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SCALING LIMITS OF PERMUTATION CLASSES
WITH A FINITE SPECIFICATION: A DICHOTOMY

FRÉDÉRIQUE BASSINO, MATHILDE BOUVEL, VALENTIN FÉRAY, LUCAS GERIN,
MICKAËL MAAZOUN, AND ADELINE PIERROT

Abstract. We consider uniform random permutations in classes having a finite combi-
natorial specification for the substitution decomposition. These classes include (but are
not limited to) all permutation classes with a finite number of simple permutations. Our
goal is to study their limiting behavior in the sense of permutons.

The limit depends on the structure of the specification restricted to families with the
largest growth rate. When it is strongly connected, two cases occur. If the associated
system of equations is linear, the limiting permuton is a deterministicX-shape. Otherwise,
the limiting permuton is the Brownian separable permuton, a random object that already
appeared as the limit of most substitution-closed permutation classes, among which the
separable permutations. Moreover these results can be combined to study some non
strongly connected cases.

To prove our result, we use a characterization of the convergence of random permutons
by the convergence of random subpermutations. Key steps are the combinatorial study,
via substitution trees, of families of permutations with marked elements inducing a given
pattern, and the singularity analysis of the corresponding generating functions.
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1. Introduction

1.1. Context and background. In this paper we consider sets of permutations (of all
sizes), called classes, which are classical objects in enumerative combinatorics [Vat15]. By
definition, a permutation class is a set of permutations downward closed with respect to a
natural notion of substructures, called patterns (see Section 2.1 for the relevant definitions).
The general question we are interested in is the description of the asymptotic properties
of a uniform random permutation of large size in a class. The literature on the subject
has developed quickly in the past few years with a variety of approaches, see for example
[BBF+20, Bor18, HRS17, Jan19, MP16, MP14]. A detailed presentation of this literature
can be found for example in [BBF+18, Section 1.1].

Permutation classes are most often studied with an enumerative perspective, and among
the combinatorial tools introduced to enumerate permutation classes is the so-called sub-
stitution decomposition. We present briefly this notion here in an informal way, precise
statements will be given in Section 2.

We see a permutation σ (of size n) as its diagram, i.e. a square grid with dots at
coordinates (i, σ(i)) (for i in {1, . . . , n}). For θ a permutation of size d, the substitution
θ[π(1), . . . , π(d)] is obtained by inflating each point θ(i) of θ by a square containing the
diagram of π(i), see Fig. 1.

2413[132, 21, 1, 12] = = = 2438715612

21

132

1

Figure 1. Example of substitution of permutations.

Each permutation can be decomposed in a canonical way as successive substitutions,
starting from the indecomposable elements, which are called simple permutations (defined
in [AAK03]). This allows to encode bijectively permutations by trees, called substitution
trees. In the sequel, classes of permutations are identified with the set of their substitution
trees, and therefore denoted by T . We are interested in classes T with a nice recursive
description, namely a finite system of combinatorial equations for T , called specification.

To fix the ideas, we explain how such a specification can be obtained for the famous
class of separable permutations. One way to define the class Tsep of separable permutations
is as the smallest set of permutations containing 1 and stable by taking substitutions in 12
and 21. Therefore Tsep satisfies

Tsep = {•} ] 12[Tsep, Tsep] ] 21[Tsep, Tsep].

This defines recursively the elements of Tsep, this is however not a combinatorial speci-
fication, since some separable permutations have several decompositions witnessing their
membership to 12[Tsep, Tsep] (or to 21[Tsep, Tsep]). To express Tsep in a way that allows
only one decomposition of any separable permutation (and make the tree decomposition
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unique), we need to consider the subsets T not⊕
sep (resp. T not	

sep ) consisting in separable permu-
tations that cannot be written as 12[π(1), π(2)] (resp. 21[π(1), π(2)]). It can easily be shown
that these three families satisfy the following combinatorial specification

(1)


Tsep = {•} ⊎ ⊕[T not⊕

sep , Tsep]
⊎ 	[T not	

sep , Tsep];

T not⊕
sep = {•} ⊎ 	[T not	

sep , Tsep];

T not	
sep = {•} ⊎ ⊕[T not⊕

sep , Tsep].

This example is a particular case of a more general family of permutation classes, that
of substitution-closed classes. All these classes have combinatorial specifications with three
equations (given below in Eq. (2)). In [BBF+20], we obtained all the possible limiting
shapes for such classes with a unified combinatorial approach and a careful generating
function analysis.

Another sufficient condition for having a specification is that the class contains finitely
many simple permutations. It was proved by [AA05] that such a class T always has an
algebraic generating function, and [BBP+17] provides an algorithmic way to compute a
specification for T . Unlike for substitution-closed classes, the number of equations is not
fixed (and grows quickly in examples), making a unified analysis much harder. We also
note that a class T may admit such a finite specification, while containing infinitely many
simple permutations. This is the case of the class of pin-permutations [BHV08b, BBR11].

A combinatorial specification for the class T provides in an automatic way a random
sampler [FZV94, DFL+04] of objects in T . We show in Fig. 2 large permutations in
several classes obtained in this way (using Boltzmann generators). Permutations are here
represented by their diagrams. As we see on these examples, various qualitative asymptotic
behaviors occur. The results of the present paper apply in particular to each of these four
cases, giving an explicit limit shape result.

(a) (b) (c) (d)

Figure 2. Large uniform random permutations in four different finitely
specified classes. These four cases are covered by the present paper.

Our limiting results are phrased in the framework of permutons, which can be thought
of as infinite rescaled permutations. A permuton is a measure on [0, 1]2, whose projections
on the horizontal and vertical axes are the uniform measure on [0, 1]. Every permutation
defines a permuton, by considering its rescaled diagram. The set of permutons is endowed
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with the weak convergence topology of measures, providing a natural notion of convergence
for permutations. We review this setting in further details in Section 3.1.

1.2. Presentation of the results. We consider a permutation class T with a specifi-
cation. This specification involves several families of permutations T0 = T , T1, . . . , Td.
Among these families, the ones with the smallest radius of convergence play a prominent
role in the asymptotics; we call such families critical. In our case, the class T is always
critical and we assume that the other critical families are T1, . . . , Tc for some c ≤ d.

An important piece of information to study T through its specification is to know which
families appear in the equation defining each Ti in the specification. This is traditionally
encoded in a directed graph with vertex set {T0, . . . , Td}, called dependency graph of the
specification. A standard assumption to study combinatorial specifications is that this
graph is strongly connected (see [FS09, Thm. VII.6, p. 489], [Drm09, Thm. 2.33] or
[BD15, Lemma 2]), implying in particular that all families are critical. This assumption is
too strong in our context. We shall instead assume that the dependency graph restricted
to the critical families is strongly connected. We will discuss later some methods to relax
this assumption.

Under the strong connectivity assumption above, there are two possible asymptotic
behaviors for a uniform random permutation σn in T .

• Either the combinatorial equation defining each critical family Ti is linear in ev-
ery critical family (it may depend nonlinearly on non-critical families). This is
referred to as the essentially linear case. In this case, we prove in Theorem 3.3
the convergence of σn in distribution towards a deterministic permuton, that has
a shape of an X, i.e. is supported by four line segments from the corners of [0, 1]2

to a common central point. This permuton depends on the class T only through
a quadruple p whose components are in [0, 1], sum up to 1 and indicate the mass
of the four line segments (thus determining the coordinates of the central point).
The simulations (a) and (b) of Fig. 2 fit in this framework. In the second case,
the limiting X-permuton is in some sense degenerate: only two components of its
quadruple p are nonzero, explaining the V -shape. The statements regarding those
two classes may be found in Sections 3.2.2 and 3.2.3.
• The other possibility (called essentially branching case) is that the equation defining
some critical family Ti involves a product of at least two critical families (which may
be the same). In this case, we prove in Theorem 3.6 that σn converges in distribution
towards a biased Brownian separable permuton, as introduced in [BBF+20, Maa20].
In this case, the limit depends only on T through a single real parameter p ∈ [0, 1].
The simulation (c) of Fig. 2 illustrates this behavior, and the corresponding formal
statement regarding this class may be found in Section 3.3.1.

Unlike the X-permuton, the Brownian separable permuton already appeared in our pre-
vious works [BBF+20, BBF+18] as a universal limit of substitution-closed permutation
classes. The second item above shows that the universality class of the Brownian separa-
ble permuton extends further than the substitution-closed classes. The first item reveals
another (new) universality class, with a simple limiting object: the X-permuton.
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As the readers will have noticed, the simulation (d) of Fig. 2 does not fit in any of the two
above situations. The reason is that the dependency graph of the underlying specification
restricted to the critical families is not strongly connected.

Our main results (Theorem 3.3 and Theorem 3.6) do not apply to the not strongly
connected case. However, in Section 7, we describe a strategy to reduce the study of such
cases to the strongly connected one. This strategy applies in particular to the class in the
simulation (d) above, and the limit in this case is a juxtaposition of two X-permutons of
random relative sizes. This statement is proved in Section 7.3.3.

1.3. Relation with our previous works. The present paper is the third article in the
line that we started with [BBF+18]. We first obtained the asymptotic behavior of separable
permutations (separable permutations form the iconic class of the branching case). In
[BBF+20] we proposed a first extension towards substitution-closed classes. We identified
three distinct asymptotic behaviors according to some technical conditions (H1), (H2) and
(H3) related to the generating function of the family of simple permutations in the class
(we refer to [BBF+20] for precise statements).

We propose in the present paper another extension, namely to permutation classes with
a finite specification. This contains the case of substitution-closed classes, as we will see
p.14. We restrict ourselves to specifications satisfying an analytic condition – that we
denote (AR) –, which informally says that the equations appearing in this system are all
analytic at the radius of convergence. In the case of substitution-closed classes, this is
equivalent to condition (H1).

The present paper

The linear case (Sec.5)
→ X-permuton

The branching case (Sec.6)
→ Brownian permuton

Universal limits of substitution-closed

Hyp. (H1) Hyp. (H2) Hyp. (H3)

[BBF+18]
Separable permutations

Beyond the strongly
connected case (Sec.7)

→ many cases

permutation classes [BBF+19]

1.4. Proof tools: analytic combinatorics of algebraic systems. Our main results
are convergence results of random permutations in some class C in the topology of per-
mutons. A general result relates such convergence to the convergence, for each k ≥ 1, of
the substructure, i.e. the pattern, induced by k random elements of the permutation. The
latter can be proved by enumerating, for each π, the family Cπ of permutations in C with k
marked elements inducing the pattern π. It turns out that the combinatorial specification
for C can be refined to a combinatorial specification for Cπ.
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We analyze the resulting specifications with tools of analytic combinatorics. Namely, we
classically translate combinatorial specifications into systems of equations for the associated
generating series. When the equations are analytic on a sufficiently large domain and when
the dependency graph of the system is strongly connected, two different kinds of behavior
might happen:

• either the system is linear, and the series have all polar singularities at their radius
of convergence [BD15];
• or the system is called branching, and the series have all square-root singularities
(this is known as Drmota-Lalley-Woods theorem in the literature [FS09, Drm09]).

We need however to adapt the hypotheses of these theorems to our setting, and more
importantly, to make explicit the coefficients in the first-order asymptotic expansion of the
series; this is done in Appendix A.

We will apply these theorems to the critical series in our (refined) tree-specifications,
considering the non-critical series as parameters. Once we know the singular behavior of
the series, the transfer theorem of analytic combinatorics [FS09] gives us the asymptotic
number of elements in T and Tπ for all π. We deduce from this the probability that k
marked elements in a uniform permutation in T induce a given pattern π. Comparing
these probabilities to those in the candidate limiting permutons, this proves the desired
convergence.

In Section 3.4, we present a precise outline of the proof.

1.5. Probabilistic lens on the linear/branching dichotomy. Before going into the de-
tails of our results, we briefly shed a probabilistic light on the linear/branching dichotomy.
The specification of T gives a natural encoding of a random t ∈ T as a random multitype
tree, whose types are given by T0, T1, . . . , Td.

For multitype Galton-Watson trees the research efforts have been mostly concentrated
on the case where the matrix of types is irreducible (see [Mie08, Ste18]), this corresponds
in our setting to the subcase where the whole dependency graph is strongly connected.
Under this hypothesis, the linear case is trivial: the tree is just a line and the theory
boils down to the analysis of finite irreducible Markov chains. In the branching case,
the behavior is well-understood too: it is shown in [Mie08] that (critical, finite-variance)
multitype Galton–Watson trees counted by their number of nodes converge after rescaling
to Aldous’s Brownian Continuum Random Tree (CRT).

Without the irreducibility condition, there is no treatment in the literature: in full
generality many different cases could happen. For instance this may be illustrated by
triangular Pólya urns [Jan06], which model two-type reducible branching processes.

In our setting, where the dependency graph restricted to critical series is assumed to be
strongly connected, here is what we expect. The tree contains a subtree starting at the root
formed by nodes of critical types, on which fringe subtrees with nodes of subcritical types
(called bushes below) are grafted. We expect the critical part to be of linear size, while
bushes are all of size O(1). In the essentially linear case, the tree should therefore look like
a long line to which small bushes are grafted, while in the essentially branching case we
have a tree close to the Brownian CRT. This dichotomy is confirmed by simulations, see
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Fig. 3. This explains why we get in one case a deterministic permuton, and in the other
case a Brownian object.

Figure 3. Substitution trees of uniform random permutations in finitely
specified classes. Vertices are colored according to their type in the speci-
fication, and critical types have a bigger marker. Left: the essentially lin-
ear case (for the class Av(2413, 1243, 2341, 41352, 531642), see Section 3.2.3).
Right: the essentially branching case (for the class Av(132), see Sections 2.6.2
and 3.3.2).

It might be possible to follow this intuition to prove our results: first proving convergence
results for the (decorated) trees, and then showing continuity properties of the tree-to-
permutation map to deduce the convergence of the associated permutations. This raises
however many difficulties, like defining a good topology for decorated trees and proving
convergence results for reducible multitype trees in this new topology. Therefore we have
preferred to work directly on permutations, with combinatorial methods, as explained in
Section 1.4.

We finally mention that the recent paper [BBFS19], which reproves and strengthens
the Brownian separable permuton limit result for substitution-closed classes of [BBF+20],
uses the above approach of proving convergence results on trees, and then translating
them to permutations. The approach of [BBFS19] relies on the following fact: in the
context of substitution-closed classes, thanks to a further encoding, the trees representing
permutations are distributed as conditioned monotype Galton-Watson trees, which are
better understood than their multitype analogues. This reduction to monotype trees does
not seem to extend to the general context of classes with a finite specification studied in
the present paper.

1.6. Simulations and examples. To apply our results to a specific permutation class,
a finite specification needs to be computed and analyzed, to identify under which case
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it falls down, check the relevant hypotheses, and compute the parameters of the limiting
permuton if applicable.

For classes with a finite number of simple permutations, we provide an implementation
of the algorithm of [BBP+17] for the computer algebra system Sage. This implementation
is available on-line [Maa19]. It allows to compute the specification of a given class, and
to deduce a system of equations for the series enumerating the various families in the
specification. It can also output a Boltzmann sampler of the class and run it. Simulations
in Fig. 2 were obtained this way.

The next step to apply our results is to identify the critical series. Unfortunately, as
far as we are aware of, there is no automatic way to perform this step. When the system
of equations we obtain is solvable, it is usually easy to see from the analytic formulas for
the generating functions which are the critical families. It is also sometimes possible to
identify them even in non-solvable cases, using the dependency graph of the system and
estimates on the growth rates of the various families; see Lemma 2.14 for the relationship
between critical series and dependency graphs and Appendix B.5 for an example of the
identification of critical series in a non-solvable case.

Once critical series have been identified, the following conditions need to be checked
i) whether the dependency graph restricted to these critical series is strongly con-

nected;
ii) an aperiodicity condition;
iii) whether the system is essentially linear or essentially branching.

This is usually straightforward from definitions. When items i) and ii) above are fulfilled,
our results apply and the limiting permuton is either an X-permuton or a biased Brownian
separable permuton, depending on item iii) above. One still needs to compute the param-
eter(s). To this end, the program [Maa19] contains some useful functions, in particular
evaluating the matrices and eigenvectors appearing in formula (18) p.37.

Most of the examples given in this paper were treated this way. For each of them, an
accompanying Jupyter notebook is provided1.

1.7. Outline of the paper.
• We present in Section 2 (Our framework) the combinatorial specifications of
permutation classes (where permutations are represented by their standard trees
– see Definition 2.5), and the terminology essentially linear/essentially branching
case.
• In Section 3 we give our main results: Theorem 3.3 and Theorem 3.6. We provide
several applications to particular permutation classes.
• In Section 4 (Tree Toolbox, which is useful for both the essentially linear and the
essentially branching case), we gather useful definitions and properties regarding
the families of trees induced by our combinatorial decompositions. In particular we
define in Definition 4.9 the critical subtree Criti(t) of a standard tree in Ti. Critical
subtrees play an important role in the analysis.

1All available from this address: http://mmaazoun.perso.math.cnrs.fr/pcfs/
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• In Section 5 (The Essentially Linear Case), we do the analysis which leads
to the proof of Theorem 3.3. As the limiting object is in this case the X-permuton,
we also state and prove in Section 5.5 some of its properties.
• Section 6 (The essentially branching case) is devoted to the proof of Theo-
rem 3.6.
• Our main theorems are stated under Hypothesis (SC), ensuring that G? (the de-
pendency graph of the underlying specification restricted to the critical families)
is strongly connected. We explain in Section 7 (Beyond the strongly con-
nected case) how to apply Theorems 3.3 and 3.6 in several situations where the
graph G? is not strongly connected.
– In Section 7.1 we give sufficient conditions under which there typically exists a
giant component in a standard tree in T0. It follows that we obtain the same
limiting objects as in Sections 5 and 6.

– In Section 7.2 we show that several macroscopic substructures can appear in
a typical large tree of T0. In that case, the limiting object is an assembling of
Brownian separable permutons, or X-permutons, depending on the case.

• Appendix A is a complex analysis toolbox. We analyze, near their dominant singu-
larity, solutions Y = (Y1, . . . Yc) of systems of equations of the form

Y(z) = Φ(z,Y(z)),

where Φ(z,y) = (Φ1(z,y), . . . ,Φc(z,y)) is a vector of multivariate power series of
(z,y) with nonnegative integer coefficients. This is a standard problem in analytic
combinatorics (see, e.g., [Drm97, Drm09, FS09, BD15]) but we need variants or
more precise/general versions of the statements we could find in the literature.
These results could be useful independently of the present article.
• In Appendix B we work out several examples of specifications and their analysis.
In particular we discuss the computational details.

2. Our framework

The starting point of our analysis of a permutation class is a (combinatorial) specification
for this class. We collect here the necessary definitions to set the framework of our study,
and recall results from the literature that yield specifications of permutation classes. The
results we obtain (presented in Section 3) depend on the type of the specification we have,
and we also present these different types of specifications in this section.

2.1. Permutations, patterns, and classes. For any positive integer n, the set of per-
mutations of [n] := {1, 2, . . . , n} is denoted bySn. We write permutations ofSn in one-line
notation as σ = σ(1)σ(2) . . . σ(n). For a permutation σ in Sn, the size n of σ is denoted
by |σ|. We often view a permutation σ of size n as its diagram: it is (up to rescaling) the
set of points of coordinates (i, σ(i))1≤i≤n in the Cartesian plane.

For σ ∈ Sn, and I ⊂ [n] of cardinality k, let patI(σ) be the permutation of Sk induced
by {σ(i) : i ∈ I}. For example for σ = 65831247 and I = {2, 5, 7} we have

pat{2,5,7} (65831247) = 312
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since the values in the subsequence σ(2)σ(5)σ(7) = 514 are in the same relative order as
in the permutation 312. A permutation π = patI(σ) is a pattern involved (or contained)
in σ, and the subsequence (σ(i))i∈I is an occurrence of π in σ. When a pattern π has no
occurrence in σ, we say that σ avoids π. The pattern containment relation defines a partial
order on S = ∪nSn: we write π 4 σ if π is a pattern of σ.

A permutation class, C, is a subset of S which is downward closed under 4. Namely, for
every σ ∈ C, and every π 4 σ, it holds that π ∈ C. It is known (see for example [Bon12,
Paragraph 5.1.2]) that permutation classes may equivalently be defined as subsets of S
characterized by the avoidance of a (finite or infinite) family of patterns. For every class
C, there is a unique such family, B, consisting of elements incomparable for 4. It is called
the basis of C, and we write C = Av(B).

2.2. Substitution of permutations and encoding by trees. We now define formally
the notion of substitution, already presented in the introduction

Definition 2.1. Let θ = θ(1) · · · θ(d) be a permutation of size d, and let π(1), . . . , π(d) be
d other permutations. The substitution of π(1), . . . , π(d) in θ is the permutation of size
|π(1)|+ · · ·+ |π(d)| obtained by replacing each θ(i) by a sequence of integers isomorphic to
π(i) while keeping the relative order induced by θ between these subsequences.
This permutation is denoted by θ[π(1), . . . , π(d)].

Examples of substitution are conveniently presented representing permutations by their
diagrams (see Fig. 4 below, or Fig. 1 in the introduction).

12[132, 21] =
132

21

= = 13254 21[132, 21] =
132

21
= = 35421

Figure 4. Substitution of permutations.

It will be interesting to consider nested substitutions, starting from permutations of size
1. The corresponding succession of operations is then encoded by a tree, called substitution
tree.

Definition 2.2. A substitution tree of size n is a rooted plane tree with n leaves, where
any internal node with k ≥ 2 children is labeled by a permutation of size k. Internal nodes
with only one child are forbidden. The labels 12 (resp. 21) of internal nodes are often
replaced by ⊕ (resp. 	).

Given any tree t, we denote by Int(t) the set of internal nodes of t and by Lf(t) the set
of leaves of t. Also, given a tree t and a node v in t, we call fringe subtree of t rooted at v
the subtree of t whose nodes are v and all its descendants.

Definition 2.3. Let t be a substitution tree. We define inductively the permutation perm(t)
associated with t:
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• if t is just a leaf, then perm(t) = 1;
• if the root of t has r ≥ 2 children with corresponding fringe subtrees t1, . . . , tr (from
left to right), and is labeled with the permutation θ, then perm(t) is the permutation
obtained as the substitution of perm(t1), . . . , perm(tr) in θ:

perm(t) = θ[perm(t1), . . . , perm(tr)].

= 24387156

2413

132 - +

Figure 5. A substitution tree encoding a permutation.

Fig. 5 illustrates this construction. When perm(t) = σ, we say that t is a tree that
encodes σ, or a tree associated with σ. By construction, any tree associated with σ has
exactly |σ| leaves.

