 31 ·



−
1

a 1
· f j+ 1

2

+ K j · e

a 1 · x j+ 1

2

k 1



 ,

The first term of the right-hand side of Eq. (12) is driven by diffusion only, so it is approx-
imated using central finite–difference scheme:

k 33 ·
∂w

∂x

∣
∣
∣
∣
∣

j+ 1

2

= k 33 ·
w j+1 − w j

∆x
.

Then, the numerical flux h j+ 1

2

is computed as:

h j+ 1

2

= k 33 ·
w j+1 − w j

∆x
− k 31 ·

a 1

k 1
· K j · e

a 1 · x j+ 1

2

k 1 + a 31 ·



−
1

a 1
· f j+ 1

2

+ K j · e

a 1 · x j+ 1

2

k 1



 .
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Finally, the semi-discrete difference differential relation for Eq. (3c) becomes:

dw j

dt
=

k 33

∆x 2
·

(

w j+1 − 2 · w j + w j−1

)

(13)

−
k 31 · a 1

∆x · k 1
·



K j · e

a 1 · x j+ 1

2

k 1 − K j−1 · e

a 1 · x j−
1

2

k 1



 (14)

−
a 31

a 1
·

(

f j+ 1

2

− f j−
1

2

)

+ a 31 ·



K j · e

a 1 · x j+ 1

2

k 1 − K j−1 · e

a 1 · x j−
1

2

k 1



 + Σ j .

(15)

The source term Σ j
def
:= c 31 ·

du j

dt
+ c 32 ·

dv j

dt
+ c 3s ·

dσ j

dt
is evaluated using Eqs. (7),

(8) and (11) for each term.

3.2.4 Treating the boundary conditions

To explain the implementation of the Scharfetter–Gummel approach for the nodes
adjacent to the boundary surface, we assume a Robin–type condition for the field u :

k 1 ·
∂u

∂x
− a 1 · u = Bi ·

(

u − u ∞

)

, x = 0 .

Thus, Eq. (4) defines the boundary value problem to compute the leftmost numerical flux
f 1

2

, which is written as:

k 1 ·
∂u

∂x
− a 1 · u = f 1

2

, ∀ x ∈
[

0 , x 1

]

, (16a)

k 1 ·
∂u

∂x
− a 1 · u = Bi ·

(

u − u ∞

)

, x = 0 , (16b)

u = u n
1 , x = x 1 . (16c)

By solving problem (16), we get:

f 1

2

: Θ −→ a 1 · Bi ·
u n

1 − u ∞ · e Θ

a 1 · e Θ + Bi ·
(

e Θ − 1
) .

Similar approach can be applied to the boundary conditions at x = 1 and for the field
v . Furthermore, It can be extended to any type (Neumann or Dirichlet) of boundary
condition along the directions given above. Interested readers are invited to consult [18]
for more details.
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3.3 Temporal discretisation

As previously mentioned, the stability restriction is essentially imposed by Eq. (3c). It
will be relaxed by using the Du Fort–Frankel scheme presented in Section 3.3.2. It
provides a highly stable explicit scheme. Thus, it is expected that the stability restriction
will be imposed by the two other Equations (3a) and (3b). So, to relax their stability
conditions, it is proposed to use an explicit two–step Runge–Kutta methods [24]. Thus,
this strategy for the temporal discretisation provides a competitive option compared to
classical methods such as explicit Euler, one-step Runge–Kutta or implicit.

3.3.1 The moisture mass and energy balance equations (3a) and (3b)

For the description of the temporal discretisation, Eqs. (3a) and (3b) are written as an
initial value problem:

∂u

∂t
= F ( u ) , F ( u ) =

∂f

∂x
,

∂v

∂t
= G( v ) , G( v ) =

∂g

∂x
+ S .

The following fully discrete scheme is obtained using the Two-Step Runge–Kutta (TSRK)
methods [19]:

u n+1 = θ · u n−1 +
(

1 − θ
)

· u n + ∆t ·

s∑

k=1

[

ν k · F
(

U n−1
k

)

+ µ k · F
(

U n
k

) ]

,

U n
k = λ k · u n−1 +

(

1 − λ k

)

· u n + ∆t ·

s∑

p=1

[

a k p · F
(

U n−1
p

)

+ b k p · F
(

U n
p

) ]

and for v :

v n+1 = θ · v n−1 +
(

1 − θ
)

· v n + ∆t ·

s∑

k=1

[

ν k · G
(

V n−1
k

)

+ µ k · G
(

V n
k

) ]

,

V n
k = λ k · v n−1 +

(

1 − λ k

)

· v n + ∆t ·

s∑

p=1

[

a k p · G
(

V n−1
p

)

+ b k p · G
(

V n
p

) ]

,

where θ , ν k , µ k , λ k , a kp and b kp are numerical coefficients given in [19]. They depend

on the number of stages s . Here, the numerical model is built for s ∈
{

1 , 2 , 3
}

, whose
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coefficients are provided in the following Butcher tableaux [19]:

λ k a k p b k p

Θ ν k µ k

s

,

0.1 0.2 0

−1 −1 1

s = 1

,

0.308343 0.154172 0.154172

−0.113988 −0.556994 0.00838564 1.43462

0 −0.526458 0.0787465 1.47417 −0.0264581

s = 2

,

0.0213802 0.264446 −0.507512 0.264446 0 0 0

0.0991119 0.240292 −0.631471 0.597963 0.392328 0 0

0.353437 0.0969341 −0.578148 0.98944 0.582927 0.262283 0

0 0.197972 −0.543131 0.521515 0.0867149 0.621047 0.115883

s = 3

.

