
HAL Id: hal-02412818
https://hal.science/hal-02412818v1

Submitted on 15 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New caching system under uncertainty for Mobile Edge
Computing

Sarra Mehamel, Samia Bouzefrane, Khaled Slimani, Mehammed Daoui

To cite this version:
Sarra Mehamel, Samia Bouzefrane, Khaled Slimani, Mehammed Daoui. New caching system under
uncertainty for Mobile Edge Computing. The Fourth IEEE International Conference on Fog and
Mobile Edge Computing, Jun 2019, Rome, Italy. �hal-02412818�

https://hal.science/hal-02412818v1
https://hal.archives-ouvertes.fr


New caching system under uncertainty for Mobile
Edge Computing

1st Mehamel Sarra
LARI lab, University Mouloud Mammeri, Algeria

CEDRIC lab, Conservatoire National des Arts et Métiers,France
sarra.mehamel@yahoo.com

2nd Bouzefrane Samia
Conservatoire National des Arts et Métiers

CEDRIC lab,Paris,France.
samia.bouzefrane@lecnam.net

3rd Slimani Khaled
LARI lab,University Mouloud Mammeri, Tizi Ouzou

Algeria
khaledrmse@gmail.com

4th Daoui Mehammed
LARI lab, University Mouloud Mammeri, Tizi Ouzou.

Algeria
mdaouidz@yahoo.fr

Abstract—Edge caching is one of the most emerging technolo-
gies recognized as a content retrieval solution in the edge of
the network. It has been also considered as enabling technology
of mobile edge computing (MEC) that presents an interesting
opportunity to perform caching services. Particularly, the MEC
servers are implemented directly at the base stations (BSs) which
enable edge caching and ensure deployment in close-proximity
to the mobile users. However, the integration of servers in
mobile edge computing environment (base stations) complicates
the energy saving issue because the power consumed by mobile
edge computing servers (MECS) is costly especially when the
load changes dynamically over time. Furthermore, users with
mobile devices arise their demands, introducing the challenge of
handling such mobile content requests beside the limited caching
size. Thus, it is necessary and crucial for caching mechanisms to
consider the mentioned factors, meanwhile most existing studies
focus on cache allocation, content popularity and cache design. In
this paper, we present an energy-efficient fuzzy caching strategy
for edge devices that takes into consideration four influencing
features of mobile environment, while introducing a hardware
implementation using Field-Programmable Gate Array (FPGA)
to cut the overall energy requirements.

Index Terms—Edge caching, Mobile edge computing, Energy
efficiency, Fuzzy logic, FPGA.

I. INTRODUCTION

Edge computing refers to the technologies that enable com-
putation offloading and data caching to be performed at the
edge of the network [1]. Caching popular content at the edge of
the network has become a committed technology to facilitate
storage and delivering in order to improve the quality of
services for mobile users. Therefore, edge caching has initially
been applied in mobile edge computing to enhance efficiency
ranges and to reduce energy consumption of the systems.
These enhancements are established so that the popular con-
tents are likely to be requested several times from many users.
The most conventional web caching methods are not efficient
enough and may suffer from a cache pollution problem, since
they consider just one factor and ignore other factors that may
have an impact on the efficiency of web caching [2]. Many
web caching policies have attempted to combine different