In general, permutations may be encoded by several substitution trees. In what follows,
we recall how to exhibit a particular substitution tree associated with each permutation σ.
To this end, we need the notion of simple permutations.

Definition 2.4. A simple permutation is a permutation σ of size n > 2 that does not
map any nontrivial interval ( i.e. a range in [n] containing at least two and at most n− 1
elements) onto an interval.

For example, 451326 is not simple as it maps [3; 5] onto [1; 3]. The smallest simple
permutations are 2413 and 3142 (there is no simple permutation of size 3). We can now
define the notion of standard trees.

Definition 2.5. A standard tree is a substitution tree in which internal nodes satisfy the
following constraints:

• Internal nodes are labeled by ⊕ (representing 12), 	 (representing 21), or by a
simple permutation.
• Every node labeled by ⊕,	 has degree2 two. The left-child of a node labeled by ⊕
(resp. 	) cannot be labeled by ⊕ (resp. 	).
• A node labeled by a simple permutation α has degree |α|.

The following proposition is an easy consequence of [AA05, Proposition 2].

Proposition 2.6. The mapping perm of Definition 2.3 defines a bijection from standard
trees to permutations that maps the number of leaves of the tree to the size of the permu-
tation.

2Throughout the paper, by degree of a node in a tree, we mean the number of its children (which is
sometimes called arity or out-degree in other works). Note that it is different from the graph-degree: for
us, the edge to the parent (if it exists) is not counted in the degree.
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From now on, we identify a permutation σ and its associated standard tree.

Remark 2.7 (regarding the terminology). In most papers in the literature, simple per-
mutations may have size 2 or more. With this definition, 12 and 21 are both simple
permutations. In the context of substitution trees, they however play a different role than
other simple permutations. This explains why we take another convention here.

The standard trees that we consider here are a variant of the canonical trees considered
in [BBF+20]; in the latter, nodes labeled by 	 (resp. ⊕) can be of any degree (representing
respectively permutations 12 . . . k and k . . . 21 for any k ≥ 2) but none of their children
may have a label 	 (resp. ⊕). Going from one to the other is straightforward.

2.3. Combinatorial specifications for families of permutations. The starting point
of our study of a permutation class C is a combinatorial specification for C, or rather for the
family of standard trees of permutations of C. The specifications we will consider involve
not only permutation classes, but also more general families of permutations (see Defini-
tion 2.11), and we may as well consider specifications for these more general families. We
identify any such family of permutations with the family of corresponding standard trees,
T . For any such T , we denote by ST the set of simple permutations in T . Throughout this
article we will only consider families of permutations with a particular type of specification,
called a tree-specification, which we now define.

Definition 2.8 (Tree-specifications).
Let T0, . . . , Td be d + 1 families of permutations. A tree-specification of (T0, . . . , Td) is a
system of combinatorial equations

(ET ) Ti = εi{•} ]
⊎

π∈STi]{⊕,	}

⊎
(k1,...,k|π|)∈Ki

π

π[Tk1 , . . . , Tk|π| ] (0 ≤ i ≤ d)

where the symbol ] denotes disjoint union, • is the permutation of size 1 and for every
i ≤ d, εi ∈ {0, 1} (so that εi{•} is either ∅ or {•}) and Ki

π is a subset of {0, . . . , d}|π|.
Note that we extended the notation for substitution to sets of permutations in the

obvious way: π[Tk1 , . . . , Tk|π| ] is the set of permutations π[θ(1), . . . , θ(|π|)] where for each i,
θ(i) ∈ Tki .

In order to avoid trivial cases, in this article we consider only tree-specifications such
that every family Ti is nonempty, at least one family Ti is infinite and at least one εi is
nonzero.

Definition 2.9. Given a permutation class C, a specification for C is a tree-specification
as above such that T0 is (the set of standard trees of) C.

We present some cases where it is known that a specification for C exists.

The substitution-closed case.

Definition 2.10. A permutation class C is substitution-closed if, for every θ, π(1), . . . , π(d)

in C, the substitution θ[π(1), . . . , π(d)] also belongs to C.
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A characterization of substitution-closed classes which is very convenient in some of
our examples in the following, proved in [AA05, Proposition 1]: a permutation class is
substitution-closed if and only if its basis contains only simple permutations.

A specification for a substitution-closed class C (assuming that C contains 12 and 21) is
easily obtained from [AA05, Proposition 2], which we rephrased as Proposition 2.6 above.
Indeed, in this case, C = T is simply the set of standard trees such that all nodes carry
labels from ST ] {⊕,	}. Then, denoting T not⊕ (resp. T not	) the subset of these standard
trees whose root is not labeled by ⊕ (resp. 	), we have the tree-specification

(2)



T = {•} ⊎ ⊕[T not⊕, T ]
⊎ 	[T not	, T ]

⊎ (⊎
π∈ST π[T , . . . , T ]

)
T not⊕ = {•} ⊎ 	[T not	, T ]

⊎ (⊎
π∈ST π[T , . . . , T ]

)
T not	 = {•} ⊎ ⊕[T not⊕, T ]

⊎ (⊎
π∈ST π[T , . . . , T ]

)
.

As already mentioned in the Introduction we proved [BBF+20] that under a mild suf-
ficient condition the limiting permuton of a substitution-closed class is a biased Brownian
separable permuton.

The general case. Assume now that C is a permutation class (still assumed to contain 12
and 21) which is not substitution-closed. Finding a specification for C = T can be more
complicated since T is only a subset of the standard trees with node labels in ST ]{⊕,	}.
Using the representation of permutations as standard trees, one can prove however that,
when ST is finite, a tree-specification for T always exists – see [BHV08b, BBP+17]. The
main result of [BBP+17] is that such a specification can be obtained algorithmically, given
the basis B of T . Note that [AA05] ensures that B is necessarily finite, since ST is finite.

In the resulting specification, the families (Ti)0≤i≤d are sets of permutations defined by
avoidance and containment of patterns and restrictions on the root label. We introduce
notation for such classes.

Definition 2.11. For any set T of permutations (most often, a permutation class), for
any sets of patterns {σ1, . . . , σk} and {τ1, . . . , τ`}, and, optionally, for any δ ∈ {⊕,	}, we
define T notδ

〈σ1,...,σk〉,(τ1,...,τ`) to be the subset of T such that

• the patterns σ1, . . . , σk are excluded from every permutation,
• the patterns τ1, . . . , τ` have to occur in every permutation,
• the superscript notδ (for δ = ⊕,	) is optional and indicates that permutations
in this family are δ-indecomposable permutations, i.e. that the root of associated
standard trees are not labeled with δ.

We will assume throughout the paper that we are given a tree-specification of (T0, . . . , Td).
We will see later a few examples of specifications such that T0 is a permutation class.



SCALING LIMITS OF PERMUTATION CLASSES 15

2.4. System of equations, critical series, and dependency graph. The specification
(ET ) of Definition 2.8 induces a system of d + 1 equations for the generating functions Ti
of Ti, of the form

(ET )


T0(z) = ε0z + F0(T0, T1, . . . , Td)

T1(z) = ε1z + F1(T0, T1, . . . , Td)

. . .

Td(z) = εdz + Fd(T0, T1, . . . , Td),

where F0, . . . , Fd are d+ 1 multivariate formal power series with nonnegative integer coef-
ficients (whose variables are denoted y0, . . . , yd). The valuation of each Fi with respect to
the (yj)’s all together is greater than or equal to 2. Moreover, the solutions of this system
can be computed recursively: (T0, T1, . . . , Td) is the unique solution of (ET ) in which all
the Ti’s are power series with nonnegative integer coefficients and without constant term
(by convention there is no permutation of size 0).

Note that Fi is a polynomial when the set of simple permutations of Ti is finite.
For 0 ≤ i ≤ d, let ρi ∈ [0,+∞] be the radius of convergence of Ti. We set ρ = mini{ρi}.

Definition 2.12. The family Ti and its generating series Ti are said critical if ρi = ρ. On
the contrary, we say that Ti and Ti are subcritical if ρi > ρ.

Denote by I? ⊆ [0, d] the set of indices of critical series. By abuse of notation we say
that i is critical if i ∈ I?. We can assume that I? is of the form [0, c]. In the case of a
specification for a permutation class C obtained by the algorithm of [BBP+17], C is always
critical. That is why we focus on critical families.

It is convenient to consider the dependency graph G(ET ) of the specification (ET ). As we
shall see with Lemma 2.14, this graph will help us identify the critical series. Informally,
G(ET ) contains an edge from Tj to Ti when Ti depends on Tj.
Definition 2.13. The dependency graph G(ET ) is the directed graph with d + 1 vertices
labeled by T0, T1, . . . , Td, and whose edges are Tj → Ti for every i, j such that Tj appears in
the equation of (ET ) whose left-hand side is Ti.

Since we are interested in critical families, we also assume without loss of generality that
for each subcritical family there is a directed path in G(ET ) from that vertex to a critical
family. Indeed, we can simply remove the other subcritical families.

The dependency graph G(ET ) of the specification can be used to identify critical families
Ti.
Lemma 2.14. If there is an edge Tj → Ti in the dependency graph G(ET ), then ρi ≤ ρj.
Consequently, if Tj is critical and if there is an edge Tj → Ti, then Ti is critical.

Proof. As the series Fi involved in the system (ET ) have nonnegative coefficients, the radius
of convergence of the left hand side Ti of an equation of (ET ) is smaller than the radius
of convergence of any Tj appearing in the right hand side of the equation defining Ti in
(ET ). �
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Not only criticality, but also aperiodicity (which will appear in the hypotheses of our
main theorems), follows along the edges of the graph.

Definition 2.15. A series A(z) =
∑

n≥0 anz
n is said periodic if there exist integers r ∈

Z≥0, d ≥ 2 such that
{n, an 6= 0} ⊂ r + dZ≥0.

On the contrary, A is aperiodic if it is not periodic.

Lemma 2.16. If Tj is aperiodic and there is an edge Tj → Ti in the dependency graph of
G(ET ), then Ti is aperiodic.

Proof. Assume that there is an edge Tj → Ti. As the series Fi in the system (ET ) has non-
negative integer coefficients, this implies, up to a constant shift, a term-by-term domination
of Tj by Ti. Hence Ti is aperiodic. �

In order to separate difficulties, we will often make the following strong assumption. Let
G? denote the subgraph of G(ET ) consisting of all critical families Ti .
Hypothesis (SC). We assume that G? is strongly connected.

In Section 7 we will see how to combine our results in each strongly connected component
in order to relax Hypothesis (SC).

2.5. Essentially linear and essentially branching specifications. In the following,
we adopt some notational convention to guide the reading. As above, curly letters (like T )
and capital letters (like T ) denote respectively combinatorial families and their generating
series. Moreover, vectors of generating series are denoted by bold letters (like T) and
matrices of such by thick letters (like M). The superscript ? indicates a restriction to
critical families or critical series.

Definition 2.17. The specification (ET ) is essentially branching if there exist i, j, j′ ∈ I?
such that the equation defining Ti in (ET ) involves a term of the form π[. . . , Tj, . . . , Tj′ , . . . ].
It is essentially linear otherwise.

Equivalently, the specification is essentially branching when there exist i, j, j′ ∈ I? such
that ∂Fi

∂yj∂yj′
6= 0.

Denote by T? = (Ti)i∈I? the vector of critical series. We consider the restriction of the
system (ET ) to critical series and regard subcritical series as parameters:

(3) T?(z) = Φ(z,T?(z)),

where Φ(z,y) = (Φ1(z,y), . . . ,Φc(z,y)) is a vector of multivariate power series of (z,y)
with nonnegative integer coefficients: for all i ∈ I?, Φi

(
z, (yj)j∈I?

)
= εiz+Fi

(
(yj)j∈I? , (T`(z))`/∈I?

)
.

In the essentially linear case, this system is linear and can be written as

(4) T?(z) = M?(z) T?(z) + V?(z)

where the entries of M?(z) and V?(z) involve only the variable z and subcritical series.
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More precisely, for i, j ∈ I?, (V?(z))i = Fi(0, . . . , 0, (T`(z))`/∈I?), and (M?(z))i,j is the
coefficient of Tj(z) in Fi(T0(z), . . . , Td(z)), so we can write

(5) M?(z) =

(
∂Fi(y0, . . . , yd)

∂yj

∣∣∣∣
(T0(z),...,Td(z))

)
i,j∈I?

.

Since the specification is essentially linear, in the substitution of yi’s with Ti’s in Eq. (5),
only subcritical series Ti’s are effectively substituted. The analysis of such systems will be
discussed in Section 5.

In the essentially branching case, the analysis of the restricted system relies on Theo-
rem A.6, a variant of the Drmota-Lalley-Wood theorem [FS09, Thm. VII.6, p. 489]. This
analysis involves the Jacobian matrix

(6) M?
(
z, (yk)k∈I?

)
=

(
∂Fi(y0, . . . , yd)

∂yj

∣∣∣∣(
(yk)k∈I? ,(T`(z))`/∈I?

)
)
i,j∈I?

.

We observe that the definition of M? in Eq. (6) is consistent with Eq. (5). Indeed, in the
linear case, M? does not depend on the (yk)

′s for k ∈ I?, and therefore we keep only the
first argument, z.

In the essentially linear case, we will use the following assumption whose first item deals
with the coefficients of V? and the second one with the coefficients of M?.

Hypothesis (RC). We assume that the following conditions are both satisfied
i) For all i ∈ I?, Fi(0, . . . , 0, (T`(z))`/∈I?) has a radius of convergence strictly larger

than ρ.
ii) For all i, j ∈ I?, ∂Fi(y0,...,yd)

∂yj

∣∣∣
(T0(z),...,Td(z))

has a radius of convergence strictly larger

than ρ.

In the essentially branching case, we need the following assumption.

Hypothesis (AR). We assume that for all i ∈ I?, Φi

(
z, (yj)j∈I?

)
= εiz+Fi

(
(yj)j∈I? , (T`(z))`/∈I?

)
is analytic around

(
ρ, (Tj(ρ))j∈I?

)
.

Observation 2.18. When there is a finite number of simple permutations in the (Ti)’s, then
the (Fi)’s are polynomials and Hypotheses (RC) and (AR) are satisfied.

2.6. Examples of tree-specifications. To illustrate the definitions seen so far, we present
a few examples of tree-specifications obtained with the algorithm of [BBP+17]. We will
return to these examples at later stages of our analysis.

2.6.1. The case of substitution-closed classes. Consider a substitution-closed class T . We
introduce the generating series S(u) =

∑
α∈ST u

|α| of the set ST of simple permutations in
T . Recall that the tree-specification (ET ) is given by Eq. (2) p.14. The associated system
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(ET ) is then given by 
T = z + T not⊕T + T not	T + S(T )

T not⊕ = z + T not	T + S(T )

T not	 = z + T not⊕T + S(T ).

The dependency graph (represented on the left of Fig. 6) is strongly connected. Thanks to
Lemma 2.14, this ensures that the three series are critical. It follows that the specification
is essentially branching (although a very special case of such). Indeed, a product of two
critical series appears in the equation for a critical series (e.g. the product T not⊕T in the
equation defining T ).

T

T not⊕ T not	

critical series

T

T not⊕

critical series

T not	

T〈21〉

T not⊕
〈21〉

Figure 6. Left: The dependency graph in the case of a substitution-closed
class. Right: The dependency graph for the specification (8) of Av(132).

2.6.2. An example of class having an essentially branching specification: Av(132). We con-
sider T = Av(132), which is not substitution-closed, as 132 is not simple. One can check
that there is no simple permutation in T . The algorithm of [BBP+17] gives the following
specification 3:

(7)



T = {•} ⊎ ⊕[T not⊕, T〈21〉]
⊎ 	[T not	, T ]

T not⊕ = {•} ⊎ 	[T not	, T ]

T not	 = {•} ⊎ ⊕[T not⊕, T〈21〉]

T〈21〉 = {•} ⊎ ⊕[T not⊕
〈21〉 , T〈21〉]

T not⊕
〈21〉 = {•}.

3See the companion Jupyter notebook examples/Av132.ipynb
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Translating into series and then solving the system, we get

(8)



T = z + T not⊕T〈21〉 + T not	T

T not⊕ = z + T not	T

T not	 = z + T not⊕T〈21〉

T〈21〉 = z + T not⊕
〈21〉 T〈21〉

T not⊕
〈21〉 = z.



T = 1−
√

1−4z
2z

− 1

T not⊕ = 1−
√

1−4z
2

+ z

T not	 = (1− z)1−
√

1−4z
2z

T〈21〉 = z
1−z

T not⊕
〈21〉 = z.

In this case, the critical series are T, T not⊕, T not	 with common radius of convergence ρ =
1/4. Since the product T not	T appears in the equation for T in system (8), it follows
that the specification (7) is essentially branching. Moreover, the restriction G? of the
dependency graph to critical series (see Fig. 6, right) is strongly connected.

2.6.3. An example of class having an essentially linear specification: the X-class. We con-
sider next the class T0 = Av(2413, 3142, 2143, 3412), which is known as the X-class [Eli11,
Wat07]. This class is not substitution-closed and contains no simple permutation. The
algorithm of [BBP+17] gives the following specification4:

(9)



T0 = {•} ] ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T1, T5] ] 	[T1, T6] ] 	[T7, T5]

T1 = {•}
T2 = {•} ] ⊕[T1, T2]

T3 = ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T1, T5] ] 	[T1, T6] ] 	[T7, T5]

T4 = 	[T1, T5] ] 	[T1, T6] ] 	[T7, T5]

T5 = {•} ] 	[T1, T5]

T6 = ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T1, T6] ] 	[T7, T5]

T7 = ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2].

For the sake of readability, when examples become more complicated as above, we simply
denote the families of trees occurring in the specification by (Ti)i.

The specification (9) translates into a system on the series (Ti)0≤i≤7, whose resolution
gives 

T0 = −z(2z−1)
(2z2−4z+1)

T1 = z

T2 = T5 = −z
(z−1)

T3 = T6 = −z2
(z−1)(2z2−4z+1)

T4 = T7 = z2(−z+1)
(2z2−4z+1)

The factor 2z2 − 4z + 1 in the denominator determines the criticality here, and the
critical series (of radius of convergence ρ = 1 −

√
2/2 ≈ 0.2929) are T0, T3, T4, T6 and T7.

It is easy to observe that, for any of these critical series Ti, in the analogue of system (9)
on series, the equation defining Ti only contains terms involving at most one critical series

4See the companion Jupyter notebook examples/X.ipynb



20 F. BASSINO, M. BOUVEL, V. FÉRAY, L. GERIN, M. MAAZOUN, AND A. PIERROT

(i.e. no product of such). It follows that the specification (9) is essentially linear, and that
the associated dependency graph restricted to the critical Ti has two strongly connected
components (see Fig. 7).

T0

T3 T7

T6 T4

Figure 7. The subgraph G? restricted to critical families Ti, for the speci-
fication (9) of the class Av(2413, 3142, 2143, 3412). In this case, G? has two
strongly connected components {T0} and {T3, T4, T6, T7}.

Remark 2.19. In the above examples, the dependency graph restricted to critical fami-
lies, G?, is very simple: either it is strongly connected, or it has two strongly connected
components, one of which consists of T0 alone. To see an example with a much more
complicated structure, we refer the reader to Section 7.3.2, where G? has nine strongly
connected components.

3. Our results

In order to state our results, we first recall the formal definition of permutons, which
are the convenient framework to describe scaling limits of permutations, as well as some
properties of permutons.

3.1. Permutons and limits of permutations. Permutons were first considered by Pre-
sutti and Stromquist in [PS10] under the name of normalized measures. Permutations of
all sizes are special cases of permutons, and weak convergence of measures allows to define
convergent sequences of permutations. Presutti and Stromquist realized that convergence
in the space of permutons implies convergence of pattern densities, and that permutons
allow to define natural models of random permutations. The theory was developed inde-
pendently by Hoppen, Kohayakawa, Moreira, Rath and Sampaio in [HKM+13]. Their main
result is the equivalence between convergence to a permuton and convergence of all pattern
densities. The terminology permuton was given afterwards by Glebov, Grzesik, Klimošová
and Král [GGKK15], by analogy with graphons. The theory of (random) permutons will
here allow us to state scaling limit results for sequences of (random) permutations.

Formally, a permuton is a probability measure on the unit square [0, 1]2 with both its
marginals uniform. Permutons generalize permutation diagrams in the following sense: to
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every permutation σ ∈ Sn, we associate the permuton µσ with density

µσ(dxdy) = n1σ(dxne)=dynedxdy.

Note that it amounts to replacing every point (i, σ(i)) in the diagram of σ (normalized to
the unit square) by a square of the form [(i− 1)/n, i/n]× [(σ(i)− 1)/n, σ(i)/n], which has
mass 1/n uniformly distributed.

The spaceM of permutons is equipped with the topology of weak convergence of mea-
sures, which makes it a compact metric space (for more details on weak convergence of
measures, we refer to [Bil99]). This allows to define convergent sequences of permutations:
we say that (σn)n converges to a permuton µ when (µσn) → µ weakly. Similarly, one
can define convergence in distribution of random permutations to a random permuton:
we say that a random sequence of permutations σn converges in distribution to a random
permuton µ if µσn

(d)−−−→
n→∞

µ in the space of permutons.
We now define the permutations induced by a (possibly random) permuton µ. Condi-

tionally on µ, take a sequence of k random points (~x, ~y) = ((x1,y1), . . . , (xk,yk)) in [0, 1]2,
independently with common distribution µ. Because µ has uniform marginals and the xi’s
(resp. yi’s) are independent, it holds that the xi’s (resp. yi’s) are almost surely pairwise
distinct. We denote by (x(1),y(1)), . . . , (x(k),y(k)) the x-ordered sample of (~x, ~y), i.e. the
unique reordering of the sequence ((x1,y1), . . . , (xk,yk)) such that x(1) < · · · < x(k). Then
the values (y(1), . . . ,y(k)) are in the same relative order as the values of a unique permu-
tation, that we denote Permk(µ). Since the points are taken at random, Permk(µ) is a
random permutation of size k.

In [BBF+20] we proved the following criterion which is a stochastic generalization of the
one given in [HKM+13].

Theorem 3.1. For any n, let σn be a random permutation of size n. Moreover, for any
fixed k, let In,k be a uniform random subset of [n] with k elements, independent of σn. The
following assertions are equivalent.

(a) (µσn)n converges in distribution for the weak topology to some random permuton µ.
(b) For every k, the sequence

(
patIn,k(σn)

)
n
of random permutations converges in dis-

tribution to some random permutation ρk.
If either condition is satisfied, we have

(10) ρk
(d)
= Permk(µ), for every k ≥ 1

and the relations (10) characterize the distribution of µ as a random permuton.

