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Capacitive deionization (CDI) for water desalination, capacitive energy generation, geophysical applications, and removal of heavy ions from wastewater streams are some examples of promising electrochemical processes. The CDI process can be improved by using a flow-through electrode (FTE) cell architecture, where the input feed water is pumped through an open channel separated from a flowing aqueous slurry mixture by a suitable ionic membrane.

In this work we simulate the operation of a symmetrical electrochemical cell where the ions removed in the water flow channel are stored in flowing porous particles located in the slurry mixture channel. We use a two steps volume averaging technique to derive the averaged transport equations for multi-ionic system in the slurry electrode. The complete model involves sections for simulating the ionic transport in the water channel, the ionic membrane, and the slurry electrode.

. The derivation of an acceptable model to simulate the operation of a slurry electrode can be used to design improved CDI processes.

INTRODUCTION

Adequate supply of quality water for human consumption, agriculture, and industry is critical to maintain civilization in our planet. Several technologies are used for desalination of water and to maintain, or increase, the supply of quality water [START_REF] Elimelech | The Future of Seawater Desalination: Energy, Technology, and the Environment[END_REF]. Presently, reverse osmosis (RO) is the widest applied technology for seawater desalination (Glatter, 1998;Critenden et al., 2005;Elimetech and Phillip, 2011;[START_REF] Gendel | Batch Mode and Continuous Desalination of Water using Flowing Carbon Deionization (FCDI) Technology[END_REF]. RO has two major shortcomings: a relatively high energy demand and low water recovery, about 45%, [START_REF] Elimelech | The Future of Seawater Desalination: Energy, Technology, and the Environment[END_REF]. Electrochemical processes for water desalination are attractive alternatives to RO due to lower energy demands [START_REF] Gendel | Batch Mode and Continuous Desalination of Water using Flowing Carbon Deionization (FCDI) Technology[END_REF]. Capacitive deionization (CDI) is an electrochemical water desalination process that treats brackish water by capturing ions inside the electrical double layers (EDLs) of porous electrodes [START_REF] Anderson | Capacitive Deionization as An Electrochemical Means of Saving Energy and Delivering Clean Water. Comparison to Present Desalination Practices: Will it Compete?[END_REF][START_REF] Porada | Review on the Science and Technology of Water Desalination by Capacitive Deionization[END_REF]Gabitto and Tsouris, 2016). The process efficiency can be improved by adding ion exchange membranes to the process (MCDI). The use of ion exchange membranes in CDI improves process efficiency by blocking the flow of co-ions into the salty water stream [START_REF] Biesheuvel | Theory of Membrane Capacitive Deionization including the Effect of the Electrode Pore Space[END_REF][START_REF] Zhao | Optimization of Salt Adsorption Rate in Membrane Capacitive Deionization[END_REF].

The process can be improved by using a flow-through electrode (FTE) cell architecture, where the input feed water is pumped through macropores or laser perforated channels in porous electrodes. [START_REF] Guyes | A One-Dimensional Model for Water Desalination by Flow-Through Electrode Capacitive Deionization[END_REF] presented a one-dimensional model describing water desalination by FTE-CDI. The authors compared simulation results to experimental data measured using a custom-built experimental cell. Further improvement has been achieved by using flowing aqueous suspensions (slurries) of carbon particles between the ion exchange membranes and the corresponding current collectors [START_REF] Jeon | Desalination via a New Membrane Capacitive Deionization Process utilizing Flow-Electrodes[END_REF][START_REF] Porada | Carbon Flow Eectrodes for Continuous operation of Capacitive Deionization and Capacitive Mixing Energy Generation[END_REF][START_REF] Yang | Flow-Electrode Capacitive Deionization using an Aqueous Electrolyte with a high Salt Concentration[END_REF][START_REF] Tang | Seawater Desalination by Over-Potential Membrane Capacitive Deionization: Opportunities and Hurdles[END_REF]. Ion removal capacities of 95% have been reported using this technique [START_REF] Jeon | Desalination via a New Membrane Capacitive Deionization Process utilizing Flow-Electrodes[END_REF]. Hatzell et al. (2014) proposed carrying out the FCDI process without ion exchange membranes. [START_REF] Gendel | Batch Mode and Continuous Desalination of Water using Flowing Carbon Deionization (FCDI) Technology[END_REF] discussed batch and continuous FCDI processes. In batch mode operation, after the desalination step is complete the adsorbed ions are discharged from the flowing electrodes using polarity reversal. In continuous mode, both slurry streams are recirculated between a desalination module and a regeneration module operating in the same way, but using reversed polarities.

Salt ions are absorbed into the electrodes in the desalination module and desorb in the regeneration module. The authors reported a desalination rate of more than 99% for an initial salt concentration of 1 g NaCl/l. [START_REF] Rommerskirchen | Modelling Continuous Flow-Electrodes Capacitive Deionization Processes with Ion-Exchange Membranes[END_REF] presented a process model for continuous, steady state FCDI processes operating at constant voltage. The authors simulated a continuous twomodule FCDI process and processes based on a single FCDI desalination module operated in single-pass mode. [START_REF] Rubin | Induced-Charge Capacitive Deionization: The Electrokinetic Response of a Porous Particle to an External Electric Field[END_REF] studied the phenomenon of induced-charge capacitive deionization around a porous ideal conducting particle immersed in an electrolyte under the action of an external electric field. The external electric field induces an electric dipole in the porous particle, leading to its capacitive charging by both cations and anions at opposite poles.

The authors reported that the electrode operation is characterized by a long charging time which results in significant changes in the bulk salt concentration, on a dimensional scale of the size of the particle. The authors presented a phenomenological model to simulate the charging-discharging process based upon the modified Donnan model reported by [START_REF] Biesheuvel | Electrochemistry and Capacitive Charging of Porous Electrodes in Asymmetric Multicomponent Electrolytes[END_REF]2014).

Gabitto and Tsouris (2017) presented a new model that computes the individual ionic concentration profiles inside porous electrodes. This model is applicable to solid porous particles which behave as ideal conductors. Gabitto and Tsouris (2018) discussed the issue of one and two-equation models to simulate the CDI process. The authors studied theoretically and numerically the conditions that lead to local equilibrium. Their analysis shows that the value of an interphase pseudo-transport coefficient determines which model to use. The source terms that appear in the porous solid phase make more difficult to achieve local equilibrium.

The goal of this paper is to combine a phenomenological model with a volume averaging method to simulate the operation of slurry carbon electrodes. This 'hybrid approach' will lead to the basic equations describing the electrosorption process in flow electrodes. Another goal is to show how this model can be implemented to simulate the operation of homogeneous slurry electrodes.