factors to make a caching decision. These combinations can
influence the performance of web caching. The challenge
lies in making a caching decision and in choosing which
content should be cached and which one should be evicted to
make the best use of available cache space. Hence, reducing
network traffic and server will be less overhead too as well as
satisfying the mobile user. The studies proposed the idea of
using machine learning techniques to cope with the problem
of combining significant factors [3]. The model applied in [4]
deploys supervised learning algorithm decision tree used to
combine significant factors (frequency and size) and to predict
contents that can be re-visited later. The results have revealed
that the proposed algorithm significantly increased hit-ratio,
byte hit-ratio and reduced the latency. Similar benefits can
be achieved by using the remaining combination at the edge
however it highlights the increased computational complexity
regarding to the critical role of edge servers. The main
motivation of using Fuzzy logic and FPGA in adopting edge
caching approaches is the need to base the caching decision
on both qualitative and quantitative information, as well as
to move the workload from software to hardware in order
to reduce the energy consumption and the server load of the
edge devices. Fuzzy logic has been widely used in many
applications because of its rapid preliminary study on different
inputs, the easy adaptation and interpretation of the rules and
the ability of using heterogeneous inputs which facilitate the
combination between several factors in the most desirable way
without using mathematical relations. The remaining parts of
this paper are organized as follows. Section II introduces the
background as well as the related works. In Section III, we
illustrate the framework for the caching decision using fuzzy
logic. Section IV presents the implementation of the proposed
caching strategy and the evaluation of results. Finally, the
paper concludes in Section V.

II. BACKGROUND

Many studies [4]–[7] evaluated the performance of caching
algorithms. A detailed comparative study of Leave Copy



Fig. 1. Edge caching Architecture

Everywhere (LCE), Leave Copy Down (LCD), ProbCache,
MAGIC was reported in [7], highlighting that each caching
strategy is appropriate for one specific scenario with specific
objectives and clarify that selecting the best strategy depends
on these objectives. Least Recently Used (LRU) presented in
[4] is a recency-based strategy since it depends on the recency
of requesting a content as a main factor when removing
the data contents from a full cache, and states that recently
requested objects are more likely to be requested next. Another
replacement strategy is Least Frequently Used (LFU) which
is a frequency-based strategy. LFU evicts from the cache the
content that was requested the fewest number of times and
considers that the contents more likely to be requested again
are the ones that have been requested more times. In [8], K.
Cho et al. used the popularity of the content to determine the
number of the content that should be cached. Ioannis Psaras
et al. [9] calculate the caching probability of each content.
In order to increase the cache hit ratio, the above studies are
directed to be appropriate for different network topologies, but
they consider neither the properties of the content itself like
size nor the influencing factors and the end user characteristics
such as cost and mobility. They only accumulate contents
with past high popularity or high frequency which may no
longer be useful over time. To adjust adaptively the varied
content proprieties and its influencing factors, we present a
fuzzy control caching system for edge servers which can select
the more priority content to be cached based on well chosen
factors. To decide whether to cache or evict contents, the
decision making process is based on the: mobility, frequency,
cache occupancy and cost of retrieval.

Mobility: since mobility is a fundamental feature of wireless
systems, several analytical models are available [10], mobility-
based caching policies have been investigated, such as in [11]
and [12] where they used the mobility of users to predict the
next base station in addition to the next requested content to
be cached on it. The mobility can be modeled by several ways
and the most used in literature is Markov chain. When user
mobility is modelled by a Markov chain random walk, the
optimal storage space is approximately solved by Poularakis
and Tassiulas in [13] and the same model is used in [14]
and [15]. The use of mobility in caching leads to insure
its influencing role. Authors in [10] and [16] developed a
mathematical model to explore the impact of user mobility
on the performance of cache and it has been proved that user

mobility can be turned into an advantage to enhance caching
decision and minimize the incurred service cost.

Frequency: in the present context, the frequency defined
as how often the contents are requested or intended to be
requested, it is extracted from a function that establishes the
popularity of every content. Content popularity is commonly
modeled with a probability distribution function such as a Zipf
or MZipf [17]. Authors in [18]–[20] used a Zipf popularity
model with α parameter with α ∈ [0.6-2.5]. Other authors
have extracted real traces from Content delivery network
(CDN) [17]. Frequency based caching schemes store only
popular content and keep count of the frequency of contents to
determine the ones that are expected to become popular. The
above studies have demonstrated how the frequency parameter
can be fine tuned to obtain the best caching performance.