Thanks to criterion (b), convergence in distribution of permutons may be reduced to
combinatorial enumeration.

3.2. Our results: The essentially linear case. We introduce the necessary material to
state our first main theorem (which will be proved in Section 5).
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Definition 3.2. Let p = (pleft
+ , pright

+ , pleft
− , pright

− ) ∈ [0, 1]4 be a quadruple with sum 1. The
X-permuton with parameter p is the following probability measure on the unit square

µXp =
∑

e∈{left,right},
ε∈{−,+}

peε ν(zeε , (a, b)),

where

zleft
+ = (0, 0), zleft

− = (0, 1), zright
− = (1, 0), zright

+ = (1, 1),

a = pleft
+ + pleft

− , b = pleft
− + pright

− ,

and ν(X, Y ) denotes the normalized one-dimensional Lebesgue measure on the segment
(X, Y ) in the plane (see Fig. 8).

(a, b)

zright+

zright−

zleft+

zleft−

mass pleft+

mass pleft−

mass pright−

mass pright+

(a, b)

zright+

zright−

zleft+

zleft−

mass pleft+

mass pright+

Figure 8. The support of the X-permuton with parameter p =
(pleft

+ , pright
+ , pleft

− , pright
− ), denoting a = pleft

+ + pleft
− and b = pleft

− + pright
− . Left:

The generic case. Right: A degenerate case b = 0.

Let us verify that the above defined µXp is indeed a permuton, i.e. that its marginals are
uniform. We first observe that µXp ([0, a]× [0, 1]) = pleft

+ + pleft
− = a. By proportionality, for

each subinterval [x1, x2] of [0, a], we have µXp ([x1, x2]× [0, 1]) = x2−x1. The same holds for
subintervals of [a, 1], and hence for any subinterval of [0, 1]. This proves that the marginal
distribution on the horizontal axis is uniform. The marginal distribution on the vertical
axis is treated similarly.

Theorem 3.3 (Main Theorem: the essentially linear case). Consider a tree-specification
(ET ) for T0, . . . , Td that verifies Hypothesis (SC) (p.16). We assume that

i) the specification is essentially linear,
ii) Hypothesis (RC) (p.17) holds,
iii) there is at least one subcritical series which is aperiodic.
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Then all critical families converge to the same X-permuton. More precisely, there exists a
parameter p = (pleft

+ , pright
+ , pleft

− , pright
− ) such that for every i ∈ I?, letting σn be a uniform

permutation of size n in Ti, we have

µσn
(d)→ µXp .

Furthermore, p can be explicitly computed with Eq. (18) p.37.

Remark 3.4. Recall that Hypothesis (RC) holds in particular if there are only finitely many
simple permutations in the Ti’s.
In item iii), the existence of some subcritical series is necessary for an essentially linear
specification. Aperiodicity of at least one of them is a weak assumption, and it will be
easily checked in all examples of the present paper. Indeed, most examples considered
are tree-specifications for classes with finitely many simple permutations obtained by the
algorithm of [BBP+17]. In such specifications all Ti’s are of the form T notδ

〈σ1,...,σk〉,(τ1,...,τ`). And
it was proved in [DP16] that for such specifications, if Ti is not a polynomial, then it is
necessarily aperiodic.

We now present several examples of classes where Theorem 3.3 applies.

3.2.1. A centered X-permuton: T = Av(2413, 3142, 2143, 3412). We finish here the study
of the so-called X-class, which we started in Section 2.6.3.

The specification of the X-class is given by Eq. (9), p.19. We recall that the critical
families are T0, T3, T4, T6 and T7 and that the specification is essentially linear. The
corresponding dependency graph, already given in Fig. 7, has two strongly connected
components, one of which being T0 alone. Removing the equation for T0, we obtain a
specification for the other families satisfying Hypothesis (SC). The Hypothesis (RC) holds
trivially since we have a polynomial system (Observation 2.18) and it is immediate to see
that the subcritical series T2 and T5 are aperiodic. We can therefore apply Theorem 3.3:
there exists a parameter p such that a uniform permutation in any of the class T3, T4, T6

and T7 tends towards µXp .
We now use a little trick to prove that the same holds for T0 as well. We observe that
T0 = T2]T3 and T2 is the set of increasing permutations. Hence when n tends towards +∞,
a uniform permutation in T0 belongs to T3 with probability tending to one. Consequently,
a uniform random permutation in the X-class T0 also converges to the X-permuton of
parameter p.

Since the X-class has all symmetries of the square, we necessarily have pleft
+ = pright

+ =

pleft
− = pright

− = 1/4 (we do not need Eq. (18) to compute the parameter p in this case).

3.2.2. A non-centered X-permuton: T = Av(2413, 3142, 2143, 34512). This is a variant of
the previous example: again, this class is not substitution-closed and contains no simple
permutation. This case is handled as the previous one, except for the computation of the
parameter p, since the symmetry argument does not apply. In Appendix B.2, we give a
specification for T and use Theorem 3.3 and Eq. (18) to show that the limit is the permuton
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µXp where

p ≈ (0.200258808255625, 0.200258808255625, 0.431332891374616, 0.168149492114135)

is a quadruplet of algebraic numbers of degree 3. This is illustrated in Fig. 9

Figure 9. Left: A simulation of a uniform permutation of size 342 in
Av(2413, 3142, 2143, 34512). Right: The limiting permuton, as predicted
by Theorem 3.3.

3.2.3. A V shape: T = Av(2413, 1243, 2341, 41352, 531642). The example we consider next
is the one chosen in [BBP+17] to illustrate the computation of the specification. It is for
us a benchmark to test the applicability of our results.

The only simple permutation in the class is 3142, so that the algorithm of [BBP+17]
applies. In this case the combinatorial specification gives a system of 13 equations, which
we recall in Appendix B.3. Also in this appendix, we use Theorem 3.3 to show that the limit
is the permuton µXp where p+

left = p−right = 0, p+
right = 1−p−left, and p

−
left ≈ 0.818632668576995

is the only real root of the polynomial

19168z5 − 86256z4 + 155880z3 − 141412z2 + 64394z − 11773.

This is illustrated in Fig. 10.

3.2.4. A diagonal: T = Av(231, 312). This is the class of so-called layered permutations.
It contains no simple permutation and admits the following tree-specification:

T0 = {•} ] ⊕[T1, T0] ] 	[T2, T1], T1 = {•} ] 	[T2, T1], T2 = {•}.
The associated equations can be solved explicitly and T0 turns out to be the only critical
family. So the specification is essentially linear, and Theorem 3.3 applies. We compute
the parameters of the limit using Eq. (18). Looking at the specification, Dleft

− = Dright
+ =

Dright
− = 0, so that the scaling limit for Av(231, 312) is the X-permuton with parameters

pleft
+ = 1, pleft

− = pright
+ = pright

− = 0,

i.e. the permuton supported by the main diagonal {x = y}.
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Figure 10. Left: A simulation of a uniform permutation of size 248 in
Av(2413, 1243, 2341, 41352, 531642). Right: The limiting permuton, as pre-
dicted by Theorem 3.3.

This convergence could also be proved easily in a more direct way, since layered per-
mutations are direct sums of decreasing permutations (i.e. ⊕[d1, . . . , dr], for decreasing
permutations d1, . . . , dr of various sizes). Nevertheless, we briefly commented on this
example to illustrate that the diagonal permuton can appear as a degenerate case of the
X-permuton.

3.2.5. An example with infinitely many simple permutations: pin-permutations. The class
of pin-permutations has been introduced and used in the framework of decision problems
in the papers [BHV08a, BRV08]. This class contains an infinite number of simple permu-
tations (and has an infinite basis), so that the algorithm of [BBP+17] does not apply to
give a tree-specification.

However, the class was enumerated in [BBR11, Section 5] using a recursive description of
their substitution tree. This recursive description can be translated into a tree-specification.
Note that Observation 2.18 does not apply and hypothesis (RC) needs to be checked
manually. This is done in Appendix B.4, where we use Theorem 3.3 to show that the
limiting shape of a uniform random pin-permutation is a centered X-permuton.

3.3. Our results: The essentially branching case.

Definition 3.5. Let p ∈ [0, 1]. The Brownian separable permuton of parameter p is a
random permuton µp whose distribution is characterized by

Permk(µ
p) = perm(bk), for every k ≥ 1

where bk is a uniform random binary tree with k leaves, whose internal nodes are indepen-
dently decorated with i.i.d. signs of bias p+ (namely, P(+) = p+ and P(−) = p− = 1−p+).

The existence and uniqueness in distribution of this permuton is shown in [BBF+20,
Lemma B.1]. An intrinsic construction of this object is given in [Maa20].

Theorem 3.6 (Main Theorem: the essentially branching case). Consider a tree-specification
(ET ) for T0, . . . , Td that verifies Hypothesis (SC) (p.16). We assume that
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i) the specification is essentially branching,
ii) Hypothesis (AR) (p.17) holds,
iii) at least one series (either critical or subcritical) is aperiodic.

Then all critical families converge to the same Brownian separable permuton. More pre-
cisely, there exists p+ ∈ [0, 1] such that for every i ∈ I?, letting σn be a uniform permutation
of size n in Ti,

µσn
(d)→ µp+ .

Furthermore, the bias parameter p+ can be explicitly computed with Eq. (30) p.47.

Remark 3.7. Recall that Hypothesis (AR) holds in particular if there are only finitely many
simple permutations in the Ti’s.
Item iii) is again a weak assumption. It is automatically satisfied in the case of classes
with finitely many simple permutations. Indeed, at least one series is not a polynomial
(otherwise the class itself is finite) and again by [DP16] it has to be aperiodic.

We show two examples of classes having an essentially branching decomposition, whose
limits are Brownian separable permutons of explicit parameters. The first example is build
on purpose to display a limiting behavior of this kind for a class which is not substitution-
closed. The second example is the famous class Av(132). Its limiting permuton, which is
supported by the antidiagonal, is a degenerate Brownian separable permuton.

3.3.1. A non-degenerate branching case.
We consider the class T0 = Av(2413, 31452, 41253, 41352, 531642). The only simple permu-
tation in the class is 3142, so that we apply the algorithm of [BBP+17]. In Appendix B.5,
we give the specification of this class and apply Theorem 3.6, to get that the limit is the
biased Brownian separable permuton of parameter p+, where p+ ≈ 0.4748692376... is the
only real root of the polynomial

z9−3z8+
232819

62348
z7−78093

31174
z6+

243697

249392
z5− 54293

249392
z4+

24529

997568
z3− 125

62348
z2+

45

62348
z− 2

15587
.

3.3.2. A degenerate branching case: Av(132). We continue the study of this Catalan class,
which we started in Section 2.6.2. Recall that this class has an essentially branching spec-
ification, with a single strongly connected component among the critical series. Moreover,
it involves the subcritical series T〈21〉 = z

1−z which is aperiodic. Finally, since there is no
simple permutation in Av(132), Hypothesis (AR) holds and we can apply Theorem 3.6:
there exists some parameter p+ such that the limiting permuton of Av(132) is the Brownian
separable permuton of parameter p+. Moreover, we can read directly from the specification
that for all i, j, j′, we have E+

i,j,j′ = 0 where Eε
i,j,j′ are defined in Definition 6.2. It follows

from Eq. (30) p.47 that p+ = 0 and p− = 1: the limiting permuton is the antidiagonal.
We point out that for this particular class Av(132), much more is known regarding

the limiting shape [MP14, HRS17] and the limiting distributions of pattern occurrences
[Jan17]. We chose to present here this class to show a degenerate example which converges
to the main diagonal.
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Remark 3.8. In Section 3.2.4 we saw another permutation class whose limiting permuton
is supported by a diagonal. The example Av(132) is however very different: the limit is
a degenerate Brownian separable permuton while the limit of the layered permutations of
Section 3.2.4 is a degenerate X-permuton.

3.4. Outline of the proof. As mentioned in Section 1.4, we make use of analytic com-
binatorics tools to establish our results. To this end, we first note that our hypothesis
implies the following behavior of critical series near the dominant singularity:

• in the essentially linear case, all critical series have simple poles;
• in the essentially branching case, they have square-root singularities.

For details, we refer to Lemmas 5.8 and 6.6 respectively.
We will use the following characterization of convergence of random permutations to

a random permuton: it is equivalent to the convergence of the random patterns of the
considered random permutations to the random permutations induced by the permuton
(Theorem 3.1). Since we view permutations as trees, and we wish to study patterns in
permutations, we are lead to consider trees with marked leaves (see Section 4.1). Using a
decomposition, we obtain a combinatorial equation describing the family of trees with k
leaves inducing a given tree (Propositions 5.7 and 6.5). Then we perform a careful analysis
of the corresponding generating series to determine their behavior near the singularity
(Eqs. (22) and (32)).

This allows us to compute the limiting distribution of the random subtree induced by
k uniform random leaves in a uniform random tree in any one of the critical families
(Propositions 5.9 and 6.8). In the essentially linear case, this limiting distribution is sup-
ported by trees called caterpillar (see Definition 5.1). Since the substitution tree of a
random permutation induced by the X-permuton is a caterpillar with the same distribu-
tion (Proposition 5.11), this concludes the proof of Theorem 3.3. On the contrary, in the
essentially branching case, the limiting distribution is supported by signed binary trees.
Since the substitution tree of a random permutation induced by the Brownian separable
permuton is a signed binary tree with the same distribution (Definition 3.5), this concludes
the proof of Theorem 3.6.

4. Tree toolbox

4.1. Induced trees. Since permutations are encoded by trees and since we are interested
in patterns in permutations, we consider an analogue of patterns in trees: this leads to the
notion of induced trees.

Definition 4.1 (First common ancestor). Let t be a tree, and u and v be two nodes (internal
nodes or leaves) of t. The first common ancestor of u and v is the node furthest away from
the root ∅ that appears on both paths from ∅ to u and from ∅ to v in t.

Definition 4.2 (Induced tree). Let t be a substitution tree, and let I be a subset of the
leaves of t. The tree tI induced by I is the substitution tree of size |I| defined as follows.
The tree structure of tI is given by:
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• the nodes of tI are in correspondence with the union of I and of the set of first
common ancestors of two (or more) nodes in I;
• the ancestor-descendant relation in tI is inherited from the one in t;
• the order between the children of an internal node of tI is inherited from t.

The label of an internal node v of tI is defined as follows:
• if v is labeled by a permutation θ in t, the label of v in tI is given by the pattern of θ
induced by the children of v having a descendant that belongs to tI (or equivalently,
to I).

In the specific case of a subtree induced by two leaves, `1 and `2, the induced subtree
may be ⊕

••
or 	

••
. In the first (resp. second) case, we say that `1 and `2 induce the sign

⊕ (resp. 	).
A detailed example of the induced tree construction is given in Fig. 11.

362514

2413

+

2413

2413
+

132

−

3142
−

− −

+

−

− +

+

`1

`2

`3

`8 `1

v

`2
`3

`8

Figure 11. On the left: A substitution tree t of size n = 24 (which happens
to be a standard tree), where leaves are indicated both by ◦ and •. Among
these 24 leaves, |I| = 8 leaves are marked and indicated by •. In green are
shown the internal nodes of t which are first common ancestors of these 8
marked leaves. On the right: The substitution tree induced by the 8 marked
leaves. Observe that the node v labeled by 362514 in t is labeled by 2413 in
tI . This is because only the first, second, fifth and sixth children of v have
descendants that belong to I, and pat{1,2,5,6}(362514) = 2413. The induced
tree is not standard since 132 is not simple.

Remark 4.3. The definition of induced trees can be extended in the case when I is a subset
of nodes (not necessarily leaves), but in this case tI is not necessarily a substitution tree
and its number of leaves may be less than |I|.
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For a substitution tree with n leaves, it is convenient to identify the leaves of t from left
to right with [n] = {1 . . . n}.
Observation 4.4. By definition, for any substitution tree t with n leaves and subset I of
[n], tI is a substitution tree. However, if t is a standard tree, tI is a substitution tree which
is not necessarily standard (see for example Fig. 11).

Moreover, we have the following important feature (illustrated by Fig. 12), see [BBF+20,
Lemma 3.11].

Lemma 4.5. Let t be a substitution tree with a subset I of marked leaves. We have

patI(perm(t)) = perm(tI).

As in our previous work [BBF+20], this lemma is essential, since it allows to replace the
counting of the number of occurrences of a given pattern in some family of permutations
by that of induced trees equal to a given tree t0 in the corresponding family of standard
trees.

= 24387156

2413

132 - +

312

+
= 4123

Figure 12. Illustration of Lemma 4.5. Top: A substitution tree t with
marked leaves (in this example I = {4, 6, 7, 8}), and the permutation perm(t)
it encodes, with the corresponding |I| marked elements (at positions in I).
Bottom: The induced tree tI and the induced pattern patI(perm(t)) =
perm(tI).

4.2. Type of a node. A tree-specification like (ET ) allows to build the elements of the
families Ti recursively in a canonical way. In this recursive construction of a tree t of Ti,
every fringe subtree is taken in one of the Tj. We will say that the subtree, or equivalently
its root, is of type j. More formally, the type of a node in a tree t in Ti can be recursively
defined as follows.

Definition 4.6 (Type of a node). Consider a specification of the form of (ET ) (see p.13).
Let t be a tree in some Ti, and let v be a node in t. The type of v in t in Ti is defined as
follows.
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• If v is the root of t, then the type of v in t in Ti is i.
• Otherwise, there is a unique π ∈ STi ]{⊕,	} and a unique |π|-tuple (k1, . . . , k|π|) ∈
Ki
π such that t can be decomposed as:

π

t1 t2 t|π|. . .

t = ,
where each tj ∈ Tkj . Let ` ≤ |π| be such that v ∈ t`, then the type of v in t in Ti is
the type of v in t` in Tk`.

Remark 4.7. It may happen that Ti∩Tj 6= ∅. For example, in the specification (2) p.14 for
substitution-closed classes, all trees whose root is labeled by a simple permutation belong
to all three classes. In such a case, caution is needed: the type of a node v in a tree
t ∈ Ti ∩ Tj is defined differently depending on whether t is seen as a tree of Ti or of Tj.
Example 4.8. Consider a substitution-closed class T with its tree-specification given by
(2). The three families of trees T , T not⊕ and T not	 appear in this specification. Let t be a
tree in any of T , T not⊕ or T not	. The type of a node of t is either ∅, not⊕, or not	. Moreover,
it is easy to see that the type of a non-root node v in t is not⊕ (resp. not	) if the node is the
left child of a node labeled with ⊕ (resp. 	), and is ∅ otherwise. Only the type of the root
of t depends on which family t is (considered to be) an element of. The type of the root
of t is by definition ∅ (resp. not⊕, not	) when t is (considered as) a tree of T (resp. T not⊕,
T not	).

4.3. Critical part of a tree. Consider again a tree-specification as in (ET ). Recall that
a family Ti is critical (resp. subcritical) if ρi = minj{ρj} (resp. ρi > minj{ρj}). For the
asymptotic analysis, it will be important to identify in a tree the set of nodes of critical
types. This is the purpose of the next definition.

Definition 4.9. Consider a specification of the form (ET ) and let t be a standard tree in
Ti, for some i. We denote by Criti(t) the set of nodes v in t such that the type of v in t in
Ti is critical.

Note that from Lemma 2.14, Criti(t) is empty if i /∈ I?. Again from Lemma 2.14, if
i ∈ I?, Criti(t) is a connected subset of t (hence a tree) which contains the root. This
allows to refer to the set Criti(t) as the critical subtree of t and to define, for every node
v of t, its first critical ancestor : it is the first node met on the unique path from v to the
root of t whose type is critical.

Furthermore, in the essentially linear case, for any tree t in Ti with i ∈ I?, the critical
subtree of t is actually a chain from the root to a node v of t. We alternatively call Criti(t)
the critical spine of t in this case, and the node v is referred to as the head of t.

4.4. Blossoming trees. In both the essentially linear and the essentially branching cases,
we derive asymptotics from an exact combinatorial result (Proposition 5.7 or Proposi-
tion 6.5) that gives an expression for the generating function of trees of type Ti with k
marked leaves which induce a given subtree t0. This expression results from a decomposi-
tion of the families Ti into some families of blossoming trees, that we now define.
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Definition 4.10. For 0 ≤ i, j ≤ d, we define T j→i as the family of trees t with one marked
leaf `, called the blossom and represented by ∗, such that the tree obtained by replacing ∗
by a tree of Tj belongs to Ti, with the additional condition that the type in Ti of the node
that used to be the blossom is j.

Observe that in general, a tree in T j→i does not belong to Ti.
In the following proposition, we show that families T j→i’s inherit a combinatorial speci-

fication from the one of the Ti’s.
Proposition 4.11 (Specification of the T j→i’s). Assume that the equation for Ti in the
specification (ET ) is

Ti = εi{•} ]
⊎

π∈STi]{⊕,	}

⊎
(k1,...,k|π|)∈Ki

π

π[Tk1 , Tk2 , . . . , Tk|π| ] (0 ≤ i ≤ d),

where • is the trivial tree made of just one leaf. Then we have:
(11)

T j→i = 1i=j{∗} ]
⊎

π∈STi]{⊕,	}

⊎
(k1,...,k|π|)∈Ki

π

|π|⊎
`=1

π[Tk1 , . . . , T j→k` , . . . , Tk|π| ] (0 ≤ i, j ≤ d),

where ∗ is the trivial tree reduced to the blossom.

Proof. Trivially, the class T j→i contains the tree reduced to a blossom if and only if i = j.
This explains the term 1i=j{∗}.

Let t ∈ T j→i. We now restrict to the case where the blossom of t is not at the root. Let
tj ∈ Tj. Denote by ttj the tree obtained by replacing the blossom of t with tj. By definition
of the class T j→i, the tree ttj is in Ti. As a result, ttj belongs to the union

Ti = εi{•} ]
⊎

π∈STi]{⊕,	}

⊎
(k1,...,k|π|)∈Ki

π

π[Tk1 , Tk2 , . . . , Tk|π| ].

We cannot have ttj = •, because then necessarily the blossom of t is its root. Hence ttj
belongs to a term of the form π[Tk1 , . . . , Tk|π| ] for π ∈ STi ] {⊕,	} and (k1, . . . , k|π|) ∈ Ki

π.
Then the blossom (and the copy of tj) must be contained in one of the fringe subtrees
rooted at a child of the root of ttj, say the `-th one, with 1 ≤ ` ≤ |π|. Hence t, which
is recovered by removing the copy of tj in ttj and replacing it by a blossom, belongs to
π[Tk1 , . . . , T j→k` , . . . , Tk|π| ].