THEORETICAL DEVELOPMENT

Model Description

The physical cell model used in this work is depicted in Figure 1 In the modeling work we assume an stationary REVM. The density of particles inside the system remains constant (Sonin, 2001). The liquid phase is continuous while the solid porous particles phase is discontinuous. The conservation equations for each phase are derived to obtain a set of equations. The following assumptions are used:

1) Incompressible flow.

2) The solid particles move with a constant v velocity.

3) The fluid moves with a constant v velocity.

4) The velocity of both phases is approximately the same (v v). The size of the porous particles and the densities of both phases make the relative liquid-solid velocity very small, O(10 -5 m/s).

5) The solid particles concentration is constant throughout the domain. The system moves like a rigid body. It contains always the same number of particles. 6) There is no mass transport among the solid particles. They interact only with the liquid phase. 8) The values of the potential () and ionic concentrations (ci,) inside the porous particles are constant.

The low fluid velocities, small particles density and size will result in very small particles terminal velocities [START_REF] Gabitto | Drag Coefficient and Settling Velocity for Particles of Cylindrical Shape[END_REF]. This is the justification for assumption 4. Assumption 6 is justified by the discontinuous nature of the solid phase. 

Ionic Concentrations Equation

In this section we will develop the spatially smoothed ionic concentrations equations in the -phase associated with the large scale REVM, shown in Figure 1. In order to facilitate the derivations we will use a fixed reference framework.

We start from the mass concentration equations in the -phase (Biesheuvel and Bazant, 2010),

𝜕𝑐 𝑖,𝛾 𝜕𝑡 = ∇ ⃗ ⃗  {𝐷 𝑖 [ ∇ ⃗ ⃗ 𝑐 𝑖,𝛾 + 𝑧 𝑖 𝑐 𝑖,𝛾 ∇ ⃗ ⃗  𝛾 ]} -∇ ⃗ ⃗  ( 𝑐 𝑖,𝛾 v ⃗ 𝛾 ), in the -phase (1) 
Here, ci, is the ionic concentrations in the fluid phase, Di is the i-species diffusivity, zi is the ionic charge,  is the dimensionless potential
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,  is the dimensional potential, v ⃗ 𝛾 is the liquid phase superficial velocity, VT is the thermal voltage (R T/F), R is the gas constant, F is the Faraday constant, T is the temperature Similar equations apply to the -phase (Gabitto and Tsouris, 2018),

𝜀 𝛼 𝜕〈𝑐 𝑖,𝛼 〉 𝛼 𝜕𝑡 = ∇ ⃗ ⃗  {𝜀 𝛼 𝐷 ̿ 𝑖,𝑒𝑓𝑓  [ ∇ ⃗ ⃗ 〈𝑐 𝑖,𝛼 〉 𝛼 + 𝑧 𝑖 〈𝑐 𝑖,𝛼 〉 𝛼 ∇ ⃗ ⃗ 〈𝜓 𝛼 〉 𝛼 ]} -∇ ⃗ ⃗  (𝜀 𝛼 〈𝑐 𝑖,𝛼 〉 𝛼 v ⃗  ), in the -phase (2) 
Here,  is the volume fraction of the -phase in the porous particles (𝜀 𝛼 = 𝑉 𝛼 𝑉 𝑝𝑎𝑟𝑡 ⁄ );

𝐷 ̿ 𝑖,𝑒𝑓𝑓 is the i-species effective diffusion tensor; 〈𝜓 𝛼 〉 𝛼 and 〈𝑐 𝑖,𝛼 〉 𝛼 , are the intrinsic potential and ionic concentrations averaged in the micropores inside the porous particles (-phase) calculated by,

〈𝜓 𝛼 〉 𝛼 = 1 𝑉 𝛼 ∫ 𝜓𝑑𝑉, 𝑉 𝛼 (3) 
〈𝑐 𝑖,𝛼 〉 𝛼 = 1 𝑉 𝛼 ∫ 𝑐 𝑖,𝛼 𝑑𝑉 𝑉 𝛼 . (4) 
In Eq. ( 2) the effective diffusivity tensor and average potential and ionic concentrations appeared due to the porous nature of the solid particles. The value of the salt concentration in the phase is equal to zero; therefore, we calculated the -phase ionic concentration as, 𝑐 𝑖, = 𝜀 𝛼 〈𝑐 𝑖,𝛼 〉 𝛼 .

(
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The assumption of the solid phase being an ideal conductor was used; therefore, the electrostatic potential in the phase is constant and an average potential in the system comprising the  and phases can be calculated using:

             α (6)
The definition given by Eq. ( 6) leads to,

α           . ( 7 
)
Using eqns. ( 5) and ( 7) we can write Eq. ( 2) as,

𝜕𝑐 𝑖, 𝜕𝑡 = ∇ ⃗ ⃗  {𝐷 ̿ 𝑖,𝑒𝑓𝑓  [ ∇ ⃗ ⃗ 𝑐 𝑖, + 𝑧 𝑖 𝜀 𝛼 ⁄ 𝑐 𝑖, ∇ ⃗ ⃗ 𝜓  ]} -∇ ⃗ ⃗  (𝑐 𝑖, v ⃗  ), in -phase (8) 
The boundary conditions in the interphase between the porous particles, -phase, and the electrolyte, -phase can be written following several authors (Quintard 

-𝑛 ⃗ 𝛾  𝐷 𝑖 ( ∇ ⃗ ⃗ 𝑐 𝑖,𝛾 + 𝑧 𝑖 𝑐 𝑖,𝛾 ∇ ⃗ ⃗  𝛾 -𝑐 𝑖,𝛾 v ⃗ 𝛾 ) = -𝑛 ⃗ 𝛾  𝐷 ̿ 𝑖,𝑒𝑓𝑓  ( ∇ ⃗ ⃗ 𝑐 𝑖, + 𝑧 𝑖 𝜀 𝛼 ⁄ 𝑐 𝑖, ∇ ⃗ ⃗ 𝜓  -𝑐 𝑖, v ⃗  ), in the interphase A (9) 
.