Cache Occupancy: The cache occupancy determines the size
available in the cache. This size is usually expressed with an
absolute value or a ratio. We express it by the following: CO =
1 means that the content occupies 100% of cache size. There
are many related studies in the literature that propose and
make use of the distribution of the content sizes [16]. In the
literature, mostly, the size of cache is fixed and contents are
used with homogeneous or heterogeneous sizes and gathered
in a catalogue to represent the entire collection of contents in
the network. Hence clarifying the strong correlation of size on
cache performance can be determined.

Cost of Retrieval: In this paper, we take into account
the cost of content retrieval, i.e., the cost associated to the
external bandwidth needed by a MEC to retrieve the requested
content to the end users. Classical caching strategies aim to
maximize cache efficiency and propose solutions with high
overall cost. To solve this mismatch, authors in [18] formulate
a polynomial-time greedy algorithm to solve the optimization
models that either minimize the cost or maximize the hit-
ratio. Results show that significant cost savings are attainable.
It is confirmed that the consideration of cost can impact the
performance of caching systems.

III. FUZZY INFERENCE SYSTEM

Fuzzy logic is an extension of boolean logic dealing with
the concept of partial truth which denotes the extent to which
a proposition is true. Whereas the classical logic holds that
everything can be expressed in binary terms (0 or 1, black or
white, yes or no), fuzzy logic replaces Boolean truth values
with a degree of truth. Degree of truth is often employed
to capture the imprecise modes of reasoning that play an
essential role in the human ability to make decisions in
an environment of uncertainty and imprecision [19]. Fuzzy
Inference Systems (FIS) consist of an input, a processing and
an output phases. In the input phase, the inputs are mapped to
an appropriate membership function with specific values. The
processing stage consist of preforming each appropriate rule
and generating a corresponding result. It then combines the
results. Finally, the output phase converts the combined result
back into a specific output value. The membership function of
a fuzzy set represented by divided ranges defines how each



value in the input space is mapped to a membership degree.
Our proposed model, as illustrated in the Figure 2, is made of
the main FIS components.

Fig. 2. Fuzzy inference system of caching decision

The preliminary step toward the construction of the fuzzy
algorithm, is to analyze previous studies to understand the
impact of each input and to control the output as a result of
this analysis. We have chosen four input variables that describe
each web content in term of: frequency, cache occupancy,
mobility and cost of retrieval, as shown in table I. The output
variable is the decision of caching, as depicted in table II.

TABLE I
INPUT VARIABLES DESCRIPTION

input Description
Fr Frequency of demand of each content in time period
Cr The time incurred to retrieve the content
CO Occupancy of content in the cache
Mb The users proximity from the base station

TABLE II
OUTPUT VARIABLE DESCRIPTION

OUTPUT Description
DECISION The decision taken to cache contents

For each of these variables, we have defined:
• The fuzzy sets with membership functions describing the

degree of membership of each variable to the correspond-
ing fuzzy set as shown in Tables III and IV.

• The fuzzification of the four input variables and the output
variables means establishing the linguistic variables.

Classification priority can be defined in the basis of re-
cent part observations across the network. However from the
perspective of approximate logic, the intention is defined on
the observation and experience of end users. However, more
precise linguistics can yield finer determination of membership
grade. One of the popular methods to find such membership
grades for the end user is the degree of similarity evaluation.
It describes that if two or more observations are similar, then,
grade of similarity is calculated [28]. Based on the degree of
similarity, the partition of linguistics may be provided.

There are three membership functions associated with the
defined linguistic variables: frequency (FR) : {Low, Medium,
High}, referring to popularity of the content. Whenever the
frequency of demanding a content is high, the popularity
increases and vice-versa. Cache occupancy (CO) : {Small,
Medium, Large} which represents the occupancy of a content
in the cache expressed by dividing the content size on the
remaining cache size. The closer CO value from 1 means that
it occupies more size from the cache. Mobility (Mb) : {So-
close, Close, Far} in reference to the distance between the
base station where the cache is located and the end user. This
proximity is updated each time the user moved from one base
station to an other. Cost of retrieval (Cr) : {Short, Medium,
Long} is the cost to retrieve the requested content to the end
user in reference to the time incurred.