3.3.2 The moist air mass balance equation (3c)

Using the form of Eq. (13), the semi-discrete spatial discretisation of Eq. (3c) with the
method of (vertical) lines [25], is given by:

dw j

dt
=

k 33

∆x 2
·

(

w j+1 − 2 · w j + w j−1

)

+ H j , (18)

where

H j =
k 31 · a 1

∆x · k 1

·



K j · e

a 1 · x j+ 1

2

k 1 − K j−1 · e

a 1 · x j−
1

2

k 1





−
a 31

a 1

·

(

f j+ 1

2

− f j−
1

2

)

+ a 31 ·



K j · e

a 1 · x j+ 1

2

k 1 − K j−1 · e

a 1 · x j−
1

2

k 1



 + Σ j .

Using the so-called Du Fort–Frankel scheme [26], the term 2 w n
j is replaced by

w n+1
j + w n−1

j . The stencil is illustrated in Figure 1(b). Thus, Eq. (18) becomes:

w n+1
j − w n−1

j

2 · ∆t
=

k 33

∆x 2
·

(

w n
j+1 −

(

w n−1
j + w n+1

j

)

+ w n
j−1

)

+ H n
j ,
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Re-arranging the last equation to express w n+1
j , one obtains:

w n+1
j =

1 − δ

1 + δ
· w n−1

j +
δ

1 + δ
·

(

u n
j+1 + w n

j−1

)

+
2 · ∆t

1 + δ
· H n

j ,

where

δ
def
:=

2 · ∆t

∆x 2
· k 33 .

According to the standard von Neumann stability analysis, the Du Fort–Frankel scheme
is unconditionally stable [27, 28]. Further details and examples of applications of this
scheme may be consulted in [27, 29].

3.4 Extension to nonlinear coefficients

As mentioned before, the coefficients c , k and a are functions of u , v and/or w . To
extend the detailed numerical method to the nonlinear problem, one may consider the
method of frozen coefficients on dual cell C ⋆

j . Thus, the boundary value problem Eq. (4)
is written as:

f j+ 1

2

= k 1 , j+ 1

2

·
∂u

∂x
− a 1 , j+ 1

2

· u ,

where the coefficients are computed as:

k 1 , j+ 1

2

= k 1

(

u j+ 1

2

, v j+ 1

2

, w j+ 1

2

)

, a 1 , j+ 1

2

= a 1

(

u j+ 1

2

, v j+ 1

2

,
∂w

∂x

∣
∣
∣
∣
∣

j+ 1

2

)

,

with

u j+ 1

2

=
1

2
·

(

u j+1 + u j

)

, v j+ 1

2

=
1

2
·

(

v j+1 + v j

)

, w j+ 1

2

=
1

2
·

(

w j+1 + w j

)

.

The space derivative
∂w

∂x

∣
∣
∣
∣
∣

j+ 1

2

is evaluated using a second-order approximation:

∂w

∂x

∣
∣
∣
∣
∣

j+ 1

2

=
1

∆x
·

(

w j+1 − w j

)

.

The numerical flux f j±
1

2

is then computed using the same methodology as described in
Section 3.2.1. By analogy, the approach is extended for the computation of the fluxes g j±

1

2

and h j±
1

2

.
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3.5 Important features of the numerical scheme

We recall the important features of the numerical schemes. First, the Scharfetter–
Gummel scheme is well balanced and asymptotically preserving [22]. Indeed, the following
limiting behavior of Eq. (5) is observed:

lim
a 1 → 0

f j+ 1

2

= d 1 ·
u j+1 − u j

∆x
, lim

d 1 → 0
f j+ 1

2

=







− a 1 · u j , a 1 6 0 ,

− a 1 · u j+1 , a 1 > 0 .

When the advection coefficient is much greater than the diffusion one, the expression of the
numerical flux tends to the so-called upwind scheme. Inversely, when the diffusion coeffi-
cient is more important, the flux is approximated by central finite differences. Therefore,
the flux is correct independently from the grid parameters. This property applies also to
the numerical flux g j + 1

2

from Eq. (3b).
Secondly, the numerical model is built using an explicit expression for each governing

equation of the system of Eqs. (3). Thus, no sub-iterations are needed at each time step to
treat the nonlinearities of the problem. It enables to save important computational efforts.