The -Region

Application of the phase average in the phase plus algebraic manipulations to Eq. ( 1) leads to:

𝜀 𝛾 𝜕〈𝑐 𝑖,𝛾 〉 𝛾 𝜕𝑡 = ∇ ⃗ ⃗  𝐷 𝑖 (∇ ⃗ ⃗ 〈 𝑐 𝑖,𝛾 〉 + 1 𝑉 𝑀 ∫ 𝑛 ⃗ 𝛾 𝑐ĩ ,𝛾 𝑑𝐴 𝐴 𝛾 + 〈𝑧 𝑖 𝑐 𝑖,𝛾 ∇ ⃗ ⃗  𝛾 〉) - 𝜀 𝛾 𝑣 𝛾  ∇ ⃗ ⃗ 〈𝑐 𝑖,𝛾 〉 𝛾 + 1 𝑉 𝑀 ∫ 𝑛 ⃗ 𝛾  (∇ ⃗ ⃗ 𝑐 𝑖,𝛾 + 𝑧 𝑖 𝑐 𝑖,𝛾 ∇ ⃗ ⃗  𝛾 -𝑣 𝛾 𝑐 𝑖,𝛾 ) 𝑑𝐴 𝐴 𝛾
, in -phase [START_REF] Crittenden | Water Treatment Principles and Design[END_REF] In the derivation of Eq. ( 10), we have used Gray's decomposition [START_REF] Gray | On the Theorems for Local Volume Averaging of Multiphase Systems[END_REF] for the potential and ionic concentrations in the -phase:

𝑐 𝑖,𝛾 = 〈𝑐 𝑖,𝛾 〉 𝛾 + 𝑐ĩ ,𝛾 , 

𝜓 𝛾 = 〈𝜓 𝛾 〉 𝛾 + 𝜓 ̃𝛾. ( 12 
)
The average of ionic concentration dispersion produced by the electric field in the -phase is given by:

〈𝑐 𝑖,𝛾 ∇ ⃗ ⃗  𝛾 〉 = 𝜀 𝛾 〈𝑐 𝑖,𝛾 〉 𝛾 {∇ ⃗ ⃗ 〈𝜓 𝛾 〉 𝛾 + 1 𝑉 𝛾 ∫ 𝑛 ⃗ 𝛾 𝜓 ̃𝛾 𝑑𝐴 𝐴 𝛾 } + 〈𝑐̃𝑖 ,𝛾 ∇ ⃗ ⃗  ̃𝛾〉. (13)

Closed Equations

A full discussion of the constitutive equation for the potential and ionic concentrations deviations is shown in the closure section. Here, we use the following expressions (Gabitto and Tsouris, 2017) for the ionic concentrations:

𝑐ĩ ,𝛾 = 𝜗 𝑖,𝛾 〈𝑐 𝑖,𝛾 〉 𝛾 + 𝜔 ⃗ ⃗ 𝑖,𝛾  ∇ ⃗ ⃗ 〈𝑐 𝑖,𝛾 〉 𝛾 +. . 𝜑 𝑖,𝛾 , (14) 
 ̃𝛾 = 𝑔 𝛾  ∇ ⃗ ⃗ 〈 𝛾 〉 𝛾 +. .  𝛾 . ( 15 
)
The parameters 𝑔 𝛾 , 𝜗 𝑖,𝛾 , 𝜔 ⃗ ⃗ 𝑖,𝛾 , 𝑡 𝑖,𝛾 are called closure variables (Quintard and Whitaker, 1993a). The terms, 〈𝑐 𝑖,𝛾 〉 𝛾 , ∇ ⃗ ⃗ 〈𝑐 𝑖,𝛾 〉 𝛾 , ∇ ⃗ ⃗ 〈 𝛾 〉 𝛾 are considered sources in the boundary value problems used to calculate the closure variables, see the closure section below. Introduction of Eqns. ( 14) and ( 15) into Eq. ( 10) leads to the following closed equation:

𝜀 𝛾 𝜕〈𝑐 𝑖,𝛾 〉 𝛾 𝜕𝑡 = ∇ ⃗ ⃗  𝜀 𝛾 𝐷 ̿ 𝑖,𝛾  ∇ ⃗ ⃗ 〈 𝑐 𝑖,𝛾 〉 𝛾 + ∇ ⃗ ⃗  𝑈 ̿ 𝑖,𝛾 𝜀 𝛾 〈 𝑐 𝑖,𝛾 〉 𝛾 ∇ ⃗ ⃗ 〈  𝛾 〉 𝛾 - 𝜀 𝛾 〈𝑣 𝛾 ⃗⃗⃗⃗ 〉 𝛾  ∇ ⃗ ⃗ 〈𝑐 𝑖,𝛾 〉 𝛾 + 1 𝑉 𝑀 ∫ 𝑛 ⃗ 𝛾  (∇ ⃗ ⃗ 𝑐 𝑖,𝛾 + 𝑧 𝑖 𝑐 𝑖,𝛾 ∇ ⃗ ⃗  𝛾 -𝑣 𝛾 𝑐 𝑖,𝛾 ) 𝑑𝐴 𝐴 𝛾
, in -phase [START_REF] Gabitto | Oneand Two-Equation Models to Simulate Ion Transport in Charged Porous Electrodes[END_REF] The integral term in Eq. ( 16) represents the interphase mass transfer of the i-species from the -phase into the -phase. The transport tensors (𝐷 ̿ 𝑖,𝛾 , 𝑈 ̿ 𝑖,𝛾 ) are calculated by,

𝐷 ̿ 𝑖,𝛾 = 𝐷 𝑖 (𝐼 ̿ + 1 𝑉 𝛾 ∫ 𝑛 ⃗ 𝛾 𝐴 𝛾 𝜔 ⃗ ⃗ 𝑖,𝛾 𝑑𝐴), 𝑈 ̿ 𝑖,𝛾 = 𝐷 𝑖 (𝐼 ̿ + 1 𝑉 𝛾 ∫ 𝑛 ⃗ 𝛾 𝐴 𝛾 𝑔 𝛾 𝑑𝐴). (17)
The -Region Application of the phase average in the phase plus algebraic manipulations to Eq. ( 8) leads to:

𝜀  𝜕〈𝑐 𝑖, 〉  𝜕𝑡 = ∇ ⃗ ⃗  𝜀  𝐷 ̿ 𝑖,  ∇ ⃗ ⃗ 〈 𝑐 𝑖, 〉  + 𝑧 𝑖 𝜀  𝜀 𝛼 ⁄ ∇ ⃗ ⃗  𝑈 ̿ 𝑖, 〈 𝑐 𝑖, 〉  ∇ ⃗ ⃗ 〈   〉  - 𝜀  〈𝑣  ⃗⃗⃗ 〉 𝛾  ∇ ⃗ ⃗ 〈𝑐 𝑖, 〉  + 1 𝑉 𝑀 ∫ 𝑛 ⃗ 𝛾 (∇ ⃗ ⃗ 𝑐 𝑖, + 𝑧 𝑖 𝜀 𝛼 ⁄ 𝑐 𝑖, ∇ ⃗ ⃗   -𝑣  𝑐 𝑖, ) 𝑑𝐴 𝐴 𝛾 , in -phase (18)
Here, 𝐷 ̿ 𝑖, and 𝑈 ̿ 𝑖, , are the effective diffusivity and mobility tensors in the -phase. The integral term in Eq. ( 18) represents the interphase mass transfer of the i-species from the -phase into the -phase.

Ionic Concentrations Equations in -phase

We will in this section derived equations for calculating ionic concentrations in the phase. Simplification of Eq. ( 18) can be achieved by recognizing that the -phase is discontinuous and assuming that the porous particles interact only with the liquid phase and not with each other.