TABLE III
FUZZIFICATION OF INPUT VARIABLES

Description Ranges
Fr Low, Medium, High [0-0.2], [0.3-0.5], [0.6-1.0]
Cr Low, Medium, Long [0-0.3], [0.4-0.6], [0.7-1.0]
CO Small, Medium, Large [0-0.3], [0.4-0.6], [0.7-1.0]
Mb So-close, Close, Far [0-0.3], [0.4-0.7], [0.8-1.0]

To describe the output variable, we have chosen the fol-
lowing membership functions: {Low, Medium, High} which
represent the priority of caching decision. After defining the
membership function, we build the rule base. These rules are
represented by IF-Then clauses in which the antecedents are
the conditions of the mobile user and the properties of the
content while the consequence is the caching decision. There
is no general procedure to decide the number of fuzzy rules
and the role of each involved factor in the decision making.
In our case, the set of rules are based on the understanding of
cache behaviour under different scenarios. Examples of some
fuzzy logic rules are the following:

IF Fr is LOW and CO is SMALL and Cr is
SHORT and Mb is SO CLOSE

THEN DECISION is MEDIUM
IF Fr is LOW and CO is SMALL and Cr is

SHORT and Mb is CLOSE
THEN DECISION is MEDIUM

IF Fr is LOW and CO is SMALL and Cr is
SHORT and Mb FAR

THEN DECISION is LOW
IF Fr is LOW and CO is SMALL and Cr is

MEDIUM and Mb is SO CLOSE
THEN DECISION is MEDIUM

TABLE IV
FUZZIFICATION OF OUTPUT

Description Ranges
Decision Low, Medium, High [0-0.2], [0.3-0.5], [0.6-1]



IV. IMPLEMENTATION AND EVALUATION

This section presents the implementation and the evaluation
of Fuzzy caching system for edge computing (FCEC) We
divide the evaluation into two parts: first, we compare the
software implementation of FCEC with the Least Recently
Used (LRU) and First In First Out (FIFO) strategies. We used
typescript with RxJS which is a reactive programming library
for the software implementation, then we moved the algo-
rithm into hardware using FPGA Xilinx virtex-5 LX50T-1156
board from DIGILENT coded with VHDL(VHSIC Hardware
Description Language).

The basic performance characteristic of a cache is a hit ratio.
The hit ratio is computed according to the following equation:

cacheHit =
i=1

∑
N

hiti/
i=1

∑
N

hitsi+
i=1

∑
N

missi (1)

A cache hit occurs when the request is served from cache,
otherwise it is a miss. Thus, the cache hit ratio is the number
of cache hits divided by the sum of cache misses and hits
(total number of requests) in a given time. A high hit ratio
means that a cache performs well.

A low hit ratio means that the data in cache should not be
cached or that the cache size is too small to stand temporal
locality of all contents. In our software solution, we designed a
client-server model with a cache as a proxy between the client
and the server. We generated a set of resources (contents with
heterogeneous sizes) and a set of requests, then we investigated
how the cache hit ratio changes when the average cache size
varies. In the admission phase (placement), we note that the
fuzzy caching system gives each content in web a priority and
places it in the cache according to this priority, unlike LRU
and FIFO.

TABLE V
NOTATION

Notation Description
S cache size

Idi Id or Index of content
N Number of contents
R Number of Requests
Pi Priority of caching decision for each Idi

Algorithm 1 Fuzzy Caching strategy
Initialization: Initialize N, R with Zipf distribution function
Client sends Request R
Base station receives R
Apply fuzzy rules to set Pi
while S > 0 do

if content in cache then
hit← hit +1
return Idi

else
miss← miss+1
get Idi f romserver
while S = 0 do

check P(Idi)
Evict :Id with min{P(Id)}

end
Push in cache : Idi
return Idi

end
end

Fig. 3. Distinction between web object by giving each a priority

In Figure 3, we have a catalogue of 100 different contents
with heterogeneous sizes. The requested contents were
classified into Low, Medium and High priority in order to
take the caching decision.