An important advantage concerns the stability condition of the numerical scheme. Using
the Du Fort–Frankel approach, the theoretical results ensure a highly stable explicit
scheme to solve Eq. (3c). The choice for the discretisation parameters of this equation is
also driven by the characteristic times of the physical phenomena. The numerical stability
condition of the system of Eqs. (3) is therefore given by the scheme used for Eqs. (3a) and
(3b). The Scharfetter–Gummel scheme combined with the Euler explicit in time
approach has the following stability restriction [23]:

∆t max
16 k , l 6 2



 max
16 j 6N

k kl , j max
16 j 6N




a kl , j

k kl , j

tanh




a kl , j ∆x

2 k kl , j





−1 





 6 ∆x . (19)

As one may notice, the stability conditions of the latter equation is nonlinear with respect

to ∆x . For large space discretisation ∆x , tanh




a kl , j ∆x

2 k kl , j



 = O( 1 ) and we obtain

∆t 6 C ∆x [18]. Thus, it is one order less restrictive than standard approach and
the so-called Courant-Friedrichs-Lewy (CFL) conditions ∆t 6 C ∆x 2 . Using, the
Scharfetter–Gummel scheme, the spatial discretisation does not need to be extremely
refined. Furthermore, since the exact solutions u and v are known, no interpolation is
required to compute the fields within the whole spatial domain. This observation is not
true for the field w , which requires interpolation. Finally, the use of the two-step Runge–
Kutta scheme for the temporal discretisation of Eqs. (3a) and (3b) enables to extend a
little more the stability region, depending on the choice of the number of stages. A less
restrictive condition than Eq. (19) is expected.
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3.6 Metrics for evaluating the efficiency a numerical model

Several metrics are defined to compare the efficiency and accuracy of numerical models.
The first one is the error with respect to a reference solution u ref ( x , t ) . It is computed
as a function of x :

ε 2 ( x )
def
:=

√
√
√
√

1

N t

N t∑

n = 1

(

u ( x , t n ) − u ref ( x , t n )
) 2

,

with N t the number of temporal steps. The global error is given by:

ε ∞

def
:= sup

x ∈

[

0 , L

]
ε 2 ( x ) ,

The second criterion is the number of significative correct digits of the approximate
solution, computed using results from [30]:

scd ( u )
def
:= − log 10

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

u ( x , τ ) − u ref ( x , τ )

u ref ( x , τ )

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞

.

The last criterion is the computational (CPU) time t cpu

[

s

]

spent by the numerical

model to compute the solution. The measurement are carried out using the MatlabTM

platform and a computer equipped with Intel i7 CPU and 32 GB of RAM. The ratio R cpu

is defined:

R cpu
def
:=

t cpu

τ
,

where τ is the final physical time of the simulation, expressed in the same units as the
CPU time t cpu .

4 Validation of the numerical model

Three case studies are considered to evaluate the efficiency of the proposed numerical
method. An illustration of the cases is shown in Figure 2. The first one represents an
quasi-linear problem. Only the nonlinearity in the air velocity, operating the coupling
between all three differential equations, is kept. This case highlights the relevance of
relaxing the stability condition to solve the transient differential equation of air transfer.
For the second case, an analytical solution is proposed as a reference solution to validate the
numerical model. The problem considers a few nonlinearities in the transport coefficient.
The last case study deals with a realistic configuration found in the building sector, i.e.,
with nonlinear coefficients and Robin–type boundary conditions.
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(a) Cases 1 & 3

(b) Case 2

Figure 2. Schematic description of three case studies for the validation of the numerical
model.
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4.1 First case study: the importance of relaxing the stability

condition

Here, the reference solution is computed using a numerical pseudo–spectral approach
obtained with the MatlabTM open source toolbox Chebfun [31]. A dimensionless problem
is considered with the following numerical values for the parameters:

Fom = 4 · 10 −3 , Fo q = 4 · 10 −2 , Foa = 4 · 10 −1 , Pe m = 2 · 10 −3 , Pe v = 3 · 10 −3 ,

Pe q = 5 · 10 −3 , Ko qv = 1 · 10 −2 , Koav = 2 · 10 −2 , γ = 1.5 · 10 −3 , δ = 3 · 10 −4 .

Other parameters are equal to zero, Ko as = Koat = Ko qs = β = 0 . Parameters c ⋆ , k ⋆

and r ⋆ , representing the nonlinearities of the problem, are set to a constant (one in scaled
variables). The purposes is to verify the theoretical results of the stability conditions of the
equations, which are obtained for linear problems. The only nonlinearity of the problem is
introduced through the advection coefficient:

a ⋆
m = a ⋆

v = a ⋆
q =

∂w

∂x ⋆
.

It translates the physical coupling between the three equations of System (3) through the
air velocity expressed by Darcy’s law approximation. For this case, Dirichlet-type
unsteady boundary conditions are defined:

u ( 0 , t ⋆ ) = 0.6



sin
(

π t ⋆
)

+ sin

(

2 π

24
t ⋆

)

 , u ( 1 , t ⋆ ) = 0.9 sin

(

2 π

6
t ⋆

)

,

v ( 0 , t ⋆ ) = 1.2



 sin

(

2 π

5
t ⋆

)

+ sin

(

2 π

24
t ⋆

)

 , v ( 1 , t ⋆ ) = 0.5 sin

(

2 π

3
t ⋆

) 2

,

w ( 0 , t ⋆ ) = 1.3 sin

(

2 π

6
t ⋆

)

, w ( 1 , t ⋆ ) = 0.7



 sin

(

2 π

4
t ⋆

)

+ sin

(

2 π

24
t ⋆

)

The initial condition is

u (x ⋆ , 0 ) = v (x ⋆ , 0 ) = w (x ⋆ , 0 ) = 0 ,

and the final simulation time τ ⋆ = 24 . An illustration of this case is shown in Figure 2(a).
The efficiency of the numerical model proposed in Section 3 is evaluated according to the

criteria defined in Section 3.6. The model is tested for different values of s ∈
{

1 , 2 , 3
}

for the two–step Runge–Kutta method as reported in Eq. (17).
The proposed numerical model will be compared to other approaches specified in Table 1.