𝜀  𝜕〈𝑐 𝑖, 〉  𝜕𝑡 = -𝜀  〈𝑣  ⃗⃗⃗ 〉 𝛾  ∇ ⃗ ⃗ 〈𝑐 𝑖, 〉  + 1 𝑉 𝑀 ∫ 𝑛 ⃗ 𝛾 (∇ ⃗ ⃗ 𝑐 𝑖, + 𝑧 𝑖 𝜀 𝛼 ⁄ 𝑐 𝑖, ∇ ⃗ ⃗   - 𝐴 𝛾 𝑣  𝑐 𝑖, ) 𝑑𝐴, in -phase (19) 
Using the boundary conditions given by Eq. ( 9) we can introduce Eq. ( 19) into Eq. ( 16)

to get,

𝜀 𝛾 𝜕〈𝑐 𝑖,𝛾 〉 𝛾 𝜕𝑡 + 𝜀  𝜕〈𝑐 𝑖, 〉  𝜕𝑡 = ∇ ⃗ ⃗  𝜀 𝛾 𝐷 ̿ 𝑖,𝛾  ∇ ⃗ ⃗ 〈 𝑐 𝑖,𝛾 〉 𝛾 + ∇ ⃗ ⃗  𝑈 ̿ 𝑖,𝛾 𝜀 𝛾 〈 𝑐 𝑖,𝛾 〉 𝛾 ∇ ⃗ ⃗ 〈  𝛾 〉 𝛾 - 𝜀 𝛾 〈𝑣 𝛾 ⃗⃗⃗⃗ 〉 𝛾  ∇ ⃗ ⃗ 〈𝑐 𝑖,𝛾 〉 𝛾 + ∇ ⃗ ⃗  𝑈 ̿ 𝑖, 𝜀  〈 𝑐 𝑖, 〉 𝛾 ∇ ⃗ ⃗ 〈   〉  -𝜀  〈𝑣  ⃗⃗⃗ 〉   ∇ ⃗ ⃗ 〈𝑐 𝑖, 〉  , in -phase (20) 
Eq. ( 20) is the main equation used to derive a flow electrode model, see model implementation section.

Donnan Equilibrium

The potential and ionic concentrations inside and outside the porous particles are related by the concept of Donnan equilibrium. Gabitto and Tsouris, (2016) proposed to write the Donnan equilibrium conditions as, 〈𝑐 𝑖,𝛼 〉 𝛼 = 〈𝑐 𝑖,𝛾 〉 𝛾 exp (-𝑧 𝑖 ∆ 𝐷𝑜𝑛𝑛𝑎𝑛 ),

 𝐷𝑜𝑛𝑛𝑎𝑛 = 〈𝜓 𝛼 〉 𝛼 -〈𝜓 𝛾 〉 𝛾 . ( (21) 
) 22 
Here, 〈𝑐 𝑖,𝛼 〉 𝛼 is the intrinsic ionic concentrations averaged in the micropores inside the porous particles (-phase) while 〈𝑐 𝑖,𝛾 〉 𝛾 is the intrinsic ionic concentrations average in the fluid phase. In order to simplify the nomenclature we define 𝑐 𝑖, = 𝜀 𝛼 〈𝑐 𝑖,𝛼 〉 𝛼 . This definition leads to,

𝑐 𝑖, = 𝜀 𝛼 〈𝑐 𝑖,𝛾 〉 𝛾 exp(-𝑧 𝑖 ∆ 𝐷𝑜𝑛𝑛𝑎𝑛 ). ( 23 
)
The use of Gray's decomposition (𝑐 𝑖, = 〈𝑐 𝑖, 〉  + 𝑐 𝑖, ̃ ) leads to [START_REF] Gray | On the Theorems for Local Volume Averaging of Multiphase Systems[END_REF],

〈𝑐 𝑖, 〉  = 𝜀 𝛼 〈𝑐 𝑖,𝛾 〉 𝛾 exp(-𝑧 𝑖 ∆ 𝐷𝑜𝑛𝑛𝑎𝑛 ). (24) 
In Eq. ( 24) we used assumption 8 to neglect deviations from the intrinsic average of the ionic concentrations inside the porous particles. Eq. ( 24) relates the average concentrations in both liquid phases. We will discuss how to calculate the Donnan potential in the flow electrode section below.

Closure Section

The constitutive equations for the species concentrations (𝑐ĩ ,𝛾 ) and potential variables ( ̃𝛾) are derived by following the closure procedure outlined by [START_REF] Whitaker | Theory and Application of Transport in Porous Media: The Method of Volume Averaging[END_REF].

However, in this case we are dealing with a physical problem where both the -phase and the -phase move, instead of the traditional case where the solid phase remain stationary.

In order to overcome this difficulty we propose to change from a stationary control volume, as used in the derivation of Eq. ( 16), to a moving one with velocity = 𝑣 𝛾 . The idea is that once the constitutive equations for the deviations are calculated these equations will not be dependent on the moving velocity. There are several implications of this change of framework. Mathematically, in eqns. ( 16) and ( 17), the velocity of the -phase and -phases will be replaced by the relative fluid-particle velocity (𝑣 𝛾 ). This velocity is zero as a consequence of assumption 4. Another convenient result is that we can estimate the value of the transport parameters using traditional unit cells [START_REF] Whitaker | Theory and Application of Transport in Porous Media: The Method of Volume Averaging[END_REF], even though, the cell is a moving one instead of a stationary one.

Gabitto and Tsouris (2018) studied the two-equation closure problem in charged porous systems and proposed the following constitutive equations for the ionic concentrations:

𝑐̃𝑖 ,𝛾 = 𝜗 𝑖,𝛾 〈𝑐 𝑖,𝛾 〉 𝛾 + 𝜔 ⃗ ⃗ 𝑖,𝛾  ∇ ⃗ ⃗ 〈𝑐 𝑖,𝛾 〉 𝛾 + 𝑡 𝑖,𝛾 (〈𝑐 𝑖, 〉  -〈𝑐 𝑖,𝛾 〉 𝛾 )+. . 𝜑 𝑖,𝛾 . (24)
The parameters 𝑔 𝛾 , 𝜗 𝑖,𝛾 , 𝜔 ⃗ ⃗ 𝑖,𝛾 , 𝑡 𝑖,𝛾 are called closure variables (Quintard and Whitaker, 1993a). The terms, 〈𝑐 𝑖,𝛾 〉 𝛾 , ∇ ⃗ ⃗ 〈𝑐 𝑖,𝛾 〉 𝛾 , ∇ ⃗ ⃗ 〈  〉  , ∇ ⃗ ⃗ 〈 𝛾 〉 𝛾 are considered sources in the boundary value problems used to calculate the closure variables. The third term in the righthand side of Eq. ( 24) is related to the integral term describing the interphase transport between the  and -phases.