Fig. 4. Cache Hit ratio in High priority requests

In the eviction phase (replacement), we used the content
priority and the content size to choose the object that should
be replaced. The efficiency of our proposed technique appears
when we launch random requests over time. We should



mention that it became significant that high-priority contents in
the web are most likely to be requested followed by Medium
and Low ones. In Figure 4, a hit rate of 65% appears in high
priority content.

Fig. 5. Cache hit ratio of Fuzzy caching system, LRU and FIFO

To evaluate our proposal, we compared hits ratios with two
caching strategies:
• Least Recently Used (LRU) [21]:

In this strategy, the system caches the most popular
requests and when the cache storage is full, the system
evicts the least requested recently content, and replaces
it by the new most requested one.

• First In First Out (FIFO) [22]:
In this strategy, the system records the time of caching
contents. In case of a full cache, the system evicts the
content which was earliest stored and replaces it by the
new content.

For the distribution of requests and contents, studies have
confirmed Zipfs law as an appropriate distribution model for
access pattern to contents on the Internet such as videos hosted
on YouTube [23] or peer-to-peer file sharing systems (Bit-
Torrent, Gnutella) [24] [25]. According to Zipfs law, a small
fraction of popular web objects attracts most user requests,
which is favourable for the efficiency of small caches [25].
Zipf distributions of finite support for a content catalogue of N
contents with request probabilities Z(r) have been determined
for the objects popularity ranks r ∈ {1,2,3...,N}:

Z(r) = αrβ with : rβ < 0;β = Z(1) = 1/
N

∑
r=1

rβ > 0 (2)

where β is an adaptive shape parameter and α a normalization
constant. R represents the users requests with R = 103 that
is generated according to the Zipf distribution function with
α set as : α = 0.75. A catalogue of N= 102 contents is then
generated, where each content is accompanied with its size,
frequency, cost and mobility. These factors are first initialized
randomly and then change over time according to α .

We first study the stability of cache hit ratio over time to
characterize how the hit ratio changes with the changing of

contents distribution in order to study the long term cache
performance. Then, we focus on the short-term performance
by studying the relationship between cache size and hit ratio.

Regarding to the long term study, we express it by the
variation of α Zipf parameter to have different request dis-
tributions in order to evaluate the capability of our proposed
system against the above strategies in term of maintaining
good performance over time. We distribute a data set based on
the random changing of α Zipf parameter value. From Figure
6, we can observe that the proposed fuzzy caching strategy and
LRU are stable over time unlike FIFO. We also notice that our
proposed algorithm shows more advantage with cache size =
600 and a hit ratio approximating 0.8 %.

Fig. 6. Cache Hit ratio stability over time

For the short term performance, figure 5 shows hit ratio
achieved by our proposed strategy and the other caching
strategies introduced above. We can see how the hit ratio varies
with cache size measured with UNIT. We noticed also that
each time the cache size increases the hit ratio augments and
the proposed FCEC system provides a higher cache hit rate
for all cache capacity values. When the cache size is small,
the performance of LRU is close to our proposed strategy.
As the cache size increases, the gap between FCEC strategy
and other two caching algorithms increases at first, and then
gradually became almost similar with LRU and wobbling for
FIFO. At cache capacity C = 700, the cache hit ratio of the
three algorithms is increased at around 0.8%. At this point,
the cache hit ratio achieved by the mentioned strategies tend
to converge because the cache size is high enough to store all
the contents.