This proves the direct inclusion in the statement of the proposition. For the reverse
inclusion, consider a tree t belonging to the right hand side of Eq. (11), and replace the
blossom by a tree tj of Tj. This immediately yields a tree in Ti. Hence t ∈ T j→i. �

For 0 ≤ i ≤ d, let T j→i be the generating function of the family T j→i, where trees are
counted by the number of leaves (we take the convention that the blossom is not counted).

Proposition 4.11 has the following consequence (recall that series Fi’s are defined by
(ET ) p.15).
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Corollary 4.12. Let T→(z) be the matrix of generating functions T→ = (T j→i)0≤i,j≤d. It
holds that

(12) T→(z) = K(T0(z), . . . Td(z)) · T→(z) + Id,

where K is the (d+ 1)× (d+ 1) matrix defined by

Ki,j(y0, . . . yd) =
∂Fi(y0, . . . yd)

∂yj
.

If we restrict to critical families and define T?→ = (T j→i)i,j∈I?, then we have

(13) T?→(z) = M?(z,T?(z))T?→(z) + Id,

where M? was defined in Eq. (4) (p.16) for the essentially linear case, and in Eq. (6) (p.17)
for the essentially branching case.

5. The essentially linear case

This section is to devoted to the proof of Theorem 3.3 through the asymptotic analysis
of the systems (ET ) and (12) in the essentially linear case. In this case, an important
consequence of the specification is that standard trees can be decomposed along a critical
spine (Definition 4.9).

To help with the reading of this section, we summarize here the different generating
series which we will use throughout Section 5:

Series Counts for... Defined in... Counted by...
T j→i Blossoming trees Definition 4.10 Number of leaves (without the blossom)
Dleft,+
j,i Marked blossoming trees Definition 5.5 Number of unmarked leaves

Ti,t0 Trees inducing t0 Definition 5.3 Number of unmarked leaves

5.1. Caterpillar and associated permutations. Because of the existence of a criti-
cal spine, some particular trees will play a significant role in the analysis: these are the
caterpillars.

We say that a tree is binary when every internal node has exactly 2 children.

Definition 5.1. A caterpillar of size k is a binary plane tree with
• k internal nodes labeled by either ⊕ or 	;
• a special leaf, called the head;

such that all internal nodes are on the path from the root to the head.
Leaves different from the head are called regular.

A caterpillar is drawn in Fig. 13. Since a caterpillar is binary, there is exactly one
regular leaf branching on each internal node and, therefore, the number of regular leaves
in a caterpillar of size k is k.

We take the following convention:
• internal nodes are ordered from the first node v1 to the k-th node vk according to
their distance to the root (namely, vr is at distance r − 1 from the root);
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• leaves are ordered by the breadth-first traversal: for 1 ≤ r ≤ k, the r-th leaf `r is a
child of the r-th internal node vr.

To a caterpillar t0 of size k ≥ 1 we associate its code word (e1, ε1) . . . (ek, εk), defined as
follows: for each 1 ≤ r ≤ k

• er ∈ {left, right} indicates whether `r is a left or a right child of vr, and εr is the
sign of the internal node vr of t0.

Note that a caterpillar is completely determined by its code word.

Remark 5.2. In the literature, caterpillars are usually trees seen as unrooted graphs whose
internal nodes form a path. Our caterpillars are, on the contrary, always rooted and binary,
that is, every internal node has exactly 2 children.

With a caterpillar t0 (of size k), we associate a substitution tree Red(t0) as follows: erase
the head of t0, merge its parent (the internal node vk) and its sibling (the leaf `k) into a
new leaf, also denoted by `k. Of course, this substitution tree encodes the permutation
perm(Red(t0)). Fig. 13 shows an example of caterpillar, with its associated substitution
tree and permutation.

v1

v2

vk−1

`1

`2

`k−1 `k

v1

v2

vk−1

`1

`2

`k−1

`k,
vk

Figure 13. Left: A caterpillar t0 with k = 5 regular leaves and one head.
Its code word is (left,+)(right,+)(right,−)(left,+)(left,+). Middle: The as-
sociated substitution tree Red(t0). Right: The permutation perm(Red(t0)).

5.2. Extracting a caterpillar. In this section, we consider standard trees in a critical
family Ti, with k marked leaves. Recall from Section 4.3 that in the essentially linear case,
the set of critical nodes in each tree t in Ti forms the critical spine of t, whose node furthest
away from the root is called the head of t.

Definition 5.3. Fix a caterpillar t0 of size k. For i ∈ I?, the family Ti,t0 is the set of pairs
(t, I) where t is a tree in Ti and I is a subset of k leaves in t (called marked leaves, and
taken without any order on them) such that

• the k marked leaves together with the head of t induce the subtree t0;
• moreover, in this induction, the head of t should correspond to the head of t0.

We denote by Ti,t0 the corresponding counting series (where the size is the number of un-
marked leaves).
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Remark 5.4. The reader might be surprised that we consider the subtree induced by the
head and k random leaves, while we announced in Section 3.4 that we would be interested
in that induced by only the k random leaves. Clearly, the former contains more information
than the latter. Moreover, this refinement will prove useful, because it makes easier the
decomposition of Ti,t0 used in the proof of Proposition 5.7.

Our next step towards the enumeration of Ti,t0 (Proposition 5.7) is to decompose Ti,t0 in
terms of smaller classes. For this, we need to define yet another family of marked trees.

Definition 5.5. Let Dleft,+
i,j be the combinatorial class of trees t in T j→i with one additional

marked leaf such that
• the blossom is a child of the root of t;
• the additional marked leaf is to the left of the blossom;
• the blossom and the marked leaf induce the sign ⊕ (see definition in Section 4.1).

A schematic view of a tree in Dleft,+
i,j is provided in Fig. 14. We define in an analogous way

the combinatorial classes Dright,+
i,j , Dleft,−

i,j and Dright,−
i,j .

We denote by Dleft,+
i,j , Dright,+

i,j Dleft,−
i,j and Dright,−

i,j the associated generating functions. In
these series, the power of z is the number of leaves which are neither blossom nor marked
leaves.

∅
∗
blossom

marked leaf

Figure 14. Left: A sketch of a tree in some family Dleft,+
i,j (assuming that

the marked leaf and the blossom induce ⊕).

Proposition 5.6. For all i, j ∈ I?, we have∑
e,ε

Dε,e
i,j (z) =

∂

∂z
M?

i,j(z).

If Hypothesis (RC) holds, this implies in particular that all Dε,e
i,j (z) converges at z = ρ.

Proof. We have that Dright,+
i,j ] Dright,−

i,j ] Dleft,+
i,j ] Dleft,−

i,j is the combinatorial class of trees
in T j→i with one marked leaf such that the blossom is a child of the root. From (ET ), it is
counted by ∑

e,ε

Dε,e
i,j (z) =

∂

∂z

(
∂Fi(y0, . . . , yd)

∂yj

∣∣∣
(T0(z),...,Td(z))

)
.



SCALING LIMITS OF PERMUTATION CLASSES 35

Indeed the operator ∂
∂yj

indicates the replacement of one child of type j of the root by
a blossom; and the operator ∂

∂z
amounts to marking a leaf. The equality

∑
e,εD

ε,e
i,j (z) =

∂
∂z
M?

i,j(z) then follows by definition of M? (see p.17) and Hypothesis (RC) ensures the
convergence at z = ρ. �

Proposition 5.7 (Enumeration of trees with marked leaves inducing a given caterpillar).
Let t0 be a caterpillar with k regular leaves with code word (e1, ε1) . . . (ek, εk). Then the
vector T?

t0
= (Ti,t0)i∈I? is given by

(14) T?
t0

= T?→De1,ε1 T?→De2,ε2 . . .T?→Dek,εk T?,

where De,ε denotes the matrix
(
De,ε
i,j

)
i,j∈I?.

(Recall that in (14), the trees of Ti,t0 are counted by the number of unmarked leaves.)

Proof. (The main notation of the proof is summarized in Fig. 15.)
We start by fixing some general convention to decompose trees. Given a node v in a tree,

Bbottom
1 : counted by

Bbottom
2 : counted byT i2

→j1

T i1
→i

Btop
1 : counted by Dleft,+

i1,j1

Dleft,+
ik,jk

Bk+1: counted byTjk

∅

v1

w1

v2
w2

vk

wk

critical spine

head

Btop
2 : counted by Dright,−

i2,j2

Btop
k : counted by

,

Figure 15. Left: A caterpillar tree t0 with k = 4 regular leaves and one
head. Right: A schematic view of a tree with k marked leaves in Ti,t0 .

we can split the tree into two parts: the top part (i.e. the fringe subtree rooted at v) and
the bottom part (its complement in terms of edges). The node v belongs to both parts.
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To be able to reverse the operation without keeping extra information (such as the label
of v), we replace v in the bottom part by a blossom.

Let t ∈ Ti,t0 . By definition, the k marked leaves together with the head of t induce the
caterpillar t0. Denote by V the set of all first common ancestors of these k + 1 nodes in t.
Because the head of t corresponds to the head of t0, all nodes of V belong to the critical
spine. Therefore they can be totally ordered v1, . . . , vk, vk+1 from the root to the head of
t (which is then vk+1). For 1 ≤ ` ≤ k we denote by w` the only child of v` on the critical
spine; we also denote by i` (resp. j`) the type of v` (resp. w`) in t in Ti. Then i` and j`
belong to I?. It is also convenient to set w0 to be the root of t and j0 = i its type.

We now decompose t successively with respect to the nodes v1, w1, . . . , vk, wk. This
results in 2k+ 1 pieces that we denote respectively Bbottom

1 , Btop
1 , . . . , Bbottom

k , Btop
k , Bk+1 as

follows: Bbottom
i and Btop

i are the pieces rooted in wi−1 and vi, respectively, while Bk+1 is
the piece rooted at wk.

By construction,
• Bk+1 is any tree in Tjk ;
• for 1 ≤ ` ≤ k the piece Bbottom

` is any tree in the family T i`→j`−1
;

• for 1 ≤ ` ≤ k the piece Btop
` is any tree in the family De`,ε`i`,j`

.
Only the last item needs a justification. Recall that e` ∈ {left, right} is the position of the `-
th leaf of t0 with respect to its parent. Since t ∈ Ti,t0 , this forces the relative position of the
marked leaf of Btop

` with respect to its blossom. Similarly, the pattern of the permutation
labeling v` induced by the leaf and the blossom must match the sign ε` ∈ {+,−}.

Finally, this correspondence between t and (Bbottom
1 , Btop

1 , . . . , Bbottom
k , Btop

k , Bk+1) is one-
to-one thanks to the unambiguous splitting/gluing procedure at blossoms. Moreover, this
correspondence preserves the size (i.e. the number of unmarked leaves), as the blossoms
are not counted in families De`,ε`i`,j`

.
This decomposition translates on generating series as follows: for any i ∈ I?,

(15) Ti,t0 =
∑

i1,...,ik∈I?
j1,...,jk∈I?

T i1→i D
e1,ε1
i1,j1

T i2→j1 D
e2,ε2
i2,j2

. . . T ik→jk−1
Dek,εk
ik,jk

Tjk .

Written in matrix notation this is exactly (14). �

5.3. Asymptotics of the main series. Our goal here is to describe the singular behavior
of the series in T?

t0
. Hence (from Proposition 5.7), we need information on the singular

behavior of the series that are the entries of T?(z) and T?→(z).
The following lemma is a consequence of a general result on linear systems proved in

the appendix (Proposition A.4). Recall that ρ is the common radius of convergence of the
critical series.

Lemma 5.8. In the essentially linear case, the system we start from is

T?(z) = M?(z)T?(z) + V?(z) with M?(z) =

(
∂Fi(y0, . . . , yd)

∂yj

∣∣∣
(T0(z),...,Td(z))

)
i,j∈I?

.
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Under Hypotheses (SC) and (RC) (p.17), assuming moreover that at least one subcritical
series is aperiodic, we have the following results.

All series in T?→(z) = (Id−M?)−1 and T? are analytic on a ∆-domain at ρ.
Moreover, the matrix M?(ρ) has Perron eigenvalue 1. Denoting u and v the corre-

sponding left and right positive eigenvectors normalized so that ᵀuv = 1 (ᵀu stands for the
transpose of the vector u), we also have the following asymptotics near ρ:

T?→(z) = (Id−M?(z))−1 ∼
(

1
ᵀu(M?)′(ρ)v

)
1

ρ− z v ᵀu.(16)

T?(z) ∼
(

ᵀuV?(ρ)
ᵀu(M?)′(ρ)v

)
1

ρ− z v.(17)

In the above equations ∼ stands for coefficient-wise asymptotic equivalence. Observe that
the factors preceding 1

ρ−z are real numbers.

Proof. We check that this system satisfies all hypotheses of Proposition A.4.
• By assumption the system is strongly connected5 and linear.
• As the valuation of each Fi is at least 2, M?(z) involves series of valuation at least

1 in the Ti(z)’s. Since Ti(0) = 0 for every i, we also have M?(0) = 0.
• Since M?(0) = 0, the matrix Id−M?(z) is invertible in the ring of formal series. By
Eq. (4) we have V?(z) = (Id −M?(z))T?(z) 6= 0 because T?(z) is not identically
zero.
• Hypothesis (RC) ensures that the radius of convergence of all entries of M? and V?

is strictly larger than ρ.
• By assumption, there is at least one subcritical series Ti0 which is aperiodic. More-
over there is a path Ti0 → Ti1 → · · · → Ti` in G(ET ) from Ti0 to the critical
strongly connected component (see Section 2.5). We choose this path such that
Ti`−1

is subcritical and Ti` is critical, therefore the series Ti`−1
is aperiodic thanks

to Lemma 2.16. And as Ti`−1
appears in at least one coefficient of M? (at line i`)

this ensures that the g.c.d. of the periods of the series in M? is 1.
• Moreover by Eq. (13) (p.32), T?→(z) = (Id−M?(z))−1.

Proposition A.4 gives us the desired result. �

5.4. Probabilities of caterpillars. For all e ∈ {left, right}, ε ∈ {+,−}, we set

(18) peε =
ᵀuDε,e(ρ)v
ᵀu(M?)′(ρ)v

,

where the matrix Dε,e is defined according to Definition 5.5, M?, u and v are given in
Lemma 5.8.

Then from Proposition 5.6,

(19) pleft
+ + pright

+ + pleft
− + pright

− = 1.

5This notion on systems is defined in the Appendix only. It is however equivalent to the graph G? being
strongly connected, which is ensured by Hypothesis (SC).
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Hence we can see p = (pleft
+ , pright

+ , pleft
− , pright

− ) as a probability distribution on {left, right}×
{+,−}. We will prove at the end of Section 5 that the limiting object of the class Ti (with
i ∈ I?) is the X-permuton of parameter p. An important step is the following proposition.

Proposition 5.9 (Occurrences of a given caterpillar). Fix i ∈ I? and k ≥ 2. Consider
a uniform random tree with n leaves in Ti, in which k leaves are marked, also chosen
uniformly at random. We denote by t[k,head]

i,n the tree induced by these k marked leaves and
the head of the critical spine.

In the essentially linear case, under Hypotheses (SC) and (RC), assuming moreover that
at least one subcritical series is aperiodic, we have:

i) The probability that t[k,head]
i,n is a caterpillar tends to 1 when n tends to infinity.

ii) Let t0 be a caterpillar with k regular leaves and with code word (e1, ε1) . . . (ek, εk).

(20) P(t
[k,head]
i,n = t0)

n→+∞→ pe1ε1p
e2
ε2
...pekεk ,

where peε’s are defined by Eq. (18). In particular, the limit does not depend on
i ∈ I?.

Proof. Since the right-hand side of Eq. (20), summed among all code words of caterpillars
of size k, add up to 1 (see Eq. (19)), the first item is an immediate consequence of the
second item.

Let us prove Eq. (20). Fix a caterpillar t0 with k regular leaves and code word (e1, ε1) . . . (ek, εk).
We claim that

(21) P(t
[k,head]
i,n = t0) =

[zn−k]Ti,t0

[zn−k] 1
k!
T

(k)
i

,

where T (k)
i is the k-th derivative of Ti. Indeed, the numerator is the number of trees in Ti

with n leaves, among which k unordered leaves are marked and induce, together with the
head of the spine, the caterpillar t0 (recall that the exponent of z in Ti,t0 is the number
of unmarked leaves, here n − k). Similarly, the denominator is the total number of trees
in Ti with n leaves including k unordered marked leaves. The quotient is therefore the
probability that k unordered marked leaves in a uniform random tree with n leaves in Ti
induce t0, as claimed.

We want to apply the transfer theorem (Theorem A.2) to the series Ti,t0 and T
(k)
i

k!
.

We first justify that Ti,t0 and T (k)
i have radius of convergence ρ and are ∆-analytic at ρ.

For T (k)
i , this follows from the first claim of Lemma 5.8. For Ti,t0 , we need to use this same

lemma, together with Eq. (15) and the analyticity of De,ε
i,j at ρ (Proposition 5.6).

We now establish the asymptotics of these series near ρ. Recall Eq. (14):

T?
t0

= T?→De1,ε1T?→De2,ε2 . . .T?→Dek,εkT?.
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We can plug in the value of the seriesDe,ε
i,j ’s, since they converge at ρ from Proposition 5.6,

and the asymptotics near ρ of T?→ and T? (see Eqs. (16) and (17)). We get

T?
t0

z→ρ∼ 1

(ρ− z)k+1

(
1

ᵀu(M?)′(ρ)v

)
v ᵀu De1,ε1(ρ)

(
1

ᵀu(M?)′(ρ)v

)
v ᵀu De2,ε2(ρ)

. . .Dek,εk(ρ) v

(
ᵀuV?(ρ)

ᵀu(M?)′(ρ)v

)
=

1

(ρ− z)k+1

(
1

ᵀu(M?)′(ρ)v

)
v

(
k∏
`=1

ᵀuDe`,ε`(ρ)v
ᵀu(M?)′(ρ)v

)
ᵀuV?(ρ)

=
1

(ρ− z)k+1

ᵀuV?(ρ)
ᵀu(M?)′(ρ)v

(
k∏
`=1

pe`ε`

)
v.(22)

We turn to T
(k)
i

k!
. From Eq. (17), applying singular differentiation [FS09, Thm. VI.8 p.

419] to each entry of T? we obtain
1

k!
(T?)(k)(z)

z→ρ∼ 1

(ρ− z)k+1

(
ᵀuV?(ρ)

ᵀu(M?)′(ρ)v

)
v.

Applying the transfer theorem (Theorem A.2) to Ti,t0 and 1
k!
T

(k)
i yields

[zn−k]Ti,t0

[zn−k] 1
k!
T

(k)
i

−−−→
n→∞

k∏
`=1

pe`ε` ,

concluding the proof. �

5.5. Permutations induced by the X-permuton. The X-permuton µXp was defined in
Definition 3.2. In this section we describe the permutations induced by the X-permuton,
i.e., for each k ≥ 1, the random permutation formed by k independent points in [0, 1]2

with common distribution µXp .
For a set {(xi, yi), 1 ≤ i ≤ k} of k points in the unit square (assumed to have pairwise

distinct x- (resp. y-)coordinates), we denote by perm({(xi, yi), 1 ≤ i ≤ k}) the permutation
whose diagram is the (suitably normalized) set of these points.

We start by a lemma, illustrated in Fig. 16.

Lemma 5.10. Let (e1, ε1) . . . (ek, εk) be the code word of a caterpillar t0. Fix (a, b) ∈ (0, 1)2,
0 < u1 < . . . < uk < 1 and set

(23) (xi, yi) = (1− ui)zeiεi + ui(a, b), 1 ≤ i ≤ k

Then perm({(xi, yi), 1 ≤ i ≤ k}) = perm(Red(t0)).

Proof. Let τ = perm({(xi, yi), 1 ≤ i ≤ k}). Let α be the permutation such that xα(1) <
. . . < xα(k). Then by definition

∀1 ≤ i < j ≤ k, τ(i) > τ(j) ⇐⇒ yα(i) > yα(j).
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`3

(x1, y1)

`1

`2

`4

`5

`6 ,

zleft+ zright−

zleft− zright+

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)
(x6, y6)

0 u1 u2 u3 u4 u5u6 1

t0

perm(Red(t0))
= perm({(xi, yi), 1 ≤ i ≤ k})

Figure 16. An example illustrating Lemma 5.10, with a caterpillar of code
word ((right,+), (left,−), (left,+), (right,−), (right,−), (left,+)).

By case analysis, from Eq. (23), we can prove that

(24) ∀ 1 ≤ i < j ≤ k, (ei = left) ⇐⇒ xi < xj ⇐⇒ α−1(i) < α−1(j).

Similarly, and again by case analysis from Eq. (23), we can prove that for 1 ≤ i < j ≤ k,
we have

(εi = −) ⇐⇒ (xj − xi)(yj − yi) < 0.

Hence for 1 ≤ i < j ≤ k, εmin(α(i),α(j)) = − if and only if (xα(j) − xα(i))(yα(j) − yα(i)) < 0,
which reduces to yα(j) < yα(i). All in all, we have shown

(25) ∀ 1 ≤ i < j ≤ k, εmin(α(i),α(j)) = − ⇐⇒ τ(i) > τ(j).

Now let π = perm(Red(t0)) and denote `γ(1), . . . , `γ(k) the reordering of the leaves of t0
according to the depth-first search. By definition of t0, for 1 ≤ i < j ≤ k, the following
equivalence holds: (γ−1(i) < γ−1(j)) ⇐⇒ (ei = left). Together with Eq. (24), this shows
γ = α.

Finally, looking at the way the permutation π is constructed, we see that for 1 ≤ i <
j ≤ k, π(j) < π(i) if and only if there is a sign 	 on the first common ancestor vmin(γ(i),γ(j))

of `γ(i) and `γ(j), if and only if εmin(γ(i),γ(j)) = −. Since γ = α, together with Eq. (25), this
shows π = τ , i.e. the lemma. �

Recall from Section 3.1 some notation regarding permutons. For a fixed permuton µ
and a fixed integer k, we denote by (~x, ~y) a k-tuple of i.i.d. points distributed according
to µ. This k-tuple, seen as a set of points in the unit square, induces a permutation
perm({(xi,yi), 1 ≤ i ≤ k}) that we denote Permk(µ).

Proposition 5.11. For every k ≥ 1, we have

Permk(µ
X
p )

(d)
= perm(Red(t0)),
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where t0 is a random caterpillar whose code word is a k-uple of i.i.d. random variables of
distribution p.

The fact that Permk(µ
X
p ) is a permutation encoded by the reduced tree of a caterpillar

is illustrated in Fig. 16.