We subtract the modified Eq. ( 16) divided by  from Eq. (1) to get,

𝜕𝑐̃𝑖 ,𝛾 𝜕𝑡 = ∇ ⃗ ⃗  𝐷 𝑖 ∇ ⃗ ⃗ 𝑐ĩ ,𝛾 + 𝑧 𝑖 ∇ ⃗ ⃗  𝐷 𝑖 〈𝑐 𝛾 〉 𝛾 ∇ ⃗ ⃗  ̃𝛾 , in -phase (25) 
Whitaker (1997,1999) stated that at the local level the transport process is quasi-

steady,𝜏 𝑐 = 𝑙 𝛾 2 𝐷 𝑖 ⁄ ≪ 𝐿 𝛾 2 .
The author also calculated the constraint that needs to be satisfied; therefore, the accumulation term is zero. Whitaker (1999) also concluded that the integral terms in Eq. ( 16) can be neglected compared to the non-integral ones. Similarly, the boundary condition given by Eq. ( 9) can be written in the moving reference framework as,

-𝑛 ⃗ 𝛾  (𝐷 𝑖 [∇ ⃗ ⃗ 𝑐ĩ ,𝛾 + 𝑧 𝑖 𝑐ĩ ,𝛾 ∇ ⃗ ⃗  𝛾 ]) = -𝑛 ⃗ 𝛾  (𝐷 𝑖 [ ∇ ⃗ ⃗ 〈𝑐 𝑖,𝛾 〉 𝛾 + 𝑧 𝑖 〈𝑐 𝑖,𝛾 〉 𝛾 ∇ ⃗ ⃗  𝛾 ]),
in A [START_REF] Ochoa-Tapia | Bulk and Surface Diffusion in Porous Media: An Application of the Surface-Averaging Theorem[END_REF].

Eqns. ( 25) and ( 26) constitute the bases for the closure problem; however, an order of magnitude analysis of the first term in Eq. ( 26) shows that,

-𝑛 ⃗ 𝛾  ( 𝐷 𝑖 { ∇ ⃗ ⃗ 𝑐ĩ ,𝛾 ⏟ 𝑂( 𝑐 ̃𝑖,𝛾 𝑙 𝛾 ) + 𝑧 𝑖 𝑐ĩ ,𝛾 ∇ ⃗ ⃗  𝛾 ⏟ 𝑂( 𝑐 ̃𝑖,𝛾 𝐿 𝛾 〈 𝛾 〉 𝛾 ) } ) = -𝑛 ⃗ 𝛾  ( 𝐷 𝑖 { ∇ ⃗ ⃗ 〈𝑐 𝑖,𝛾 〉 𝛾 ⏟ 𝑂( 〈𝑐 𝑖,𝛾 〉 𝛾 𝐿 𝛾 ) + 𝑧 𝑖 〈𝑐 𝑖,𝛾 〉 𝛾 ∇ ⃗ ⃗  𝛾 ⏟ 𝑂( 〈𝑐 𝑖,𝛾 〉 𝛾 𝐿 𝛾 〈 𝛾 〉 𝛾 ) } ) , in A (27) 
Here, l and L are the characteristic lengths of the micro and macroscale, respectively; therefore, a comparison of the two estimates shows that the first term is much bigger than the second because l << L. Typically, l is of the order of the particle size (100 m) while L is of the order of the electrode thickness (1 cm), 〈 𝛾 〉 𝛾 is O [START_REF] Crittenden | Water Treatment Principles and Design[END_REF]. Numerical analyses carried out solving the full boundary value problem using the full boundary condition confirmed these conclusions. Furthermore, during CDI experiments at early times (supercapacitor regime) ∇ ⃗ ⃗  𝛾 has high values (O[10 5 ]), but decreases rapidly until vanishing at longer times (desalination regime). In conclusion, we can say that in Eq. ( 27) we can neglect the second term in the left-hand side compared to the first. Same arguments apply in Eq. ( 25). However, the order of magnitude analysis in Eq. [START_REF] Gabitto | Volume Averaging Study of the Capacity Deionization Process in Dual-Porosity Electrodes[END_REF] shows that in the righthand side the migration term is one order of magnitude higher than the diffusion term; therefore, in this case we cannot neglect the term at least during the supercapacitor regime.

After these considerations the closure problem is determined by,

∇ ⃗ ⃗  𝐷 𝑖 ∇ ⃗ ⃗ 𝑐ĩ ,𝛾 = 0, in -phase (28) 
.

-𝑛 ⃗ 𝛾  (𝐷 𝑖 ∇ ⃗ ⃗ 𝑐ĩ ,𝛾 ) = 𝑛 ⃗ 𝛾  (𝐷 𝑖 [ ∇ ⃗ ⃗ 〈𝑐 𝑖,𝛾 〉 𝛾 + 𝑧 𝑖 〈𝑐 𝑖,𝛾 〉 𝛾 ∇ ⃗ ⃗  𝛾 ]), in A (29) 
.

After [START_REF] Whitaker | Theory and Application of Transport in Porous Media: The Method of Volume Averaging[END_REF] we propose the constitutive equation for the ionic concentrations deviations and potential given by eqns. ( 14) and (15) in the section above.

Introduction of eqns. ( 14) and (15) into eqns. ( 28) and ( 29) leads to two boundary value problems to calculate the closure variables,

Problem 1 0 = ∇ ⃗ ⃗  𝐷 𝑖 ∇ ⃗ ⃗ 𝜗 𝑖,𝛾 , in -phase (30) 
-𝑛 ⃗ 𝛾  ∇ ⃗ ⃗ 𝜗 𝑖,𝛾 = 𝑧 𝑖 𝑛 ⃗ 𝛾  ∇ ⃗ ⃗  𝛾 , in A (31) Problem 2 0 = ∇ ⃗ ⃗  𝐷 𝑖 ∇ ⃗ ⃗ 𝜔 ⃗ ⃗ 𝑖,𝛾 , in -phase (32) 
-𝑛 ⃗ 𝛾  ∇ ⃗ ⃗ 𝜔 ⃗ ⃗ 𝑖,𝛾 = 𝑛 ⃗ 𝛾 , in A (33) 
In all two cases we apply a spatially periodic boundary condition,

𝑓 𝛾 (𝑟 + 𝑙 𝑖 ) = 𝑓 𝛾 (𝑟 ) , for i = 1,2, 3, (34). 
In Eq. ( 34) 𝑓 𝛾 is a generic closure variable.

The closure variable 𝑔 𝛾 for the potential can be calculated using a boundary value problem identical to problem 2 (Gabitto and Tsouris, 2017).