For the hardware implementation, we migrated the main
algorithm into hardware using FPGA. We noticed that the
hardware consumes only 12 clock cycles, which can be
considered as an advantage regarding to the critical role of
the cache in the edge of the network. Figure 7 shows the
measurement of energy consumption, the thermal properties,
the voltage and the electric current during the run of the fuzzy
caching decision system. We notice that a power of P =0.45W
is consumed when making the caching decision. Comparing
Fuzzy caching strategy with LRU that consumes P =0.9W



[27], it is notable that Fuzzy caching strategy consumes less
power.

Fig. 7. The values of energy consumption, thermal properties, voltage and
current.

V. CONCLUSION
We have presented a novel caching system for edge devices,

that combines size, mobility and cost awareness and contin-
uously optimized using fuzzy logic decision maker model of
edge caching. The software implementation shows that the
proposed mechanisms improves the hit ratio and the hardware
implementation reduces the power utilization. As more differ-
ent applications with various contents migrate into the internet,
future mobile edge computing system will experience more
variability in requests, content sizes and costs. We believe that
the proposed caching strategy can address these challenges.
As future work, we aim to extend the proposal to an other
model using reinforcement learning with agents that learn with
the dynamics of the environment, which will encompass the
problem of stochastic dynamics and enhance the quality of
caching decision.

REFERENCES

[1] W. Shi ; J. Cao ; Q. Zhang ; Y. Li ; L. Xu, Edge Computing: Vision
and Challenges IEEE Internet of Things Journal, Volume: 3 , Issue: 5
, Oct. 2016 pp: 637 - 646

[2] W. Ali , S. M. Shamsuddin, A. s. Ismail, A Survey of Web Caching and
Prefetching, Int. J. Advance. Soft Comput. Appl., Vol. 3, No. 1, March
2011 PP:2074-8523.

[3] W. Ali, S.M. Shamsuddin, A.S. Ismail, Intelligent Web proxy caching
approaches based on machine learning techniques, Elsevier (2012) pp:
0167-9236.

[4] A. S. M. A. Ibrahim Abdullahi, Ibrahim Badamasi, Cacheskip approach
for Information-Centric Network, ARPN Journal of Engineering and
Applied Sciences, vol. 11, no. 5, pp. 3413-3418, 2016.

[5] E. H. Miller, A note on reflector arrays (Periodical styleAccepted for
publication), IEEE Trans. Antennas Propagat., to be publised.

[6] J. Wang, Fundamentals of erbium-doped fiber amplifiers arrays (Pe-
riodical styleSubmitted for publication), IEEE J. Quantum Electron.,
submitted for publication.

[7] Csar Bernardini, Thomas Silverston, Olivier Festor. A Comparison
of Caching Strategies for Content Centric Networking. IEEE Global
Communication Conference, Dec 2015, San Diego, United States.IEEE
Global Communication Conference. ¡hal-01251968¿ Networking,

[8] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, S. Pack, ”Wave:
Popularity-based and collaborative in-network caching for content-
oriented networks”, Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), pp. 316-321, Mar. 2012.

[9] Psaras I, Chai WK, Pavlou G. Probabilistic In-Network Caching for
Information-Centric Networks. In proceedings of the second edition of
the ICN workshop on Information-centric networking. New York, NY,
USA, 2012; 5560.

[10] B. Banerjee, C. Tellambura, ”Study of mobility in cache-enabled wire-
less heterogeneous networks”, 2017 IEEE Wireless Communications and
Networking Conference (WCNC), March 2017.

[11] A. Mahmood ; C. Casetti ; C.F. Chiasserini ; P. Giaccone ; J. Harri,
”Mobility-aware edge caching for connected cars”, 2016 12th Annual
Conference on Wireless On-demand Network Systems and Services
(WONS), Cortina d’Ampezzo, Italy, Jan. 2016

[12] F. Zhang et al., ”EdgeBuffer: Caching and prefetching content at the
edge in the mobilityfirst future Internet architecture”, Proc. IEEE 16th
Int. Symp. World Wireless Mobile Multimedia Netw. (WoWMoM), pp.
1-9, Jun. 2015.