Proof. Because of the construction of µXp , an i.i.d sequence ((x1,y1), . . . , (xk,yk)) drawn
according to µXp can be represented as

(xi,yi) = (1− ui)zeiεi + ui(a, b), 1 ≤ i ≤ k,

where u1, . . . ,uk are uniform in [0, 1], (e1, ε1), . . . , (ek, εk) are random variables according
to the measure p, all of these being independent from each other. By definition Permk(µ

X
p )

is distributed like the permutation perm({(xi,yi), 1 ≤ i ≤ k}).
Consider the permutation σ such that uσ(1) < . . . < uσ(k). Clearly,

perm({(xi,yi), 1 ≤ i ≤ k}) = perm({(xσ(i),yσ(i)), 1 ≤ i ≤ k}),

and from Lemma 5.10, this is the permutation associated to the caterpillar whose code word
is (eσ(1), εσ(1)) . . . (eσ(k), εσ(k)). But the sequence ((eσ(i), εσ(i)))1≤i≤k is an i.i.d. sample of
the measure p. Indeed, it is a shuffling of an i.i.d. sequence by the independent random
permutation σ. This concludes the proof. �

5.6. Back to permutations and conclusion of the proof of Theorem 3.3. We can
now conclude the proof of the main theorem for the essentially linear case.

Conclusion of the proof of Theorem 3.3. Consider a tree specification (ET ) satisfying the
hypotheses of Theorem 3.3. Let i ∈ I? be the index of a critical family and let k ≥ 1.
Finally, we let t[k]

i,n the random subtree induced by k uniform random leaves in a uniform
random tree with n leaves in Ti. Comparing with the notation of Proposition 5.9, we have
t

[k]
i,n = Red(t

[k,head]
i,n ).

Moreover, we denote by σn a uniform permutation of size n in Ti and In,k an independent
uniform subset of [1, n] of size k. Thanks to Lemma 4.5, we have

patIn,k(σn) = perm(t
[k]
i,n).

According to Proposition 5.9, as n→∞, t[k,head]
i,n converges in distribution to the cater-

pillar t0, whose code word is given by a k-tuple of i.i.d. random variables of distribution
p. Therefore we have the following convergence in distribution

patIn,k(σn) = perm(t
[k]
i,n) = perm(Red(t

[k,head]
i,n ))

n→+∞−→ perm(Red(t0)).

Theorem 3.3 then follows from Theorem 3.1 (characterization of convergence of random
permutons) and Proposition 5.11 (giving the distribution of Permk(µ

X
p )). �
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6. The essentially branching case

6.1. Tree decomposition. Following the same strategy as in Section 5, we are first aiming
at an analogue of Proposition 5.7, which gives the generating function of trees of type Ti
with k marked leaves inducing a given subtree. This will be obtained in Proposition 6.5
below. To state it, we need to consider doubly blossoming trees in addition to the (simply)
blossoming trees already defined for the essentially linear case.

Definition 6.1. For 0 ≤ i, j, j′ ≤ d, we define Hj,j′

→i as the family of trees t with an ordered
pair of marked leaves (`1, `2), called the first and second blossoms, which are required to be
children of the root of t, such that the tree obtained by replacing `1 by a tree of Tj and `2

by a tree of Tj′ belongs to Ti, with the additional condition that the type in Ti of the node
that used to be `1 (resp. `2) is j (resp. j′).

Similarly to the case of (simply) blossoming trees, in general, a tree in Hj,j′

→i does not
belong to Ti.
Definition 6.2. Let i, j, j′ ∈ I? and ε ∈ {+,−}. The class Eεijj′ is the class of doubly
blossoming trees in the class Hj,j′

→i with the following additional conditions:
• the first blossom is to the left of the second blossom;
• the pattern induced by the two blossoms on the permutation labeling the root is 12
if ε = + and 21 if ε = −.

We denote by Eε
ijj′(z) the corresponding generating series.

Proposition 6.3. For every i, j, j′ ∈ I?, we have that

E+
ijj′(z) + E−ijj′(z) + E+

ij′j(z) + E−ij′j(z) = Hj,j′

→i (z) =
∂2Fi(y0, . . . , yd)

∂yj∂yj′

∣∣∣
(T0(z),...,Td(z))

.

In addition, in the essentially branching case (see Definition 2.17) it holds that at least
one of the Hj,j′

→i for i, j, j′ ∈ I? is a nonzero series.

Proof. The first equality is obtained by partitioning Hj,j′

→i into four parts, depending on the
position (left or right) of the first blossom w.r.t. the second blossom, and on the pattern
(12 or 21) induced by the blossoms.

The second equality comes from the definition of Hj,j′

→i and the specification (ET ) (the
arguments are similar to the proof of Proposition 5.6). �

Let us fix a signed binary tree t0 with k leaves. Recall that for us, binary indicates that
every internal node has degree exactly 2. Recall that Int(t0) (resp. Lf(t0)) denotes the set
of internal nodes (resp. leaves) of t0. For v ∈ Int(t0) we set

• ε(v) the sign labeling the node v in t0;
• l(v) ∈ Int(t0) ] Lf(t0) the left child of v;
• r(v) ∈ Int(t0) ] Lf(t0) its right child.

We also use the convention that ∅ ∈ Int(t0) denotes the root of t0.



SCALING LIMITS OF PERMUTATION CLASSES 43

Definition 6.4. For i ∈ I?, let Ti,t0 be the class of trees in Ti with k unordered marked
leaves, such that

• they induce the subtree t0,
• for every marked leaf `, the first critical ancestor of ` is strictly closer to ` than any
first common ancestor of ` and another marked leaf.

Note that if a marked tree (t, (`1, . . . , `k)) ∈ Ti,t0 , then pat`1,...,`k(perm(t)) = perm(t0).
We now provide a combinatorial decomposition of the class Ti,t0 . This uses the above
notation and the classes T j→i introduced in Definition 4.10.

Proposition 6.5. We have, for every i0 ∈ I?,

(26) Ti0,t0 =
∑

i,j,j′∈I?Int(t0)

T i(∅)
→i0

∏
v∈Int(t0)

l(v)∈Int(t0)

T
i(l(v))
→j(v)

∏
v∈Int(t0)

r(v)∈Int(t0)

T
i(r(v))
→j′(v)

·
∏

v∈Int(t0)
l(v)∈Lf(t0)

T ′j(v)

∏
v∈Int(t0)
r(v)∈Lf(t0)

T ′j′(v)

∏
v∈Int(t0)

E
ε(v)
i(v)j(v)j′(v)

 .
The above sum runs over all triples (i, j, j′) of functions from Int(t0) to I?.

Proof. (The main notation of the proof is summarized in Fig. 17.)
Consider a marked tree t ∈ Ti0,t0 . Then every interval node v (resp. leaf `) in t0 is in
correspondence with some interval node (resp. some marked leaf) of t, which we denote
by ϕ(v) (resp. ϕ(`)). By definition of induced subtree, when v is an internal node, ϕ(v) is
the first common ancestor of ϕ(l(v)) and ϕ(r(v)). Denote by ψ(v) the child of ϕ(v) which
is an ancestor of (and possibly equal to) ϕ(l(v)). Similarly, ψ′(v) is the child of ϕ(v) which
is an ancestor of ϕ(r(v)). By definition of induced subtree, the pattern of ϕ(v) induced by
the elements corresponding to ψ(v) and ψ′(v) is ε(v) (here and in what follows we identify
12 and + on one hand and 21 and − on the other hand).

Now for every v ∈ Int(t0), let i(v) (respectively j(v), j′(v)) be the type of ϕ(v) (re-
spectively ψ(v), ψ(v′)) in t. Those types are necessarily critical because of the second
assumption in Definition 6.4.

We now decompose t successively, cutting at all nodes ϕ(v), ψ(v) and ψ′(v) for v ∈
Int(t0). This is similar to the construction in the proof of Proposition 5.7, and we use the
same notational conventions. Since there are 3(k − 1) cuts, we end up with 3(k − 1) + 1
pieces.

i) We denote by B0 the piece containing the root of t. Concretely, B0 is obtained
from t (which has type i0) by replacing the fringe subtree rooted at ϕ(∅) (which
has type i(∅) in t) by a blossom. Hence B0 ∈ T i(∅)

→i0 .
ii) For all v ∈ Int(t0), we denote by Bleft

v the piece rooted at ψ(v). There are then two
possible cases.
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B0:
counted by T

i(∅)
→i0

Bbottom
∅ :

Bright
∅ :

ϕ(∅)

ϕ(2)

ψ′(∅)

Bleft
2 :

Bright
2 :

ψ′(1) Bbottom
2 :

Bbottom
1 :

Bleft
1 :

Bright
1 :

Bleft
∅ : T

i(1)
→j(∅)

ψ(2)
ψ′(2)

ϕ(1)

ψ(∅)

ψ(1)

E−i(1)j(1)j′(1)

T ′j(1)

T ′j′(1)

∅

1 2

T
i(2)
→j′(∅)

counted by E+
i(∅)j(∅)j′(∅)

T ′j(2)
T ′j′(2)

E−i(2)j(2)j′(2)

∅

Figure 17. Top: A signed binary tree t0 with k = 4 leaves. Bottom: A
schematic view of a tree with k marked leaves in Ti,t0 . As in Fig. 15, the red
paths consist only of nodes of critical type.

(a) Either l(v) ∈ Int(t0), in which case Bleft
v is the fringe subtree of t rooted at ψ(v)

in which the fringe subtree rooted at ϕ(l(v)) has been replaced by a blossom.
Hence Bleft

v ∈ T i(l(v))
→j(v) .

(b) Or l(v) ∈ Lf(t0), in which case Bleft
v is simply the fringe subtree of t rooted at

ψ(v); this tree contains one marked leaf, namely ϕ(l(v)). Hence Bleft
v belongs

to the family of marked trees of type j(v); this family is counted by the series
T ′j(v).

iii) Similarly for v ∈ Int(t0), we denote by Bright
v the piece rooted at ψ′(v). Then,

(a) either r(v) ∈ Int(t0) and Bright
v ∈ T i(r(v))

→j′(v) ,
(b) or r(v) ∈ Lf(t0) and Bright

v ∈ T ′j′(v).
iv) For all v ∈ Int(t0), we denote by Bbottom

v the piece rooted at ϕ(v). This piece is
exactly the fringe subtree of t rooted at ϕ(v) in which the fringe subtrees rooted at



SCALING LIMITS OF PERMUTATION CLASSES 45

ψ(v) and ψ′(v) have been replaced by blossoms. Hence it has type i(v) at the root,
and contains two blossoms that are children of the root, the left one being of type
j(v) and the right one of type j′(v). These two blossoms induce the permutation
ε(v) on the root. So Bbottom

v ∈ Eε(v)
i(v)j(v)j′(v).

Summing up, we have associated to each tree t ∈ Ti0,t0 the data consisting of (i, j, j′) (where
i, j and j′ are three functions from Int(t0) to I?) and the tuple of pieces(
B0, (Bleft

v ) v∈Int(t0)
l(v)∈Int(t0)

, (Bright
v ) v∈Int(t0)

r(v)∈Int(t0)

, (Bleft
v ) v∈Int(t0)

l(v)∈Lf(t0)

, (Bright
v ) v∈Int(t0)

r(v)∈Lf(t0)

, (Bbottom
v )v∈Int(t0)

)
,

The map associating to t its tuple of pieces is size-preserving, because each unmarked leaf
in t becomes an unmarked leaf in one of the pieces, and no other unmarked leaf is created
(recall that blossoms and marked leaves do not contribute to the size).

We denote by Ω the disjoint union, over triples (i, j, j′) of functions from Int(t0) to I?, of
Ωi,j,j′ . In the above described procedure which “cuts” t into pieces, no information is lost.
Namely, any t ∈ Ti0,t0 can be recovered unambiguously from its associated tuple of trees
by the simple inverse “gluing” procedure. Moreover, performing this gluing procedure from
an arbitrary element of Ω yields a tree in Ti0 with k marked leaves which induce t0. This
tree belongs to Ti0,t0 : indeed, the second condition in Definition 6.4 is satisfied, because
the pieces in

(Bleft
v ) v∈Int(t0)

l(v)∈Lf(t0)

and (Bright
v ) v∈Int(t0)

r(v)∈Lf(t0)

have a critical type at the root.
This shows that Ti0,t0 → Ω is a size-preserving bijection, of which Eq. (26) is the trans-

lation in terms of series. �

6.2. Asymptotics of the main series. We want the asymptotic behavior of the series
that are the entries of T?(z),(T?)′(z) and T?→(z). Recall from Eq. (3) that the entries of
T? are solutions of the system T?(z) = Φ(z,T?(z)). Recall also from Eq. (13) the identity
T?→(z) = (Id−M?(z,T?(z)))−1.

The following lemma is a consequence of a general result on nonlinear systems proved
in the appendix (Theorem A.6). Recall that ρ is the common radius of convergence of the
critical series.

Lemma 6.6. Assume that the specification (ET ) is essentially branching and satisfies hy-
potheses (SC) and (AR). Assume also that one of the series Ti, critical or subcritical, is
aperiodic.

Then all entries of (Id−M?(z,T?(z)))−1 and T?(z) are analytic on a ∆-domain at ρ.
Moreover, the matrix M?(ρ,T?(ρ)) is irreducible and has Perron eigenvalue 1, and denoting
u and v the corresponding left and right positive eigenvectors normalized so that ᵀuv = 1,
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we have the following asymptotics6 near ρ:

T?(z) = T?(ρ)− βv

ζ

√
ρ− z + o(

√
ρ− z)(27)

(T?)′(z) ∼ βv

2ζ
√
ρ− z(28)

T?→(z) = (Id−M?(z,T?(z)))−1 ∼ v ᵀ u

2βζ
√
ρ− z(29)

where
Z =

1

2

∑
i,j,j′∈I?

uivjvj′H
j,j′

→i (ρ), ζ =
√
Z,

and β > 0 is some computable constant.

Proof of Lemma 6.6. In order to apply Theorem A.6, we check that hypotheses (i)-(iii) and
(v) of this theorem hold.

• Assumption (i) is granted by the form of the specification (ET ). If Φ(z,0) were
zero, then the specification would be empty, negating for instance the aperiodicity
assumption.
• Assumption (ii) is the essentially branching assumption.
• Assumption (iii) is Hypothesis (SC).
• Assumption (v) is Hypothesis (AR).

We also have to check aperiodicity of all critical series. By assumption at least one series Ti
(critical or subcritical) is aperiodic. By Lemma 2.16 this ensures that every critical series
is aperiodic since Hypothesis (SC) holds.

We conclude the proof applying Theorem A.6, using also Proposition 6.3 to obtain the
expression of Z involving the Hj,j′

→i . �

Corollary 6.7. Under hypothesis (AR), each of the series Eε
ijj′ and H

j,j′

→i have radius of
convergence ρ, are convergent at ρ and are ∆-analytic at ρ.

Proof. The second equality in Proposition 6.3 shows thatHj,j′

→i (z) is of the formQj,j′

i (z,T?(z)),
where

Qj,j′

i (z,y?) =
∂2Fi(y0, . . . , yc, Tc+1(z), . . . , Td(z))

∂yj∂yj′
.

From the previous lemma, T ?(ρ) has radius of convergence ρ, is convergent at ρ and ∆-
analytic at ρ. From hypothesis (HR), the above function Qj,j′

i is analytic around (ρ,T?(ρ)).
This proves the corollary for Hj,j′

→i (for all i, j, j′ in I?).
Using their combinatorial definition, we see that the series Eε

ijj′ are also of the form
Rε
ijj′(z,T

?(z)), where Rε
ijj′ is coefficient-wise dominated by Qj,j′

i . In particular Rε
ijj′ is

analytic around (ρ,T?(ρ)) and the same argument as above prove the corollary for Eε
ijj′ . �

6In the above equations ∼ stands for coefficient-wise asymptotic equivalence.
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6.3. Probabilities of tree patterns. We now set

(30)

{
p+ = 1

Z

∑
i,j,j′∈I? E

+
ijj′(ρ)uivjvj′

p− = 1
Z

∑
i,j,j′∈I? E

−
ijj′(ρ)uivjvj′ ,

where Eε
ijj′ are defined in Definition 6.2 and ui, vj and Z are defined in Lemma 6.6.

Thanks to Proposition 6.3, p+ + p− = 1.

Proposition 6.8. We assume that we are in the essentially branching case, that Hypotheses
(SC) and (AR) are satisfied, and that at least one series (either critical or subcritical) is
aperiodic.

Let t0 be a signed binary tree with k leaves. For i ∈ I?, we consider a uniform tree with
n leaves in Ti, with k uniform marked leaves, and denote t[k]

i,n the tree induced by these k
marked leaves. We have, for all i ∈ I?,

P(t
[k]
i,n = t0)

n→+∞−→ 1

Catk−1

∏
v∈Int(t0)

pε(v).

In the above expression the limiting probabilities do not depend on i and add up to 1
(summing over all signed binary trees t0 with k leaves). We deduce that k marked leaves
in a large uniform tree in Ti induce a binary tree with high probability7 when n goes to
infinity, and that this signed binary tree is asymptotically distributed like a uniform binary
tree with i.i.d. signs of bias p+ (independently of the critical type i that we consider).

Proof. We fix i throughout the proof. Similarly to the linear case (see (21)), we have, for
any signed binary tree t0,

(31) P(t
[k]
i,n = t0) ≥ [zn−k]Ti,t0

[zn−k] 1
k!
T

(k)
i

.

Note that we only have an inequality. Indeed, because of the second item in Definition 6.4,
the numerator only counts a subset of trees in Ti with marked leaves inducing t0.

We want to apply the transfer theorem to the series Ti,t0 and T (k)
i .

We first check that those series are analytic on a ∆-domain at ρ. It is the case of Ti
(and all its derivatives) by Lemma 6.6. In addition, for all critical types i, j and j′, the
series T i→j and Eε

ijj′ also are analytic on a ∆-domain at ρ (by Lemma 6.6 and Corollary 6.7
respectively). Hence by multiplication the same holds for Ti,t0 .

We now look for asymptotic equivalents Ti,t0 and T
(k)
i in a ∆-neighborhood of ρ. For the

former, we take Eq. (26) (p.43), and plug in the values at ρ of the convergent series (Eε
ijj′

is convergent thanks to Corollary 6.7) and the asymptotics near ρ of the divergent series

7Throughout the paper, we say that an event holds with high probability if its probability tends to 1.
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given by Eqs. (28) and (29), yielding

Ti,t0(z) ∼ 1

(
√
ρ− z)2k−1

∑
i,j,j′∈I?Int(t0)

viui(∅)

2βζ

∏
v∈Int(t0)
l(v)∈Int(t0)

vj(v)ui(l(v))

2βζ

∏
v∈Int(t0)
r(v)∈Int(t0)

vj′(v)ui(r(v))

2βζ

∏
v∈Int(t0)
l(v)∈Lf(t0)

βvj(v)

2ζ

∏
v∈Int(t0)
r(v)∈Lf(t0)

βvj′(v)

2ζ

∏
v∈Int(t0)

E
ε(v)
i(v)j(v)j′(v)(ρ)

 .
This can be simplified as

Ti,t0(z) =
vi β

k−(k−1)

(
√
ρ− z)2k−1(2ζ)2k−1

∑
i,j,j′∈I?Int(t0)

∏
v∈Int(t0)

E
ε(v)
i(v)j(v)j′(v)(ρ)ui(v)vj(v)vj′(v)(32)

= (ρ− z)1/2−k viβ

22k−1ζZk−1

∏
v∈Int(t0)

∑
(i,j,j′)∈I?3

E
ε(v)
ijj′ (ρ)uivjvj′

= (ρ− z)1/2−k viβ

22k−1ζ

∏
v∈Int(t0)

pε(v).

For T (k)
i , we simply use singular differentiation of Eq. (28):

T
(k)
i

k!
∼ (ρ− z)1/2−k viβ

2ζ

1
2

3
2
. . . 2k−3

2

k!
= (ρ− z)1/2−k viβ

ζ

(2k − 2)!

2k(k − 1)!2k−1k!

= (ρ− z)1/2−k viβ

22k−1ζ
Catk−1.

Applying the transfer theorem and using Eq. (31) yields

(33) lim inf
n→∞

P(t
[k]
i,n = t0) ≥ 1

Catk−1

∏
v∈Int(t0)

pε(v).

Consider the sum over all signed binary tree t0. The right-hand side sums to 1 (recall that
p+ + p− = 1). On the other hand, for each fixed n, the sum of P(t

[k]
i,n = t0) over t0 is at

most 1. This forces the infimum limit in (33) to be an actual limit and the inequality to
be an equality, proving the proposition. �

6.4. Back to permutations and conclusion of the proof of Theorem 3.6. We can
now conclude the proof of the main theorem for the essentially branching case.

Conclusion of the proof of Theorem 3.6. Consider a tree specification (ET ) satisfying the
hypotheses of Theorem 3.6. Let i ∈ I? be the index of a critical family and let k ≥ 1.
We use the notation of Proposition 6.8, i.e. t[k]

i,n the random subtree induced by k uniform
random leaves in a uniform random tree with n leaves in Ti.
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Moreover, we denote by σn a uniform permutation of size n in Ti and In,k an independent
uniform subset of [1, n] of size k. Thanks to Lemma 4.5, we have

patIn,k(σn) = perm(t
[k]
i,n).

According to Proposition 6.8, t[k]
i,n is binary with high probability as n → ∞. More

precisely, t[k]
i,n converges in distribution to bk, where bk is a uniform binary tree of size k

whose internal nodes carry i.i.d. signs with bias p+.
Therefore we have the following convergence in distribution:

patIn,k(σn) = perm(t
[k]
i,n)

n→+∞−→ perm(bk).

Theorem 3.6 then follows, thanks to Theorem 3.1 (characterization of convergence of
random permutons) and Definition 3.5 (definition of the Brownian separable permuton).

�

7. Beyond the strongly connected case

The goal of this section is to provide some tools to describe the typical behavior of per-
mutations in some families T0 having a tree-specification which does not satisfy Hypothesis
(SC). We do not provide general theorems, because of the many possible situations that
can occur. Instead, we present a method with some generic lemmas, and illustrate it on
examples.

Recall that G? denotes the dependency graph of the tree-specification restricted to the
critical families. We first find its strongly connected components with no edge pointing
towards them. Such a component has a vertex set {Ti}i∈J , for some J ⊂ I?. Restricting
the tree-specification to {Ti}i∈J ] {Ti}i/∈I? , we obtain a new tree-specification satisfying
Hypothesis (SC). Then Theorem 3.3 or Theorem 3.6 gives us the limiting permuton of
uniform permutations in any of the families (Ti)i∈J .