The relevant closure problem to calculate the mass transport tensors, 𝐷 ̿ 𝑖,𝛾 and 𝑈 ̿ 𝑖,𝛾 , has been used by several authors [START_REF] Kim | Diffusion in Anisotropic Porous Media[END_REF][START_REF] Gabitto | Effect of the Microstructure on Anisotropic Diffusion in Porous Media[END_REF]Quintard, 1993a 

Theoretical Derivation

Flow Electrode

In this section we will derive equations to simulate the FCDI process assuming the electrolyte is a binary, single charge salt with equal point diffusivities, NaCl is an acceptable example. We will start from Eq. ( 20) for the -phase. We write two equations, one for the cation and another for the anion,

𝜀 𝛾 𝜕〈𝑐 +,𝛾 〉 𝛾 𝜕𝑡 + 𝜀  𝜕〈𝑐 +, 〉  𝜕𝑡 = ∇ ⃗ ⃗  𝜀 𝛾 𝐷 ̿ +,𝛾  ∇ ⃗ ⃗ 〈𝑐 +,𝛾 〉 𝛾 + 𝜀 𝛾 ∇ ⃗ ⃗  𝑈 ̿ +,𝛾  〈𝑐 +,𝛾 〉 𝛾 ∇ ⃗ ⃗ 〈 𝛾 〉 𝛾 - 𝜀 𝛾 𝑣 𝛾  ∇ ⃗ ⃗ 〈𝑐 +,𝛾 〉 𝛾 + 𝜀  ∇ ⃗ ⃗  𝑈 ̿ +,  〈𝑐 +, 〉  ∇ ⃗ ⃗ 〈  〉  -𝜀  𝑣   ∇ ⃗ ⃗ 〈𝑐 +, 〉  , in the -phase (36) 𝜀 𝛾 𝜕〈𝑐 -,𝛾 〉 𝛾 𝜕𝑡 + 𝜀  𝜕〈𝑐 -, 〉  𝜕𝑡 = ∇ ⃗ ⃗  𝜀 𝛾 𝐷 ̿ -,𝛾  ∇ ⃗ ⃗ 〈𝑐 -,𝛾 〉 𝛾 -𝜀 𝛾 ∇ ⃗ ⃗  𝑈 ̿ -,𝛾  〈𝑐 -,𝛾 〉 𝛾 ∇ ⃗ ⃗ 〈 𝛾 〉 𝛾 - 𝜀 𝛾 𝑣 𝛾  ∇ ⃗ ⃗ 〈𝑐 -,𝛾 〉 𝛾 -𝜀  ∇ ⃗ ⃗  𝑈 ̿ -,  〈𝑐 -, 〉  ∇ ⃗ ⃗ 〈  〉  -𝜀  𝑣   ∇ ⃗ ⃗ 〈𝑐 -, 〉  , in the -phase (37) 
Following Biesheuvel and Bazant (2010) we add and subtract Eqns. ( 36) and (37) to get,

𝜀 𝛾 𝜕〈𝑐 𝛾 〉 𝛾 𝜕𝑡 = ∇ ⃗ ⃗  𝜀 𝛾 𝐷 ̿ 𝛾  ∇ ⃗ ⃗ 〈𝑐 𝛾 〉 𝛾 -𝜀 𝛾 𝑣 𝛾  ∇ ⃗ ⃗ 〈𝑐 𝛾 〉 𝛾 + 𝜀  ∇ ⃗ ⃗  𝑈 ̿   〈𝜌  〉  ∇ ⃗ ⃗ 〈  〉  - 𝜀  𝑣   ∇ ⃗ ⃗ 〈𝑐  〉  -𝜀  𝜕𝑐  𝜕𝑡 , in -phase (38) 
0 = 𝜀 𝛾 ∇ ⃗ ⃗  𝑈 ̿ 𝛾  〈𝑐 𝛾 〉 𝛾 ∇ ⃗ ⃗ 〈 𝛾 〉 𝛾 + 𝜀  ∇ ⃗ ⃗  𝑈 ̿   〈𝜌  〉  ∇ ⃗ ⃗ 〈  〉  -𝜀  𝑣   ∇ ⃗ ⃗ 〈𝜌  〉  -𝜀  𝜕𝜌  𝜕𝑡 , in -phase (39) 
In eqns. [START_REF] Tang | Seawater Desalination by Over-Potential Membrane Capacitive Deionization: Opportunities and Hurdles[END_REF] and [START_REF] Ulson De Souza | The Modeling of a Textile Dyeing Process Utilizing the Method of Volume Averaging[END_REF] we defined a mass parameter, 𝑐 𝑗 = (〈𝑐 +,𝑗 〉 𝑗 + 〈𝑐 -,𝑗 〉 𝑗 )

2

, and a charge parameter, 𝜌 𝑗 = (〈𝑐 +,𝑗 〉 𝑗 -〈𝑐 -,𝑗 〉 𝑗 )

2

, where j is the phase index, j = . In eqns. [START_REF] Tang | Seawater Desalination by Over-Potential Membrane Capacitive Deionization: Opportunities and Hurdles[END_REF] and [START_REF] Ulson De Souza | The Modeling of a Textile Dyeing Process Utilizing the Method of Volume Averaging[END_REF] we used the assumptions of equal average ionic concentrations in the -phase (〈𝑐 +,𝛾 〉 𝛾 ~ 〈𝑐 -,𝛾 〉 𝛾 ) and equal mobility tensors (𝑈 ̿ -,𝑗 = 𝑈 ̿ -,𝑗 = 𝑈 ̿ 𝑗 ). We also neglected ionic diffusion inside the -phase due to the discontinuous nature of this phase.

In order to solve eqns. ( 38) and ( 39) we need to calculate the derivatives of c and .

We start from Eq. ( 23) and use that in the -phase the ionic concentrations are equal to get,

𝑐  = 𝜀 𝛼 〈𝑐 𝑖,𝛾 〉 𝛾 cosh(∆ 𝐷𝑜𝑛𝑛𝑎𝑛 ), (40) 
𝜌  = -𝜀 𝛼 〈𝑐 𝑖,𝛾 〉 𝛾 sinh(∆ 𝐷𝑜𝑛𝑛𝑎𝑛 ). (41) 
The Donnan potential (∆ 𝐷𝑜𝑛𝑛𝑎𝑛 ) is calculated by a treatment similar to the one presented by [START_REF] Rubin | Induced-Charge Capacitive Deionization: The Electrokinetic Response of a Porous Particle to an External Electric Field[END_REF],