The Numerical Model 1 (NM1 ⋆) corresponds to the standard temporal discretisation using
Euler explicit approach. The NM2 uses the Du Fort–Frankel scheme for the spatio-
temporal discretisation of Eq. (2c) and a standard approach for others. The NM3 s is the
proposed one, for different values of parameter s .
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The solutions u , v and w are computed using ∆x ⋆ = 0.01 and ∆t ⋆ = 10 −4 as
discretisation parameters. As shown in Figure 3, there is a very good agreement between
the solutions of all numerical models and the reference one. The time evolution of the
fields is in perfect accordance with the boundary conditions. The time evolution of the

dimensionless velocity
∂w

∂x
is shown in Figure 4. A very satisfactory agreement is also

observed. It can be noticed that the profiles are less sharp for w than for u and v, due
particularly to a higher Fourier number. For the sake of clarity, it should be noted that
the solutions of NM3 1 and NM3 2 are not plotted in Figures 3 and 4. However, as shown
in Figure 5, the error is less than 10 −3 for u and v and at the order of 10 −5 for w . It can
be remarked that the errors are very similar among the numerical models since they have
the same spatial discretisation. For this reason, the significant digits accuracy is similar
for fields u and v for NM 1 , 2 , 3a, 3b and 3c. The only difference appears for the field w
for NM1 ⋆:

scd
[

NM1 ; 2 , 3a , 3b , 3c , u
]

= 3.30 , scd
[

NM1 ; 2 , 3a , 3b , 3c , v
]

= 3.77 ,

scd
[

NM2 ; 3a , 3b , 3c , w
]

= 5.04 , scd
[

NM1 ; w
]

= 4.79 .

It highlights that solutions u , v and w are computed with more than three or five digits
of accuracy.

A parametric study has been carried out on the discretisation parameter ∆t ⋆ . The
global error ε ∞ is computed using the reference solution for an segment of variation ∆t ⋆ ∈[

10 −5 , 10 −1
]

. The spatial discretisation is fixed to ∆x ⋆ = 0.01 . The error variation
in ∆t is illustrated in Figure 6 for five numerical models. First, according to the values
of the numerical parameters, the stability condition can be evaluated for each equation of
System (2):

Eq. (2a) : ∆t ⋆
6 1.25 · 10 −2 , (20a)

Eq. (2b) : ∆t ⋆
6 1.25 · 10 −3 , (20b)

Eq. (2c) : ∆t ⋆
6 1.25 · 10 −4 . (20c)

These conditions are depicted in Figures 6(a), 6(c) and 6(e) with red vertical dashed
lines. As for the real physical case study of transfer through a porous building material,
the stability condition of the whole system of differential equations is fixed by the air
transfer equation (2c). As a consequence, the NM1 ⋆, based on the Euler explicit scheme,
is not able to compute the solutions without respecting the stability condition given in
Eq. (20c). These observations can be noticed in Figures 6(a), 6(c) and 6(e). Since the
Du Fort–Frankel scheme is unconditionally stable, NM2 and NM3 3 enable to compute
a bounded solution w for values of ∆t higher than the ones provided by the condition (20c)
as illustrated in Figure 6(e). This restriction is relaxed by 10 thanks to the Du Fort–
Frankel scheme. Consequently, using NM2, bounded solutions u and v can be computed
until the stability conditions of Eqs. (2a) and (2b) are respected. As shown in Figures 6(a)
and 6(c), NM2 diverges for ∆t ⋆ outside these conditions provided by Eqs. (20a) and (20b),
respectively.
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The benefits of using a two–step Runge–Kutta approach in NM3 is illustrated in
Figures 6(b) and 6(d). It can be noted that solutions u and v are computed with a
satisfactory accuracy beyond the stability conditions. The stability of NM3 increases with
the parameter s . The ratio between the stability condition of Eqs. (2a) and (2b) and the
last ∆t ⋆, providing a satisfactory accuracy for the NM3 3, scales with 4 .

The relaxation of the stability condition with the proposed model is synthesized in
Figure 6(f). The use of Du Fort–Frankel scheme enables to gain one order. Then, the
combination of the Scharfetter–Gummel with the two–step Runge–Kutta can relax
by 4 the restriction. All in all, the overall gain in the stability condition scales with 40
compared to standard approaches.

Figure 7(a) gives the variation of the error with the computational time required to
obtain the solution. Even when increasing the time discretisation parameter ∆t , the
accuracy of the NM1 ⋆, based on explicit Euler scheme, remains stable and, unfortunately,
the computational time increases significantly. For an error on the solution scaling with
O( 10 −3 ) , the NM3 enables to compute the solution 10 times faster than the NM1 ⋆.
The computational time ratio between the three versions of the NM3 is constant and
consistent with the theoretical results since NM3 3 requires approximately three times more
operations. As mentioned before, the main advantages of NM3 3 is to relaxed the stability
conditions accepting a little increase of the number of operations to solve.