We now discuss the case of a strongly connected component C = {Ti}i∈J of G? that has
some incoming edges, originating from the strongly connected components C1, . . . , Ch of
G?. Consider a family T in C and a tree in T . This tree consists of a root and fringe
subtrees whose type are either subcritical or in one of the Cj’s or in C. Recursively, we
may assume that we know the limiting permuton of trees with types in C1, . . . , Ch. To
deduce from there a limiting result for trees in T , we need to know if one of the fringe
subtrees is giant or whether there are typically several macroscopic ones.

7.1. Sufficient conditions for having a giant subtree. Let T0, T1, . . . , Tr be combi-
natorial classes whose generating series have the same radius of convergence ρ and are
analytic on a ∆-domain. We assume that T0 is related to T1, . . . , Tr through an equation
T0 = F(Z, T1, . . . ,Tr). Here, Z is the class with a single combinatorial structure, of size
1, classically called atom; in this paper, we rather refer to the atoms which constitute a
combinatorial structure as its elements. In combinatorial terms, a structure in T0 is an
F -structure of size s and a list of s substructures that are either atoms or belong to one
of Ti. This translates on generating series as T0 = F (z, T1, . . . , Tr).
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We now present two results which ensure, under appropriate assumptions, that k uni-
formly marked elements in a large random uniform structure in T0 belong with high prob-
ability to the same Ti substructure; in this case we speak of a giant substructure.

• In our first lemma, the singularities of the Ti’s are simple poles and F is linear in
the Ti’s (with coefficients depending on z).
• In our second lemma, the Ti’s have square-root singularities and F is analytic on a
neighborhood of (ρ, T1(ρ), . . . , Tr(ρ)).

Let us set up notation for the first lemma. We assume that the singularities of the
generating series T1, . . . , Tr are simple poles, namely, that for some reals δi,

(34) Ti(z) =
δi

ρ− z +O(1) , 1 ≤ i ≤ r.

Assume in addition that

(35) F (z, T1, . . . , Tr) =
r∑
i=1

Gi(z)Ti +G(z),

where G(z) and the Gi(z)’s are convergent in ρ (they may be subcritical, or critical and
convergent in ρ, e.g. with a square-root singularity in ρ).

From a combinatorial point of view, this identity of generating series means the following.
There exist combinatorial classes G and Gi (for 1 ≤ i ≤ r), whose generating functions are
G and the Gi’s, respectively, and such that a T0-structure is either a pair of structures in
Gi × Ti, for some i, or a G-structure.
Lemma 7.1 (Giant component: the simple pole case). Let T0, T1, . . . , Tr be combinatorial
classes whose generating series have the same radius of convergence ρ and are analytic on
a ∆-domain. Assume that T0 = F (z, T1, . . . , Tr) and Eqs. (34) and (35) hold.

Let tn be a uniform random structure of size n in T0, with a set of k marked elements,
chosen uniformly at random. For j ∈ {1, . . . , r}, we call E(n)

j the event that tn is a pair
of substructures in Gj × Tj and that all k marked elements belong to the Tj-substructure.
Then, we have

(36) P(E
(n)
j )

n→+∞−→ δjGj(ρ)∑r
i=1 δiGi(ρ)

.

Note that the right-hand side of Eq. (36) above sums to 1. Informally, the lemma
says that, with high probability, the structure tn has a giant substructure of some type
Tj. This type (i.e. the value of j) is however random and Eq. (36) gives the limiting
probabilities. When the Ti are families of permutations and assuming that we know the
limiting permutons of the Tj, j > 0, we can conclude that the limiting permuton of T0 is
taken at random among those of the Tj with probabilities given by Eq. (36).

Proof. We fix j ∈ {1, . . . , r}. The generating series of structures in T0 with a set of k
marked elements is given by T (k)

0 /k!. On the other hand, the generating series of structures
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in Gj × Tj with a set of k marked elements, all in the Tj-substructure, is Gj(z)T
(k)
j (z)/k!.

Therefore

(37) P(E
(n)
j ) =

[zn]Gj(z)T
(k)
j (z)

[zn]T
(k)
0 (z)

.

We now evaluate the limit of the above quantity when n tends to infinity using singularity
analysis. From the assumptions (34) and (35), we get that, for z in a ∆-neighborhood of
ρ,

T0(z) =
1

ρ− z

(
r∑
i=1

δiGi(ρ)

)
+O(1).

By singular differentiation, in a ∆-neighborhood of ρ,

T
(k)
0 (z) =

k!

(ρ− z)k+1

(
r∑
i=1

δiGi(ρ)

)
+O

(
1

(ρ− z)k

)
.

Similarly,

T
(k)
j (z) =

k! δj
(ρ− z)k+1

+O
(

1

(ρ− z)k

)
.

By the transfer theorem (Theorem A.2), we obtain

[zn]
(
T

(k)
0 (z)

)
∼ nk

ρn+k+1

r∑
i=1

δiGi(ρ);

[zn]
(
Gj(z)T

(k)
j (z)

)
∼ nk

ρn+k+1
δjGj(ρ).

Plugging these estimates back into (37), we have

P(E
(n)
j ) =

[zn]Gj(z)T
(k)
j (z)

[zn]T
(k)
0 (z)

n→+∞−→ δjGj(ρ)∑r
i=1 δiGi(ρ)

. �

We now give a similar statement when all Ti have square-root singularities.

Lemma 7.2 (Giant component: the square-root case). Let T0, T1, . . . , Tr be combinatorial
classes whose generating series have the same radius of convergence ρ and are analytic on
a ∆-domain. We assume that T0 = F (z, T1, . . . , Tr) for some function F which is analytic
on a neighborhood of {|z| ≤ ρ, |yi| ≤ Ti(ρ)} and that there exist βi’s such that

(38) Ti(z) = Ti(ρ)− βi
√
ρ− z +O(ρ− z) , 1 ≤ i ≤ r.

Let tn be a uniform random structure of size n in T0, with a set of k marked elements,
chosen uniformly at random. Let E(n)

j be the event that all k marked elements belong to
the same Tj-substructure. Then
(39)

P(E
(n)
j )

n→+∞−→ βj
∂F (y0, . . . , yd)

∂yj

∣∣∣
(ρ,T1(ρ),...,Tr(ρ))

×
(

r∑
i=1

βi
∂F (y0, . . . , yd)

∂yj

∣∣∣
(ρ,T1(ρ),...,Tr(ρ))

)−1

.
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Contrary to the simple pole case, we do not assume that F is linear. Consequently, a
structure in T0 might be composed of an F -structure with several Ti-substructures. Since
the limiting probabilities in Eq. (39) sum to one, the above lemma states that, with high
probability, the structure has a giant substructure of some type Tj. Eq. (39) gives us the
limiting distribution of this random type Tj. As for Lemma 7.1, when the Tj are families
of permutations, this lemma can be used to infer the limiting permuton of T0 from those
of the Tj.

Proof. We fix {1, . . . , r}. Similarly to the proof of Lemma 7.1, we can express P(E
(n)
j ) as

a quotient of coefficients of generating series: in this case,

P(E
(n)
j ) =

1

[zn]T
(k)
0 (z)

· [zn]

(
T

(k)
j (z)

∂F (y0, . . . , yd)

∂yj

∣∣∣
(z,T1(z),...,Tr(z))

)
.

From assumption (38) and the analyticity of F , we get that, for z in a ∆-neighborhood of
ρ,

T0(z) = T0(ρ)−√ρ− z
(

r∑
i=1

βi
∂F (y0, . . . , yd)

∂yj

∣∣∣
(ρ,T1(ρ),...,Tr(ρ))

)
+O(ρ− z).

By singular differentiation, we have, on a ∆-neighborhood of ρ,

T
(k)
0 (z) = (ρ− z)1/2−k Ck

(
r∑
i=1

βi
∂F (y0, . . . , yd)

∂yj

∣∣∣
(ρ,T1(ρ),...,Tr(ρ))

)
+O

(
(ρ− z)1−k),

where C1 = 1/2 and Ck = 1 · 3 . . . (2k − 3)/2k for k ≥ 2. Similarly,

T
(k)
j (z) = (ρ− z)1/2−k Ckβj +O

(
(ρ− z)1−k).

Since F is analytic in
(
ρ, T1(ρ), . . . , Tr(ρ)

)
, the series ∂F (y0,...,yd)

∂yj

∣∣∣
(z,T1(z),...,Tr(z))

converge in

ρ and we have

T
(k)
j (z)

∂F (y0, . . . , yd)

∂yj

∣∣∣
(z,T1(z),...,Tr(z))

= (ρ− z)1/2−k Ckβj
∂F (y0, . . . , yd)

∂yj

∣∣∣
(ρ,T1(ρ),...,Tr(ρ))

+O
(
(ρ− z)1−k).

We conclude using the transfer theorem, as in the proof of Lemma 7.1. �

Lemmas 7.1 and 7.2 can also be applied in the particular situation where one Ti is equal
to T0. In such cases, the lemma yields the existence of a giant substructure that is of
type T0 with a probability p, typically in (0, 1). When this occurs, we apply recursively
Lemma 7.1 (or 7.2) to this substructure. After a random and almost surely finite number
of iterations, we find a giant substructure of a different type. In the permutation case, this
idea can be used to find the limiting permuton of T0; see an example in Section 7.3.2.
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7.2. Several macroscopic substructures. We now describe a framework where several
macroscopic substructures appear: we assume that the generating series T1, . . . , Tr have
singularities which are simple poles and that F is a polynomial. Writing F as a sum of
monomials decomposes T0 into a disjoint union of subfamilies, one corresponding to each
monomial. We therefore focus on the case where F is a monomial.

We assume that the generating series T1, . . . , Tr have singularities which are simple poles,
i.e.,

(40) Ti(z) =
δi

ρ− z +O(1).

Assume in addition that

(41) F (z, T1, . . . , Tr) = G(z)T1T2 . . . Tr,

where G(z) is convergent at ρ; since there can be repetitions in the list (T1, . . . , Tr), this
covers the case of a general monomial. Let G be a combinatorial class with generating
series G.

A structure in T0 can be identified with a list consisting of substructures in G, T1, . . . , Tr
(one structure from each class).

Lemma 7.3 (Several macroscopic components: the monomial case). Let T0, T1, . . . , Tr be
combinatorial classes whose generating series have the same radius of convergence ρ and
are analytic on a ∆-domain. We assume that T0 = F (z, T1, . . . , Tr) and Eqs. (40) and (41)
hold. We mark a set of k elements, taken uniformly at random, in a uniform random T0-
structure of size n, and denote by `i (1 ≤ i ≤ r) the (random) number of marked elements
lying in the Ti-substructure.

Then (`1, . . . , `r) is asymptotically uniformly distributed in the set {`1 + · · ·+ `r = k}.

Proof. From the assumptions (40) and (41), we get that, for z in a ∆-neighborhood of ρ,

T0(z) = G(ρ)
δ1 . . . δr
(ρ− z)r

+O
(

1

(ρ− z)r−1

)
.

By singular differentiation, on a ∆-neighborhood of ρ, we have

T
(k)
0 (z) = G(ρ)

(r + k − 1)!

(r − 1)!

δ1 . . . δr
(ρ− z)r+k

+O
(

1

(ρ− z)r+k−1

)
.

Similarly,

T
(`i)
i (z) =

`i! δi
(ρ− z)`i+1

+O
(

1

(ρ− z)`i

)
.
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Combining both equations, we can write

G(ρ)
∑

`1+···+`r=k

(
k

`1, . . . , `r

) r∏
i=1

T
(`i)
i (z)

= G(ρ)
∑

`1+···+`r=k

(
k

`1, . . . , `r

) r∏
i=1

(
`i! δi

(ρ− z)`i+1

)
+O

(
1

(ρ− z)r+k−1

)

= G(ρ)
δ1 . . . δr

(ρ− z)r+k

( ∑
`1+···+`r=k

k!

)
O
(

1

(ρ− z)r+k−1

)
= T

(k)
0 (z) +O

(
1

(ρ− z)r+k−1

)
,

where in the last line we used that the number of (`1, . . . , `r) such that `1 + · · ·+ `r = k is(
k+r−1
r−1

)
.

By the transfer theorem, we obtain (for `1 + · · ·+ `r = k),

[zn]

(
G(z)

(
k

`1, . . . , `r

) r∏
i=1

T
(`i)
i (z)

)
∼ G(ρ)

(
k

`1, . . . , `r

)
nr+k−1

ρn+k+r

1

(k + r − 1)!

(
r∏
i=1

`i!δi

)

∼ G(ρ)
nr+k−1

ρn+k+r

k!

(k + r − 1)!

(
r∏
i=1

δi

)
.

The right-hand side does not depend on `i’s. Summing over the
(
k+r−1
r−1

)
possible values for

the `i’s we obtain

[zn]
(
T

(k)
0 (z)

)
∼ G(ρ)

nr+k−1

ρn+k+r

1

(r − 1)!

(
r∏
i=1

δi

)
.

Recall that we consider a uniform random structure tn of size n in T0 with a uniform set
of k marked elements. Let E(n)

`1,...,`r
denote the event that for every 1 ≤ i ≤ r, exactly `i of

these marked elements lie in the Ti-substructure. Its probability can be computed by

P(E
(n)
`1,...,`r

) =
[zn]

(
G(z)

(
k

`1,...,`r

)∏r
i=1 T

(`i)
i (z)

)
[zn]

(
T

(k)
0 (z)

) → 1(
k+r−1
r−1

) .
This concludes the proof. �

We now discuss briefly the more general case where T0 = F (z, T1, . . . , Tr), with F a
polynomial in T1, . . . , Tr (not necessarily a monomial) with coefficients converging at z = ρ
(the Ti’s are still assumed to have a simple pole in ρ). Each monomial has a pole at the
singularity, whose multiplicity equals the degree of the monomial. Therefore, only mono-
mials of maximal degree contribute to the limit. We will use this principle to determine
permuton limits of some families of permutations in two different cases.
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• An example with exactly one monomial of maximal degree (namely one monomial
of degree 2 and one of degree 1) is given in Section 7.3.3.
• When there are several monomial of maximal degree, a random element in T0 be-
longs asymptotically with positive probability to each of the classes corresponding
to these monomials. We will see an example of this kind of behavior in Section 7.3.2.

7.3. Examples.

7.3.1. Four classes T with a single strongly connected component pointing to T . We con-
sider theX-class already analyzed in Sections 2.6.3 and 3.2.1. As explained in Section 3.2.1,
we can use Theorem 3.3 to prove that all critical classes except for T0, namely T3, T4, T6

and T7, converge to an X-permuton. We can prove that T0 has the same limit using
Lemma 7.1 instead of the little trick used in Section 3.2.1. Indeed, the first equation of the
specification (9) expresses T0 as a linear combination of T3, T4, T6 and T7 (the coefficients
involving subcritical classes). Moreover, all series T3, T4, T6 and T7 have a simple pole at
ρ = 1−

√
2/2. Therefore, by Lemma 7.1, with probability tending to 1, a uniform random

tree in T0 has a giant substructure in either T3, T4, T6 or T7. Since the latter all tend to an
X-permuton (with the same parameters), so does T0.

Similarly, we can replace our previous trick by Lemma 7.1 for the classes discussed in
Sections 3.2.2, 3.2.3 and 3.2.5.

7.3.2. A class with many strongly connected components. The example that we consider
now is the class

T = Av(2413, 3142, 2314, 3241, 21453, 45213).

This class is not substitution-closed and contains no simple permutation.
For this class, we obtain8 a specification with 13 families T = T0, . . . , T9, T11, T12, T13 (the

family T10 being empty, see Remark B.1 in Appendix). The corresponding system on series
can be explicitly solved, showing that all series except T1 and T11 are critical and have a
common square-root singularity. The complete specification and the explicit solution of
the associated system can be found in Appendix B.1. The dependency graph restricted to
the critical Ti is shown in Fig. 18 and has nine strongly connected components.

Remark 7.4. This example has been built on purpose to show a graph G? with many
strongly connected components. This has been ensured by considering the class Av(213)∪
Av(231), for which it is easy to check that the basis is {2413, 3142, 2314, 3241, 21453, 45213}
given above. We are aware that studying this class via its tree-specification (given in
Appendix) is neither the most natural nor the simplest thing to do. Our goal with this
example is to illustrate that, even without the knowledge of the simple “union” structure
of our class, our approach would still work.

We now determine the limiting permuton of a uniform random permutation in T , using
the specification; see Fig. 19 for a simulation.

8See the companion Jupyter notebook examples/Union.ipynb
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T4

T2T8

T13

T6

T0

T7

T12T5

T9

T3

Figure 18. The subgraph restricted to critical families Ti, for the specifi-
cation (54) of the class Av(2413, 3142, 2314, 3241, 21453, 45213). It has nine
strongly connected components.

Proposition 7.5. A uniform random permutation in the class Av(2413, 3142, 2314, 3241, 21453, 45213)
converges in distribution to the random permuton, which is the diagonal with probability
1/2 and the antidiagonal with probability 1/2.

Figure 19. Three large permutations in T , drawn uniformly at random.

Proof. The strategy is to proceed step by step, determining the limiting permuton of uni-
form random permutations in each of the critical families, navigating in the dependency
graph of Fig. 18 from bottom to top.

We first consider the strongly connected component {T2, T8}. Taking the equations for
T1, T2 and T8 in the specification (54) for T given in Appendix B.1, we have a specification
for T2. This restricted specification satisfies Hypothesis (SC) and is essentially branching.
We can therefore apply Theorem 3.6 (the other hypotheses are straightforward to check)
and we get that a uniform random permutation in T2 converge to a biased Brownian
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separable permuton with some parameter p in [0, 1]. Since the only quadratic term in the
system is ⊕[T8, T2], which corresponds to a ⊕ node, we have p+ = 1, which means that the
limit is in fact the main diagonal of [0, 1]2.

We now consider T4. It is given by the equation T4 = 	[T1, T2]. The family T1 is subcrit-
ical, while T2 has a square-root singularity in ρ (as easily seen on the explicit expression
given in Appendix B.1). Applying Lemma 7.2, we know that a uniform random permu-
tation of T4 has a giant substructure in T2, and therefore, also converges to the diagonal
permuton.

Moving on to T13, it is given by the equation

T13 = ⊕[T4, T13] ] ⊕[T1, T13] ] ⊕[T4, T11] ] 	[T1, T13].

An important difference with the equation of T4 is that it involves also T13 itself on the
right-hand side. We can still apply Lemma 7.2 and conclude that a uniform random
permutation of T13 has a giant substructure in either T4 or T13. Iterating this argument
(see the discussion at the end of Section 7.1), after a finite number of steps, we find a
giant substructure of type T4. We conclude that a uniform random permutation in T13

has the same limiting permuton as one in T4, i.e. the diagonal permuton. With the exact
same reasoning, we prove that a uniform random permutation in T6 also converges to the
diagonal permuton (which appears here as the Brownian separable permuton of parameter
p+ = 0).

On the other hand, and following the same steps, we show that a uniform random
permutation in any of the classes T5, T7, T9 and T3 converges to the antidiagonal permuton.

Finally, we consider T0. It is given by the equation

T0 = {•} ] ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T1, T5] ] 	[T1, T6] ] 	[T7, T5].

In the above equation T1 is convergent in ρ and all other classes are critical (with square-root
singularities). By Lemma 7.2, a uniform random permutation in T0 contains a giant sub-
structure of type Tj , where j follows asymptotically some distribution on {2, 3, 4, 5, 6, 7}.
For each j0 in this set, we denote pj0 = P(j = j0). We can then conclude that a uniform
random permutation in T0 converges in distribution to the random permuton, which is
the diagonal with probability p+ := p2 + p4 + p6 and the antidiagonal with probability
p− := p3 + p5 + p7. Using the explicit expression of the pj’s in Lemma 7.2 or observing the
symmetry, we see that p+ = p− = 1/2. �

7.3.3. A “compound” class. Our goal here is to illustrate the emergence of several macro-
scopic substructures in the limit, as described in Section 7.2. To this effect, we consider
the class C which can be defined as the downward closure of ⊕[X ,X ], where X denotes
the X-class (see Sections 2.6.3 and 3.2.1). This class has no simple permutation and has
therefore a tree-specification. We explain below an easy way to construct one such speci-
fication. However the obtained specification does not satisfy Hypothesis (SC) (p.16). We
explain here how to determine nevertheless the limiting permuton of a uniform random
permutation in C.

We first define the limiting permuton.
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Definition 7.6. Let U be a uniform random variable in [0, 1]. We construct the random
permuton µ⊕[X,X] as follows:

• on [0,U ]× [0,U ], we take a rescaled copy of µX
( 1
4
, 1
4
, 1
4
, 1
4

)
, i.e.

µ⊕[X,X]
(
[Ua,Ub]× [Uc,Ud]

)
= U · µX

( 1
4
, 1
4
, 1
4
, 1
4

)

(
[a, b]× [c, d]

)
;

• similarly, on [1−U , 1]× [1−U , 1], we take a rescaled copy of µX
( 1
4
, 1
4
, 1
4
, 1
4

)
;

• µ⊕[X,X]
(
[0,U ]× [1−U , 1]

)
= µ⊕[X,X]

(
[1−U , 1]× [0,U ]

)
= 0.

We now describe the distribution of the permutation constructed from k random points
in this permuton.

Lemma 7.7. Let (`1, `2) be a uniform random variable in the set {(`1, `2) ∈ Z2
≥0 : `1 +

`2 = k}. Conditionally on (`1, `2), we take πi (for i in {1, 2}) to be independent random
permutations distributed as Perm`i(µ

X
( 1
4
, 1
4
, 1
4
, 1
4

)
). Then

Permk(µ
⊕[X,X])

(d)
= ⊕[π1, π2].

Proof. Denote as in Section 3.1 (x1,y1), . . . , (xk,yk) the coordinates of the k i.i.d. points
drawn with distribution µ⊕[X,X] in order to define Permk(µ

⊕[X,X]). It suffices to notice
that

card{1 ≤ i ≤ k;xi ≤ U}
is uniformly distributed in {0, 1, . . . , k}. Moreover, conditionally on U and on the event
{xi < U}, xi is uniform in (0,U). Therefore the permutation induced by points {(xi,yi);xi ≤
U} (resp. > U ) has the same distribution as π1 (resp. π2). We conclude that the permu-
tation induced by the whole set {(xi,yi); 1 ≤ i ≤ k} has the same distribution as ⊕[π1, π2],
which is what we wanted to prove. �

We can now state and prove our convergence result, illustrated in Fig. 20.

Proposition 7.8. Let C be the downward closure of ⊕[X ,X ] and σn be a uniform random
permutation of size n in C. Then σn converges in distribution to the random permuton
µ⊕[X,X].