 𝛽 -〈 𝛾 〉 𝛾 =  𝛽 -〈 𝛼 〉 𝛼 + 〈 𝛼 〉 𝛼 -〈 𝛾 〉 𝛾 = ∆ 𝑆𝑡𝑒𝑟𝑛 + ∆ 𝐷𝑜𝑛𝑛𝑎𝑛 , (42) 
∆ 𝑆𝑡𝑒𝑟𝑛 = 2 𝐹 〈𝑐 𝑖,𝛾 〉 𝛾 sinh (∆ 𝐷𝑜𝑛𝑛𝑎𝑛 ) 𝑎 𝑣𝑚 𝐶 𝑆𝑡𝑒𝑟𝑛 𝑉 𝑇 , (43) 
 𝛽 -〈 𝛾 〉 𝛾 = ∆ 𝐷𝑜𝑛𝑛𝑎𝑛 + 2 𝐹 〈𝑐 𝑖,𝛾 〉 𝛾 sinh (∆ 𝐷𝑜𝑛𝑛𝑎𝑛 )

𝐶 𝑆𝑡𝑒𝑟𝑛 𝑎 𝑉𝑚 𝑉 𝑇 , (44) 
Here, CStern is the surface capacitance of the Stern Layer, avm is the specific area of the pores in the solid particles (A/ Vm),  is the solid particle potential, F is the Faraday constant, and Vm is the REV inside the porous particles. Solution of the implicit Eq. ( 44)

allows calculation of the Donnan potential to be used in eqns. [START_REF] Urtenov | Basic Mathematical Model of Overlimiting Transfer Enhanced by Electroconvection in Flow-Through Electrodyalisis Membrane Cells[END_REF] and [START_REF] Valdès-Parada | Diffusive Mass transfer between a Microporous Medium and a Homogeneous Fluid: Jump Boundary Conditions[END_REF].

Half-Cell Model

The channel flow will be modelled using a 1-D (y-direction) formulation similar to [START_REF] Biesheuvel | Theory of Membrane Capacitive Deionization including the Effect of the Electrode Pore Space[END_REF]. The only x-contribution will be given by the total ionic flow into the membrane. The assumption of a symmetric full cell implies that there are equivalent ionic fluxes to the anode and cathode leading to equal concentration of both ions in the feed water channel. Here, 𝐽 𝑖 is the flow of the counterion in the x-direction. Following The limiting current is calculated by multiplying Eq. ( 47) by the Faraday constant (F).

The unlimited current circulating through the membrane is given by the following set of boundary conditions:

∆ 𝐷𝑜𝑛𝑛𝑎𝑛 𝑀-𝑐ℎ =  1 𝑀 - 𝑁
𝑐ℎ , @ the membrane-channel interface (49)

∆ 𝐷𝑜𝑛𝑛𝑎𝑛 𝐸-𝑀 =  𝑁 𝑀 - 1
𝐸 , @ the electrode-membrane interface (50)

𝐼 𝑀 = 𝐼 𝑐ℎ , @ the membrane-channel interface (51)

𝐼 𝐸 = 𝐼 𝑀 . @ the electrode-membrane interface (52)

Solving the system of equations ( 49 

𝐼 𝑢𝑛𝑙𝑖𝑚. 𝑀 = - 𝐷 𝑀 𝛿 𝑀 {〈𝑐 𝑇 𝑀 〉 ∆ 𝑀 } , (53) 
Here, 𝑐 𝑇 𝑀 = 𝑐 + 𝑀 + 𝑐 - 𝑀 is the total ionic concentration, and 〈∆𝑐 𝑇 𝑀 〉is the average of the total concentration at both ends of the membrane.

Equations ( 47) and ( 53) are compared and the smaller value is selected. If the smaller flow is given by Eq. ( 47) this value is used to recalculate the four potentials

( 1 𝑀 ,  𝑁 𝑀 ,  1 𝐸 ,  𝑁 𝑐ℎ
). The corresponding current value gives the circulating current, through the membrane and into the electrode-membrane interface.

The concentrations and potential fields in the electrode are calculated using eqns. [START_REF] Tang | Seawater Desalination by Over-Potential Membrane Capacitive Deionization: Opportunities and Hurdles[END_REF] and ( 39) plus the values given by eqns. ( 40), ( 41) and [START_REF] Yang | Flow-Electrode Capacitive Deionization using an Aqueous Electrolyte with a high Salt Concentration[END_REF]. The potential field is calculated using the following boundary conditions:

 𝐸 =  𝐸𝑜 , @ the collector surface (54) 
 𝐸 = 0 , @ the electrode entrance (55)

𝐼 𝐸 = 0 , @ the electrode exit (56)

𝐼 𝐸 = 𝐼 𝑀 . @ the electrode-membrane interface (57)

The concentration field is calculated using the following boundary conditions:

𝑐 1 𝐸 = 𝑐 1 𝐸𝑜 , @ the electrode entrance (58) 
𝐽 𝐸 = 0 , @ the collector surface (59)

𝐽 𝐸 = 0 , @ the electrode exit (60) 
𝐽 𝐸 = 𝐽 𝑀 . @ the electrode-membrane interface (61)

Where, 𝐽 𝑀 , the total flow through the membrane is given by [START_REF] Biesheuvel | Theory of Membrane Capacitive Deionization including the Effect of the Electrode Pore Space[END_REF],

𝐽 𝑀 = - 𝐷 𝑀 𝛿 𝑀 {(∆𝑐 𝑇 𝑀 ) -𝑋𝑋 ∆ 𝑀 } , (62) 
Here, 𝑋𝑋 is the membrane charge factor [START_REF] Galama | On the Origin of the Membrane Potential arising across Densely Charged Ion Exchange Membranes: How Well Does the Teorell-Meyer-Sievers Theory Work?[END_REF].

RESULTS AND DISCUSSION

The cell model was implemented in a computer code. This computer code was validated by reproducing ED results using very low weight concentrations of particles (w% < 0.0001).The data used in the simulations appear in Table I. Typical results are shown in Figures 2 to 4. . In all cases we calculated a dimensionless average salt value in the water flow channel as representative of all salt removed during the cell operation. In Figure 2 we show the influence of solid particles pore size on the adsorption of the counterion (C-,). The internal absorption area increases as the pore diameter decreases. Due to the small pore diameters the diffusion process inside the particles is very fast ensuring practically constant ionic concentrations inside the particles. In Figure 2 it is shown that as the internal area increases the ionic concentration also increases. This effect is produced by the increase in ionic absorption area as the pore size decreases. In Figure 3 the influence of applied cell potential on salt concentration in the water channel is shown. The simulation results show that salt concentration decreases with applied potential until a critical value is reached (1.5 V), higher potential values do not change significantly the salt concentration value. These results show that the water desalination process is controlled by electro-migration from the water channel into the flow electrode until the critical voltage value is reached, for higher voltage values it becomes controlled by concentration polarization before electrochemical reactions appear (>2 V).

Calculation of concentration polarization values, not shown here, proved that in fact this is the case for voltage values higher than 1.5 V.