[13] S. P. Bingulac, On the compatibility of adaptive controllers (Published
Conference Proceedings style), in Proc. 4th Annu. Allerton Conf.
Circuits and Systems Theory, New York, 1994, pp. 816.

[14] N. Abani, T. Braun, M. Gerla, ”Proactive Caching with Mobility
Prediction under Uncertainty in Information-centric Networks”,ICN
’17 Proceedings of the 4th ACM Conference on Information-Centric
Networking, Berlin, Germany September 26 - 28, 2017 , PP. 88-97

[15] L. Yao, A. Chen, J. Deng, J. Wang, G. Wu, ”A cooperative caching
scheme based on mobility prediction in vehicular content centric net-
works”, IEEE Transactions on Vehicular Technology, Volume: 67 , Issue:
6 , June 2018, pp. 5435 - 5444.

[16] C. Jarray, A. Giovanidis, ”The effects of mobility on the hit performance
of cached d2d networks”, 2016 14th International Symposium on
Modeling and Optimization in Mobile Ad Hoc and Wireless Networks
(WiOpt), pp. 1-8, May 2016.

[17] C. Bernardini, T. Silverston, O. Festor, ”A Comparison of Caching
Strategies for Content Centric Networking”, Proc. IEEE Global Com-
munications Conference (GLOBECOM), pp. 1-6, 2015.

[18] A. Araldo, M. Mangili, F. Martignon, and D. Rossi, Cost-aware caching:
Optimizing cache provisioning and object placement in ICN, in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Austin, TX, USA, Dec.
2014, pp. 11081113.

[19] Mitchell J, Rizvi S, Ryoo J (2015) A fuzzy-logic approach for evalu-
ating a cloud service provider. In: To The 2015 The 1st International
Conference on Software Security and Assurance (ICSSA15), July 27,
2015, Sungkyunkwan University, Korea.

[20] Psaras I, Chai WK, Pavlou G. Probabilistic In-Network Caching for
Information-Centric Networks. In proceedings of the second edition of
the ICN workshop on Information-centric networking. New York, NY,
USA, 2012; pp. 5560.

[21] ] M. Ahmed, S. Traverso, P. Giaccone, E. Leonardi, and S. Niccol-
ini,Analyzing the performance of LRU caches under non-stationary
traffic patterns, arXiv preprint arXiv:1301.4909, 2013.

[22] D. Rossi and G. Rossini, Caching performance of content centric net-
works under multi-path routing (and more), Relatorio tecnico, Telecom
ParisTech, pp. 16, 2011.

[23] M. Tortelli, D. Rossi and E. Leonardi, ModelGraft: Accurate, Scalable,
and Flexible Performance Evaluation of General Cache Networks,
Proc.Internat. Teletraffic Congress ITC28, Wrzburg, Germany (2016)

[24] D. Rossi and G. Rossini, Caching performance of content centric net-
works under multi-path routing (and more), Relatorio tecnico, Telecom
ParisTech, pp. 16, 2011.

[25] M. Hefeeda and O. Saleh, Traffic modeling and proportional partial
caching for peer-to-peer systems, IEEE/ACM Trans. on Networking 16/6
(2008) 1447-1460

[26] G. Hasslinger, K. Ntougias, F. Hasslinger, ”Performance and Precision
of Web Caching Simulations Including a Random Generator for Zipf
Request Pattern”, Proc. 18th MMB Conf. Mnster, vol. 9629, pp. 60-76,
2016.

[27] Q. Zhu, Y. Zhou, ”Power aware storage cache management”, IEEE
Transactions on Computers, vol. 54, no. 5, pp. 587-602, May 2005.

[28] Liao, X. W., Li, Y., Lu, B. ”A model for selecting an ERP system
based on linguistic information processing”. Information Systems, vol
32(7),pp. 10051017, 2007.