Proof. Clearly, C can be written as X ∪⊕[X ,X ], but this equation is essentially ambiguous,
hence does not fit in the tree-specification framework. Instead, writing that

C = X not⊕ ] ⊕[X not⊕,X ]

provides an unambiguous description of C (for the definition of X not⊕, see the third item
in Definition 2.11).

We can therefore build a specification for C, starting from that of the X-class, Eq. (9)
(p.19). Note that the families X and X not⊕ correspond to T0 and T1]T4 in specification (9),
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U(0, 1)

Figure 20. Left: A simulation of a uniform permutation of size 242 in
C. Right: The limiting permuton, as predicted by Proposition 7.8 (U(0, 1)
stands for the uniform distribution on (0, 1)).

respectively. A specification for C can thus be obtained from the specification (9) of the
X-class, by adding to it the two equations

C = X not⊕ ] ⊕[X not⊕, T0];(42)
X not⊕ = T1 ] T4.(43)

These equations are not exactly of the form required in tree-specifications, but are easily
modified to achieve a proper tree-specification. The above form is however practical to
apply the tools of this section. In particular, we see that the series of X not⊕ and C both
have the same radius of convergence ρ as the critical series of specification (9) (namely T0,
T3, T4, T6 and T7)

We recall from Section 3.2.1 that a uniform random permutation in any of the critical
classes (T0, T3, T4, T6 and T7) converges to the centered X-permuton. We then note that
X not⊕ is the disjoint union of a subcritical class and the critical class T4. Therefore a
uniform permutation in X not⊕ behaves asymptotically as one in T4, and also converges to
the centered X-permuton µX

( 1
4
, 1
4
, 1
4
, 1
4

)
.

We now focus on C = X not⊕ ] ⊕[X not⊕, T0]. The generating series of X not⊕ has a simple
pole at ρ (this follows from T4 having a simple pole at ρ, see the equations p.Eq. (9)). On
the contrary, the generating series of ⊕[X not⊕, T0] has a double pole at ρ, since both X not⊕

and T0 have a simple pole. Using the transfer theorem, and up to multiplicative constants,
the coefficients of the generating series of X not⊕ and ⊕[X not⊕, T0] behave asymptotically as
ρ−n and n ρ−n respectively. Therefore a uniform random permutation of size n in C is, with
probability tending to 1, in ⊕[X not⊕, T0].

Let us take a uniform random set of k elements in a uniform random permutation σn in
C, or equivalently, in ⊕[X not⊕, T0]. Then the number `1 (resp. `2) of these elements that
are in the X not⊕- (resp. T0-)substructure is random. Since the series of X not⊕ and T0 have
both simple poles at ρ, we can apply Lemma 7.3 and (`1, `2) is uniformly distributed on
the set {`1 + `2 = k}. Since the permuton limit of elements in X not⊕ is µX

( 1
4
, 1
4
, 1
4
, 1
4

)
, the `1
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elements in the X not⊕-substructure induce a pattern π1, which is asymptotically distributed
like Perm`1(µ

X
( 1
4
, 1
4
, 1
4
, 1
4

)
). Similarly the `2 elements in the T0-substructure induce a pattern

π2, which is asymptotically distributed like Perm`2(µ
X
( 1
4
, 1
4
, 1
4
, 1
4

)
).

Comparing with Lemma 7.7, the pattern ⊕[π1,π2] induced by the k random elements in
σn is asymptotically distributed as Permk(µ

⊕[X,X]). We conclude with Theorem 3.1 that
a uniform random permutation σn in C converges towards µ⊕[X,X]. �

Appendix A. Complex analysis toolbox

A.1. Transfer theorem. We start by defining the notion of ∆-domain.

Definition A.1 (∆-domain and ∆-neighborhood). A domain ∆ is a ∆-domain at 1 if
there exist two real numbers R > 1 and 0 < φ < π

2
such that

∆ = {z ∈ C | |z| < R, z 6= 1, | arg(z − 1)| > φ}.
By extension, for a complex number ρ 6= 0, a domain is a ∆-domain at ρ if it the image
by the mapping z → ρz of a ∆-domain at 1. A ∆-neighborhood of ρ is the intersection of
a neighborhood of ρ and a ∆-domain at ρ.

We will make use of the following family of ∆-neighborhoods: for ρ 6= 0 ∈ C, 0 < r < |ρ|,
ϕ < π/2, set ∆(ϕ, r, ρ) = {z ∈ C, |ρ− z| < r, arg(ρ− z) > ϕ}.

When a function A is analytic on a ∆-domain at its radius of convergence ρ, the asymp-
totic behavior of its coefficients is closely related to the behavior of the function near the
ρ.

The following theorem is a corollary of [FS09, Theorem VI.3 p. 390].

Theorem A.2 (Transfer Theorem). Let A be an analytic function whose radius of conver-
gence is ρA. Assume moreover that A is analytic on a ∆-domain ∆ at ρA, δ be an arbitrary
real number in R \ Z≥0 and CA a constant possibly equal to 0.

Suppose A(z) = (CA + o(1))(1− z
ρA

)δ when z tends to ρA in ∆. Then the coefficient of
zn in A, denoted by [zn]A(z) satisfies

[zn]A(z) = (CA + o(1))
1

ρnA

n−(δ+1)

Γ(−δ) ,

where Γ is the gamma function.

A.2. Generalities for systems of functional equations. In this section and the sub-
sequent one, we look at vectors of nonnegative series Y = (Y1, . . . Yc) that satisfy systems
of equations of the form

(44) Y(z) = Φ(z,Y(z)),

where Φ(z,y) = (Φ1(z,y), . . . ,Φc(z,y)) is a vector of multivariate power series of (z,y)
with nonnegative integer coefficients.

Definition A.3. The system Φ is strongly connected if the directed graph on {1, . . . , c}
given by j → i whenever ∂Φi

∂yj
is nonzero, is strongly connected.
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This assumption guarantees that all series Y1, . . . , Yc have a common radius of conver-
gence ρ (see Lemma 2.14 for example).

A.3. Linear systems. In this section we assume that Φ is a linear function of its second
argument, in the sense that Eq. (44) reduces to Y(z) = M(z)Y(z) + V(z) where V(z) =
Φ(z,0) and the c × c-matrix M is the Jacobian of Φ in its second argument. Note that
under the linear assumption M does not depend on y.

The following proposition is an adaptation of known results: it extends Theorem V.7
(p.342) and Lemma V.1 (p.346) in [FS09] (which establish that, when M(z) = zM, then ρ
is a simple pole of (Id−M(z))−1 and this quantity tends to C/(z − ρ) where C is a rank
1 matrix), and Lemma 2 in [BD15] (where M(z) is a matrix with polynomial coefficients
in z, but constants corresponding to dominating terms of the asymptotic behavior are not
computed). The proof is mostly adapted from this last reference.

Proposition A.4. Consider the following system

Y(z) = M(z)Y(z) + V(z)

where V(z) = Φ(z,0), Φ being a linear function of its second argument, and the c × c-
matrix M is the Jacobian of Φ in its second argument. Assume that the system is strongly
connected, that all entries of M(z) and V(z) are series with nonnegative coefficients, that
M(0) = 0 and that V is nonzero.

Then the unique solution Y(z) = (Id−M(z))−1V(z) is a formal power series with non-
negative coefficients. Moreover the common radius of convergence ρ of the entries of Y is
finite, and the following assertions are equivalent:

i) There exists t ≥ 0 strictly smaller than the radius of convergence of all entries of
M and V, such that det(Id−M(t)) = 0;

ii) The radius of convergence of all entries of M and V is strictly larger than ρ.
If they hold, then ρ > 0 and

iii) ρ is also the common radius of convergence of all entries of (Id−M)−1;
iv) M(ρ) is an irreducible matrix with Perron eigenvalue 1. We denote by u and v the

corresponding left and right positive eigenvectors normalized so that ᵀuv = 1 ;
v) (Id−M)−1 and Y(z) are analytic on a ∆-neighborhood of ρ, and as z → ρ, denoting

coefficient-wise asymptotic equivalence by ∼,

(45) (Id−M(z))−1 ∼
(

1
ᵀuM′(ρ)v

)
v ᵀu

ρ− z .

Consequently,

(46) Y(z) ∼
(
ᵀuV(ρ)
ᵀuM′(ρ)v

)
v

ρ− z .

Moreover, if the g.c.d. of the periods of the series in M is 1, then there are no other
singularities on the circle of convergence for the series in Y and (Id−M)−1, and those
series are analytic on a ∆-domain at ρ.
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We start with a lemma that is used in the subsequent proof.

Lemma A.5. Let M be an irreducible matrix whose coefficients are series in z with non-
negative coefficients. Assume M(0) = 0, then Id−M(z) is invertible around z = 0 and
all the coefficients of (Id−M(z))−1 are positive analytic functions with the same radius of
convergence.

Proof. The invertibility of Id−M(z) near zero follows from the fact that the spectral radius
of M(z) is continuous in z and M(0) = 0.

Fix 1 ≤ i, j, l ≤ c. By the irreducibility condition, there exists k such that M(z)ki,j 6= 0.
Moreover

(Id−M(z))−1 = Id +M(z) + · · ·+ M(z)k−1 + M(z)k(Id−M(z))−1.

As a result, ((Id−M(z))−1)i,l depends positively on ((Id−M(z))−1)j,l. SinceM(z)k(Id−M(z))−1 =
(Id−M(z))−1M(z)k, it also implies that ((Id−M(z))−1)l,j depends positively on ((Id−M(z))−1)l,i.
Denote ρij, the radius of convergence of ((Id−M(z))−1)i,j for all i, j. Then we have for
all i, j, k, l, ρij ≤ ρil ≤ ρkl. Hence all entries of (Id−M(z))−1 have the same radius of
convergence. �

We move on to the proof of Proposition A.4.

Proof. The uniqueness of the solution Y(z) directly comes from the resolution of the equa-
tion defining Y(z). Since the system is strongly connected, then the matrixM is irreducible,
i.e for i, j, there is a positive integer k such that (Mk)i,j > 0 and my hypothesis M(0) = 0.
Therefore by Lemma A.5 all entries of (Id−M(z))−1 are nonzero series, with the same
radius of convergence. As a result, since moreover the entries of V(z) are series with
nonnegative coefficients, all entries of Y(z) = (Id−M(z))−1V(z) have the same radius of
convergence.

By Perron-Frobenius theorem, the spectral radius λ(t) = SRM(t), called the Perron
eigenvalue, is a simple eigenvalue of M(t) and forms a continuous and strictly increasing
function of t on [0, RM), where RM is the smallest radius of convergence of the entries of
M.

Now assume statement ii). Since V(z) has nonnegative entries and a radius of conver-
gence strictly larger than ρ, then ρ is necessarily the common radius of convergence of all
the entries of (Id−M(z))−1. If λ(ρ) < 1, then Id−M(z) would be analytically invertible
around ρ thanks to the comatrix formula, since the entries of M are analytic near ρ. But
this negates Pringsheim’s theorem [FS09, Theorem IV.6 p.240]. As a result λ(ρ) ≥ 1 which
implies statement i).

Conversely assume statement i). Then α = inf{t ≥ 0, λ(t) = 1} is well-defined. Since
λ(0) = 0, then α > 0, and by continuity, λ(α) = 1. Since the coefficients of M are series
with nonnegative coefficients, then for |z| < α, |M(z)| ≤ M(|z|) coefficient-wise, hence
SRM(z) < 1. Because furthermore the radius of convergence of M and V is larger than α,
then (Id−M(z))−1 and Y are defined and analytic on D(0, α) and ρ ≥ α. We will now
compute their asymptotics as z → α. They will turn up to be divergent, which will imply
α = ρ and hence statement ii).



SCALING LIMITS OF PERMUTATION CLASSES 63

By hypothesis, the Perron eigenvalue of M(α) is 1. Denote by u and v the corresponding
left and right positive eigenvectors normalized so that ᵀuv = 1. Let P be a Jordanization
basis for M(α), so that P−1M(α)P = diag(1, J), where J is some (c − 1) × (c − 1) Jordan
matrix that does not admit the eigenvalue 1. (We write diag(A,B) for the block-diagonal
concatenation of two square matrices A,B.)

Necessarily Pe1 = v. Moreover, ᵀe1P−1 is a left eigenvector of M and ᵀe1P−1v = 1.
Therefore ᵀu = ᵀe1P−1.

We also have that
P−1(Idc−M(α))P = diag(0, Idc−1−J)

where Idd is the identity matrix of size d. Of course det(Idc−1−J) 6= 0. Recall that M is
analytic at α. Hence as z → α,

P−1(Idc−M(z))P =

[
C(α− z) + o(α− z) O(α− z)

O(α− z) (Idc−1−J) +O(α− z)

]
,

where C = (P−1M′(α)P)11 = ᵀe1P−1M′(α)Pe1 = ᵀuM′(α)v, M′(z) being the component-
wise derivative ofM(z). This last quantity is positive since u and v have positive coefficients
and M′(α) is a nonnegative matrix and is not equal to zero. Now we deduce that

det(Idc−M(z)) = C det(Idc−1−J)(α− z) + o(α− z).

This implies that we can find a neighborhood B(ρ, ε) of ρ such that (Id−M(z))−1 can be
analytically continued on B(ρ, ε) \ {ρ}. We also estimate the transpose of the cofactor
matrix as follows:

Com(P−1(Idc−M(z))P)t =

[
det(Idc−1−J) +O(α− z) O(α− z)

O(α− z) O(α− z)

]
.

Now we can estimate the inverse of our matrix:

(P−1(Idc−M(z))P)−1 =
Com(P−1(Idc−M(z))P)t

det(Idc−M(z))
∼ 1

C(α− z)

[
1 + o(1) o(1)
o(1) o(1)

]
And

(Idc−M(z))−1 =
1

C(α− z)
P−1

([
1 0
0 0

]
+ o(1)

)
P =

v ᵀu + o(1)

C(α− z)
.

Consequently the entries are divergent series at z = α, therefore α = ρ. This gives the
asymptotics in Eq. (45) for (Idc−M(z))−1 near ρ. Multiplying by V(z), which is analytic
at z = ρ, gives Eq. (46).

We are left to show that the aperiodicity condition implies that there is no other sin-
gularity than ρ on the circle of convergence for (Idc−M(z))−1. Let z 6= ρ, |z| = ρ. We
just need to show that (Idc−M(z)) is invertible. Since we only have positive series, we
have the coefficient-wise inequality |M(z)| ≤ M(ρ). Since the g.c.d. of the periods of the
coefficients of M is 1, it follows from the Daffodil lemma [FS09, Lem. IV.1] the inequality
is strict in at least one coefficient. Then from Perron-Frobenius theorem we know that
SR|M(z)| < SRM(ρ) = 1. Using SRM ≤ SR|M| we conclude on the invertibility of (Id−M(z))
around z.

The existence of a ∆-domain at ρ follows from a classic compactness argument. �
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A.4. Nonlinear systems and Drmota-Lalley-Woods theorem. In this section we
state and prove a version of the classical Drmota-Lalley-Woods theorem. In a classical
form [FS09, Theorem VII.6, p.489], it entails that polynomial, irreducible and nonlinear
tree-specifications lead to a common square-root singularity for all series. Our result (The-
orem A.6) is based on a version by Drmota [Drm09, Theorem 2.33], which is stated for
analytic specifications, under a suitable analyticity condition. We explicitly computed the
constants of the square-root term

√
ρ− z for the tree series, along with asymptotics writ-

ten as a rank one matrix times (ρ− z)−1/2 for the natural transfer matrix associated to the
system.

The version of Drmota considers series with an additional counting parameter, which we
dropped as it is not needed for our purposes. Also, the combinatorial assumptions on the
system that ensure uniqueness of the solution differ from ours, as will be discussed in the
proof of Theorem A.6.

Theorem A.6. Consider the following system:

(44) Y(z) = Φ(z,Y(z)),

where Φ(z,y) = (Φ1(z,y), . . . ,Φc(z,y)) is a vector of multivariate power series of (z,y)
with nonnegative integer coefficients. We consider the Jacobian matrix of the system in its
second argument:

M(z,y) = Jacy Φ(z,y), i.e. Mi,j(z,y) =
∂Φi(z,y)

∂yj
, 1 ≤ i, j ≤ c.

Assume that
i) Φ(0,0) = 0, M(0,0) is the zero matrix and Φ(z,0) is nonzero.
ii) Φ is not linear in its second argument,
iii) Φ is strongly connected.

Then there is a unique solution Y of (44) in the ring of formal power series with no con-
stant term. All its entries have nonnegative coefficients and the same radius of convergence
ρ <∞ and the entries of Y(ρ) are finite.

The two following assertions are then equivalent:
iv) There exists (z,y) in the region of convergence of Φ, such that y = Φ(z,y) and

M(z,y) has dominant eigenvalue 1.
v) (ρ,Y(ρ)) belongs to the interior of the region of convergence of Φ.

And if these conditions hold, then ρ > 0 and
vi) all entries of Y and (Id−M(z,Y(z)))−1 have radius of convergence ρ and are an-

alytic on a ∆-neighborhood of ρ.
vii) M(ρ,Y(ρ)) is an irreducible matrix with Perron eigenvalue 1.

Denote by u and v the left and right eigenvectors of M(ρ,Y(ρ)) for the eigenvalue 1, chosen
positive and normalized so that ᵀuv = 1. Let

∀ 1 ≤ i, j, j′ ≤ c, Hi,j,j′(z) =
∂Φi

∂yj∂yj′
(z,y)

∣∣∣∣
y=Y(z)

and U(z) =
∂Φ

∂z
(z,y)

∣∣∣∣
y=Y(z)
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Defining the following positive constants,

β =
√
ᵀuU(ρ), Z =

1

2

∑
i,j,j′≤c

uivjvj′Hi,j,j(ρ), ζ =
√
Z,

we then have the following asymptotics near ρ:

Y(z) = Y(ρ)− βv

ζ

√
ρ− z + o(

√
ρ− z),(47)

Y′(z) ∼ βv

2ζ
√
ρ− z ,(48)

(Id−M(z,Y(z)))−1 ∼ v ᵀu

2βζ
√
ρ− z .(49)

Finally if all series Yi(z) are aperiodic, then ρ is the unique dominant singularity of the
Yi’s and of the series in (Id−M(z,Y(z)))−1, and these series are analytic on a ∆-domain
at ρ.

Proof. First let us show that hypothesis i) implies existence and uniqueness of a solution
with no constant term. Because Φ itself has no constant term, the map Y → Φ(z,Y) sends
the ring of series with no constant term to itself. Moreover, since there are no monomials
of degree 1 involving just one yi, this is a contraction mapping. Therefore by the fixed
point theorem a solution exists and it is nonzero because of the assumption Φ(z, 0) 6= 0.

All entries of Y have the same radius of convergence. Indeed, iterating Φ enough and
using Hypotheses ii) and iii), we get that each Yi depends positively and nonlinearly on
every other Yj’s. More precisely for each Yi, there exist c > 0 and k ≥ 0 such that czkY 2

i is
coefficient-wise dominated by Yi. Hence Yi cannot be a polynomial, so ρ < ∞, and Yi(ρ)
must be finite.

For 0 ≤ t ≤ ρ, let us now set λ(t) = SRM(t,Y(t)). By Perron-Frobenius theorem, this is
an increasing, continuous function. We will show that statement v) implies statement
iv). Assume that Φ is analytic at (ρ,Y(ρ)), and suppose that the λ(ρ) < 1. Then
det(Id−M(ρ,Y(ρ)) 6= 0, and the analytic implicit function theorem would imply that
Y could be continued on a neighborhood of ρ. Thanks to Pringsheim’s theorem [FS09,
Thm IV.5], this is in contradiction with the fact that ρ is the radius of convergence of Y.
Hence the λ(ρ) ≥ 1, and there exists z0 ≤ ρ such that λ(z0) = 1 as stated in iv).

For the rest of the proof, we assume statement iv). We apply Theorem 2.33 of [Drm09].
The hypotheses of this theorem are all verified, except (in our notation) Φ(0,y) = 0, which
we replaced by the weaker one M(0,0) = 0. In the proof of Drmota, this hypothesis was
only used to guarantee the uniqueness of the solution Y as a formal power series in z.
However as we saw, our set of hypotheses still guarantees uniqueness of the solution, when
restricted to series with no constant term. As a result, Theorem 2.33 of [Drm09] guarantees
that z0 = ρ (hence statement v)), and that Y can be continued on a ∆-neighborhood of
ρ. It also implies that there exists a positive vector c such that the following asymptotics
holds:

(50) Y(z) = Y(ρ)− (c + o(1))
√
ρ− z.
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Since λ(ρ) = 1, the radius of convergence of (Id−M(z,Y(z)))−1 is at least ρ. We will
now compute the precise asymptotics of (Id−M(z,Y(z)))−1 and Y(z) when z is near ρ.
The fact that (Id−M(z,Y(z)))−1 can be analytically continued on a ∆-neighborhood of ρ
will be obtained as a byproduct of this derivation.

Let us denote A = M(ρ,Y(ρ)). This is an irreducible nonnegative matrix with Perron
eigenvalue 1. As in the linear case, the Perron-Frobenius theorem provides corresponding
left and right positive eigenvectors u and v normalized so that ᵀuv = 1. Let also P be a
Jordanization basis for A, so that P−1AP = diag(1,T), and T is some Jordan matrix with
spectral radius less than 1. Necessarily Pe1 = v and ᵀu = ᵀe1P−1.

We get that P−1(Idc−A)P = diag(0, Idc−1−T), and det(Idc−1−T) 6= 0. Recall that each
coefficient of the matrix M(z,y) is analytic at (ρ,Y(ρ)). Hence as z → ρ,

Mi,j(z,Y(z)) = Mi,j(ρ,Y(ρ))− ∂Mi,j

∂z
(ρ,Y(ρ))(ρ− z)(1 + o(1))

−
c∑

j′=1

∂Mi,j

∂yj′
(ρ,Y(ρ))(Yj′(ρ)− Yj′(z))(1 + o(1))

The second term , which is linear, is dominated by the third one, whose square-root
behavior is given by Eq. (50). Also, we have

∂Mi,j

∂yj′
(z,Y(z)) =

∂Φi

∂yj∂yj′
(z,Y(z)) = Hi,j,j(z).

Note that the nonlinearity of Φ implies that at least one of the series Hi,j,j is nonzero.
Collecting everything we get the following asymptotics near ρ for the matrix M(z,Y(z)):

Mi,j(z,Y(z)) = Aij −
√
ρ− z

c∑
j′=1

Hi,j,j(ρ)cj′ + o(
√
ρ− z).