To go further in the discussion, the solution is computed with three numerical models
NM1 ⋆ , NM2 and NM3 3 for different values of discretisation parameters ∆t ⋆ and ∆x ⋆ .
Figure 7(b) shows the limit on the plane

(

∆x ⋆ , ∆t ⋆
)

enabling to compute a bounded
solution. In this way, a sort of numerically observed stability condition for this almost
linear problem is investigated. As noticed, the observed stability condition of NM1 ⋆ varies
as a second order O ( ∆x ⋆ 2 ) of the discretisation parameter ∆x in space. It is consistent
since the stability condition is induced by one of the air transport equation and given
by standard CFL condition. Then, it can be noted that for NM2, the stability condition
is relaxed thanks to the Du Fort–Frankel scheme. A change can be observed on the
slope at ∆x ⋆ = 2 · 10 −2 after which the stability condition is relaxed. As detailed in
Section 3.5, this relaxation may be due to the Scharfetter–Gummel scheme which has
a nonlinear stability condition scaling with ∼ O ( ∆x ⋆ 2 ) for small space discretisation and
with ∼ O ( ∆x ⋆ ) for large space discretisation. The stability condition of the NM3 3 is
relaxed with a maximum ratio of 14 with NM2 and 166 with NM1 ⋆ .

This analysis enhances the importance of using the Du Fort–Frankel scheme in our
numerical model to avoid the restrictive stability conditions imposed by the air transfer
equation (2c). Furthermore, the two–step Runge–Kutta approach is used for Eqs. (2a)
and (2b) to relax by a factor of ∼ 50 the global stability condition of the problem.
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Figure 3. Time evolution (a, c, e) and profiles (b, d, d) of the fields u , v and w for the
first case study.
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Table 1. Identification of the numerical models evaluated. Abbreviation SG stands for
Scharfetter–Gummel, DF for Du Fort–Frankel, TSRK for two–step
Runge–Kutta, FD for Finite–Difference, Eu for Euler.

Numerical Model (NM)
Eqs. (2a) and (2c) discretisation Eq. (2c) discretisation

Space Time Space Time

NM1 ⋆ SG Eu explicit Central FD Eu explicit

NM2 SG Eu explicit Central FD DF

NM3 1 SG TSRK, s = 1 Central FD DF

NM3 2 SG TSRK, s = 2 Central FD DF

NM3 3 SG TSRK, s = 3 Central FD DF

0 5 10 15 20

-5

-4

-3

-2

-1

0

1

2

3

Figure 4. Time evolution of the air velocity
∂w

∂x ⋆
at x ⋆ ∈

{

0.1 , 0.9
}

for the first case

study.

4.2 Second case: comparison with analytical solutions

In this Section, an analytical solution is proposed to validate the numerical scheme. To
our knowledge, this solution seems to be presented for the very first time. An illustration
of the case is provided in Figure 2(b). From a physical point of view, it represents the
transfer of heat, air and moisture through a porous material with uniform initial conditions
and submitted to a step of temperature, vapor pressure and air pressure at the boundaries.
The evolution of the front of each field can be simulated. For this purpose, Eq. (2) is
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Figure 5. Variation of the error ε 2 for the fields for the first case study.
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Figure 6. Variation of the error ε ∞ (a, c, e) for the fields u , v and w with an emphasis
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condition (e) using NM3 3.
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Figure 7. Variation of the error ε ∞ (a) of the numerical model with the computational
time required to obtain the solution (t max = 316 s). Variation of the CFL stability
condition (b) according to ∆x ⋆ and ∆t ⋆ for the numerical models for the first case study.

written in the form:

c 1 ·
∂u

∂t ⋆
=

∂

∂x ⋆

(

k 1 ·
∂u

∂x ⋆
− a 1 · u

)

, (21a)

c 2 ·
∂v

∂t ⋆
=

∂

∂x ⋆

(

k 2 ·
∂v

∂x ⋆
− a 2 · v

)

+
∂

∂x ⋆

(

k 21 ·
∂u

∂x ⋆
− a 21 · u

)

− c 21 ·
∂u

∂t ⋆
,

(21b)

c 3 ·
∂w

∂t ⋆
=

∂

∂x ⋆

(

k 3 ·
∂v

∂x ⋆

)

−
∂

∂x ⋆

(

k 31 ·
∂u

∂x ⋆
− a 31 · u

)

+ c 31 ·
∂u

∂t ⋆
, (21c)

with the particular case where:

a 1 = a 10 u , a 2 = a 20 v

and coefficients
(

a 10 , a 20 , a 21 , a 31 , k 1 , k 2 , k 21 , k 3 , k 31 , c 1 , c 2 , c 21 , c 3 , c 31

)

are con-

stant. By direct substitution in Eq. (21), two analytical solutions can be obtained. Both
solutions, u ( x ⋆ , t ⋆ ) and w ( x ⋆ , t ⋆ ) are invariant and written in the form:

u( x ⋆ , t ⋆ ) =
1

2
· j u · tanh

(

k u · x ⋆
− c u · t ⋆

)

+ A u ,

w( x ⋆ , t ⋆ ) =
1

2
· j w · tanh

(

k w · x ⋆
− c w · t ⋆

)

+ A w ,
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with the coefficients defined by:

k u = −
a 10

2 · k 1
· j u , c u =

1

2 · k 1
·

a 31 · k 3 · a 10

( k 31 · c 3 − k 3 · c 31 )
· j u , c w = c u ,

k w = k u , A u = −
1

2 · a 10
·

c 1 · k 3 · a 31

( k 31 · c 3 − k 3 · c 31 )
, j w =

k 31

k 3
· j u

and parameters j u and A w being free (defined by user). For the field v( x ⋆ , t ⋆ ) , two
solutions verify Eq. (21):

v 1( x ⋆ , t ⋆ ) =
1

2
· j v , 1 · tanh

(

k v , 1 · x ⋆
− c v , 1 · t ⋆

)