The effect of initial salt concentration on the overall efficiency of the process is shown in 

  . A half-cell comprises a water feed channel, an ion-exchange membrane, a slurry electrode, and a current collector. It can also include two mass transfer boundary layers, concentration-polarization layers, on both sides of the membrane. The main goal of this work is the derivation of the flow electrode model. The slurry electrode presents two length scales. The macroscale is represented by an REVM of radius RM, comprising the flowing solution, -phase, and porous particles, phase. The porous particles are represented by an REV of radius Rm comprising microscopic pores, -phase, and solid, -phase.

Figure 1 .

 1 Figure 1. Schematic of the slurry carbon electrode.

7 )

 7 There is ion adsorption on the external surface of the porous particles and, instantaneously the adsorbed mass distributes inside following a Donnan equilibrium relationship.

  ; Ochoa et al., 1993; Borges da Silva, 2007; Valdes-Parada and Alvarez-Ramirez, 2010, Gabitto andTsouris, 2016, among others).Quintard and Whitaker (1993b) showed that solving problem 2 in a Chang's approximated unit cell(Chang et al., 1992 and 1993) leads to the Rayleigh's (1892) equation for the transport parameters: the flow electrode model is a part of a bigger model of the halfcell depicted in Figure 1. In this work we will depend heavily on the cell models reported by Rommerskirchen et al. (2017) for FCDI and Bisheuvel et al. (2011) for MCDI. Rommerskirchen et al. (2017) model considers the presence of two stagnant boundary layers on each side of the ionic membranes used. These boundary layers at the interfaces between the membrane and the flow electrode and the feed describe the development of concentration gradients on both sides of ion exchange membranes as a consequence of varying transport resistances for ions in the different layers. Urtenov et al. (2013) statedthat when an electric current passes through an ion-selective membrane separating two electrolyte solutions, salt concentration decreases at one membrane side and increases at the other due to selective transport of counterions in the membrane. In membrane science, the emergence of concentration gradients at membrane/solution interface is called "concentration polarization" (CP)[START_REF] Hoek | Membrane Terminology[END_REF]. In the context of this work polarization is understood as the shift of the potential difference across the cell from its equilibrium value; therefore, it is equivalent to "concentration overpotential" (Bard et al., 2012). Urtenov et al. (2013) proposed a first-principles model involving the Nernst-Planck-Poisson equations fully coupled to the Navier-Stokes equations to study mechanisms for overlimiting current and concentration polarization in electrodialysis (ED) with ion-exchange membranes. The resistance in the mass transfer layers can limit the current passing through the ionic membranes (overlimiting current). Due to geometrical constraints in size Rommerskirchen et al. (2017) only modelled in detail the boundary layer on the electrode side; however, the effect of the limiting current density as a consequence of concentration polarization on the feed water side was considered qualitatively. Rommerskirchen et al. (2017) also modelled storage of ions in the pores of the carbon particles using the modified Donnan model original advanced by Biesheuvel et al. (2011).The authors modelled ionic storage in the slurry solid particles as a source term in the mass transfer equations.

  ) to (52) gives values for, 1 𝑀 ,  𝑁 𝑀 ,  1 𝐸 ,  𝑁 𝑐ℎ , the potentials at the membrane-channel interface, the electrode-membrane interface, and the electrode and channel sides of the two membrane interfaces. Then, the membrane unlimited current is calculated following Biesheuvel et al. (2011) using:

Figure 2 .

 2 Figure 2. Change in average counterion concentration inside the porous particles as the particles pore size decreases.

Figure 3 .

 3 Figure 3. Influence of the applied voltage on the average salt concentration in the desalination channel.

Figure 4 .Figure 4 .

 44 Figure 4. Variation of average salt channel concentration with initial salt concentration.

  𝐽 𝑖,𝑆𝐷𝐿, and 𝐽 𝑙𝑖𝑚. , are the unlimited flux of i-species, flux of ion in the boundary layer (SDL) and the total limiting flux, 𝑐 𝑖 𝑀-𝑐ℎ is the concentration of the i-ion at the membrane-channel interface, 𝑐 𝑖 𝑐ℎ is the i-ionic species concentration in the bulk of the channel, and 𝛿 𝑆𝐷𝐿 is the concentration polarization layer thickness calculated by, 𝛿 𝑐ℎ , is channel thickness and Pe is the Peclet number (Re Sc), with Re the Reynolds number, and Sc the dimensionless Schmidt number. In this work we assumed a constant concentration polarization layer thickness, but Kim (2010) reported a variable thickness for this layer in his study of elecrodialysis.

	𝐽 𝑖,𝑆𝐷𝐿. = -	𝐷 𝑖 𝛿 𝑆𝐷𝐿	{(𝑐 𝑖 𝑀-𝑐ℎ -𝑐 𝑖 𝑐ℎ )} ,	(46)
	𝐽 𝑙𝑖𝑚. =	𝑐ℎ 2 𝐷 𝑖 𝑐 𝑖 𝛿 𝑆𝐷𝐿	.	(47)
	Here, 𝛿 𝑐ℎ 𝛿 𝑆𝐷𝐿 = 1.85 ( 𝛿 𝑐ℎ 𝐿	) 1/3	𝑃𝑒 1/3 ,	(48)
	Here,			
					Rommerskirchen et
	al. (2017) we calculated a limited flow by,

Table 1 .

 1 Typical values used in the simulations

		Variable		Value or Range	Units
	Temperature		298	K
	Applied Potential		0.5-2.0	V
	Carbon particle diameter	1.0E-6 -1.0E-7	m
	Carbon	particle	void	0.3 -0.5	dimensionless
	fraction				
	Carbon	particles	pore	1.0E-9 -2.0E-8	m
	diameter				
	Membrane pore diameter	1.0E-10 -1.0E-9	m
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Appendix:

Donnan Potential Calculation

〈𝑐 𝑖, 〉  = 𝜀 𝛼 〈𝑐 𝑖,𝛼 〉 𝛼 = 𝜀 𝛼 〈𝑐 𝑖,𝛾 〉 𝛾 𝑒 -𝑧 𝑖 ∆ 𝐷𝑜𝑛𝑛𝑎𝑛 (5)

𝜑 𝑠𝑜𝑙 -𝜑 𝛾 = ∆𝜑 𝐷𝑜𝑛𝑛𝑎𝑛 -𝐹 𝜀 𝛼 { 〈𝑐 +,𝛾 〉 𝛾 𝑒 -∆ 𝐷𝑜𝑛𝑛𝑎𝑛 -〈𝑐 -,𝛾 〉 𝛾 𝑒 ∆ 𝐷𝑜𝑛𝑛𝑎𝑛 } 𝑎 𝑣𝑀 𝐶 𝑆𝑡𝑒𝑟𝑛 [START_REF] Borges Da Silva | Prediction of Effective Diffusivity Tensors for Bulk Diffusion with Chemical Reactions[END_REF]