Hence as ρ→ z, we have the following asymptotics written in block-decomposition:

P−1(Id−M(z,Y(z)))P =

[
(C + o(1))

√
ρ− z O(

√
ρ− z)

O(
√
ρ− z) (Idc−1−T) +O(

√
ρ− z)

]
,

where

C = lim
z→ρ

(P−1A−M(z,Y(z))√
ρ− z P)11 = lim

z→ρ
ᵀu

A−M(z,Y(z))√
ρ− z v =

∑
i,j,j′≤c

uivjcj′Hi,j,j(ρ).

We then proceed as in the linear case. The asymptotic estimate of the determinant near ρ

det(Idc−M(z)) = C det(Idc−1−T)
√
ρ− z + o(

√
ρ− z).

shows it does not vanish on a punctured neighborhood of ρ. Hence (Id−M(z,Y(z))) is
invertible on a (possibly smaller) ∆-neighborhood of ρ. Then using the comatrix formula
for the inverse, we obtain

(51) (Id−M(z,Y(z)))−1 ∼ v ᵀu

C
√
ρ− z .
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We proceed to transfer this asymptotics into asymptotics for Y′(z). Differentiation of the
relation (44) yields

Y′(z) =
∂Φ

∂z
(z,y)

∣∣∣
y=Y(z)

+ JacyΦ(z,y)
∣∣∣
y=Y(z)

·Y′(z)

= U(z) + M(z,Y(z))Y′(z).

Note that Hypotheses i) and iii) imply that U(z) is nonzero too. Hence

(52) Y′(z) = (Id−M(z,Y(z)))−1U(z).

Now, since U is convergent at ρ, with Eq. (51), we obtain

(53) Y′(z) ∼
ᵀuU(ρ)

C

v√
ρ− z =

β2

C

v√
ρ− z .

Since Y is analytic on a ∆-neighborhood at ρ, singular differentiation [FS09, Thm VI.8]
of Eq. (50) yields

Y′(z) ∼ c

2
√
ρ− z .

We can identify the constants in the two expressions and get c = 2β2

C
v, which can be

reinjected in the definition of C, yielding C2 = 2β2
∑

i,j,j′≤c uivjvj′Hi,j,j(ρ) = 4β2Z and
then C = 2βζ. Substituting this value for C into Eqs. (50), (51) and (53) yields the
desired asymptotics.

We shall now show that there is no other singularity on the circle of convergence under
the aperiodicity condition, in a similar fashion to the linear case. Let z 6= ρ be such
that |z| = ρ. By the Daffodil lemma [FS09, Lem. IV.1], we have |Y(z)| < Y(ρ). Hence
SRM(z,Y(z)) ≤ SRM(|z|,|Y(z)|) < SRM(ρ,Y(ρ)) = 1. By the analytic implicit function theorem
[FS09, Thm B.6], this implies that Y is analytic near z. And (Id−M(w,Y(w)) is then
invertible near z. The existence of a ∆-domain at ρ once again follows from a classic
compactness argument. �

Appendix B. Details on the examples

B.1. The class Av(2413, 3142, 2314, 3241, 21453, 45213). The algorithm of [BBP+17] gives
for this class a specification9 with 14 equations, for families T = T0, . . . , T13. The family T10

is however empty, as we will explain in Remark B.1 below. Removing it from the obtained
specification yields the following one:

9See the companion Jupyter notebook examples/Union.ipynb
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(54)



T = T0 = {•} ] ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T1, T5] ] 	[T1, T6] ] 	[T7, T5]

T1 = {•}
T2 = {•} ] ⊕[T8, T2] ] 	[T1, T2]

T3 = ⊕[T1, T3] ] 	[T7, T9] ] 	[T1, T9] ] 	[T7, T11]

T4 = 	[T1, T2]

T5 = {•} ] ⊕[T1, T5] ] 	[T12, T5]

T6 = ⊕[T4, T13] ] ⊕[T1, T13] ] ⊕[T4, T11] ] 	[T1, T6]

T7 = ⊕[T1, T5]

T8 = {•} ] 	[T1, T2]

T9 = ⊕[T1, T9] ] 	[T7, T9] ] 	[T1, T9] ] 	[T7, T11]

T11 = {•} ] ⊕[T1, T11] ] 	[T1, T11]

T12 = {•} ] ⊕[T1, T5]

T13 = ⊕[T4, T13] ] ⊕[T1, T13] ] ⊕[T4, T11] ] 	[T1, T13].

Remark B.1. In the specification obtained from the algorithm of [BBP+17] (not dis-
played), the family abbreviated T10 is actually T(213,231), which consists of permutations of
the class T forced to contain the patterns 213 and 231. From the characterization of T as
Av(213)∪Av(231), it is clear T10 has to be empty. The algorithm of [BBP+17] is however
not able to detect this simplification, and we had to perform this simplification by hand.

Translating this specification into a system on the corresponding series, and solving this
system, we get 

T = T0 = −3z2−2z
√
−4z+1+4z+

√
−4z+1−1

z(2z−1)

T1 = z

T2 = T5 = −2z−
√
−4z+1+1
2z

T3 = T6 = T9 = T13 = −z2−z
√
−4z+1+2z+

√
−4z+1/2−1/2

z(2z−1)

T4 = T7 = −z −
√
−4z+1

2
+ 1

2

T8 = T12 = −
√
−4z+1

2
+ 1

2

T11 = −z
2z−1

The dominant singularity is of square-root type, coming from
√
−4z + 1. All series above

except T1 and T11 are critical, with radius of convergence ρ = 1/4. Due to the presence
of (for instance) the term T4T2 in the equation for T0, the specification (54) is essentially
branching. Its dependency graph restricted to the critical Ti is shown in Fig. 18 (p.56)
and has nine strongly connected components. From this specification and this system, we
obtained the limiting permuton of this class in Section 7.3.2.
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B.2. The class Av(2413, 3142, 2143, 34512). The specification for this class that we obtain
applying the algorithm of [BBP+17] is10

(55)



T = T0 = {•} ] ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T5, T6] ] 	[T5, T7] ] 	[T8, T6]
T1 = {•}
T2 = {•} ] ⊕[T1, T2]
T3 = ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T5, T6] ] 	[T5, T7] ] 	[T8, T6]
T4 = 	[T5, T6] ] 	[T5, T7] ] 	[T8, T6]
T5 = {•} ] ⊕[T1, T1] ] ⊕[T1, T9] ] ⊕[T9, T1]
T6 = {•} ] 	[T1, T6]
T7 = ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T10, T6] ] 	[T10, T7] ] 	[T1, T7] ] 	[T8, T6]
T8 = ⊕[T1, T11] ] ⊕[T1, T12] ] ⊕[T13, T11] ] ⊕[T9, T11] ] ⊕[T13, T1]
T9 = 	[T1, T6]
T10 = ⊕[T1, T1] ] ⊕[T1, T9] ] ⊕[T9, T1]
T11 = ⊕[T1, T2]
T12 = ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T10, T6] ] 	[T10, T7] ] 	[T1, T7] ] 	[T8, T6]
T13 = 	[T10, T6] ] 	[T10, T7] ] 	[T1, T7] ] 	[T8, T6].

Solving the system on the series (Ti)0≤i≤13 resulting from Eq. (55) gives

T = T0 = −z(z3−z2+3z−1)
(z−1)(z3−z2+4z−1)

T1 = z

T2 = T6 = −z
(z−1)

T3 = T7 = z2

(z−1)(z3−z2+4z−1)

T4 = z2(z−1)
(z3−z2+4z−1)

T5 = −z(z2+1)
(z−1)

T8 = z3(z3−z2+3z+1)
(z−1)(z3−z2+4z−1)

T9 = T11 = −z2
(z−1)

T10 = −z2(z+1)
(z−1)

T12 = z3(z2−z+4)
(z−1)(z3−z2+4z−1)

T13 = z3(z2+2)
(z−1)(z3−z2+4z−1)

.

The critical series are T0, T3, T4, T7, T8, T12 and T13. Their common root ρ is the only real
root of the polynomial z3 − z2 + 4z − 1, namely

ρ = − (7/2+3
√

597/2)1/3

3
+ 1

3
+ 11

3(7/2+3
√

597/2)1/3
≈ 0.26272.

It follows that the specification (55) is essentially linear. The dependency graph shows
that the critical series are organized into two strongly connected components, one of which
consists of the class T0 alone. However, as for the X-class (see Section 3.2.1), T0 = T3 ]
{12 . . . n | n ≥ 1} and we study the specification where the equation for T0 is removed.

10See the companion Jupyter notebook examples/AsymmetricX.ipynb
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Again similarly to the X-class, the limit of a uniform random permutation of size n in T3

will also be the limit of a uniform random permutation in T0.
From the specification we are able to compute the matrices M?, Dleft,+, . . . ,Dright,−.

Namely,

M?(z) =



z − z
z−1

− z3+z
z−1

− z
z−1

0 0

0 0 − z3+z
z−1

− z
z−1

0 0

z − z
z−1

z − z3+z2

z−1
− z
z−1

0 0

0 0 0 0 z z − z2

z−1

z − z
z−1

z − z3+z2

z−1
− z
z−1

0 0

0 0 z − z3+z2

z−1
− z
z−1

0 0


,

Dleft,+ =


1 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 0

 , Dleft,− =



0 0 −3 z2+1
z−1

+ z3+z
(z−1)2

0 0 0

0 0 −3 z2+1
z−1

+ z3+z
(z−1)2

0 0 0

0 0 −3 z2+2 z
z−1

+ z3+z2

(z−1)2
+ 1 0 0 0

0 0 0 0 0 0

0 0 −3 z2+2 z
z−1

+ z3+z2

(z−1)2
+ 1 0 0 0

0 0 −3 z2+2 z
z−1

+ z3+z2

(z−1)2
+ 1 0 0 0



Dright,+ =



0 − 1
z−1

+ z
(z−1)2

0 0 0 0

0 0 0 0 0 0
0 − 1

z−1
+ z

(z−1)2
0 0 0 0

0 0 0 0 0 − 2 z
z−1

+ z2

(z−1)2
+ 1

0 − 1
z−1

+ z
(z−1)2

0 0 0 0

0 0 0 0 0 0



and Dright,− =



0 0 0 − 1
z−1

+ z
(z−1)2

0 0

0 0 0 − 1
z−1

+ z
(z−1)2

0 0

0 0 0 − 1
z−1

+ z
(z−1)2

0 0

0 0 0 0 0 0
0 0 0 − 1

z−1
+ z

(z−1)2
0 0

0 0 0 − 1
z−1

+ z
(z−1)2

0 0


By performing the computations in the field Q(ρ), we are able to compute those matrices at
z = ρ. We verify that the dominant eigenvalue ofM?(ρ) is 1 and compute the corresponding
left and right eigenvectors. and the vector p:

p =
1

597

(
51ρ2 + 42ρ+ 105, 51ρ2 + 42ρ+ 105,−113ρ2 + 24ρ+ 259, 11ρ2 − 108ρ+ 128

)
.

A numerical approximation gives

p ≈ (0.200258808255625, 0.200258808255625, 0.431332891374616, 0.168149492114135).

Those numbers are algebraic of degree 3 since ρ is.
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B.3. The V-shape: Av(2413, 1243, 2341, 531642, 41352). The specification for this class
that we obtain applying the algorithm of [BBP+17]11 is

T0 = {•} ] ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T5, T0] ] 3142[T1, T1, T1, T6]

T1 = {•} ] 	[T7, T1]

T2 = {•} ] ⊕[T7, T2]

T3 = ⊕[T8, T2] ] 	[T9, T6]

T4 = 	[T10, T11] ] 	[T10, T1] ] 	[T7, T11] ] 3142[T1, T1, T1, T6]

T5 = {•} ] ⊕[T1, T1] ] 3142[T1, T1, T1, T1]

T6 = {•} ] ⊕[T12, T2] ] 	[T9, T6]

T7 = {•}
T8 = 	[T9, T6]

T9 = {•} ] ⊕[T1, T7]

T10 = ⊕[T1, T1] ] 3142[T1, T1, T1, T1]

T11 = ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T10, T11] ] 	[T10, T1] ] 	[T7, T11] ] 3142[T1, T1, T1, T6]

T12 = {•} ] 	[T9, T6]

and the solutions of the associated system are

T0 = − z7−7 z6+20 z5−28 z4+20 z3−7 z2+z
2 z7−13 z6+37 z5−62 z4+59 z3−32 z2+9 z−1

T1 = T2 = T9 = − z
z−1

T3 = − z2

z3−4 z2+4 z−1

T4 = z8−4 z7+11 z6−13 z5+8 z4−2 z3

2 z7−13 z6+37 z5−62 z4+59 z3−32 z2+9 z−1

T5 = z5−2 z4+4 z3−3 z2+z
z4−4 z3+6 z2−4 z+1

T6 = − z2−z
z2−3 z+1

T7 = z

T8 = z2

z2−3 z+1

T10 = 2 z4−2 z3+z2

z4−4 z3+6 z2−4 z+1

T11 = z8−5 z7+10 z6−14 z5+11 z4−5 z3+z2

2 z8−15 z7+50 z6−99 z5+121 z4−91 z3+41 z2−10 z+1

T12 = z3−2 z2+z
z2−3 z+1

The critical series are T0, T4 and T11, whose radius of convergence ρ is the only real root
of the polynomial

2z5 − 7z4 + 14z3 − 13z2 + 6z − 1.

The graph of critical series is not strongly connected: {T4, T11} forms a connected compo-
nent which does not involve T0, hence we can study the specification where T0 is removed.
It is essentially linear, verifies Hypotheses (SC) and (RC), and involves aperiodic subcritical

11See the companion Jupyter notebook examples/V.ipynb
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series. Hence Theorem 3.3 applies and there exists a parameter p such that uniform ran-
dom permutations of size n in either T4 or T11 converges to the X-permuton with parameter
p.

Furthermore, we know from the design of the algorithm of [BBP+17] that all families
appearing in the system are included in T0, in particular T11 ⊆ T0. A quick computer-
assisted computation (done in the companion notebook) shows that T0 − T11 = z/(1− z),
i.e., for each n, there is exactly one permutation of size n in T0 \ T11. Hence, uniform
random permutations of size n in T0 also converge to the X-permuton with parameter p.

We now turn to the computation of the parameter p, using Eq. (18). From the specifi-
cation we directly compute

M?(z) =

(
0 z + 2 z4−2 z3+z2

z4−4 z3+6 z2−4 z+1

− z
z−1

z + 2 z4−2 z3+z2

z4−4 z3+6 z2−4 z+1

)
, Dleft,+ = Dright,− = O,

Dleft,− =

(
0 z + 2 z4−2 z3+z2

z4−4 z3+6 z2−4 z+1

− z
z−1

z + 2 z4−2 z3+z2

z4−4 z3+6 z2−4 z+1

)
, Dright,+ =

(
0 0

− 1
z−1

+ z
(z−1)2

0

)
.

This implies that p+
left = p−right = 0, hence p+

right = 1 − p−left. As a result, the associated X-
permuton will degenerate into a V shape based at the point (p−left, 0). We can now perform
computations in Q(ρ) to obtain that p−left = −192

599
ρ4 + 600

599
ρ3 − 1119

599
ρ2 + 1507

1198
ρ + 343

599
. This

algebraic number is the only real root of the polynomial

19168z5 − 86256z4 + 155880z3 − 141412z2 + 64394z − 11773

and a numerical evaluation gives p−left ≈ 0.818632668576995.

B.4. The class of pin-permutations. The recursive description given in [BBR11] can
be translated into a tree-specification as in Definition 2.8.

As in [BBR11], we denote by (see [BBR11] for the definitions):
• S the set of all pin-permutations;
• E+ (resp. E−) the set of increasing (resp. decreasing) oscillations;
• N+ (resp. N−) the set of pin-permutations that are not increasing (resp. decreas-
ing) oscillations, and whose root is not ⊕ (resp. 	);
• TE+ (resp. TE−) the set of direct sums of at least two increasing (resp. decreasing)
oscillations;
• TE+,N+ (resp. TE−,N−) the set of direct sums of at least two permutations, one being
in N+, the others in E+ (resp. N− and E−);
• Si the set of simple pin-permutations α and Si? the set of pairs (α, a) where α is in
Si and a an active point of α;
• QE+ (resp. QE−) the set of triples (β,m, a), where β is an increasing (resp. decreas-
ing) quasi-oscillation and m and a are its main and auxiliary substitution points,
respectively.

The set of (marked) simple permutations Si?, Si, QE+ and QE− in the above list are
characterized and enumerated in [BBR11].
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Then there is a tree-specification for the following 19 families: S, S\{1}, E+, E+\{1},
E+\{1, 21}, E−, E−\{1}, E−\{1, 12}, N+, N−, TE+ , TE− , TE+,N+ , TE−,N− , T ?E+ := TE+ \
{12, 132, 213}, T ?E− := TE− \ {21, 231, 312}, {12}, {21} and {1}.

Below are the equations for S, TE+ , TE+,N+ and N+. Some other follow by symmetry or
by excluding small permutations.

(56)



S = {•} ] TE+ ] TE+,N+ ] TE− ] TE−,N−
] ⊎α∈Si α[1, . . . , 1] ] ⊎(α,i)∈Si? α[1, . . . , 1,S \ {1}, 1, . . . , 1]

]⊎(β,m,a)∈QE+ β[1, . . . , 1,S \ {1}, 1, . . . , 1, 12, 1, . . . , 1]

]⊎(β,m,a)∈QE− β[1, . . . , 1,S \ {1}, 1, . . . , 1, 21, 1, . . . , 1]

TE+ = ⊕[E+, E+] ] ⊕[E+, TE+ ]

TE+,N+ = ⊕[N+, E+] ] ⊕[N+, TE+ ] ] ⊕[E+,N+] ] ⊕[E+, TE+,N+ ]

N+ = T ?E− ] TE−,N−
] ⊎α∈Si\E+ α[1, . . . , 1] ] ⊎(α,i)∈Si? α[1, . . . , 1,S \ {1}, 1, . . . , 1]

]⊎(β,m,a)∈QE+ β[1, . . . , 1,S \ {1}, 1, . . . , 1, 12, 1, . . . , 1]

]⊎(β,m,a)∈QE− β[1, . . . , 1,S \ {1}, 1, . . . , 1, 21, 1, . . . , 1]

Finally, the families E+ and E− are explicit sets of permutations, each consisting of 1
permutation of size 1, 1 permutation of size 2, and 2 permutations of each size n ≥ 3.

The corresponding system is solved explicitly in [BBR11]. The critical families are S,
S\{1}, N+, N−, TE+,N+ , TE−,N− . From the equations, we see that the system is essentially
linear. Here is the dependency graph of the system restricted to critical families.

S

N− N+

S \ {1}
TE+,N+TE−,N−

Figure 21. The dependency graph of the pin-permutations class.

As in other essentially linear examples, we observe that there are two strongly connected
components, one constituted of S alone. The other one contains the family S \ {1}, whose
asymptotics is equivalent to that of S.

As this specification has infinitely many simple permutations, we need to argue that
Hypothesis (RC) holds. It is easily observed from the equations that all entries of V? and
M? are polynomials in the subcritical series and in the series Si, Si?, QE+, QE− counting
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the families of simple permutations appearing in (56). It is shown in [BBR11] that the
latter series are all analytic at the radius of convergence of S, implying (RC).

Moreover, the aperiodicity is clear, so that we can apply Theorem 3.3 to the tree-
specification without the class S and its equation. We conclude that a uniform random
permutation of size n in S \{1} (or equivalently in S) tends to the X-permuton with some
parameters pleft

+ , pright
+ , pleft

− , pright
− . Since the class S has all symmetries of the square, we

know without computation that pleft
+ = pright

+ = pleft
− = pright

− = 1/4.

B.5. A non-degenerate essentially branching class. We consider the class T of per-
mutations avoiding the patterns 31452 and 41253 whose standard tree has nodes labeled
only by ⊕, 	 and 3142. This class has the following tree-specification12:

T = T0 = {•} ] ⊕[T1, T0] ] 	[T2, T0] ] 3142[T0, T3, T3, T0]

T1 = {•} ] 	[T2, T0] ] 3142[T0, T3, T3, T0]

T2 = {•} ] ⊕[T1, T0] ] 3142[T0, T3, T3, T0]

T3 = {•} ] 	[T4, T3]

T4 = {•}
Clearly, T4 = z and T3 = z

1−z . Since T0 contains the separable permutations, the radius
of convergence of T0 is smaller than 1. Hence T3 and T4 are subcritical. Moreover, T0, T1

and T2 form a connected component of the dependency graph. Thus T0, T1 and T2 are
critical and Hypothesis (SC) is satisfied. In addition, T0 and thus all Ti contain finitely
many simple permutations, so that Hypothesis (AR) holds from Observation 2.18. One
can see that the specification is essentially branching (e.g., the equation of T0 involves a
factor T1T0). Finally, T3 = z

1−z is aperiodic. We can therefore apply Theorem 3.6: there
exists some parameter p+ such that the limiting permuton of T0 is the Brownian separable
permuton of parameter p+.

We move on to the computation of the parameter p+. We did not explicitly solve the
system, but rather reduced it to a cubic equation in T0, and, playing with Cardano’s
formulas, obtained that the radius of convergence ρ of T0 is the only real root of the
equation

−4z9 + 41z8 − 230z7 + 507z6 − 582z5 + 403z4 − 186z3 + 58z2 − 12z + 1

while the values of the critical series at the radius of convergence can be expressed in terms
of ρ as follows:

T0(ρ) =
−21ρ5 + 30ρ4 + 12ρ3 − 33ρ2 + 15ρ− 3

18ρ5 − 78ρ4 + 102ρ3 − 66ρ2 + 24ρ− 6
, T1(ρ) = T2(ρ) =

T0(ρ)

1 + T0(ρ)
.

We obtain directly from the specification

M?(z, y0, y1, y2) =

 y1 + y2 + 2y0( z
1−z )2 y0 y0

y2 + 2y0( z
1−z )2 0 y0

y1 + 2y0( z
1−z )2 y0 0

 ,

12See the companion Jupyter notebook examples/Branching.ipynb
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and

E+
i,j,j′ =

{
1 if i ∈ {0, 2}, j = 1, j′ = 0

0 otherwise.

E−i,j,j′ =


1 if i ∈ {0, 1}, j = 2, j′ = 0

T 2
3 = ( z

1−z )2 if i ∈ {0, 1, 2}, j = j′ = 0

0 otherwise.
We can now perform computations in Q(ρ) to find the dominant eigenvectors of the

matrix M?(ρ, T0(ρ), T1(ρ), T2(ρ)) and use Eq. (30) to compute p+. We get that p+ ≈
0.474869237650240 is the only real root of the polynomial

z9−3z8+
232819

62348
z7−78093

31174
z6+

243697

249392
z5− 54293

249392
z4+

24529

997568
z3− 125

62348
z2+

45

62348
z− 2

15587
.
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