+ A v , 1 ,

v 2( x ⋆ , t ⋆ ) =
1

2
· j v , 2 · tanh

(

k v , 2 · x ⋆
− c v , 2 · t ⋆

)

+ A v , 2 ,

with coefficients:

k v , 1 = k v , 2 = k u ,

c v , 1 = c v , 2 = c u ,

j v , 1 =
− 1

2 · k 1 · a 20

(
√

a 2
10 · k 2

2 + 4 · a 10 · a 20 · k 1 · k 21 − a 10 · k 2

)

· j u ,

j v , 2 =
1

2 · k 1 · a 20

(
√

a 2
10 · k 2

2 + 4 · a 10 · a 20 · k 1 · k 21 + a 10 · k 2

)

· j u ,

A v , 1 = −




1

2
·

a 31 · c 2 · k 3

a 20

·

(√

a 2
10 · k 2

2 + 4 · a 10 · a 20 · k 1 · k 21 − a 10 · k 2

)

− a 21 · c 3 · k 1 · k 31 + a 21 · c 31 · k 1 · k 3 − a 31 · c 21 · k 1 · k 3









(√

a 2
10 · k 2

2 + 4 · a 10 · a 20 · k 1 · k 21 − a 10 · k 2

) (

c 3 · k 31 − c 31 · k 3

)




−1

,

A v , 2 =




− 1

2
·

a 31 · c 2 · k 3

a 20
·

(√

a 2
10 · k 2

2 + 4 · a 10 · a 20 · k 1 · k 21 + a 10 · k 2

)

− a 21 · c 3 · k 1 · k 31 + a 21 · c 31 · k 1 · k 3 − a 31 · c 21 · k 1 · k 3









(√

a 2
10 · k 2

2 + 4 · a 10 · a 20 · k 1 · k 21 + a 10 · k 2

) (

c 3 · k 31 − c 31 · k 3

)




−1

.
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The asymptotic values of u ( x ⋆ , t ⋆ = 0 ) , v ( x ⋆ , t ⋆ = 0 ) and w ( x ⋆ , t ⋆ = 0 ) provide
the Dirichlet–type boundary conditions for the numerical models:

lim
x ⋆ → ± ∞

u ( x ⋆ , 0 ) = u ∞ , L/R , lim
x ⋆ → ± ∞

v ( x ⋆ , 0 ) = v ∞ , L/R , lim
x ⋆ → ± ∞

w ( x ⋆ , 0 ) = w ∞ , L/R

An illustration of the case is shown in Figure 2(b). For the numerical application, the
following values are used:

c 1 = 1 , k 1 = 0.05 , a 10 = 0.09 , c 2 = 1 , k 2 = 0.03 , a 20 = 0.04 , c 21 = 0.3 ,

k 21 = 0.01 , a 21 = 0.03 , c 3 = 1 , k 3 = 0.6 , c 31 = 0.6 , k 31 = 0.18 , a 31 = 0.2 ,

with j u = 2.5 , A w = 0.5 and, hence, the following boundary conditions:

u ∞ , R = 2.45 , v ∞ , R = 0.99 , w ∞ , R = 0.13 ,

u ∞ , L = 4.95 , v ∞ , L = 0.30 , w ∞ , L = 0.88 .

For the computations, the solutions of the numerical models are defined for the domains(

x ⋆ , t ⋆
)

∈
[

−4 , 4
]

×
[

0 , 3
]

. This choice is justified since the solutions at the

boundaries of the space domain x ∈
{

− 4 , 4
}

almost do not vary. Indeed, the L 2 error
between the imposed boundary conditions and the analytical solution is:

u ∞ , R : ε 2 = 7.2 · 10 −5 , u ∞ , L : ε 2 = 8.9 · 10 −9 ,

v ∞ , R : ε 2 = 2.0 · 10 −5 , v ∞ , L : ε 2 = 2.5 · 10 −9 ,

w ∞ , R : ε 2 = 2.2 · 10 −5 , w ∞ , L : ε 2 = 2.7 · 10 −9 .

The numerical solutions are computed using NM3 2, NM3 3, both defined in Table 1. The
following discretisation parameters are used ∆x ⋆ = 10 −2 and ∆t ⋆ = 10 −4 . A pseudo–
spectral solution is also obtained with the MatlabTM open source toolbox Chebfun [31].
Comparison of the time evolution and profiles of the fields are shown in Figures 8 and 9. A
perfect agreement can be noticed among three numerical solutions and the exact one. As
noticed in Figure 10, the error is lower than 10 −4 for each field. It can be noted that NM3 1

and NM3 3 have a very similar accuracy. This comparison highlights the high accuracy of
the solution computed with the numerical models based on Scharfetter–Gummel and
two–step Runge–Kutta approaches.

It is important to notice that there is no uniqueness of the solution v for the problem (21)
on the real line. Similar results were obtained by Tychonoff for the heat equation in
[32]. Several criteria may be used to choose the reliable solution for v such as the entropy
of the global system. In addition, when dealing with physical applications and adding
boundary conditions to the problem, the uniqueness of the solution might be recovered.

28



0 1 2 3

2.5

3

3.5

4

4.5

5

(a)

-4 -2 0 2 4

2.5

3

3.5

4

4.5

5

(b)

0 1 2 3

0

0.2

0.4

0.6

0.8

1

(c)

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

(d)

Figure 8. Time evolution (a, c) and profiles (b, d) at t ⋆ =
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of the fields u
and w for the second case study.
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4.3 Third case: Robin boundary conditions and a fully nonlinear

problem

The case is illustrated in Figure 2(a). The study is carried out for x ⋆ ∈

[

0 , 1
]

and

t ⋆ ∈

[

0 , 24
]

. The initial conditions are:

u ( x ⋆ , 0 ) = v ( x ⋆ , 0 ) = w ( x ⋆ , 0 ) = 0 .

Robin–type boundary conditions are assumed for the fields u and v :

u ∞ , L = 0.8 · sin

(

2 · π

10
· t ⋆

) 6

, u ∞ , R = 0.8 ·




1

2
· sin

(

π · t ⋆
) 2

+ sin

(

2 · π

24
· t ⋆

)

 ,

v ∞ , L = 0.9 · sin

(

2 · π

3
· t ⋆

) 2

, v ∞ , R = 1.4 ·




1

2
· sin

(

2 · π

3
· t ⋆

) 2

+ sin

(

2 · π

24
· t ⋆

)



and the following Biot numbers:

for x ⋆ = 0 , Bi m = 200 , Bi q = 35 , Bi v = 10 ,

for x ⋆ = 1 Bi m = 125 , Bi q = 20 , Bi v = 50 .

Dirichlet–type boundary conditions are considered for w :

w( 0 , t ⋆ ) = 1.3 ·



 sin

(

2 · π

6
· t ⋆

) 2

+ sin

(

2 · π

24
· t ⋆

)

 ,

w( 1 , t ⋆ ) = 0.7 ·



 sin

(

2 · π

6
· t ⋆

) 2

+ 1 + tanh
(

t ⋆
− 12

)


 .

The material properties associated to diffusive and advective transfer processes are given
by the following dimensionless Fourier and Peclet numbers:

Fom = 4 · 10 −3 , Fo q = 4 · 10 −2 , Foa = 4 · 10 −1 ,

Pe m = 2 · 10 −3 , Pe v = 3 · 10 −3 , Pe q = 5 · 10 −3 ,

and the following coupling parameters:

γ = 1.5 · 10 −3 , δ = 3 · 10 −4 .

The Kossovitch numbers equal to:

Ko qv = 1 · 10 −2 , Ko qs = 2 · 10 −2 , Ko av = 2 · 10 −2 ,

Koas = 3 · 10 −2 , Ko at = 1 · 10 −2 , r ⋆ = 1 .
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The storage coefficients incorporating the nonlinearity of the material properties are given
by:

c ⋆
q = 1 + 0.6 · u 2 + 0.1 · v + 0.3 · w , c ⋆

av = 1 + 0.06 · u ,

c ⋆
m = 1 + 0.05 · u 2 + 0.03 · v 2 + 0.01 · w 2 , c ⋆

as = 1 ,

c ⋆
a = 1 + 0.04 · u + 0.03 · v + 0.01 · w , c ⋆

at = 1 + 0.03 · v ,

c ⋆
qv = 1 , c ⋆

qs = 1 .

The permeability coefficients are given by:

k ⋆
q = 1 + 0.05 · u + 0.03 · v + 0.01 · w ,

k ⋆
v = 1 + 0.1 · u + 0.01 · u 2 + 0.02 · v + 0.02 · w ,

k ⋆
m = 1 + 0.6 · u + 0.1 · v + 0.3 · w ,

k ⋆
a = 1 + 0.01 · u + 0.02 · u 2 + 0.07 · v 2 + 0.04 · w 2 .

The advection coefficients are:

a ⋆
q =

(

1 + 0.01 · v
)

·
∂w

∂x ⋆
, a ⋆

v =
(

1 + 0.03 · u
)

·
∂w

∂x ⋆
.

Finally, the saturation rate σ is defined as:

σ : u −→
1

2
·

(

1 + tanh u
)

.

The NM1 ⋆ is employed for the computation of the solution with the discretisation
parameters ∆x ⋆ = 0.01 and ∆t ⋆ = 10 −4 , which is consistent with the CFL condition.
With higher time discretisation the model does not compute a bounded solution. The
numerical models NM3 2 and NM3 3 are also used with ∆t ⋆ = 2 · 10 −3 and ∆x ⋆ = 10 −2 .
A pseudo–spectral solution is considered as reference. It is obtained with the MatlabTM

open source toolbox Chebfun [31].
The time evolution of the fields is shown in Figures 11(a), 11(c) and 11(e). For the sake

of clarity, only the results computed with NM3 are presented. The fields vary according
to the boundary conditions. A good agreement is observed between the solutions and

the reference one. Similar conclusions can be drawn for the velocity
∂w

∂x ⋆
according to

Figure 12. The error among the solutions obtained with the numerical models NM3 2,
NM3 3 and NM1 ⋆ , and the reference one is shown in Figures 13(a), 13(b) and 13(c).
Almost no differences are observed for the fields u and v indicating that the error may
arise from the space discretisation and not the temporal scheme. Some differences are
noticed in the error of the field w for the numerical model NM3 and NM1 ⋆ . They may be
due to the temporal scheme and the increase of the discretisation parameter ∆t ⋆ between
NM1 ⋆ and NM3.
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Table 2 reports the computational time required by each model to compute the solution.
The numerical model NM3 2 enables to compute the solution ten times faster than NM1 ⋆

for the same order of accuracy ε ∞ . This ratio becomes six times for the numerical model
NM3 3. Since the number of operations to do between two–step Runge–Kutta approaches
for s = 2 and for s = 3 is multiplied by two (with same discretisation parameters), these
results are consistent. One important result is the relaxation of the stability condition.
The two–step Runge–Kutta scheme enables to reduce the restriction by twenty times.

This case highlights the efficiency of the proposed numerical models for real applications
with a very satisfactory accuracy and a reduced computational time compared to more
conventional approaches.

Table 2. Computational time required by the numerical models to compute the solution of
the third case study (Section 4.3), with t max = 84

[

s

]

and ∆t min = 10 −4.

Numerical Model (NM) ∆x ⋆ ∆t ⋆ ε ∞ CPU time

NM1 ⋆ 10 −2 ∆t min 6.1 · 10 −3 t max

NM3 2 10 −2 20 · ∆t min 7.4 · 10 −3 0.09 · t max

NM3 3 10 −2 20 · ∆t min 7.4 · 10 −3 0.15 · t max

5 Conclusion

In the context of predicting the physical phenomena of heat, air and moisture transfer in
porous material, it is of major importance to build efficient numerical models that maximize
the accuracy and minimize the computational efforts. However, the task is ambitious
considering the numerical issues of the mathematical model to predict highly coupled
advective–diffusive phenomena. The model is composed of a system of two advection–
diffusion differential equations plus one purely diffusion equation. Two major numerical
issues are identified to propose an efficient numerical model. First, a very restrictive
stability condition is imposed if one uses classical explicit Euler approaches. Second, the
high nonlinearities in the problem may become prohibitive to the use of implicit methods.
Indeed, even if the stability restrictions are overcome, they impose costly subiterations
that do not save computational efforts.

Hence, this paper proposes an efficient numerical model to solve these difficulties. As
described in Section 3, it is based on a promising combination of three innovative numeri-
cal approaches. The first one is the so-called Du Fort–Frankel approach that builds an
explicit scheme with extended stability restrictions for the computation of purely diffusion
equation. The two advection–diffusion equations are solved using the Scharfetter–
Gummel scheme for the space discretisation combined with an explicit two-step Runge–
Kutta method. This combination enables to relax the standard stability restriction up to
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Figure 11. (a, c, e) Time evolution and (b, d, f) profiles of the fields u , v and w for the
third case study.
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Figure 12. (a) Time evolution and (b) profiles of the velocity
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for the third case study.

∆t 6 O

(

5
)

·∆x for these two equations. At the end, an explicit scheme with a strongly re-
laxed stability conditions is obtained. Furthermore, the Scharfetter–Gummel scheme
is well balanced and asymptotically preserving to handle strong variations of advection and
diffusion coefficients [22].

To validate the numerical efficiency of the proposed numerical model, three validation
cases have been considered. The first one assumed quasi-linear coefficients allowing the
verification of the theoretical results. Indeed, the stability condition is relaxed by a factor
of 40 compared to a standard approach based on explicit Euler time discretisation. The
second case proposed an analytical solution for a slightly nonlinear case. To our knowledge,
this solution has never been proposed in the literature and may be useful for the valida-
tion of numerical models from other researchers. A very satisfying accuracy at the order
O( 10 −4 ) is observed for the proposed model using discretisation parameters ∆x ⋆ = 10 −2

and ∆t ⋆ = 10 −4 . The last case study dealt with a more realistic application where co-
efficients are nonlinear. Robin-type boundary conditions varying in time are assumed.
A very good agreement has been observed with the reference solution obtained with the
MatlabTM open source toolbox Chebfun [31]. Moreover, the computational time is divided
by 10 compared to the standard approaches for the same level of accuracy. These three case
studies enhance the possibility to build an efficient numerical model for real applications
with minimized computational efforts and a very satisfactory accuracy. It is important
to remark that if the numerical stability restrictions is relaxed thanks to the innovative
schemes, the choice of the time discretisation has to be made according to the characteris-
tic time of the physical phenomena. Further research should focus on the extension of the
numerical model to multi-dimensional transfer.
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6 Nomenclature

Latin letters

a q heat advection coefficient [W/(m 2 · K)]

a v vapor advection coefficient [s/m]

c specific heat [J/(kg · K)]

c at storage coefficient [kg · Pa/(J · K)]

c m moisture storage capacity [kg/(m3 · Pa)]

c q volumetric heat capacity [J/(m 3 · K)]

c qs , c as storage coefficient [kg · Pa/J]

c qv , c a , c av storage coefficient [kg/J]

k a permeability coefficient [s 2/m 2]

k q thermal conductivity [W/(m · K)]

L length [m]

m mass [kg]

P , P 1 pressure [Pa]

r 12 latent heat of evaporation [J/kg]

T temperature [K]

t time coordinate [s]

x space coordinate [m]

Greek letters

α m surface vapour transfer coefficient [s/m]

α q surface heat transfer coefficient [W/(m2 · K)]

σ saturation rate [ø]
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